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Chapter 1 

Introduction 

 

1.1 Image captioning : 

        Caption generation is a challenging artificial intelligence problem where a textual 

description is generated for a given photograph. It requires both methods from computer 

vision to understand the content of the image and a language model from the field of natural 

language processing to turn the understanding of the image into words in the right order. 

Recently, deep learning methods have achieved state-of-the-art results on examples of this 

problem [ ]. What is most impressive about these methods is a single end-to-end model can 

be defined to predict a caption, given a photo, instead of requiring sophisticated data 

preparation or a pipeline of specifically designed models. 

 

1.2  Application of image captioning  

 Self driving cars :  Automatic driving is one of the biggest challenges and if we can 

properly caption the scene around the car, it can give a boost to the self driving system 

[5]. 

 Aid to the blind : We can create a product for the blind which will guide them travelling 

on the roads without the support of anyone else. We can do this by first converting the 

scene into text and then the text to voice. Both are now famous applications of Deep 

Learning[5 ]  

 CCTV cameras are everywhere today, but along with viewing the world, if we can also 

generate relevant captions, then we can raise alarms as soon as there is some malicious 

activity going on somewhere. This could probably help reduce some crime and/or 

accident[5]. 

 Automatic captioning can help, make Google Image Search as good as Google Search, as 

then every image could be first converted into a caption and then search can be performed 

based on the caption. 
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1.3   Algorithm used for Image captioning 

There are several algorithm exist in literature which generate captions of a given 

image. They are mainly  

1.3.1 Convolution neural network  

                 A convolution neural network (CNN) [17 ] is one of the most popular algorithm for 

deep learning, a type of machine learning in which a model learns to perform classification 

tasks directly from images, video, or text. CNNs are particularly useful for finding patterns in 

images to recognize object, faces and scenes. They learn directly from image data, using 

patterns to classify images and eliminating the need for manual feature extraction. CNNs 

provide an optimal architecture for image recognition and pattern detection [17]. Combined 

with advances in GPUs and parallel computing, CNNs are a key technology underlying new 

developments in automated driving and facial recognition. For example, deep learning 

applications use CNNs to examine thousands of pathology reports to visually detect cancer 

cells.[5] CNNs also enable self-driving cars [ 5] to detect objects and learn to tell the 

difference between a street sign and a pedestrian. We have discussed this in details in Chapter 

4. 

         1.3.2 Recurrent neural network : 

            Recurrent neural network is one of the most popular neural networks for language 

modeling based on existing words to predict next word (based on existing characters to 

predict next character) [26]. The logic behind a recurrent neural network is to consider the 

sequence of the input. For us to predict the next word in the sentence we need to remember 

which word appeared in the previous time step. These neural networks are called Recurrent 

because this step is carried out for every input. As these neural network consider the previous 

word during predicting, it acts like a memory storage unit which stores it for a short period of 

time. We have discussed this in details in RNN Chapter 3. 

  

1.3.3 Long Short Term Memory : 

                    Long Short Term Memory networks – usually just called “LSTMs” – are a special 

kind of RNN, capable of learning long-term dependencies.[11 ] This work tremendously well on 
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a large variety of problems, and are now widely used [12 ]. LSTMs are explicitly designed to 

avoid the long-term dependency problem. It overcome the problems associated with Recurrent 

Neural Network  are :- 

 Exploding Gradients( discussed this in RNN Chapter 3.6) 

 Vanishing Gradients ( discussed this in RNN Chapter 3.6)  

 

1.4 Why are CNN and RNN used for image captioning ? 

          A captioning model relies on two main components, a CNN and an RNN. 

Captioning is all about merging the two to combine their most powerful attributes [ 1]. 

1. As we know that CNN is used to classify the images and extract the features from the 

image so we first extract the features from the all the images and these features used as 

input of previous state of the LSTM. 

2. RNNs work well with any kind of sequential data, such as generating a sequence of 

words. So by merging the two, you can get a model that can find patterns and images, and 

then use that information to help generate a description of those images. 

1.5 Process of Image captioning  

The image captioning process consists of several stages 

 Prepare photo and text data for training a deep learning model. 

 Design and train a deep learning caption generation model. 

 Evaluate a train caption generation model and use it to generate caption for entirely 

new photographs. 
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1.6. Scope of the project 

        The automatic image caption generation, proposed in this project, uses various neural 

network techniques. Several such techniques for image captioning are present in literature. In 

this present study we have used convolutional neural network and Long Short Term Memory. 

Convolution neural network is used to extract the feature of images and recurrent neural 

network used to generate text.  

1.7. Organization of the project 

          The thesis is organized as follows: chapter 2 contains introduction to Artificial Neural 

Network‟s. Chapter 3 includes discussion on Recurrent Neural Network and Long Short 

Term Memory. Chapter 4 contains discussion on Convolutional Neural Network. Chapter 5. 

Contains image captioning. Chapter 6. Includes  implementation and results. Finally the 

conclusion and future work are put in Chapter 7. 
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Chapter 2 

Artificial Neural Network  

2.1. Introduction to Artificial Neural Network : 

Artificial Neural Network (ANN) uses the processing of the brain as a basis to develop 

algorithms that can be used to model complex patterns and prediction problem [20].Let us 

start by first understanding how our brain processes information: 

In our brain, there are billions of cells called neurons, which processes information in the form 

of electric signals. External information is received by the dendrites of the neuron, processed 

in the neuron cell body, converted to an output and passed through the Axon to the next 

neuron. The next neuron can choose to either accept it or reject it depending on the strength of 

the signal [21]. 

 

Fig 2.1: To understand the Biological Neuron Structure[21] 

The Following steps are performed in a Biological Neuron network 

Step1: External signal received by dendrites 

Step2: External signal processed in the neuron cell body 

Step3: Processed signal converted to an output signal and transmitted through the Axon  
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Step 4: Output signal received by the dendrites of the next neuron through the synapse. 

