
Image Captioning using Convolutional Neural Network

 and

Long Short-Term Memory

Project submitted to

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

 In partial fulfillment of the requirement for the Degree of

MASTER OF COMPUTER APPLICATIONS, 2019

By

ANKIT KUMAR MANDAL

Registration Number. : 137331 of 2016-2017

Examination Roll No. : MCA196020

Under the Guidance of

Prof. Susmita Ghosh

Department of Computer Science and Engineering

Jadavpur University, Kolkata-700032

India

2019

Department of Computer Science and Engineering Faculty

Faculty of Engineering and Technology

Jadavpur University

 To whom it may concern

This is to certify that the work in this project report entitled as “Image

Captioning using Convolutional Neural Network and Long Short-Term

Memory“ has been satisfactorily completed by Ankit Kumar Mandal. It is a

bona-fide piece of work for the fulfillment of the requirements for the degree of

Master of Computer Application, of the Department of Computer Science &

Engineering, Faculty of Engineering & Technology, Jadavpur University,

during the academic year 2018-19.

Prof. Susmita Ghosh

(Supervisor)

Professor

Department of Computer Science and Engineering
Jadavpur University

Prof. Mahantapas Kundu

(Head of the Department)
Professor
Department of Computer Science and Engineering
Jadavpur University

Prof. Chiranjib Bhattacharjee

(Dean)
Professor
Department of Computer Science and Engineering
Jadavpur University

DECLARATION OF ORIGINALITY AND COMPLIANCE OF

ACADEMIC PROJECT

I hereby declare that except where specific reference is made to the work of

others, the contents of this dissertation are original and have not been submitted

in whole or in part for consideration for any other degree or qualification in this,

or any other university. This dissertation is my own work as part of my MCA

studies and contains nothing which is the outcome of work done in collaboration

with others, except as specified in the text and Acknowledgements.

 Name : Ankit Kumar Mandal

 Registration No. : 137331 of 2016-2017

 Class Roll No. : 001610503024

 Examination Roll No. : MCA196020

Project Report Title : Image Captioning using Convolutional Neural

Network and Long Short-Term Memory

 Ankit Kumar Mandal

Department of Computer Science and Engineering Faculty

Faculty of Engineering and Technology

Jadavpur University

Certificate of Approval

This is to certify that the project titled “Image Captioning using

Convolutional Neural Network and Long Short-Term Memory “ is a bona-

fide record of work carried out by Ankit Kumar Mandal in partial fulfillments

for the award of the degree of Master of Computer Application, of the

Department of Computer Science & Technology, Jadavpur University during

the period January 2019 to May 2019. It is understood that by this approval the

undersigned do not necessarily endorse or approve any statement made, opinion

expressed or conclusion drawn therein, but approve this thesis only for the

purpose for which it is submitted.

__________________________ ___________________________
Signature of the Examiner Signature of the Examiner

Date: ____________ Date:________________

 Acknowledgements

First and foremost, I would like to pay my heartiest thanks to my respected guide

Prof. Susmita Ghosh, Department of Computer and Engineering, Jadavpur

University, for her keen interest, invaluable suggestions and guidance rendered to

me during the course of my project work.

I would also like to convey my sincere gratitude to all my respected teachers and

faculty members in this department for their invaluable suggestions and kind

cooperation.

I would also like to express my sincere gratitude to all of them, who directly and

indirectly helped me for the successful completion of this work.

Last but not the least, I would like to convey thanks to my mother buchchi devi,

and my elder sister Sangeeta devi for their moral support throughout the course.

Regards,

Ankit kumar Mandal

Examination Roll No. : MCA196020

Master of Computer Application

Jadavpur University

Tables of Contents

1. Introduction …………… 1

1.1. Image captioning …………………… 1

1.2. Application of Image captioning …………………… 2

1.3. Algorithm used for Image captioning …………………… 2

1.3.1. Convolution Neural Network …………………… 2

1.3.2. Recurrent Neural Network ……………………. 2

1.3.3. Long Short Term Memory …………………….. 2

1.4.Why are CNN and RNN used for image captioning ? …………………….. 3

1.5.Process of Image Captioning …………………….. 3

1.6.Scope of the project ……………………… 4

1.7.Organization of the project ……………………… 4

2. Artificial Neural Network’s 5

2.1. Introduction to Artificial Neural Network ……………………… 5

2.2.Artificial Neural Network Architecture ………………………. 7

2.3.Activation function: ……………………… 9

2.4.Loss function ……………………… 10

2.5. Optimizer ……………………… 10

3. Recurrent Neural Network

3.1. Introduction to recurrent neural network ……………………… 11

3.2. Initialization ……………………… 12

3.3. Forward propagation ……………………… 14

3.4.Error calculating ……………………… 15

3.5.Back Propagation Through Time ……………………… 15

3.6. Application of recurrent neural network ……………………… 23

3.7.Two issue’s of recurrent neural network ……………………… 24

3.8.Long Short Term Memory ……………………… 25

4. Convolution Neural Network ……………………… 27

4.1.Convolution ……………………… 27

4.2. ReLu ……………………… 28

4.3.Pooling ……………………… 29

4.4.Max-pooling ……………………… 29

4.5.Fully connected layer ……………………… 29

5. Image captioning ……………………… 30

5.1.Introduction to image captioning ……………………… 30

5.2.Architecture ……………………… 31

5.3.Methodology to solve the task ……………………… 33

6. Implementation and results ……………………… 35

6.1.Implementation mechanism ………………………35

6.2.Dataset ……………………… 35

6.3.Implementation process ………………………35

6.4.Results ……………………… 41

7. Conclusion and future work ……………………… 44

8. Bibliography ……………………… 45

1 | P a g e

Chapter 1

Introduction

1.1 Image captioning :

 Caption generation is a challenging artificial intelligence problem where a textual

description is generated for a given photograph. It requires both methods from computer

vision to understand the content of the image and a language model from the field of natural

language processing to turn the understanding of the image into words in the right order.

Recently, deep learning methods have achieved state-of-the-art results on examples of this

problem []. What is most impressive about these methods is a single end-to-end model can

be defined to predict a caption, given a photo, instead of requiring sophisticated data

preparation or a pipeline of specifically designed models.

1.2 Application of image captioning

 Self driving cars : Automatic driving is one of the biggest challenges and if we can

properly caption the scene around the car, it can give a boost to the self driving system

[5].

 Aid to the blind : We can create a product for the blind which will guide them travelling

on the roads without the support of anyone else. We can do this by first converting the

scene into text and then the text to voice. Both are now famous applications of Deep

Learning[5]

 CCTV cameras are everywhere today, but along with viewing the world, if we can also

generate relevant captions, then we can raise alarms as soon as there is some malicious

activity going on somewhere. This could probably help reduce some crime and/or

accident[5].