Now, let us try to understand how a ANN works: 

 

  

 

 

 

Fig 2.2 Represents the general model of ANN 

Here, w1, w2, w3 gives the strength of the input signals 

As we can see from the above, an ANN is a very simplistic representation of a how a brain 

neuron works. An Artificial Neural Network(ANN) is composed of four principal objects: 

 Layers: all the learning occurs in the layers. There are 3 layers: 

 1) Input (discussed next section of this Chapter) 

2) Hidden (discussed next section of this Chapter) 

and 3) Output (discussed next section of this Chapter) 

 Feature and label: Input data to the network is called features and output from the 

network is called labels) 

 Loss function: Metric used to estimate the performance of the learning phase. 

 Optimizer: Improve the learning by updating the knowledge in the network 

A neural network takes the inputs data and feed them into next layer. The network needs to 

evaluate its performance with a loss function. The loss function gives to the network an idea 

1. INPUTS 
(Signal Received by  
The dendrites of the neuron) 

2. Input processing  

(Signals are processed 
inside cell body) 

4. Output signal 

received by 

dendrites of 

the next 

neuron 

3. OUPUT 

processing and 
transmissions 
(processed 
input converted 
to an output 
and transmitted 
through Axon) 

X1 

 

F = w1*x1+w2*x2+w3*x3 

W1 

W2 

 

X2 

W1 

 

X3 
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of the path it needs to take before it masters the knowledge. The network needs to improve its 

knowledge with the help of an optimizer. 

.  

Fig 2.3. ANN Underlying Machanism [ 3] 

The program takes some input values and feed them into two fully connected layers. 

To improve its knowledge, the network uses an optimizer, updates its knowledge, and tests its 

new knowledge to check how much it still needs to learn. The program will repeat this step 

until it makes the lowest error. If the error is far from 100%, but the curve is flat, it means 

with the current architecture. It cannot learn anything else. The network has to be better 

optimized to improve the knowledge. 

2.2  Neural Network Architecture:  

      The ANN architecture typically consists of the following layers. 

 Input layer – This layer provides the input to the ANN system. 

 Hidden layer – Hidden layer in ANN is a layer of neurons, which are flanked on the 

input side by neurons in the input layer and on the output side by neurons belonging 

to the output layer. There may be more than one hidden layer in a system, none of 

https://www.guru99.com/images/tensorflow/083018_0539_NeuralNetwo1.png
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which are visible as a network output. The hidden layer transforms the inputs into 

signals that the output layer can use. 

 Output layer – This layer consists of the output units whose values are dependent on 

the hidden units and the weights between the hidden and output units. The output 

units decide the class label. 

A layer is where all the learning takes place. Inside a layer, there are an infinite amount of 

weights (neurons). A typical neural network is often processed by densely connected layers 

(also called fully connected layers). It means all the inputs are connected to the output. A 

typical neural network takes a vector of input and a scalar that contains the labels. The most 

comfortable set up is a binary classification with only two classes: 0 and 1. The network takes 

an input, sends it to all connected nodes and computes the signal with an activation function. 

 

     Fig. 2.3 plots the following  ideas [21] 

. The first layer is the input values for the second layer, called the hidden layer, receives the 

weighted input from the previous layer 
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1. The first node is the input values 

2. The neuron is decomposed into the input part and the activation function. The left part 

receives all the input from the previous layer. The right part is the sum of the input 

passes into an activation function. 

3. Output value computed from the hidden layers and used to make a prediction. For 

classification, it is equal to the number of class.  

2.1 Activation function:  
 

          1.3.1  ReLU : 

                              The activation 

function of a node defines the output 

given a set of inputs. You need an 

activation function to allow the 

network to learn non-linear pattern.                                

Fig.2.4 ReLU activation function [22]. 

A common activation function is a Relu, Rectified linear unit. The function gives a zero for 

all negative values. 

1.3.2.  Sigmoid:  

A sigmoid function produces a curve with an 

“S” shape. The example sigmoid function 

shown on the left is a special case of the logistic 

function, which models the growth of some set. 

       
 

     
  

                                                                                  

Fig.2.5 Sigmoid function [22]. 
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1.3.3. Tanh: 

                 This has characteristics 

similar to sigmoid that we discussed 

above. It is nonlinear in nature, its 

values are lies between (-1,1) .                                                  

 

                                                                        

Fig.2.6 Tanh activation function [22] . 

 Deciding between the sigmoid or tanh ,it depends on our requirement of gradient 

strength. Like sigmoid, tanh also has the vanishing gradient problem. Tanh is also a very 

popular and widely used activation function. 

             
 

      
   

1.4. Loss function   

After we have defined the hidden layers and the activation function, you need to specify the 

loss function and the optimizer. 

For binary classification, it is common to use a binary cross entropy loss function. In the 

linear regression, we use the mean square error(discussed in Chapter 3). 

The loss function is an important metric to estimate the performance of the optimizer. During 

the training, this metric be minimized. we need to select this quantity carefully depending on 

the type of problem we are dealing with. 

1.5. Optimizer  

The loss function is a measure of the model's performance. The optimizer helps improve the 

weights of the network in order to decrease the loss. There are different optimizers available, 

but the most common one is the Stochastic Gradient Descent. We have used Adam 

optimization to optimize the weights. 
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Chapter-3 

Recurrent Neural Network 

3.1 Recurrent neural network  

            Recurrent neural network is one of the most popular neural networks for language 

modeling based on existing words to predict next word (based on existing characters to 

predict next character)[26]. The logic behind a recurrent neural network is to consider the 

sequence of the input. For us to predict the next word in the sentence we need to remember 

which word appeared in the previous time step. These neural networks are called Recurrent 

because this step is carried out for every input. As these neural network consider the previous 

word during predicting, it acts like a memory storage unit which stores it for a short period of 

time. 

.For example, when we build a RNN for a 

language, that means: the training data is a 

list of sentences. Each sentence is a series of 

words (tokenized words). For each sentence, 

from the first word, we will predict the 

second word. From the first and the second 

word, we will predict the third word, etc. 

                                                                                      Fig. 3.1 Recurrent Neural Network [18] 

Recurrent neural network means when it predict time order t, it will remember the 

information from time order 0 to time order t. 

Let‟s denote the sentence having t+1 words as  

×  =  [x0,x1,…,xt]. we start from x0 to status 

S0 =  tanh(Ux0 +Ws0), where s-1  is the initialization of status  initialization as 0.  

The output o0 =  softmax(Vs0). Then when we go to next word x1 we will have updated status 

S1 =  tanh(Ux1 +Ws0) and the corresponding output   

O1 = softmax(Vs1). We will see at time order t=1 it not only depends on input x1 but also 

depends on the previous status s0.The equation we have used here are : 
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St=tanh(Uxt  + Wst-1) 

Ot= softmax(Vst) 

If we plot the logic of RNN and the corresponding forward propagation, it is like 

 

Fig.3.2: This illustrates an unrolled RNN 

3.2. Initialization 

       We simplify the  above architecture into given below for example all input nodes as 

output layer, all hidden nodes as hidden layer and all output nodes as output layer .  

Here, 

 X0=input at time t=0 , X1=input at time t=1 , X2=input at time t=2 

 W1= weight of neuron from hidden layer to hidden layer S0 to S1  

W2= weight of neuron from hidden layer  to hidden layer S1 to S2 

V0= weight of neuron from hidden layer to output layer S0 to O0 

V1= weight of neuron from hidden layer  to output layer S1 to O1 

V2= weight of neuron from hidden layer  to output layer S2 to O2 

U0= weight of neuron from input layer to hidden layer X0 to S0 

U1= weight of neuron from input layer to hidden layer X1 to S1 
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U2= weight of neuron from input layer to hidden layer X2 to S2 

            V0=0.5, V1=0.5, V2=0.5, W01=0.5, W12=0.5 

X0=0.2, X1=0.2, X2=0.2,O0=0.2, O1=0.2, O2=0. 

Every node of neuron has performed two operation : 

 

 

 

 

             

     Fig.3.3. it shows that every neuron perform two operation  

 

Net ( … ) : It is summation of all input weight coming from different source and  

OUT( … ) :  It is tanh() activation function which takes arguments as result of Net(…) 

 

 

 

 

  

 

  

 

  

 

 

Fig. 3.4. All three layer clearly shown and how parameter pass to one layer to another. 

 

O0 

S0 

   X0 

   O1 

S1 

 

 X1 

 

O2 

S2 

 

  X2 

 

E0 E1 

 

E2 

 

 

  

W1 

   

W2 

 U0  U1 
 U2 

V0  V1 V2 

Output  Layer 

Hidden Layer 

 Input Layer 

     T = 0   T = 1 T = 2 

Neuron   Net(…) 

  Out(…) 

∑  of all input weight coming from 

difference source  

It is tanh() function which takes argument as 

Net(…) 
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3.3. Forward Propagation 

              In RNN, forward propagation is same as MLP (multilayer perceptron) forward 

propagation but difference is that in RNN, there is one more input of the previous hidden 

layer output which is fed to next hidden layer as input. In below figure there is input from S0 

to S1 and S1 to S2 and having corresponding weight W1  and W2 . 

 

 

 

 

  

 

  

 

  

 

Fig 3.5. This diagram helps to better understand how forward propagation perform. 

In forward propagation, 

S0 : 

 Net(s0) = (V0X0) = 0.2                                                                                       (1) 

 Out(S0) = ∑ (Net(s0)) = 0.5498                                                                         (2) 

 Net(O0) = V0 Out(S0) = 0.2749                                                                         (3) 

 Out(O0) = ∑ Net(O0) = 0.5683                    (4) 

S1: 

 Net(s1) = (V1X1+w1 Out(S0)) = 0.3×0.5×0.5498=0.5749     (5) 

 Out(S1) = ∑ (Net(s1)) = 0.6399         (6) 

O0 

S0 

   X0 

   O1 

S1 

 

 X1 

 

O2 

S2 

 

  X2 

 

E0 E1 

 

E2 

 

W0 

  

W1 

   

W2 

 U0  U1 
 U2 

V0  V1 V2 

Output Layer 

Hidden Layer 

 Input Layer 
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 Net(O1) = V1 Out(S1)=(0.5×0.6399)=0.3199        (7) 

 Out(O1) = ∑ Net(O1)=0.5793          (8) 

S2: 

 Net(s2)=(V2X2+w2 Out(S1))=(0.2×0.5×0.6399       (9) 

 Out(S2)=∑ (Net(s2))=0.627                     (10) 

 Net(O2)=V1 Out(S2)=(0.5×0.6271)=0.3135         (11) 

 Out(O2)=∑ Net(O2)=0.5777            (12) 

3.4.  Error calculating 

 Error calculating using Squad error function :- 

Etotal = ∑ 
 

 
 (Given_output – Actual_output)

2 
 

E2 =  
 

 
 (Given(O2) – Out(O2))

2  
= 0.0158                                                                        (13) 

E1 =  
 

 
 (Given(O1) – Out(O1))

2 
= 0.0390                        (14) 

E0 =  
 

 
 (Given(O0) – Out(O0))

2
   = 0.0678                      (15) 

ETotal  =  E0 + E1 + E2  =   (0.0158+ 0.0390+0.0678)                                 (16) 

3.5. Back Propagation Through Time (BPTT) 

         In neural networks, we do Forward-Propagation to get the output of our model and 

check if this output is correct or incorrect, to get the error. Which is nothing but going 

backwards through our neural network to find the partial derivatives of the error with respect 

to the weights, which enables us to subtract this value from the weights. Those derivatives are 

then used by Gradient Descent, an algorithm that is used to iteratively minimize a given 

function. Then it adjusts the weights up or down, depending on which decreases the error. 