 Automatic captioning can help, make Google Image Search as good as Google Search, as

then every image could be first converted into a caption and then search can be performed

based on the caption.

2 | P a g e

1.3 Algorithm used for Image captioning

There are several algorithm exist in literature which generate captions of a given

image. They are mainly

1.3.1 Convolution neural network

 A convolution neural network (CNN) [17] is one of the most popular algorithm for

deep learning, a type of machine learning in which a model learns to perform classification

tasks directly from images, video, or text. CNNs are particularly useful for finding patterns in

images to recognize object, faces and scenes. They learn directly from image data, using

patterns to classify images and eliminating the need for manual feature extraction. CNNs

provide an optimal architecture for image recognition and pattern detection [17]. Combined

with advances in GPUs and parallel computing, CNNs are a key technology underlying new

developments in automated driving and facial recognition. For example, deep learning

applications use CNNs to examine thousands of pathology reports to visually detect cancer

cells.[5] CNNs also enable self-driving cars [5] to detect objects and learn to tell the

difference between a street sign and a pedestrian. We have discussed this in details in Chapter

4.

 1.3.2 Recurrent neural network :

 Recurrent neural network is one of the most popular neural networks for language

modeling based on existing words to predict next word (based on existing characters to

predict next character) [26]. The logic behind a recurrent neural network is to consider the

sequence of the input. For us to predict the next word in the sentence we need to remember

which word appeared in the previous time step. These neural networks are called Recurrent

because this step is carried out for every input. As these neural network consider the previous

word during predicting, it acts like a memory storage unit which stores it for a short period of

time. We have discussed this in details in RNN Chapter 3.

1.3.3 Long Short Term Memory :

 Long Short Term Memory networks – usually just called “LSTMs” – are a special

kind of RNN, capable of learning long-term dependencies.[11] This work tremendously well on

3 | P a g e

a large variety of problems, and are now widely used [12]. LSTMs are explicitly designed to

avoid the long-term dependency problem. It overcome the problems associated with Recurrent

Neural Network are :-

 Exploding Gradients(discussed this in RNN Chapter 3.6)

 Vanishing Gradients (discussed this in RNN Chapter 3.6)

1.4 Why are CNN and RNN used for image captioning ?

 A captioning model relies on two main components, a CNN and an RNN.

Captioning is all about merging the two to combine their most powerful attributes [1].

1. As we know that CNN is used to classify the images and extract the features from the

image so we first extract the features from the all the images and these features used as

input of previous state of the LSTM.

2. RNNs work well with any kind of sequential data, such as generating a sequence of

words. So by merging the two, you can get a model that can find patterns and images, and

then use that information to help generate a description of those images.

1.5 Process of Image captioning

The image captioning process consists of several stages

 Prepare photo and text data for training a deep learning model.

 Design and train a deep learning caption generation model.

 Evaluate a train caption generation model and use it to generate caption for entirely

new photographs.

4 | P a g e

1.6. Scope of the project

 The automatic image caption generation, proposed in this project, uses various neural

network techniques. Several such techniques for image captioning are present in literature. In

this present study we have used convolutional neural network and Long Short Term Memory.

Convolution neural network is used to extract the feature of images and recurrent neural

network used to generate text.

1.7. Organization of the project

 The thesis is organized as follows: chapter 2 contains introduction to Artificial Neural

Network‟s. Chapter 3 includes discussion on Recurrent Neural Network and Long Short

Term Memory. Chapter 4 contains discussion on Convolutional Neural Network. Chapter 5.

Contains image captioning. Chapter 6. Includes implementation and results. Finally the

conclusion and future work are put in Chapter 7.

5 | P a g e

Chapter 2

Artificial Neural Network

2.1. Introduction to Artificial Neural Network :

Artificial Neural Network (ANN) uses the processing of the brain as a basis to develop

algorithms that can be used to model complex patterns and prediction problem [20].Let us

start by first understanding how our brain processes information:

In our brain, there are billions of cells called neurons, which processes information in the form

of electric signals. External information is received by the dendrites of the neuron, processed

in the neuron cell body, converted to an output and passed through the Axon to the next

neuron. The next neuron can choose to either accept it or reject it depending on the strength of

the signal [21].

Fig 2.1: To understand the Biological Neuron Structure[21]

The Following steps are performed in a Biological Neuron network

Step1: External signal received by dendrites

Step2: External signal processed in the neuron cell body

Step3: Processed signal converted to an output signal and transmitted through the Axon

6 | P a g e

Step 4: Output signal received by the dendrites of the next neuron through the synapse.

Now, let us try to understand how a ANN works:

Fig 2.2 Represents the general model of ANN

Here, w1, w2, w3 gives the strength of the input signals

As we can see from the above, an ANN is a very simplistic representation of a how a brain

neuron works. An Artificial Neural Network(ANN) is composed of four principal objects:

 Layers: all the learning occurs in the layers. There are 3 layers:

 1) Input (discussed next section of this Chapter)

2) Hidden (discussed next section of this Chapter)

and 3) Output (discussed next section of this Chapter)

 Feature and label: Input data to the network is called features and output from the

network is called labels)

 Loss function: Metric used to estimate the performance of the learning phase.

 Optimizer: Improve the learning by updating the knowledge in the network

A neural network takes the inputs data and feed them into next layer. The network needs to

evaluate its performance with a loss function. The loss function gives to the network an idea

1. INPUTS
(Signal Received by
The dendrites of the neuron)

2. Input processing

(Signals are processed
inside cell body)

4. Output signal

received by

dendrites of

the next

neuron

3. OUPUT

processing and
transmissions
(processed
input converted
to an output
and transmitted
through Axon)

X1

F = w1*x1+w2*x2+w3*x3

W1

W2

X2

W1

X3

7 | P a g e

of the path it needs to take before it masters the knowledge. The network needs to improve its

knowledge with the help of an optimizer.

.

Fig 2.3. ANN Underlying Machanism [3]

The program takes some input values and feed them into two fully connected layers.

To improve its knowledge, the network uses an optimizer, updates its knowledge, and tests its

new knowledge to check how much it still needs to learn. The program will repeat this step

until it makes the lowest error. If the error is far from 100%, but the curve is flat, it means

with the current architecture. It cannot learn anything else. The network has to be better

optimized to improve the knowledge.

2.2 Neural Network Architecture:

 The ANN architecture typically consists of the following layers.