That is exactly how a Neural Network learns during the training process. So applying Back 

Propagation ,we try to improve weights and minimize the loss , while training. 

 Within BPTT the error is back-propagated from the last to the first time step, while unrolling 

all the time steps. This allows calculating the error for each time step, which allows updating 
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the weights. Note that BPTT can be computationally expensive when you have a high number 

of time steps. 

 

 

 

 

 

Fig. 3.5 Illustration the concept of Forward Propagation and Backward Propagation perfectly at the example of a 

Feed Forward Neural Network[ 18 ]. 

Back propagation through time: t=2   

Unfolding over(t=2):  

 

 

 

  

 

  

 

  

 

 

      Fig. 3.6 This diagram represents Back propagation when unfolding over t=2 

 

 

E2 

 

S0 

   X0 

S1 

 

 X1 

 

O2 

S2 

 

  X2 

 

 

  

W1 

   

W2 

 U0  U1 
 U2 

V2 

     T = 0   T = 1 T = 2 
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Calculating Gradient of  E2 with respect to V2 (we have to use chain rule to find derivatives) 

Since,  

   

   
 = 

   

           
 × 
           

           
 ×
           

   
                                              

 (17) 

From , First part of the equation (17) . 

   

           
 = 
   

 

 
            –        

  

           
 =             –         ) = 0.4271                            

(18) 

Second part of the equation (17) 

           

           
 =                     = 0.2338                (19) 

Third part of the equation (17) 

           

   
 =         =0.6271                    (20) 

Finally, substituting the value of equations 18,19,20 in equation 17 

 
   

   
 = 

   

           
 × 
           

           
 ×
           

   
  =(0.4271+0.2338+0.6271)=0.0626  

Derivatives of  E2 with respect to W12 

   

  
 

   

    
  

   

    
                      (21) 

First part of the equation (21), finding derivatives of E2 w.r.t to W12 

   

    
 

   

         
   

         

         
   

         

         
   

         

         
  

         

       
                                 (22) 

And now from  first of equation (22) 
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 = 0.4271         (23) 

Now, taking  2
nd

  part of equation (22) 

           

           
  =         (          )    =(0.5777)×(1-0.5777)=0.2439                      (24) 

Taking  3
rd

  part of equation (22) 

         

         
 =
            

           
    = 0.5       

 (25) 

Taking fourth  and fifth  part of equation (22) 

         

         
=                      = ( 0.6271 × ( 1-0.6271))=0.2338                               (26) 

         

       
 
                     

       
         =0.6399              (27) 

Finally, Substituting the value of equations 23,24,25,26 and 27 in equations 22. 

 
   

    
 

   

         
   

         

         
   

         

         
   

         

         
  

         

       
 

     Or,  
   

    
 = 0.4271×0.2439×0.5×0.2338×0.6395=0.0077                                                 (28) 

Now, taking the Second part from equation 22. 

   

    
 = 

   

         
   

         

         
    

         

         
    

         

         
    

         

         
    

         

         
    

         

       
  (29) 

Taking fifth part of equation 29. 

           

           
 
                     

           
                                      (30) 
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=                      =0.6399×(1-0.6399)=0.2304                        (31) 

           

       
  

                     

       
        =0.5498                          (32) 

Finally, 

   

    
 = 

   

         
   

         

         
    

         

         
    

         

         
    

         

         
    

         

         
    

         

       
 

Or, 
   

    
 = 0.4271×0.2439×0.5×0.2338×0.5×0.2304×0.5498=0.0007                                 (33) 

Back propagation through time: t=1 

 Unfolding over t=1 

 

 

 

  

 

  

 

  

 

  

Fig. 3.7 This diagram represents Back propagation when unfolding over t=1 
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Calculate gradient w.r.t V1  

   

   
 = 

   

          
  

          

          
  

          

      
                                                                              (34) 

Now, taking first part of the equation 34. 

   

          
  

   
 

 
            –        

  

           
=            –         ) = -(0.3-0.5793)=0.2437     (35) 

Now, taking second part of the equation (34). 

          

          
 =                      =(0.5793)(1-0.5793)=0.2437                                   (36) 

Now, taking third part of the equation (34). 

          

     
= 
            

     
 =        = 0.6399                                           (37) 

   

   
 = 

   

          
  

          

          
  

          

      
 = 0.2793×0.2437×0.6399=0.0435 

Calculating gradient w.r.t., W01  

   

    
 = 

   

          
  

          

          
  

          

          
 
          

          
 
          

    
                         (38) 

Now,  taking first part of the equation (38) 

   

          
  

   
 

 
            –        

  

           
=            –         )= - (0.2 – 0.5793)=0.3793  (39) 

Now, taking second part of the equation (38) 

          

          
 =                     = (0.5793×(1-0.5793))=0.2437                     (40) 

Now, taking third part of the equation (38) 
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 =
            

          
 =v1= 0.5        (41) 

Now, taking fourth part of the equation (38) 

          

          
 =                      = (0.6399×(1-0.6399))=0.2304       (42) 

Now, taking fifth part of the equation (38) 

          

    
 =  

                     

       
 =        = 0.5498      (43) 

Finally,        
   

    
 = 

   

          
  

          

          
  

          

          
 