 Input layer – This layer provides the input to the ANN system.

 Hidden layer – Hidden layer in ANN is a layer of neurons, which are flanked on the

input side by neurons in the input layer and on the output side by neurons belonging

to the output layer. There may be more than one hidden layer in a system, none of

https://www.guru99.com/images/tensorflow/083018_0539_NeuralNetwo1.png

8 | P a g e

which are visible as a network output. The hidden layer transforms the inputs into

signals that the output layer can use.

 Output layer – This layer consists of the output units whose values are dependent on

the hidden units and the weights between the hidden and output units. The output

units decide the class label.

A layer is where all the learning takes place. Inside a layer, there are an infinite amount of

weights (neurons). A typical neural network is often processed by densely connected layers

(also called fully connected layers). It means all the inputs are connected to the output. A

typical neural network takes a vector of input and a scalar that contains the labels. The most

comfortable set up is a binary classification with only two classes: 0 and 1. The network takes

an input, sends it to all connected nodes and computes the signal with an activation function.

 Fig. 2.3 plots the following ideas [21]

. The first layer is the input values for the second layer, called the hidden layer, receives the

weighted input from the previous layer

9 | P a g e

1. The first node is the input values

2. The neuron is decomposed into the input part and the activation function. The left part

receives all the input from the previous layer. The right part is the sum of the input

passes into an activation function.

3. Output value computed from the hidden layers and used to make a prediction. For

classification, it is equal to the number of class.

2.1 Activation function:

 1.3.1 ReLU :

 The activation

function of a node defines the output

given a set of inputs. You need an

activation function to allow the

network to learn non-linear pattern.

Fig.2.4 ReLU activation function [22].

A common activation function is a Relu, Rectified linear unit. The function gives a zero for

all negative values.

1.3.2. Sigmoid:

A sigmoid function produces a curve with an

“S” shape. The example sigmoid function

shown on the left is a special case of the logistic

function, which models the growth of some set.

Fig.2.5 Sigmoid function [22].

10 | P a g e

1.3.3. Tanh:

 This has characteristics

similar to sigmoid that we discussed

above. It is nonlinear in nature, its

values are lies between (-1,1) .

Fig.2.6 Tanh activation function [22] .

 Deciding between the sigmoid or tanh ,it depends on our requirement of gradient

strength. Like sigmoid, tanh also has the vanishing gradient problem. Tanh is also a very

popular and widely used activation function.

1.4. Loss function

After we have defined the hidden layers and the activation function, you need to specify the

loss function and the optimizer.

For binary classification, it is common to use a binary cross entropy loss function. In the

linear regression, we use the mean square error(discussed in Chapter 3).

The loss function is an important metric to estimate the performance of the optimizer. During

the training, this metric be minimized. we need to select this quantity carefully depending on

the type of problem we are dealing with.

1.5. Optimizer

The loss function is a measure of the model's performance. The optimizer helps improve the

weights of the network in order to decrease the loss. There are different optimizers available,

but the most common one is the Stochastic Gradient Descent. We have used Adam

optimization to optimize the weights.

11 | P a g e

Chapter-3

Recurrent Neural Network

3.1 Recurrent neural network

 Recurrent neural network is one of the most popular neural networks for language

modeling based on existing words to predict next word (based on existing characters to

predict next character)[26]. The logic behind a recurrent neural network is to consider the

sequence of the input. For us to predict the next word in the sentence we need to remember

which word appeared in the previous time step. These neural networks are called Recurrent

because this step is carried out for every input. As these neural network consider the previous

word during predicting, it acts like a memory storage unit which stores it for a short period of

time.

.For example, when we build a RNN for a

language, that means: the training data is a

list of sentences. Each sentence is a series of

words (tokenized words). For each sentence,

from the first word, we will predict the

second word. From the first and the second

word, we will predict the third word, etc.

 Fig. 3.1 Recurrent Neural Network [18]

Recurrent neural network means when it predict time order t, it will remember the

information from time order 0 to time order t.

Let‟s denote the sentence having t+1 words as

× = [x0,x1,…,xt]. we start from x0 to status

S0 = tanh(Ux0 +Ws0), where s-1 is the initialization of status initialization as 0.

The output o0 = softmax(Vs0). Then when we go to next word x1 we will have updated status

S1 = tanh(Ux1 +Ws0) and the corresponding output

O1 = softmax(Vs1). We will see at time order t=1 it not only depends on input x1 but also

depends on the previous status s0.The equation we have used here are :

12 | P a g e

St=tanh(Uxt + Wst-1)

Ot= softmax(Vst)

If we plot the logic of RNN and the corresponding forward propagation, it is like

Fig.3.2: This illustrates an unrolled RNN

3.2. Initialization

 We simplify the above architecture into given below for example all input nodes as

output layer, all hidden nodes as hidden layer and all output nodes as output layer .

Here,

 X0=input at time t=0 , X1=input at time t=1 , X2=input at time t=2

 W1= weight of neuron from hidden layer to hidden layer S0 to S1

W2= weight of neuron from hidden layer to hidden layer S1 to S2

V0= weight of neuron from hidden layer to output layer S0 to O0

V1= weight of neuron from hidden layer to output layer S1 to O1

V2= weight of neuron from hidden layer to output layer S2 to O2

U0= weight of neuron from input layer to hidden layer X0 to S0

U1= weight of neuron from input layer to hidden layer X1 to S1

13 | P a g e

U2= weight of neuron from input layer to hidden layer X2 to S2

 V0=0.5, V1=0.5, V2=0.5, W01=0.5, W12=0.5

X0=0.2, X1=0.2, X2=0.2,O0=0.2, O1=0.2, O2=0.

Every node of neuron has performed two operation :

 Fig.3.3. it shows that every neuron perform two operation

Net (…) : It is summation of all input weight coming from different source and

OUT(…) : It is tanh() activation function which takes arguments as result of Net(…)

Fig. 3.4. All three layer clearly shown and how parameter pass to one layer to another.

O0

S0

 X0

 O1

S1

 X1

O2

S2

 X2

E0 E1

E2

W1

W2

 U0 U1
 U2

V0 V1 V2

Output Layer

Hidden Layer

 Input Layer

 T = 0 T = 1 T = 2

Neuron Net(…)

 Out(…)

∑ of all input weight coming from

difference source

It is tanh() function which takes argument as

Net(…)

14 | P a g e

3.3. Forward Propagation

 In RNN, forward propagation is same as MLP (multilayer perceptron) forward

propagation but difference is that in RNN, there is one more input of the previous hidden

layer output which is fed to next hidden layer as input. In below figure there is input from S0

to S1 and S1 to S2 and having corresponding weight W1 and W2 .

Fig 3.5. This diagram helps to better understand how forward propagation perform.

In forward propagation,

S0 :

 Net(s0) = (V0X0) = 0.2 (1)

 Out(S0) = ∑ (Net(s0)) = 0.5498 (2)

 Net(O0) = V0 Out(S0) = 0.2749 (3)

 Out(O0) = ∑ Net(O0) = 0.5683 (4)

S1:

 Net(s1) = (V1X1+w1 Out(S0)) = 0.3×0.5×0.5498=0.5749 (5)

 Out(S1) = ∑ (Net(s1)) = 0.6399 (6)

O0

S0

 X0

 O1

S1

 X1

O2

S2

 X2

E0 E1

E2

W0

W1

W2

 U0 U1
 U2

V0 V1 V2

Output Layer

Hidden Layer

 Input Layer

15 | P a g e

 Net(O1) = V1 Out(S1)=(0.5×0.6399)=0.3199 (7)

 Out(O1) = ∑ Net(O1)=0.5793 (8)

S2:

 Net(s2)=(V2X2+w2 Out(S1))=(0.2×0.5×0.6399 (9)

 Out(S2)=∑ (Net(s2))=0.627 (10)

 Net(O2)=V1 Out(S2)=(0.5×0.6271)=0.3135 (11)

 Out(O2)=∑ Net(O2)=0.5777 (12)

3.4. Error calculating

 Error calculating using Squad error function :-

Etotal = ∑

 (Given_output – Actual_output)

2

E2 =

 (Given(O2) – Out(O2))

2
= 0.0158 (13)

E1 =

 (Given(O1) – Out(O1))

2
= 0.0390 (14)

E0 =

 (Given(O0) – Out(O0))

2
 = 0.0678 (15)

ETotal = E0 + E1 + E2 = (0.0158+ 0.0390+0.0678) (16)

3.5. Back Propagation Through Time (BPTT)

 In neural networks, we do Forward-Propagation to get the output of our model and

check if this output is correct or incorrect, to get the error. Which is nothing but going

backwards through our neural network to find the partial derivatives of the error with respect

to the weights, which enables us to subtract this value from the weights. Those derivatives are

then used by Gradient Descent, an algorithm that is used to iteratively minimize a given

function. Then it adjusts the weights up or down, depending on which decreases the error.

That is exactly how a Neural Network learns during the training process. So applying Back

Propagation ,we try to improve weights and minimize the loss , while training.

 Within BPTT the error is back-propagated from the last to the first time step, while unrolling

all the time steps. This allows calculating the error for each time step, which allows updating

16 | P a g e

the weights. Note that BPTT can be computationally expensive when you have a high number

of time steps.

Fig. 3.5 Illustration the concept of Forward Propagation and Backward Propagation perfectly at the example of a

Feed Forward Neural Network[18].

Back propagation through time: t=2

Unfolding over(t=2):

 Fig. 3.6 This diagram represents Back propagation when unfolding over t=2

E2

S0

 X0

S1

 X1

O2

S2

 X2

W1

W2

 U0 U1
 U2

V2

 T = 0 T = 1 T = 2

17 | P a g e

Calculating Gradient of E2 with respect to V2 (we have to use chain rule to find derivatives)

Since,

 =

 ×

 ×

 (17)

From , First part of the equation (17) .

 =

 –

 = –) = 0.4271

(18)

Second part of the equation (17)

 = = 0.2338 (19)

Third part of the equation (17)

 = =0.6271 (20)

Finally, substituting the value of equations 18,19,20 in equation 17

 =

 ×

 ×

 =(0.4271+0.2338+0.6271)=0.0626

Derivatives of E2 with respect to W12

 (21)

First part of the equation (21), finding derivatives of E2 w.r.t to W12

 (22)

And now from first of equation (22)

18 | P a g e

 = 0.4271 (23)

Now, taking 2
nd

 part of equation (22)

 = () =(0.5777)×(1-0.5777)=0.2439 (24)

Taking 3
rd

 part of equation (22)

 =

 = 0.5

 (25)

Taking fourth and fifth part of equation (22)

= = (0.6271 × (1-0.6271))=0.2338 (26)

 =0.6399 (27)

Finally, Substituting the value of equations 23,24,25,26 and 27 in equations 22.

 Or,

 = 0.4271×0.2439×0.5×0.2338×0.6395=0.0077 (28)

Now, taking the Second part from equation 22.

 =

 (29)

Taking fifth part of equation 29.

 (30)

19 | P a g e

= =0.6399×(1-0.6399)=0.2304 (31)

 =0.5498 (32)

Finally,

 =

Or,

 = 0.4271×0.2439×0.5×0.2338×0.5×0.2304×0.5498=0.0007 (33)

Back propagation through time: t=1

 Unfolding over t=1

Fig. 3.7 This diagram represents Back propagation when unfolding over t=1

S0

 X0

 O1

S1

 X1

S2

 X2

W01

W12

 U0 U1
 U2

 V1

Output Layer

Hidden Layer

 Input Layer

 T = 0 T = 1 T = 2

 E1

20 | P a g e

Calculate gradient w.r.t V1

 =

 (34)

Now, taking first part of the equation 34.

 –

= –) = -(0.3-0.5793)=0.2437 (35)

Now, taking second part of the equation (34).

 = =(0.5793)(1-0.5793)=0.2437 (36)

Now, taking third part of the equation (34).

=

 = = 0.6399 (37)

 =

 = 0.2793×0.2437×0.6399=0.0435

Calculating gradient w.r.t., W01

 =

 (38)

Now, taking first part of the equation (38)

 –

= –)= - (0.2 – 0.5793)=0.3793 (39)

Now, taking second part of the equation (38)

 = = (0.5793×(1-0.5793))=0.2437 (40)

Now, taking third part of the equation (38)

21 | P a g e

 =

 =v1= 0.5 (41)

Now, taking fourth part of the equation (38)

 = = (0.6399×(1-0.6399))=0.2304 (42)

Now, taking fifth part of the equation (38)

 =

 = = 0.5498 (43)

Finally,

 =

Or,

 = 0.3793×0.2437×0.5×0.2304×0.5498=0.0058 (44)

Back propagation through time: t=0

 Unfolding over t=0

Fig. 3.8 This diagram represents Back propagation when unfolding over t=0

O0

S0

 X0

S1

 X1

S2

 X2

W1

W2

 U0 U1
 U2

V0

Output Layer

Hidden Layer

 Input Layer

 T = 0 T = 1 T = 2

22 | P a g e

Calculating gradient with respect to V0

 ()

 ()

 ()

 ()

 (45)

Now, taking first part of the equation (45)

 –

= –) = -(0.2-0.5683) = 0.3683 (46)

Now, taking third part of the equation

 ()

 ()
 =

 =V0= 0.5683×(1-0.5683)=0.2453 (47)

Finally,

 ()

 ()

 ()

 ()

Or,

 = 0.3683×0.2453×0.5498=0.0496

 (48)

Weight updating for V2.