          

          
 
          

    
 

Or, 
   

    
 = 0.3793×0.2437×0.5×0.2304×0.5498=0.0058           (44) 

Back propagation through time: t=0 

 Unfolding over t=0  

 

 

  

 

  

 

  

 

 

Fig. 3.8 This diagram represents Back propagation when unfolding over t=0 
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Calculating gradient with respect to V0 

    
   

   
 

   

 (       )
  

 (       )

 (       )
 
 (       )

     
                 (45) 

Now, taking first part of the equation (45) 

   

          
  

   
 

 
            –        

  

           
=            –         ) = -(0.2-0.5683) = 0.3683  (46) 

Now, taking third part of the equation 

 (       )

 (       )
 =
            

     
 =V0= 0.5683×(1-0.5683)=0.2453                (47) 

Finally, 

           
   

   
 

   

 (       )
  

 (       )

 (       )
 
 (       )

     
 

Or, 
   

   
 = 0.3683×0.2453×0.5498=0.0496      

 (48) 

Weight updating for V2. 

   

   
 =0.0626    [  From equation (17) ]    

  

  
 = V2 – n[ 

   

   
 ] = (0.5-(0.5×0.0626))=0.4687                

 (49) 

Weight updating for V1 

   

   
 = 0.0435                                         
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 = V1 – n[ 

   

   
 ] = (0.5-(0.5×0.0435))=0.4782                                 

Weight updating for V0 

   

   
 = 0.0435                          

  
 = V0 – n[ 

   

   
 ] = 0.5 – (0.5×0.0496)=0.4752 

Weight updating for W12 

   

    
 = 0.0435 

   
 = W12 – n[ 

    

    
 ] = 0.5 –(0.5×0.0077)=0.4961 

Weight updating for W01 

   

    
 = 0.0007 

   

    
 = 0.0058 

   
 = W01 – n[ 

   

    
 +
   

    
]=0.5-(0.5×(0.0007+0.0058))=0.4967 

After updating these weights, repeat the same procedure same again and again 

minimize the error and improve the accuracy. 

3.6  Applications of RNN 

 Recurrent neural network has many uses, specially when it comes to predicting the 

future. For example In the financial  industry, it can be useful to predicting stock 

prices or the sign of the stock market direction. 



24 | P a g e  
 

 It is widely used in text analysis, image captioning, sentiment analysis and machine 

translation. 

Other  area where data comes in sequential fashion. 

3.7   Issues of standard RNN’s 

As we have seen  above recurrent neural network uses an algorithm Back 

Propagation through time to update the weights of  the networks. In which it first calculate 

gradients from the error using the chain rule in Calculus, then it updates the weights(Gradient 

descent). since the BPTT starts from the output layer to all the way back to input layer , As we 

go back with gradients, it is possible that the values get either smaller exponentially or larger 

exponentially.  

 3.7.1. Vanishing Gradients : When values get smaller exponentially which causes 

Vanishing Gradients. As we can see in Fig.3.9  when |W| < 1  then it is called vanishing  

gradient. 

         3.7.2. Exploding Gradients : When values get larger exponentially which causes 

Exploding Gradients. As we can see in Fig. when  |W|  > 1 then it is called Exploding  Gradient. 

 

Fig. 3.9 This diagram shows Vanishing and Exploding Gradient [19]. 
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3.8.  LSTM  (Long Short Term Memory)  

Long Short-Term Memory (LSTM) networks are an extension for recurrent neural 

networks, which basically extends their memory. Long Short Term Memory is introduces to 

overcomes  the above  limitations of Recurrent Neural Network. 

Recurrent Neural Network to Long Short-term Memory: RNN has limitations 

 Due to the vanishing gradient problem, RNN‟s effectiveness is limited when it needs 

to go back deep in to the context. 

 There is no finer control over which part of the context needs to be carried forward 

and how much of the past needs to be “forgotten”. 

LSTM were designed to resolve vanishing gradients through a gating mechanism. 
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At hidden layer ( Ht ) : 
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Chapter - 4 

Convolutional neural network 

4.1 Introduction to Convolutional Neural Network                 

 A convolution neural network (CNN)[ 23] is one of the most popular algorithm for deep 

learning, a type of machine learning in which a model learns to perform classification tasks 

directly from images, video, or text. CNNs are particularly useful for finding patterns in 

images to recognize object, faces and scenes. They learn directly from image data, using 

patterns to classify images and eliminating the need for manual feature extraction. CNNs 

provide an optimal architecture for image recognition and pattern detection[ 17 ]. Combined 

with advances in GPUs and parallel computing, CNNs are a key technology underlying new 

developments in automated driving and facial recognition. For example, deep learning 

applications use CNNs to examine thousands of pathology reports to visually detect cancer 

cells.[ 5] CNNs also enable self-driving cars [5 ] to detect objects and learn to tell the 

difference between a street sign and a pedestrian. 

There are four components of  Convolutional neural network  

1. Convolution 

2. Non Linearity (ReLU) 

3. Pooling  

4. Classification (Fully Connected Layer) 

1.2.1 Convolution:  

The convolution is used to extract the features of the object on the image i.e it learns specific 

patterns within the picture. Convolution is an element-wise multiplication. The computer  

scans a part of the image, usually with a dimension of 3x3 and multiplies it to a filter. The 

output of the element-wise multiplication is called a feature map. This step is repeated until 

all the image is scanned. After the convolution, the size of the image is reduced.   
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There are numerous channels available. In Fig.4.1 it has different kernel for different 

operation, Kernel is a synonym of the filter. 

 

 

Fig. 4.1 different types of kernel with their uses and corresponding matrix [23]. 

 

1.2.2. Non Linearity (ReLU) : 

                       The activation function of 

a node defines the output given a set of 

inputs. You need an activation function to 

allow the network to learn non-linear 

pattern.  The usual activation function for 

convolutional neural network  is the Relu. 

Fig.1.4 ReLU activation function [22] 
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 At the end of the convolution operation, the output passes to Relu activation function to 

allow non-linearity. All the pixel with a negative value will be replaced by zero.                        

1.2.3.Pooling 

The pooling is used to reduce the dimensionality of the input image. A convolution neural 

network uses of pooling layer provides following advantages. 

 By having less spatial information, computation performance is increased 

 Less spatial information also means less parameters, so less chance to overfit. 

 Networks gets some translation invariance. 

1.2.3.1:  Max-pooling 

 It passes the maximum value among the pixels of the given patch area. As we have 

seen in Fig.4.1, feature map matrix obtained after applying convolution onto image pixel 

matrix and when we apply max pooling into feature map (after Relu ) then it returns 

maximum value.  

 

 

 

 

1.2.4 Fully connected layers 

This is similar to traditional neural network as we have already discussed in Chapter 2. We 

connect all neurons from the previous layer to the next layer. We use a softmax activation 

function [discussed in Chapter 3 ] to classify input image. Basically it is used when we have 

to classifying a image but in case of my image captioning this layer is not required because 

we only need a features of each image which can be obtained using convolution operation.  
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                                                                                                   Chapter -3 
 

Image Captioning 

3.1.1 Introduction to Image captioning 

Image captioning is the process of generating textual description from an image,  based on 

the objects and actions in the image.  

For example: 

This process has many potential 

applications in real life. A interesting 

one would be to save the captions of 

an image so that it can be retrieved 

easily at a later. 

 

                                                          

 

  Fig. 3.1 images description is shown in corresponding image.[ 18 ] 

3.1. 2 The Image Captioning Problem entail 

The first thing that comes to our mind is an image can be describe many ways  

Here are a few sentences that described 

Fig.3.2. 

i) A man and girl are sitting on 

the ground and eating 

ii) A man and a little girl are 

sitting on a sidewalk near a 

blue bag and eating.                 

Fig. 3.2 This picture descried  

in three different ways                                

iii) A man wearing a black shirt and a little girl wearing an orange dress share a treat.                                                              
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3.2. Architectures: 

3.4.1. Word embeddings: The Embedding layer is used to create word vectors for incoming 

words. It sits between the input (matrix of word‟s indices in the vocabulary) and the LSTM 

layer, i.e. the output of the Embedding layer is the input to the LSTM layer.  

3.4.2. Recurrent neural network: In our model RNN is to take a prefix of embedded words 

and produce a single vector that represents the sequence. Long Short Term Memory was used 

in our experiments for the simple reason that it is a powerful RNN that has only one hidden 

state vector(discussed in Chapter 3).  

 

3.4.3. Image: Before to training, all images were vectorised using the activation values of the 

fc7 ( Extracted featured at last layer of VGG model ) of the VGG OxfordNet 19-layer 

convolution neural network [ 17], which is trained to perform object recognition and returns a 

4096-element vector. The convolutional neural network is not influenced by the caption 

generation training. During training, a feed forward layer of the neural network compresses 

this vector into a smaller vector. 
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Fig. 3.3 An illustration of the merge architecture  

Of our model. [1] 
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 `l' - the layer size (which is the same for three different layers);  

`v' - the vocabulary size (which is different for different datasets).  

  

 

3.4.4. Output: Once the image and the caption prefix have been vectorised and mixed into a 

single vector, the next step is to use them to predict the next word in the caption. This is done 

by passing the mixed vector through a feed-forward layer with a softmax activation function 

that outputs the probability of each possible next word in the vocabulary. Based on this 

distribution, the next word that comes after the prefix is selected. 

The merge architecture had been applied in our model: 

Merge: The image vector and caption prefix vector are concatenated into a single vector 

before being fed to the output layer. 

We now discuss the architecture in a more formal notation. As a matter of notation, we treat 

vectors as horizontal. 

The LSTM  model (also discussed in Chapter 3) is defined as follows: 

 

                              (1) 

                                (2) 

                                      (3) 

                                (4) 

  

where xt is the t
th

 input, first is the hidden state vector after t inputs, rp is the reset gate after t 

inputs, ut is the update gate after t inputs, Wαβ is the weight matrix between α and β, bα is the 

bias vector for α, and   is the element wise vector multiplication operator. In the above, `sig' 

represents sigmoid function 

which is defined as: 

       
 

     
                                                                              (5) 

The feed forward layers used for the image and output are defined as 

                (6) 

where  z  is the net vector,  x is the input vector,  W is the weight matrix, and b is the bias 

vector. 
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The net vector can then be passed through an activation function, such as the softmax 

function, which is defined as 

            
   

∑  
  

 
      (7) 

 

where softmax(z)I  refers to the i
th

 element of the new vector. Another activation function is 

the rectified linear unit function, or ReLU, which is defined as 

  

                ,0)       (8) 

 

where ReLU(z) i refers to the i
th

 element of the new vector. 

 

3.5.  Methodology to Solve the Task : 

The task of image captioning is divided into two modules one is an image based model  

which extracts the features and the other one is a language based model  which translates the 

features and objects given by our image based model to a natural sentence. For our image 

based model (encoder) we  rely on a Convolutional neural network model and for our 

language based model (viz decoder)  we rely on a Recurrent Neural Network [2]. 

 

 

 

 

 

 

 

 

Fig3.4 The image below summarizes the approach given above. [2] 

We have used VGG pre-trained CNN model to extracts the features from our input image. 

The feature vector is linearly transformed to have the same dimension as the input dimension 

of the LSTM network. This network is trained as a language model on our feature vector. 