 =0.0626 [From equation (17)]

 = V2 – n[

] = (0.5-(0.5×0.0626))=0.4687

 (49)

Weight updating for V1

 = 0.0435

23 | P a g e

 = V1 – n[

] = (0.5-(0.5×0.0435))=0.4782

Weight updating for V0

 = 0.0435

 = V0 – n[

] = 0.5 – (0.5×0.0496)=0.4752

Weight updating for W12

 = 0.0435

 = W12 – n[

] = 0.5 –(0.5×0.0077)=0.4961

Weight updating for W01

 = 0.0007

 = 0.0058

 = W01 – n[

 +

]=0.5-(0.5×(0.0007+0.0058))=0.4967

After updating these weights, repeat the same procedure same again and again

minimize the error and improve the accuracy.

3.6 Applications of RNN

 Recurrent neural network has many uses, specially when it comes to predicting the

future. For example In the financial industry, it can be useful to predicting stock

prices or the sign of the stock market direction.

24 | P a g e

 It is widely used in text analysis, image captioning, sentiment analysis and machine

translation.

Other area where data comes in sequential fashion.

3.7 Issues of standard RNN’s

As we have seen above recurrent neural network uses an algorithm Back

Propagation through time to update the weights of the networks. In which it first calculate

gradients from the error using the chain rule in Calculus, then it updates the weights(Gradient

descent). since the BPTT starts from the output layer to all the way back to input layer , As we

go back with gradients, it is possible that the values get either smaller exponentially or larger

exponentially.

 3.7.1. Vanishing Gradients : When values get smaller exponentially which causes

Vanishing Gradients. As we can see in Fig.3.9 when |W| < 1 then it is called vanishing

gradient.

 3.7.2. Exploding Gradients : When values get larger exponentially which causes

Exploding Gradients. As we can see in Fig. when |W| > 1 then it is called Exploding Gradient.

Fig. 3.9 This diagram shows Vanishing and Exploding Gradient [19].

25 | P a g e

3.8. LSTM (Long Short Term Memory)

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural

networks, which basically extends their memory. Long Short Term Memory is introduces to

overcomes the above limitations of Recurrent Neural Network.

Recurrent Neural Network to Long Short-term Memory: RNN has limitations

 Due to the vanishing gradient problem, RNN‟s effectiveness is limited when it needs

to go back deep in to the context.

 There is no finer control over which part of the context needs to be carried forward

and how much of the past needs to be “forgotten”.

LSTM were designed to resolve vanishing gradients through a gating mechanism.

Ot-1

Ht-1

It-1

 Ot

Ht

 It

Ot+1

Ht+1

 It+1

ht-2

ht-1
 ht

 Xt-1 Xt
 Xt+1

ht-1
 ht ht+1

Ot-1

Ht-1

It-1

 Ot

Ht

 It

Ot+1

Ht+1

 It+1

ht-2

ht-1
 ht

 Xt-1 Xt
 Xt+1

ht-1
 ht ht+1

ct-2

ct-1 ct

R
N

N
 T

O
 L

S
T

M

Recurrent Neural network

Long Short-Term Memory

26 | P a g e

At hidden layer (Ht) :

Working of gates:

Ct

+

×

×
tanh

×

Ct

ht

Ct-1

 sig Tanh sig Sig
Forget

Gate

ht-1

Xt

Input

Modulation

Gate

Input

Gate

Output

Gate

Ft Ct
It Ot

27 | P a g e

Chapter - 4

Convolutional neural network

4.1 Introduction to Convolutional Neural Network

 A convolution neural network (CNN)[23] is one of the most popular algorithm for deep

learning, a type of machine learning in which a model learns to perform classification tasks

directly from images, video, or text. CNNs are particularly useful for finding patterns in

images to recognize object, faces and scenes. They learn directly from image data, using

patterns to classify images and eliminating the need for manual feature extraction. CNNs

provide an optimal architecture for image recognition and pattern detection[17]. Combined

with advances in GPUs and parallel computing, CNNs are a key technology underlying new

developments in automated driving and facial recognition. For example, deep learning

applications use CNNs to examine thousands of pathology reports to visually detect cancer

cells.[5] CNNs also enable self-driving cars [5] to detect objects and learn to tell the

difference between a street sign and a pedestrian.

There are four components of Convolutional neural network

1. Convolution

2. Non Linearity (ReLU)

3. Pooling

4. Classification (Fully Connected Layer)

1.2.1 Convolution:

The convolution is used to extract the features of the object on the image i.e it learns specific

patterns within the picture. Convolution is an element-wise multiplication. The computer

scans a part of the image, usually with a dimension of 3x3 and multiplies it to a filter. The

output of the element-wise multiplication is called a feature map. This step is repeated until

all the image is scanned. After the convolution, the size of the image is reduced.

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

 Input image

1 0 1

0 1 0

1 0 1

 Filter

4 3 4

2 4 2

2 3 4

Feature map

28 | P a g e

There are numerous channels available. In Fig.4.1 it has different kernel for different

operation, Kernel is a synonym of the filter.

Fig. 4.1 different types of kernel with their uses and corresponding matrix [23].

1.2.2. Non Linearity (ReLU) :

 The activation function of

a node defines the output given a set of

inputs. You need an activation function to

allow the network to learn non-linear

pattern. The usual activation function for

convolutional neural network is the Relu.

Fig.1.4 ReLU activation function [22]

29 | P a g e

 At the end of the convolution operation, the output passes to Relu activation function to

allow non-linearity. All the pixel with a negative value will be replaced by zero.

1.2.3.Pooling

The pooling is used to reduce the dimensionality of the input image. A convolution neural

network uses of pooling layer provides following advantages.

 By having less spatial information, computation performance is increased

 Less spatial information also means less parameters, so less chance to overfit.

 Networks gets some translation invariance.

1.2.3.1: Max-pooling

 It passes the maximum value among the pixels of the given patch area. As we have

seen in Fig.4.1, feature map matrix obtained after applying convolution onto image pixel

matrix and when we apply max pooling into feature map (after Relu) then it returns

maximum value.