Fig3.4 The image below summarizes the approach given above. [2] 
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For training our LSTM model, we predefine our label and target text.  

For example, if the caption is “A man and a girl sit on the ground and eat.”, our label and 

target would be as follows – 

Label – [ <start>, A,  man,  and,  a, girl,  sit,  on,  the,  ground,  and,  eat,  . ]  

Target – [ A, man,  and,  a,  girl,  sit,  on,  the,  ground,  and,  eat,  ., <end>  

 

Fig 3.5 This is done so that our model understands the start and end of our labeled sequence.[2] 
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Chapter  5 

Implementation and Results  

5.1 Implementation Mechanism 

In this implementation, we used a pre-trained Visual Geometry Group  model 

[24](discussed later in this Chapter) as encoder and  LSTM (discussed later in this 

chapter) as decoder. 

 

Fig.5.1 Image captioning implementation mechanism[2]. 

5.2 Dataset : We have used Flikr8k dataset [ ] which is small in size (about 1 GB) 

and it is convenient to process this dataset on personal computer. We have 

downloaded  the dataset and unzip it into our current working directory. We had two 

directories: 

 Flicker8k_Dataset: Contains 8092 photographs in JPEG format. 

 Flickr8k_text: Consists of a number of files containing different sources of 

descriptions for the photographs. 

 

The dataset had a pre-defined training dataset (6,000 images), development dataset 

(1,000 images), and test dataset (1,000 images). 

 

 

The complete process consists of 6 phases; they are: 

1. Preparation of  image Data 

2. Preparation of  text Data 

3. Develop Deep Learning Model 

4. Train With Progressive Loading 
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5. Evaluate Model 

6. Generate New Captions 

 

5.3.2 Preparation Image Data : 

We have been use Oxford Visual Geometry Group, (or VGG), model that won the 

ImageNet competition in 2014 [24]. Keras [25] provides this pre-trained model directly. 

„Image features‟ were pre-computed using VGG model and saved them to file.VGG model 

was loaded using VGG class in keras and last layer was removed from the loaded model, 

because it was known to us that last layer is used to predict a classification of image. It is to 

be noted that we were not interested in classifying images, rather in the internal 

representation of the image exactly before a classification was made. These were the 

“features” that the model had extracted from the image. 

A function named extract_features() has been defined ,by given a directory name, which 

loaded each image and prepared it for VGG, and collected the predicted features from the 

VGG model. 

The image features were an array of 4,096 elements for each image.This function was called 

to prepare the photo data for testing our models, then saved the results to a file named 

„features.pkl„. 

5.1.3 Preparing Text Data : 

The dataset contains multiple descriptions for each image and the text of the 

descriptions required some minimal cleaning.The file containing all of the description has 

been loaded. Each image had a unique identifier. This identifier was used on the photo 

filename and in the text file of descriptions. Next, a function load_descriptions() has been 

define that, given the loaded document text, returned a dictionary of image identifiers to 

descriptions. Each image identifier is mapped to a list of one or more textual descriptions. 

Afterwards, we were need to cleaned the description text. The descriptions were already 

tokenized and easy to work with. Text file has been cleaned in the following ways in order to 

reduced the size of the vocabulary of words: 

 All words Converted to lowercase. 

 All punctuation are remove 

 Removed all words that are one character. 

 Removed all words with numbers in them. 

A function clean_descriptions() has been defined that, given the dictionary of image 

identifiers to descriptions, steps through each description and cleaned the text. 

A function clean_descriptions() has been define by passing the dictionary of image 

identifiers to description as arguments, steps through each description and cleaned the 

text. 



37 | P a g e  
 

For reference, clean descriptions has been transferred into a set and print its size to get an 

idea of the size of our dataset vocabulary. Afterward, saved the dictionary of image 

identifiers and descriptions to a new file named descriptions.txt, with one image identifier 

and its description in per line. Then, A function save_descriptions() has been define with  

given a dictionary containing the mapping of identifiers to descriptions and a filename, 

and saved the mapping to file. Finally, the cleaned descriptions were written to 

„descriptions.txt„. 

5.1.4.  Development of  Deep Learning Model 

In this section, we would define the deep learning model and how fitted it on the 

training dataset. 

The development step consists of full phases. 

1. Loading Data. 

2. Defining the Model. 

3. Fitting the Model. 

 

5.1.4.1 Loading Data 

Prepared photo and text data has been loaded so that it could be used to fit the model. 

We trained the data on all of the photos and captions in the training dataset. While training, 

we were going to monitor the performance of the model on the development dataset and used 

that performance to decide when to save models to file. 

The train and development dataset had been pre-defined in the Flickr_8k.trainimages.txt and 

Flickr_8k.devImages.txt respectively, that both contain lists of photo file names. From these 

file names, we extracted the photo identifiers and used identifiers to filter photos and 

descriptions for each set. 

We defined a  function load_set() that loaded a pre-defined set of identifiers given the train or 

development sets filename. 

Now, we loaded the photos and descriptions using the pre-defined set of train or development 

identifiers. 

We then defined a function  load_clean_descriptions() that loaded the cleaned text 

descriptions from „descriptions.txt„ for a given set of identifiers and returned a dictionary of 

identifiers to lists of text descriptions. 

The model we  developed generated a caption given a photo, and the caption generated one 

word at a time. The sequence of previously generated words provided as input. Therefore, we 



38 | P a g e  
 

need  „first word‟ to start  the generation process and a „last word„ to signal the end of the 

caption. 

We used the strings „startseq„ and „endseq„ for this purpose. These tokens were added to the 

loaded descriptions. 

Next, we  loaded the photo features for a given dataset. 

We defined a function named load_photo_features() that loaded the entire set of photo 

descriptions, then returned the subset of interest for a given set of photo identifiers. 