1.2.4 Fully connected layers

This is similar to traditional neural network as we have already discussed in Chapter 2. We

connect all neurons from the previous layer to the next layer. We use a softmax activation

function [discussed in Chapter 3] to classify input image. Basically it is used when we have

to classifying a image but in case of my image captioning this layer is not required because

we only need a features of each image which can be obtained using convolution operation.

3 1 2 3

3 2 2 7

0 1 2 2

2 3 9 2

 Feature Map(after Relu)

3 7

3 9

Max pooling with size

2×2 .

30 | P a g e

 Chapter -3

Image Captioning

3.1.1 Introduction to Image captioning

Image captioning is the process of generating textual description from an image, based on

the objects and actions in the image.

For example:

This process has many potential

applications in real life. A interesting

one would be to save the captions of

an image so that it can be retrieved

easily at a later.

 Fig. 3.1 images description is shown in corresponding image.[18]

3.1. 2 The Image Captioning Problem entail

The first thing that comes to our mind is an image can be describe many ways

Here are a few sentences that described

Fig.3.2.

i) A man and girl are sitting on

the ground and eating

ii) A man and a little girl are

sitting on a sidewalk near a

blue bag and eating.

Fig. 3.2 This picture descried

in three different ways

iii) A man wearing a black shirt and a little girl wearing an orange dress share a treat.

31 | P a g e

3.2. Architectures:

3.4.1. Word embeddings: The Embedding layer is used to create word vectors for incoming

words. It sits between the input (matrix of word‟s indices in the vocabulary) and the LSTM

layer, i.e. the output of the Embedding layer is the input to the LSTM layer.

3.4.2. Recurrent neural network: In our model RNN is to take a prefix of embedded words

and produce a single vector that represents the sequence. Long Short Term Memory was used

in our experiments for the simple reason that it is a powerful RNN that has only one hidden

state vector(discussed in Chapter 3).

3.4.3. Image: Before to training, all images were vectorised using the activation values of the

fc7 (Extracted featured at last layer of VGG model) of the VGG OxfordNet 19-layer

convolution neural network [17], which is trained to perform object recognition and returns a

4096-element vector. The convolutional neural network is not influenced by the caption

generation training. During training, a feed forward layer of the neural network compresses

this vector into a smaller vector.

`FF' – fully connected feed forward layer

 `FF
img

' - layer projecting the image vector

 `FF
out

' - layer projecting into the softmax output;

Prefix

Embed

l

Image 4096

FF
img

l

RNN

l

FF
out

V

Merge

Fig. 3.3 An illustration of the merge architecture

Of our model. [1]

32 | P a g e

 `l' - the layer size (which is the same for three different layers);

`v' - the vocabulary size (which is different for different datasets).

3.4.4. Output: Once the image and the caption prefix have been vectorised and mixed into a

single vector, the next step is to use them to predict the next word in the caption. This is done

by passing the mixed vector through a feed-forward layer with a softmax activation function

that outputs the probability of each possible next word in the vocabulary. Based on this

distribution, the next word that comes after the prefix is selected.

The merge architecture had been applied in our model:

Merge: The image vector and caption prefix vector are concatenated into a single vector

before being fed to the output layer.

We now discuss the architecture in a more formal notation. As a matter of notation, we treat

vectors as horizontal.

The LSTM model (also discussed in Chapter 3) is defined as follows:

 (1)

 (2)

 (3)

 (4)

where xt is the t
th

 input, first is the hidden state vector after t inputs, rp is the reset gate after t

inputs, ut is the update gate after t inputs, Wαβ is the weight matrix between α and β, bα is the

bias vector for α, and is the element wise vector multiplication operator. In the above, `sig'

represents sigmoid function

which is defined as:

 (5)

The feed forward layers used for the image and output are defined as

 (6)

where z is the net vector, x is the input vector, W is the weight matrix, and b is the bias

vector.

33 | P a g e

The net vector can then be passed through an activation function, such as the softmax

function, which is defined as

∑

 (7)

where softmax(z)I refers to the i
th

 element of the new vector. Another activation function is

the rectified linear unit function, or ReLU, which is defined as

 ,0) (8)

where ReLU(z) i refers to the i
th

 element of the new vector.

3.5. Methodology to Solve the Task :

The task of image captioning is divided into two modules one is an image based model

which extracts the features and the other one is a language based model which translates the

features and objects given by our image based model to a natural sentence. For our image

based model (encoder) we rely on a Convolutional neural network model and for our

language based model (viz decoder) we rely on a Recurrent Neural Network [2].

Fig3.4 The image below summarizes the approach given above. [2]

We have used VGG pre-trained CNN model to extracts the features from our input image.

The feature vector is linearly transformed to have the same dimension as the input dimension

of the LSTM network. This network is trained as a language model on our feature vector.

Fig3.4 The image below summarizes the approach given above. [2]

34 | P a g e

For training our LSTM model, we predefine our label and target text.

For example, if the caption is “A man and a girl sit on the ground and eat.”, our label and

target would be as follows –

Label – [<start>, A, man, and, a, girl, sit, on, the, ground, and, eat, .]

Target – [A, man, and, a, girl, sit, on, the, ground, and, eat, ., <end>

Fig 3.5 This is done so that our model understands the start and end of our labeled sequence.[2]

35 | P a g e

Chapter 5

Implementation and Results

5.1 Implementation Mechanism

In this implementation, we used a pre-trained Visual Geometry Group model

[24](discussed later in this Chapter) as encoder and LSTM (discussed later in this

chapter) as decoder.

Fig.5.1 Image captioning implementation mechanism[2].

5.2 Dataset : We have used Flikr8k dataset [] which is small in size (about 1 GB)

and it is convenient to process this dataset on personal computer. We have

downloaded the dataset and unzip it into our current working directory. We had two

directories:

 Flicker8k_Dataset: Contains 8092 photographs in JPEG format.

 Flickr8k_text: Consists of a number of files containing different sources of

descriptions for the photographs.

The dataset had a pre-defined training dataset (6,000 images), development dataset

(1,000 images), and test dataset (1,000 images).

The complete process consists of 6 phases; they are:

1. Preparation of image Data

2. Preparation of text Data

3. Develop Deep Learning Model

4. Train With Progressive Loading

36 | P a g e

5. Evaluate Model

6. Generate New Captions

5.3.2 Preparation Image Data :

We have been use Oxford Visual Geometry Group, (or VGG), model that won the

ImageNet competition in 2014 [24]. Keras [25] provides this pre-trained model directly.