5.1.4.2  Defining the Model  

We defined a deep learning based on the “merge-model” which have been discussed in 

Chapter 3.  

We described the model in three parts: 

 Photo Feature Extractor:  This is a 16-layer VGG model pre-trained on the ImageNet 

dataset. We  pre-processed the photos with the VGG model and used the extracted features 

predicted by this model as input[1]. 

 

 Sequence Processor: This is a word embedding layer for handling the text input, followed by 

a Long Short-Term Memory (LSTM) recurrent neural network layer[1]. 

 

 Decoder : Both the feature extractor and sequence processor output a fixed-length vector. 

These were merged together and processed by a Dense layer to make a final prediction[1]. 

  

The Photo Feature Extractor model took input photo features of a vector of 4,096 elements. 

These were processed by a Dense layer to produce a 256 element representation of the photo. 

The Sequence Processor model took input sequences with a pre-defined length (34 words) 

which were then fed into an Embedding layer that used a mask to ignore padded values. It 

was followed by an LSTM layer with 256 memory units. Both the input models produced a 

256 element vector. The Decoder model merged the vectors from both input models using an 

addition operation. It was then fed to a Dense 256 neuron layer and then to a final output 

Dense layer that made a Softmax prediction over the entire output vocabulary for the next 

word in the sequence. 
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We also create a plot to visualize the structure of the network that better helps understand the 

two streams of input. 

Fig.5.4 7  Plot of the Caption Generation deep Learning Model 

5.1.4.3 Fitting the Model : 

After defining the model, we fitted it on the training dataset which means adapt the weights 

on a training dataset.The model learnt fast and quickly overfitted the training dataset. For this 

reason, we monitored the skill of the trained model on the holdout development dataset. 

When the skill of the model on the development dataset improved at the end of an epoch, we 

Fig. 5.2 Schematic of the Merge Model For Image Captioning[1] 

 

Plot of the Caption Generation Deep Learning Model 

         Word            RNN 

FF 

Image 



40 | P a g e  
 

saved the whole model to file.At the end of the process, we then used the saved model with 

the best skill on the training dataset as our final model.We did this by defining 

a ModelCheckpoint in Keras and specifying it to monitor the minimum loss on the validation 

dataset and saved the model to a file that had both the training and validation loss in the 

filename. 

5.1.2. Evaluating model 

Once the model was fit, we evaluated the skill of its predictions on the holdout test dataset. 

We evaluated a model by generating descriptions for all photos in the test dataset and 

evaluated those predictions with a standard cost function. 

After that ,we were able to generate a description for a photo using a trained model. 

This involved passing in the start description token „startseq„, generating one word, then 

calling the model recursively with generated words as input until the end of sequence token 

was reached „endseq„. 

We defined a  function  named generate_desc() implements this behavior and generates a 

textual description given a trained model, and a given prepared photo as input. It calls the 

function word_for_id() in order to map an integer prediction back to a word. 

We will generate predictions for all photos in the test dataset and in the train dataset. 

We defined a  function  named evaluate_model() evaluated a trained model against a given 

dataset of photo descriptions and photo features. The actual and predicted descriptions were 

collecteded and evaluated collectively using the corpus BLEU score that summarizes how 

close the generated text is to the expected text. 

 

5.1.3 Generate New Captions : 

We need the Tokenizer (every word mapped  to unique integer) for encoding generated words 

for the model while generating a sequence, and the maximum length of input sequences, used 

when we defined the model (e.g. 34). 

We hard coded the maximum sequence length. With the encoding of text, we created the 

tokenizer and saved it to a file so that later we would be able to load it whenever we need it 

without needing the entire Flickr8K dataset.. 

We created the Tokenizer and saved it as a pickle file tokenizer.pkl and after that we  loaded 

the tokenizer whenever we need it without loading the entire training dataset. 
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5.2 Results:  

Some results of our model gives appropriate caption and some  results are not good.  

 

        File name: Example1.jpg 

 
 

Fig. 5.4: startseq dog is running through the grass endseq (This caption predicted by our 

model) 

 

         File name: Example2.jpg 

 
 

Fig 5.5 startseq two man are standing in front of the water endseq (This caption predicted 

by our model) 
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       File name: Example3.jpg 

 

               Fig 5.6  Caption:  startseq two dogs are running through the grass endseq 

This picture has grass in background and a running dog our model predicted background and 

foreground object correctly. Only mistake is the in the quantity of the foreground object 

which should be one dog but our model predicted two dog. 

            File name: Example4.jpg 

 

Fig. 5.7  Caption: startseq man in red shirt is its bike on the catch endseq (This caption 

predicted by our model)  
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In fig. 5.6 have car in foreground and wood in background and this picture had caption “ 

moving car in the forest” but our model is not able to predict object correctly and give totally 

wrong caption. 

 

File name: Example5.jpg 

 

 

Fig. 5.8  Caption : startseq dog is playing in the water endseq 
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Chapter 7 

Conclusion and Future work 

For the task of image captioning, in this project, a deep learning model has been 

built that generates image captions. This model is based on a Convolution 

neural network and Long Short Term Memory. A pre-trained image-model 

(VGG) is used to generate a "features-vector" of what the image contains, and 

Long Short Term Memory is used to train the model to map this "features-

vector" to a sequence of words. It is important to understand that this model 

does not have a human-like understanding of what the images contain. If it 

gives an image of a dog and correctly produces a caption then, it does not mean 

that the model has a deep understanding of what a giraffe is. 

 

In future, this concept can be used to work in text-to-speech conversion, so that 

the generated descriptions are automatically read out loudly. In addition, static 

images can only provide blind people with information about one specific time 

instant, while video caption generation could provide blind people with 

continuous real time information; in such cases, the above mentioned method 

will be useful.  
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