„Image features‟ were pre-computed using VGG model and saved them to file.VGG model

was loaded using VGG class in keras and last layer was removed from the loaded model,

because it was known to us that last layer is used to predict a classification of image. It is to

be noted that we were not interested in classifying images, rather in the internal

representation of the image exactly before a classification was made. These were the

“features” that the model had extracted from the image.

A function named extract_features() has been defined ,by given a directory name, which

loaded each image and prepared it for VGG, and collected the predicted features from the

VGG model.

The image features were an array of 4,096 elements for each image.This function was called

to prepare the photo data for testing our models, then saved the results to a file named

„features.pkl„.

5.1.3 Preparing Text Data :

The dataset contains multiple descriptions for each image and the text of the

descriptions required some minimal cleaning.The file containing all of the description has

been loaded. Each image had a unique identifier. This identifier was used on the photo

filename and in the text file of descriptions. Next, a function load_descriptions() has been

define that, given the loaded document text, returned a dictionary of image identifiers to

descriptions. Each image identifier is mapped to a list of one or more textual descriptions.

Afterwards, we were need to cleaned the description text. The descriptions were already

tokenized and easy to work with. Text file has been cleaned in the following ways in order to

reduced the size of the vocabulary of words:

 All words Converted to lowercase.

 All punctuation are remove

 Removed all words that are one character.

 Removed all words with numbers in them.

A function clean_descriptions() has been defined that, given the dictionary of image

identifiers to descriptions, steps through each description and cleaned the text.

A function clean_descriptions() has been define by passing the dictionary of image

identifiers to description as arguments, steps through each description and cleaned the

text.

37 | P a g e

For reference, clean descriptions has been transferred into a set and print its size to get an

idea of the size of our dataset vocabulary. Afterward, saved the dictionary of image

identifiers and descriptions to a new file named descriptions.txt, with one image identifier

and its description in per line. Then, A function save_descriptions() has been define with

given a dictionary containing the mapping of identifiers to descriptions and a filename,

and saved the mapping to file. Finally, the cleaned descriptions were written to

„descriptions.txt„.

5.1.4. Development of Deep Learning Model

In this section, we would define the deep learning model and how fitted it on the

training dataset.

The development step consists of full phases.

1. Loading Data.

2. Defining the Model.

3. Fitting the Model.

5.1.4.1 Loading Data

Prepared photo and text data has been loaded so that it could be used to fit the model.

We trained the data on all of the photos and captions in the training dataset. While training,

we were going to monitor the performance of the model on the development dataset and used

that performance to decide when to save models to file.

The train and development dataset had been pre-defined in the Flickr_8k.trainimages.txt and

Flickr_8k.devImages.txt respectively, that both contain lists of photo file names. From these

file names, we extracted the photo identifiers and used identifiers to filter photos and

descriptions for each set.

We defined a function load_set() that loaded a pre-defined set of identifiers given the train or

development sets filename.

Now, we loaded the photos and descriptions using the pre-defined set of train or development

identifiers.

We then defined a function load_clean_descriptions() that loaded the cleaned text

descriptions from „descriptions.txt„ for a given set of identifiers and returned a dictionary of

identifiers to lists of text descriptions.

The model we developed generated a caption given a photo, and the caption generated one

word at a time. The sequence of previously generated words provided as input. Therefore, we

38 | P a g e

need „first word‟ to start the generation process and a „last word„ to signal the end of the

caption.

We used the strings „startseq„ and „endseq„ for this purpose. These tokens were added to the

loaded descriptions.

Next, we loaded the photo features for a given dataset.

We defined a function named load_photo_features() that loaded the entire set of photo

descriptions, then returned the subset of interest for a given set of photo identifiers.

5.1.4.2 Defining the Model

We defined a deep learning based on the “merge-model” which have been discussed in

Chapter 3.

We described the model in three parts:

 Photo Feature Extractor: This is a 16-layer VGG model pre-trained on the ImageNet

dataset. We pre-processed the photos with the VGG model and used the extracted features

predicted by this model as input[1].

 Sequence Processor: This is a word embedding layer for handling the text input, followed by

a Long Short-Term Memory (LSTM) recurrent neural network layer[1].

 Decoder : Both the feature extractor and sequence processor output a fixed-length vector.

These were merged together and processed by a Dense layer to make a final prediction[1].

The Photo Feature Extractor model took input photo features of a vector of 4,096 elements.

These were processed by a Dense layer to produce a 256 element representation of the photo.

The Sequence Processor model took input sequences with a pre-defined length (34 words)

which were then fed into an Embedding layer that used a mask to ignore padded values. It

was followed by an LSTM layer with 256 memory units. Both the input models produced a

256 element vector. The Decoder model merged the vectors from both input models using an

addition operation. It was then fed to a Dense 256 neuron layer and then to a final output

Dense layer that made a Softmax prediction over the entire output vocabulary for the next

word in the sequence.

39 | P a g e

We also create a plot to visualize the structure of the network that better helps understand the

two streams of input.

Fig.5.4 7 Plot of the Caption Generation deep Learning Model

5.1.4.3 Fitting the Model :

After defining the model, we fitted it on the training dataset which means adapt the weights

on a training dataset.The model learnt fast and quickly overfitted the training dataset. For this

reason, we monitored the skill of the trained model on the holdout development dataset.

When the skill of the model on the development dataset improved at the end of an epoch, we

Fig. 5.2 Schematic of the Merge Model For Image Captioning[1]

Plot of the Caption Generation Deep Learning Model

 Word RNN

FF

Image

40 | P a g e

saved the whole model to file.At the end of the process, we then used the saved model with

the best skill on the training dataset as our final model.We did this by defining

a ModelCheckpoint in Keras and specifying it to monitor the minimum loss on the validation

dataset and saved the model to a file that had both the training and validation loss in the

filename.

5.1.2. Evaluating model

Once the model was fit, we evaluated the skill of its predictions on the holdout test dataset.

We evaluated a model by generating descriptions for all photos in the test dataset and

evaluated those predictions with a standard cost function.

After that ,we were able to generate a description for a photo using a trained model.

This involved passing in the start description token „startseq„, generating one word, then

calling the model recursively with generated words as input until the end of sequence token

was reached „endseq„.

We defined a function named generate_desc() implements this behavior and generates a

textual description given a trained model, and a given prepared photo as input. It calls the

function word_for_id() in order to map an integer prediction back to a word.

We will generate predictions for all photos in the test dataset and in the train dataset.

We defined a function named evaluate_model() evaluated a trained model against a given

dataset of photo descriptions and photo features. The actual and predicted descriptions were

collecteded and evaluated collectively using the corpus BLEU score that summarizes how

close the generated text is to the expected text.

5.1.3 Generate New Captions :

We need the Tokenizer (every word mapped to unique integer) for encoding generated words

for the model while generating a sequence, and the maximum length of input sequences, used

when we defined the model (e.g. 34).

We hard coded the maximum sequence length. With the encoding of text, we created the

tokenizer and saved it to a file so that later we would be able to load it whenever we need it

without needing the entire Flickr8K dataset..

We created the Tokenizer and saved it as a pickle file tokenizer.pkl and after that we loaded

the tokenizer whenever we need it without loading the entire training dataset.

41 | P a g e

5.2 Results:

Some results of our model gives appropriate caption and some results are not good.

 File name: Example1.jpg

Fig. 5.4: startseq dog is running through the grass endseq (This caption predicted by our

model)

 File name: Example2.jpg

Fig 5.5 startseq two man are standing in front of the water endseq (This caption predicted

by our model)

42 | P a g e

 File name: Example3.jpg

 Fig 5.6 Caption: startseq two dogs are running through the grass endseq

This picture has grass in background and a running dog our model predicted background and

foreground object correctly. Only mistake is the in the quantity of the foreground object

which should be one dog but our model predicted two dog.

 File name: Example4.jpg

Fig. 5.7 Caption: startseq man in red shirt is its bike on the catch endseq (This caption

predicted by our model)

43 | P a g e

In fig. 5.6 have car in foreground and wood in background and this picture had caption “

moving car in the forest” but our model is not able to predict object correctly and give totally

wrong caption.

File name: Example5.jpg

Fig. 5.8 Caption : startseq dog is playing in the water endseq

44 | P a g e

Chapter 7

Conclusion and Future work

For the task of image captioning, in this project, a deep learning model has been

built that generates image captions. This model is based on a Convolution

neural network and Long Short Term Memory. A pre-trained image-model

(VGG) is used to generate a "features-vector" of what the image contains, and

Long Short Term Memory is used to train the model to map this "features-

vector" to a sequence of words. It is important to understand that this model

does not have a human-like understanding of what the images contain. If it

gives an image of a dog and correctly produces a caption then, it does not mean

that the model has a deep understanding of what a giraffe is.

In future, this concept can be used to work in text-to-speech conversion, so that

the generated descriptions are automatically read out loudly. In addition, static

images can only provide blind people with information about one specific time

instant, while video caption generation could provide blind people with

continuous real time information; in such cases, the above mentioned method

will be useful.

45 | P a g e

Bibliography

[1]. Where to put the Image in an Image Caption. Generator, Marc Tanti Albert

Gatt Institute of Linguistics and Language Technology University of Malta

marc.tanti.06@um.edu.mt albert.gatt@um.edu.mt Kenneth P. Camilleri

Department of Systems and Control Engineering University of Malta

kenneth.camilleri@um.edu.mt 12-Mar-2018

[2].https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-

captioning-task-using-deep-learning/

[3].https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_n

etwork_basic_concepts.htm

[4]. Hodosh, M., Young, P., and Hockenmaier, J. (2013). Framing Image

Description as a Ranking Task: Data, Models and Evaluation Metrics. JAIR,

[5]. Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional

Networks for Large-Scale Image Recognition. CoRR, 1409.1556.

[6]. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

ImageNet: A large-scale hierarchical image database. In Proc. CVPR'09.

https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-using-deep-learning/
https://www.analyticsvidhya.com/blog/2018/04/solving-an-image-captioning-task-using-deep-learning/
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concepts.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_basic_concepts.htm

46 | P a g e

[7]. Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel, V. (2016).

Selfcriticalsequence training for image captioning. CoRR, 1612.00563.

[8]. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., and Yuille, A. (2015a).

Deep

Captioning with Multimodal Recurrent Neural Networks (m-RNN). Proc.

ICLR'15.

[9]. P. Kingma, D. and Ba, J. (2014). Adam: A Method for Stochastic

Optimization. CoRR, 1412.6980.

[10]. Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: A

methodfor automatic evaluation of machine translation. In Proc. ACL'02, pages

311.

[11]. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,

Doll_ar,P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in

context. In Proc. ECCV'14, pages 740{755.

[12]. Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for MT

evaluation with improved correlation with human judgments. In Proc. Work-

shop on Intrinsic and extrinsic evaluation measures for machine translation

and/or summarization, volume 29, pages 65-72.

[13]. Vedantam, R., Zitnick, C. L., and Parikh, D. (2015). CIDEr: Consensus-

based

image description evaluation. In Proc. CVPR'15.

47 | P a g e

[14]. https://www.studocu.com/en/u/751952

[15]. Generator, Marc Tanti Albert Gatt Institute of Linguistics and Language

TechnologyUniversity of Malta marc.tanti.06@um.edu.mt

albert.gatt@um.edu.mt Kenneth P. Camilleri Department of Systems and

Control Engineering University of Malta kenneth.camilleri@um.edu.mt 12-

Mar-2018.

[16]. Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). E_cient

Estimation of Word Representations in Vector Space. CoRR, 1301.3781.

[17]. Simonyan, K. and Zisserman, A. (2014). Very Deep Convolutional

Networks for Large-Scale Image Recognition. CoRR, 1409.1556.

[18] .https://www.analyticsindiamag.com/wp-content/uploads/2018/01/nural-

network-04-768x432.jpg

[19].https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-

lstm-long-short-term-memory-networks-with-math-21477f8e4235

[20].https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence

_neural_networks.htm

[21].https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_

network_building_blocks.htm

[22]. https://cdn-images-1.medium.com/max/800/0*vGJq0cIuvTB9dvf5.

[23]. https://www.guru99.com/convnet-tensorflow-image-classification.html

https://www.studocu.com/en/u/751952
https://www.analyticsindiamag.com/wp-content/uploads/2018/01/nural-network-04-768x432.jpg
https://www.analyticsindiamag.com/wp-content/uploads/2018/01/nural-network-04-768x432.jpg
https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235
https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-math-21477f8e4235
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_neural_networks.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_building_blocks.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_building_blocks.htm
https://cdn-images-1.medium.com/max/800/0*vGJq0cIuvTB9dvf5
https://www.guru99.com/convnet-tensorflow-image-classification.html

48 | P a g e

[24].https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-

inception-xception-keras/

[25]. https://keras.io/examples/cifar10_cnn/

[26]. https://ayearofai.com/rohan-lenny-3-recurrent-neural-

networks10300100899b

https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
https://keras.io/examples/cifar10_cnn/
https://ayearofai.com/rohan-lenny-3-recurrent-neural-networks10300100899b
https://ayearofai.com/rohan-lenny-3-recurrent-neural-networks10300100899b

	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf

