
Implementation of a Query Language
for Attack Graph Analysis

A Thesis submitted in partial fulfillment of the requirements for degree of

Master of Computer Application

Department of Computer Science and Engineering

Jadavpur University, Kolkata

By
Dipayan Ghosh

Examination Roll No: MCA196018
Class Roll No: 001610503022

Registration No: 137329 of 2016-17

Under the guidance of
Mridul Sankar Barik

Assistant Professor
Department of Computer Science & Engineering

Jadavpur University
Kolkata – 700 032

May, 2019

 Implementation of a Query Language for Attack Graph Analysis

 Page 2

Department of Computer Science and Engineering,

Faculty of Engineering and Technology,
Jadavpur University, Kolkata 700032

Certificate of Approval

This is to certify that the thesis entitled “Implementation of a Query Language for Attack
Graph Analysis” is a bona-fide record of work carried out by Dipayan Ghosh in partial
fulfillment of the requirements for the award of the degree of Master of Computer Application,
in the Department of Computer Science and Engineering, Jadavpur University during the
period December 2018 to May 2019. It is understood that by this approval, the undersigned do
not necessarily endorse or approve any statement made, opinion expressed or conclusion
drawn therein, but approve the thesis only for the purpose for which it is submitted.

Examiners:

__________________________________ _______________________________________
(Signature of the Examiner) (Signature of the Supervisor)

 Implementation of a Query Language for Attack Graph Analysis

 Page 3

To whom it may concern

This is to certify that the work in this thesis entitled “Implementation of a Query Language
for Attack Graph Analysis” has been satisfactorily completed by Dipayan Ghosh. It is a bona-
fide piece of work carried out under my supervision and guidance for partial fulfillment of the
requirements for the awarding of the Master of Computer Application degree of the
Department of Computer Science & Engineering, Faculty of Engineering & Technology,
Jadavpur University, during the academic year 2019-20.

Countersigned:

__________________________________ ______________________________________
Prof. Mahantapas Kundu Prof. Chiranjib Bhattacharjee

Head of the Department Dean

Computer Science & Engineering Faculty of Engineering & Technology

Jadavpur University Jadavpur University

Mridul Sankar Barik

Department of

Computer Science & Engineering

Jadavpur University

 Implementation of a Query Language for Attack Graph Analysis

 Page 4

Declaration of Originality and Compliance of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work by the
undersigned candidate, as part of my Master of Computer Application studies.

All information in this document has been obtained and presented in accordance with
academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name: Dipayan Ghosh

Exam Roll Number: MCA196018

Thesis Title: Implementation of a Query Language for Attack Graph Analysis

Signature with date:

 Implementation of a Query Language for Attack Graph Analysis

 Page 5

Acknowledgement

With my sincere respect and gratitude, I would like to thank my thesis guide Sri Mridul
Sankar Barik for his continuous support for this thesis work, for his patience, motivation and
enthusiasm. His guidance helped me a lot throughout the duration of the work. His valuable
suggestions inspired me a lot. I feel deeply honored that I got the opportunity to work under
his guidance.

I would also wish to thank Prof. Mahantapas Kundu, Head of the Department of Computer
Science & Engineering, Jadavpur University for providing me all the facilities and for his
support to the activities of this project.

I would like to thank my classmate friend, Kallol Chowdhury for sharing his knowledge and
experience with me and also their immense support and co-operation.

Last, but not the least, I would like to thank all my family members and my classmates of
Master of Computer Application batch of 2016-2019, for their co-operation and support. Their
wealth of experience has been a source of strength for me throughout the duration of my work.

Dipayan Ghosh
Exam Roll No: MCA196018
Registration No: 137329 of 2016-17
Master of Computer Application

 Implementation of a Query Language for Attack Graph Analysis

 Page 6

Contents

1 Introduction ... 11

1.1 Motivation ... 12

1.2 Thesis Layout ... 12

2 Literature Survey ... 13

3 Overview of Attack Graph ... 17

3.1 Attack Graph .. 17

3.2 Nodes .. 17

3.2.1 Exploit Nodes .. 17

3.2.2 Security Condition Nodes ... 17

3.3 Types of Attack Graph .. 18

4 Attack Graph Query Language ... 19

4.1 Need for a Query Language .. 19

4.2 Query .. 19

4.2.1 Data Definition Language ... 20

4.2.2 Data Manipulation Language .. 21

4.2.3 Transaction Control Language ... 24

4.2.4 Data Control Language .. 24

4.3 Operator .. 24

4.3.1 Relational Operator .. 24

4.3.2 Logical Operator... 25

4.4 Clause .. 25

4.5 Predicate .. 25

4.5.1 Relationship Predicate .. 25

4.5.2 Attribute Predicate ... 26

4.5.3 Path Predicate ... 26

4.6 Data Type .. 26

4.5.1 String .. 26

4.5.1 Integer .. 26

4.5.1 Time .. 26

4.7 Variable .. 26

5 RDBMS Backend Design ... 27

5.1 Table Schema ... 27

5.1.1 Entity Type ... 27

5.1.2 Relation Type .. 28

5.1.3 Security Condition Type .. 28

5.1.4 Exploit Type ... 29

6 GraphDB Backend Design ... 30

6.1 Concept .. 30

6.1.1 Graph Data Model .. 30

7 Methodology ... 32

7.1 Flowchart .. 32

7.2 E-R Diagram ... 32

7.3 Class Diagram .. 34

7.4 Algorithms .. 35

7.4.1 Entity Type Definition.. 35

 Implementation of a Query Language for Attack Graph Analysis

 Page 7

7.4.2 Relation Type Definition ... 36

7.4.3 Security Condition Type Definition .. 37

7.4.4 Exploit Type Definition ... 38

7.4.5 Unique Constraint Definition .. 39

7.4.6 Cardinality Constraint Definition .. 40

7.4.7 Drop .. 40

7.4.8 Entity Creation .. 41

7.4.9 Relation Creation ... 42

7.4.10 Security Condition Creation .. 43

7.4.11 Exploit Creation ... 44

7.4.12 Select .. 45

7.4.13 Delete ... 46

7.5 Assumptions .. 47

7.6 Features ... 47

7.6.1 Interactivity ... 47

7.6.2 Modularity and Extensibility ... 47

7.6.3 Flexibility .. 47

7.6.4 Strict Data Type Matching .. 48

7.6.5 Scalability .. 48

7.6.6 Computational Time Estimation per Query .. 48

7.7 Exception Handling ... 48

7.8 Data Structures & Error Messages .. 48

8 Attack Graph Generation ... 50

8.1 Experimental Analysis ... 50

8.1.1 Attack Graph Generation .. 50

8.1.2 Algorithm for TVA ... 52

8.1.3 Sample Output .. 53

9 AGQL Editor .. 54

10 Conclusion & Future Work ... 55

References .. 56

Appendix A ... 57

Appendix B ... 58

 Implementation of a Query Language for Attack Graph Analysis

 Page 8

List of Figures

Figure 1-1 Attack Graph Query Language .. 11

Figure 3-1 A running example of an Attack Graph .. 18

Figure 3-2 Simplified Version ... 18

Figure 4-1 Types of AGQL Queries .. 19

Figure 6-1 Data representing Simple Network Configuration ... 31

Figure 7-1 Flowchart of the Interpreter.. 32

Figure 7-2 E-R Diagram ... 33

Figure 7-3 Class Diagram .. 34

Figure 8-1 Example of network configuration and domain knowledge. .. 50

Figure 9-1 Screenshot of AGQL Editor ... 54

 Implementation of a Query Language for Attack Graph Analysis

 Page 9

List of Tables

Table 5-1 Table Schema for Entity Type Definition.. 27

Table 5-2 Table Schema for Relation Type Definition ... 28

Table 5-3 Table Schema for Security Condition Type Definition .. 28

Table 5-4 Table Schema for Exploit Type Definition ... 29

 Implementation of a Query Language for Attack Graph Analysis

 Page 10

Abstract

Attack graphs constitute a powerful security tool aimed at modeling the many ways in which
an attacker may compromise different assets in a network. Attack graphs are most used by
System / Security administrators to determine how vulnerable their systems are and also to
determine what security measures to deploy inorder to defend their systems. Our thesis
provides an abstraction for the need of query language for attack graph generation and
analysis based on the network vulnerabilities. The proposed query language focuses to help the
security analysts to formulate new types of analysis tasks in the form of queries, without
requiring knowledge of any specialized graph algorithms and/or graph extraction methods as
it hides the underlying data model. We have designed its implementation in such a way that it
can be used on top of any kind of data store i.e. relational database, graph database etc. The
generation of graph is done considering the network information is granular.

 Implementation of a Query Language for Attack Graph Analysis

 Page 11

1

Chapter 1

1 Introduction

Our thesis aims to implement a Domain Specific Query Language (DSQL). By definition a
domain-specific language is a computer language specialized to a particular application
domain. Introducing the Attack Graph Query Language (AGQL) (please refer the Figure 1-1), a
DSQL which is targeted towards facilitating both attack graph generation and attack graph
based security analysis thereby hiding the underlying data model. This chapter introduces the
interpreter, thereby following with motivation and thesis layout.

Figure 1-1 Attack Graph Query Language

 Implementation of a Query Language for Attack Graph Analysis

 Page 12

1.1 Motivation

Through our research work we intend to provide a higher level of abstraction of network
security state (represented as attack graph) to the System / Security administrators, where
they can use a flexible declarative query language AGQL for specifying the security relevant
information needed for the analysis tasks, on the fly. To the best of our knowledge, among the
query languages been developed so far in the domain of network security, CyQL [12] is the only
one which uses such attack graph model as an abstraction of the underlying network security
state. Our language can give a good competition as we provide more flexibility in the
underlying data models and even in the language itself.

1.2 Thesis Layout

The thesis is organized as follows. After the completion of this Chapter 1 which consists of
sections - Motivation, thesis layout, we would find Chapter 2 with some past works i.e. a
literature survey is done. In Chapter 3, we would basically start to understand the basics of
attack graph with examples. Next, we will begin with our query language AGQL in Chapter 4. In
this Chapter we would learn the syntax of the language with some examples and also deal with
the need for developing this query language. Then in Chapter 5, we will learn about the RDBMS
Backend Design. Subsequently in Chapter 6, we will learn about the Graph Database Backend
Design. Chapter 7 deals with the Implementation, which is the main part of the thesis and it has
sections consisting of the flowchart of the Interpreter, ER Diagram, Class Diagram, and
algorithms of the queries. It also has a brief explanation about the data structures used, error
messages, exception handling, assumptions taken, features of the interpreter. Chapter 8 is all
about the attack graph generation using TVA Approach. Chapter 9 depicts a brief on the AGQL
editor that is developed using JFrame. This shall be improvised more in later stages. Finally,
Chapter 10 concludes with the real life usage of this language and thereby comments on the
future work that are can make the language more useful in day to day life. Appendix A is the
clear picture on the concrete syntax that is used in our interpreter. Appendix B is the sample
code that is taken as input and was executed by the interpreter.

 Implementation of a Query Language for Attack Graph Analysis

 Page 13

2

Chapter 2

2 Literature Survey

Attack graph is a model of knowledge about the inter-dependency between vulnerabilities and
the connectivity in network. By regarding a collection of security –related conditions as a state
and each exploit as a transition between these states, an attack graph can be generated by
searching forward from the initial state or backwards from a given goal state. This chapter
discusses on the few past works related to Attack graphs and compiler/interpreter published
by researchers.

Jiawei Han et al. [1] have designed a data mining query language (DMQL) and has presented it
step-by-step. They have designed inorder to provide necessary primitives for data mining
engines to work in. It has preferred to use flexible GUIs to interact with a data miner for fruitful
and convenient data mining. DMQL is said to serve as a “core language” for data mining system
implementations, on top of which various kinds of GUIs should be developed for effective data
mining. Its prime functionalities are Data Collection, Presentation of data mining results,
Manipulation of data mining primitives, Interactive multi-level mining and other miscellaneous
information.

Chunying Wang et al. [2] have proposed their approach and software tool for vulnerability
analysis and security level assessment of computer networks, intended for implementation at
various stages of a life cycle of computer networks. They have associated probabilities with
transition in the model inorder to be able to find the reachability probability of various states
in an Attack Model and termed as ‘Probabilistic Model’. Their model is also capable in
distinguishing the leaf nodes marked to be ‘states’ as white – nodes depending on the fact that
the node is not detected to be an attacker by their intruder detection system or black – nodes
which has sounded the alarm.

Sushil Jajodia et al. [3] has used the TVA tool for analyzing vulnerability to network attacks.
Their overall architecture has three main components: (1) a knowledge base of modeled
exploits, (2) a description of a network of interest, and (3) a specification of an attack scenario
(attacker target, initial attack control, and network configuration changes). The TVA analysis
engine merges these three components and then discovers attack paths (exploit combinations)
based on the merged model. They build the dependency graph through a multi-step process.
But there is a limit in accomplishing with network hardening and intrusion detection,
particularly in the face of novel attacks with the need to offer services and effectiveness.

Paul Ammann et al. [4] has assumed of monotonicity to obtain a concise, scalable graph-
based representation for encoding attack trees. It has two implications. (1) The precondition
of an exploit, once satisfied, never becomes unsatisfied (attributes may start in the ‘not
satisfied’ state and become transformed, via some exploit, to the ‘satisfied’ state, but never

 Implementation of a Query Language for Attack Graph Analysis

 Page 14

the reverse). (2) The monotonicity assumption requires that the negation operator is not
used to express the precondition of any exploit. They assumed that the preconditions of an
exploit are conjoined; this assumption entails no loss of generality, since disjunctions
could easily be handled by splitting the exploit into multiple exploits. They also assumed
that post conditions are conjoined, since it simplifies their algorithms.

In [5] authors have given a simple interpretation of metric for their attack graph. That is, the
individual score p(e) is the probability that any attacker can, and will execute e during an
attack, given that all the preconditions are already satisfied. Equivalently, among all attackers
that attempt to compromise the given network during any given time period, p(e) is the
fraction of attackers that can, and will execute e. This interpretation of individual scores has
considered two factors in determining the individual score p(e), namely, whether an attacker
has the skills and resources to execute e and whether he/she will choose to do so. The
interpretation of individual scores also provides a natural semantics to the cumulative scores.
That is, P(e) or P(c) stands for the likelihood, or the fraction of, attackers who will successfully
exploit e or satisfy c in the given network. Such a likelihood or fraction that a corresponding
resource will be compromised during an attack is clearly relevant in analyzing the security of a
network or in hardening the network for better security.

The Research paper [6] described about the specifications of the CQL language for continuous
queries over data streams, including a formal abstract semantics on which CQL is based. Most
of the CQL language is operational in the STREAM prototype data stream management system,
including the “Linear Road” benchmark used as examples throughout the paper. The paper also
describes the structure and implementation of query execution plans for CQL in the STREAM
system. The have presented the structure of CQL’s query execution plans as well as details of
the most important components like: operators, inter-operator queues, synopses, and sharing
of components among multiple operators and queries.

Naggen (Network Attack Graph GENerator) [7], a security tool aimed at the generation and
visualisation of core graphs. Naggen is composed of three main building blocks: (1) Naggen
Shell, a command-line interface that allows to configure and control the generation process, (2)
Naggen Core, responsible for the analysis and graph generation processes, and (3) Naggen
Display, which contains different visualization mechanisms to display the generated attack
graphs. The three potential security applications using Naggen are: (1) network monitoring
and hardening, (2) security perimeters, and (3) forensic investigations. The proposed approach
relies in identifying the main attack avenues towards specific network targets by performing a
structural summarization process over the input network. The process essentially summarizes
alternative routes between any two directly connected nodes and only keeps those routes than
cannot be summarised into any other link in the graph. As a result, the obtained graphs
presents simpler structures. The theoretical and practical results due to compactness of core
attack graphs, or simply, core graphs strongly suggest that their approach can widely support
the actual use of attack graphs in practice and therefore, having a significant impact in network
security terms.

In the proposed work of [8], they have presented the data manipulation facility for a
structures English Query Language (SEQUEL) which can be used for accessing data in an
integrated relational database. Without resorting to the concepts of bound variables and
quantifiers SQEUEL identifies a set of simple operations on tabular structures, which have been

 Implementation of a Query Language for Attack Graph Analysis

 Page 15

shown to be of equivalent power to the first order predicate calculus. A SEQUEL user is
presented with a consistent set of English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to compose the basic templates in a
structured manner inorder to form more complex queries. SEQUEL is intended as a data base
sublanguage for both the professional programmer and the more infrequent database user.

The authors of [9] has presented a method for vulnerability analysis of computer networks.
The method is based on attack graphs which represent attack states and the transitions
between them. Edges are directed arcs that connect one system state to the next. Edges
represent a change of state caused by a single step. Templates list the required conditions for
state transitions. The graph is generated by matching the current (node) state against a library
of templates, choosing only the templates that apply to the current state. The attack graph can
be used to identify unique attack paths that are most likely to succeed, or to simulate various
attacks. The dynamic aspect of the graph gives unique insight into the behavior of the system.
The graph analysis tool goes beyond tools which check a “laundry list” of services or conditions
that are enabled on a particular machine. The graph can show new attack paths which can by-
pass the static fortifications of a typical security system. They developed a robust attack graph
tool with a graphical interface. The tool is designed to be fairly easy to use and to link to
vulnerability and configuration databases from commercial tools. They plan to evaluate the
utility of this approach for testing intrusion detection systems and/or for identifying where an
attacker might next move once an intruder has been detected within a network. The attack
graph could also be the basis for identifying the most cost effective set and placement of
defenses.

Data extraction, conversion, transformation, and integration are all well-understood database
problems, where solutions rely on a query language, either relational (SQL) or object-oriented
(OQL). Authors of [10] have implemented such an interpreter for XML-QL (a query language
for XML) using the unordered data model. XML-QL has features like declarative; ‘relational
complete’- in particular, it can express joins; simple enough that known database techniques
for query optimization, cost estimation, and query rewriting could be extended to XML-QL;
extracts data from existing XML documents and construct new XML documents; supports both
ordered and unordered views on an XML document. XML-QL supports querying, constructing,
transforming, and integrating XML data. They have drawn comparison with other query
languages for semi-structured data.

In paper [11], they have described a new query language for information retrieval in XML
documents. They have presented the new query language XIRQL which integrates most from
logic-based probabilistic IR-related features like weighting and ranking, relevance-oriented
search, datatypes with vague predicates, and semantic relativism and have described the
concepts that are necessary in order to arrive at a consistent model for XML retrieval. For
processing XIRQL queries, they have described a path algebra, which also serves as a starting
point for query optimization. In parallel, XIRQL can be extended to include the data-centric
features from XQuery. They have implemented a first prototype retrieval engine that accepts
XIRQL queries, transforms them into a path algebra expression and then processes this
expression.

 Implementation of a Query Language for Attack Graph Analysis

 Page 16

Authors of [12] have described CyGraph, a system for improving network security posture,
maintaining situational awareness in the face of cyberattacks, and focusing on protection of
mission-critical assets. CyGraph adopts a unified graph-based cybersecurity model relevant to
potential and actual cyberattacks, defenses, and mission impacts. It captures incremental
attack vulnerability, security events, and mission dependencies within a network environment,
builds a predictive model of possible attack paths and critical vulnerabilities, and correlates
events to known vulnerability paths. It also includes dependencies among mission
requirements and network assets, for analysis in the context of mission assurance. Their
resulting knowledge graph captures the complex relationships among entities in the
cybersecurity domain. CyGraph brings together isolated data and events into an overall picture
for decision support and situational awareness. It prioritizes exposed vulnerabilities, mapped
to potential threats, in the context of mission-critical assets. In the face of actual attacks, it
correlates intrusion alerts to known vulnerability paths and suggests best courses of action for
responding to attacks. For post attack forensics, it shows vulnerable paths that may warrant
deeper inspection. CyGraph also supports CyQL (CyGraph Query Language), a domain specific
query language for expressing graph patterns of interest, with interactive visualization of
query results. CyGraph supports the separation of graph models into interdependent layers.
For time-dependent graph models, it provides dynamic visualization of evolving graph state.
CyGraph also integrates with third-party tools like Neo4j for visualizing graph state changes
(e.g., driven by simulations).Furthermore, it has capabilities for synthesizing graph models
with particular statistical properties.

In [13] the authors have proposed for a vulnerability analysis tool. Their end-to-end
framework model used in the analysis is able to automatically integrate formal vulnerability
specifications from the bug-reporting community and is be able to scale to networks with
thousands of machines. Their reasoning system that conducts multihost, multistage
vulnerability analysis on a network. Their analysis algorithm is divided into two phases: attack
simulation and policy checking. MulVAL adopts Datalog as the modeling language for the
elements in the analysis (bug specification, configuration description, reasoning rules,
operating-system permission and privilege model, etc.). We easily leverage existing
vulnerability-database and scanning tools by expressing their output in Datalog and feeding it
to our MulVAL reasoning engine. Once the information is collected, the analysis is performed in
seconds for networks with thousands of machines. They implemented their framework on the
Red Hat Linux platform. Their framework can reason about 84% of the Red Hat bugs reported
in OVAL, a formal vulnerability definition language. They tested their tool on a real network
with hundreds of users. The tool detected a policy violation caused by software vulnerabilities
and the system administrators took remediation measures.

 Implementation of a Query Language for Attack Graph Analysis

 Page 17

3

Chapter 3

3 Overview of Attack Graph

Attack graphs have important applications in protecting critical resources in networks against
sophisticated multi-step intrusions. Currently, analyses of attack graphs largely depend on
proprietary implementations of specialized algorithms. This chapter is to clear the basic
understanding of the underlying concepts of Attack graph and their types.

3.1 Attack Graph

Attack graphs depict ways in which an adversary can exploit vulnerabilities to break into a
system. System administrators analyze attack graphs to understand where their system’s
weaknesses lie and to help decide which security measures will be effective to deploy. They are
mathematical abstractions of the details of possible attacks against a network. The current
analysis of attack graphs requires an algorithm to be developed and implemented, causing a
delay in the availability of Analysis. Such a delay is usually unacceptable because the needs for
analyzing attack graphs may change rapidly in defending against network intrusions. Attack
graph, being first introduced in 1998, is a modeling tool which is based on the casual
relationship between different vulnerability exploits. An Attack Graph enumerates all possible
attack paths that an attacker can follow to intrude into a target network and compromise its
critical resources.

3.2 Nodes

A Node is a data or record. Nodes in an attack graph (please refer the Figure 3-1), represent
possible system state during execution of an attack and edges represent a change of state,
caused by a single action of the attacker. Nodes are of two types: Exploit nodes and Security
Condition nodes.

3.2.1 Exploit Nodes

Nodes that are drawn as ovals represent exploits and are labelled with corresponding
vulnerabilities. These nodes represent attacks (exploitation of certain vulnerabilities). We can
see from the figure 3-1 that (h2, h1, sadmind_bof), (h3, h1, sadmind_bof), (h1, h2,
sadmind_bof), (h3, h2, sadmind_bof) with oval shaped border are all exploits.

3.2.2 Security Condition Nodes

Nodes particularly without any boundary represent different security conditions, i.e. network
condition, attacker capability etc. These nodes represent either the pre-condition or the post-
condition of an attack. We can see that the labeled nodes without borders like (h1,

 Implementation of a Query Language for Attack Graph Analysis

 Page 18

sadmind_service), (h3, user_privilege), (h1, user_privilege), (h2, sadmind_service), (h2,
user_privilege) are all security conditions in the figure 3-1 given below.

Example of an attack graph:
The simplified version of the left-hand side figure (Figure 3-1) is given in the right-hand side
(refer Figure 3-2), where the exploits are given as triplets and security conditions as duplets.
The left-hand side of below figure (refer figure 3-1) shows a simple attack graph as our running
example. The attack graph indicates that by exploiting a buffer overflow vulnerability in the
Sadmind service (Nessus ID 11841), an attacker can gain the privilege of using a remote
machine. The right-hand side shows a simplified version where ‘x’ denotes the existence of the
vulnerability, ‘y’ denotes the user privilege & ‘A’ denotes the exploitation of that vulnerability.
The attack graph shows an attacker having user privilege on host 3 can exploit the
vulnerability on hosts 1 and 2 and obtain user privilege on the hosts. Please note that after an
attacker has obtained user privilege on host 1, he/she can then exploit host 2 from either host
3 or host 1.

Figure 3-1 A running example of an Attack Graph Figure 3-2 Simplified Version

The two types of edges in an attack graph have different semantics. The require relation is
regarded as conjunctive, whereas the imply relation is disjunctive. More specifically, an exploit
cannot be realized until all of its required conditions have been satisfied (different variations of
an exploit that require different sets of conditions should be regarded as different exploits), but
a condition can be satisfied by one of the realized exploits that imply that condition. Another
important perspective is that conditions can be divided into initial conditions (those not
implied by any exploit) and intermediate conditions. The main reason for such a distinction is
that initial conditions can be independently disabled to harden a network, whereas
intermediate conditions cannot be without first removing the exploit implying them.

3.3 Types of Attack Graph

There are different models of attack graphs which are been used by many researchers i.e. the
state enumeration graph, exploit dependency graph, logical attack graph, multiple prerequisite
attack graph, etc. Attack graphs that we shall adopt in our work is based on the notion of
exploit dependency graphs. The above figure (Figure 3-1) is an example of exploit dependency
graph.

 Implementation of a Query Language for Attack Graph Analysis

 Page 19

4

Chapter 4

4 Attack Graph Query Language

AGQL is a Domain Specific Language (DSL) to facilitate modeling of input data necessary for
generation of attack graphs. In this chapter we shall be dealing with the structure of different
AGQL queries through few examples. The minimum hardware and software requirements for
running is taken to be 1 GB of RAM, 50GB of free space in Hard Disk, Intel Pentium 2.8 GHz
processor, Linux/Windows Operating System, PostgreSQL, Neo4j, javacc, java installed in the
respective machine.

4.1 Need for a Query Language

AGQL has query constructs to help in attack graph based network security analysis. AGQL
provides a higher level abstraction where, the user need not bother about underlying data
management system, be it relational, graph data, etc. By convention, design of a domain specific
language AGQL begins by defining the syntax of the queries that is conceived solely based on
the use cases in the application domain.

4.2 Query

A query is a request for information from a database. Many database systems requires the user
to make requests for information in the form of a stylized query that must be written in a
special query language, which is the most complex method because it forces to learn a
specialized language, but it is also the most powerful. AGQL is one such initiative. AGQL queries
can be categorized into four categories: data definition queries, data manipulation queries,
transaction control queries and data control queries (please refer the Figure 4-1).

Figure 4-1 Types of AGQL Queries

https://www.webopedia.com/TERM/D/database.html
https://www.webopedia.com/TERM/Q/query_language.html
https://www.webopedia.com/TERM/L/language.html

 Implementation of a Query Language for Attack Graph Analysis

 Page 20

4.2.1 Data Definition Language

These AGQL queries are used for creating, modifying, and dropping the structure of database
objects. The query falling under this category are described below:

4.2.1.1 Entity Type Definition

Entity type define query constructs are used as data definition queries. It facilitate definition of
entity types. This allows us to define an entity type. Hence for this query we need to provide
name of the entity type and an attribute definition list.
Few examples for defining the entity types in our query language:

1. define entity-type host (name: string, ipAddr: string, macAddr: string, os:string)
2. define entity-type network-domain (name:string, netAddr:string, subnetMask:string)
3. define entity-type service (name:string, protocol:string, portNo:int, swName:string,

swVer:string)
4. define entity-type vulnerability (name:string, cveId:string)
5. define entity-type privilege (privType:string)
6. define entity-type reachability (rchType:string)
7. define entity-type firewall (name:string, ifCount:int, ifIpAddr:string,

ifSubnetMask:string)
8. define entity-type gateway (name:string, ifIpAddr:string, ifSubnetMask:string)

4.2.1.2 Relation Type Definition

Relation type define query constructs are used as data definition queries. It facilitate definition
of relation types. This allows us to define a relation type between two set of entities. Hence for
this query we need to provide name of the relation type and an attribute definition list and one
set each for source entities and target entities respectively.
Few examples for defining the relation types in our query language:

1. define relation-type memberOf (since: time) between {host, firewall}, {network-
domain}

2. define relation-type connects (ifId: int) between {gateway}, {network-domain}
3. define relation-type atHost () between {service, privilege}, {host, gateway}
4. define relation-type accessTo () between {reachability} , {service}
5. define relation-type accessBy () between {reachability} , {host, network-domain}
6. define relation-type hasVuln () between {service} , {vulnerability}

4.2.1.3 Security Condition Type Definition

Security condition type define query constructs are used as data definition queries. It facilitate
definition of security condition types. This allows us to define a security condition type. Hence
for this query we need to provide name of the security condition type, an attribute definition
list and a corresponding security condition types with its entities.
Few examples for defining the security condition types in our query language:

1. define security-condition-type Reachability (name: string, since: time) accessBy
{network-domain, host} accessTo {service}

2. define security-condition-type Privilege (name: string, since: time, privType: string)
atHost {host, gateway}

 Implementation of a Query Language for Attack Graph Analysis

 Page 21

4.2.1.4 Exploit Type Definition

Exploit type define query constructs are used as data definition queries. It facilitate definition
of exploit types. This allows us exploit to define a type. Hence for this query we need to provide
name of the exploit type and an attribute definition list.
An examples for defining exploit types in our query language:

1. define exploit-type bofExploit (name: string, category: string) CVE("CVE-2008-0106")
 precond {privilege (privType: "user"), reachability (rchType: "xyz")}
 postcond {privilege (privType:"user")}

4.2.1.5 Unique Constraint Definition

Unique key constraint is a type of constraints that the every instances of entities must conform
to. This query constructs specify the attribute(s) that uniquely identifies instances of a
particular entity type.
Few examples for declaring unique key constraints in our query language:

1. define unique host (ipAddr)
2. define unique vulnerability (cveId)

4.2.1.6 Cardinality Constraint Definition

Cardinality constraint is a type of constraints that every instances of entities must conform to.
This query constructs specify the way in which two entities may be related.
Few examples for declaring cardinality constraints in our query language:

1. define cardinality memberOf n:1
2. define cardinality hasVuln n:n

4.2.1.7 Drop

The DROP query is used to drop or delete a definition. Dropping of a defined type will drop all
database objects inside it.
Few examples for drop query in our language:

1. drop entity-type (host, network-domain, service, vulnerability, firewall, gateway,
privilege, reachability)

2. drop relation-type (memberOf, connect, atHost, accessTo, accessBy, hasVuln, runAt)
3. drop security-condition-type(reachability, privilege)
4. drop exploit-type(bofExploit)

4.2.2 Data Manipulation Language

These AGQL queries are used for storing, retrieving, modifying, and deleting data. The query
falling under this category are described below:

4.2.2.1 Entity Creation

Entity create query constructs are used as data manipulation queries. It allows us to create an
instance of entities. The query creates entities of the entity type already defined. Hence for this
query we need to provide name of the entity and the attribute value list which should match
with attribute definition list of the entity type that is defined.

 Implementation of a Query Language for Attack Graph Analysis

 Page 22

Few examples for creating entities in our query language:
1. create entity host (name:"h1", ipAddr:"192.168.148.3", macAddr:"xx:xx:xx:xx:xx:xx", os:

"Ubuntu")
2. create entity host (name:"h2", ipAddr:"192.168.148.5", macAddr:"xx:xx:xx:xx:xx:xx", os:

"Win7")
3. create entity host (name:"h3", ipAddr:"192.168.148.3", macAddr:"xx:xx:xx:xx:xx:xx", os:

"Win7")
4. create entity domain (name:"dom1", netAddr:"192.168.148.1", SubnetMask:

"255.255.255.0")
5. create entity domain (name:"dom2", netAddr:"192.168.148.1", SubnetMask:

"255.255.255.0")
6. create entity network-domain (name:"nd1", netAddr:"192.168.148.3", SubnetMask:

"255.255.255.0")
7. create entity network-domain (name:"nd2", netAddr:"192.168.148.4", SubnetMask:

"255.255.255.0")
8. create entity firewall (name:"fw1", ifCount:2, ifIpAddr:"192.168.150.1", ifSubnetMask:

"255.255.255.0")
9. create entity firewall (name:"fw2", ifCount:2, ifIpAddr:"192.168.148.1", ifSubnetMask:

"255.255.255.0")
10. create entity firewall (name:"fw3", ifCount:2, ifIpAddr:"192.168.148.1, 192.162.148.1",

ifSubnetMask:"255.255.255.0, 255.255.255.0")
11. create entity host (hostname:"h1", ipAddr:"192.128.148.3",

macAddr:"00:98:CC:0C:BA:12", os:"Win7")
12. create entity host (name:"h5", ipAddr:"193.168.148.3", macAddr:" 30:98:CC:0C:BA:12")
13. create entity service (name:"httpd1", protocol:"ftp", portNo:3, swName:"vsc",

swVer:"1.1.2")

4.2.2.2 Relation Creation

Relation create query constructs are used as data manipulation queries. It allows us to create
an instance of relations. The query creates relations of the relation type already defined. Hence
for this query we need to provide name of the relation and the attribute value list which should
match with attribute definition list of the relation type that is defined.
Few examples for creating relations in our query language:

1. create relation x:host (x.ipAddr == "192.168.148.3") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.3")

2. create relation h1:host (h1.ipAddr == "192.168.148.3") memberOf
(since:"10:11:34",ifId: 0,name:"mmm") nd1:network-domain (nd1.netAddr ==
"192.168.148.3")

3. create relation h1:host (h1.ipAddr == "192.168.148.5") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.3")

4. create relation h1:host (h1.ipAddr == "192.168.148.3") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.3")

5. create relation fw1:firewall (fw1.name == "fw1") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.3")

6. create relation fw1:firewall (fw1.name == "fw2") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.4")

 Implementation of a Query Language for Attack Graph Analysis

 Page 23

7. create relation fw1:firewall (fw1.name == "fw1") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.4")

8. create relation fw1:firewall (fw1.name == "fw1") memberOf (since:"10:11:34")
nd1:network-domain (nd1.netAddr == "192.168.148.3")

4.2.2.3 Security Condition Creation

Security Condition create query constructs are used as data manipulation queries. It allows us
to create an instance of security conditions. The query creates security conditions of the
security conditions type already defined. Hence for this query we need to provide name of the
security condition and the attribute value list which should match with attribute definition list
of the security condition type that is defined.
Few examples for creating relations in our query language:

1. create security-condition reachability (name:"httpd31", rchType:"xyz") accessBy {x:host
(x.ipAddr == "192.168.148.3")} accessTo {y:service (y.name == "httpd1")}

2. create security-condition reachability (name:"httpd32", rchType:"xyz") accessBy {x:host
(x.ipAddr == "192.168.148.3")} accessTo {y:service (y.name == "httpd2")}

3. create security-condition reachability (name:"httpd12", rchType:"xyz") accessBy {x:host
(x.ipAddr == "192.168.148.1")} accessTo {y:service (y.name == "httpd2")}

4. create security-condition reachability (name:"httpd21", rchType:"xyz") accessBy {x:host
(x.ipAddr == "192.168.148.2")} accessTo {y:service (y.name == "httpd1")}

5. create security-condition privilege (name:"user3", privType: "user") atHost {x:host
(x.ipAddr == "192.168.148.3")}

6. create security-condition privilege (name:"user1", privType: "user") atHost {x:host
(x.ipAddr == "192.168.148.1")}

7. create security-condition privilege (name:"user2", privType: "user") atHost {x:host
(x.ipAddr == "192.168.148.2")}

4.2.2.4 Exploit Creation

Exploit create query constructs are used as data manipulation queries. It allows us to create an
instance of exploits. The query creates exploits of the exploit type already defined. Hence for
this query we need to provide name of the exploit and the attribute value list which should
match with attribute definition list of the exploit type that is defined.
Few examples for creating exploits in our query language:

1. create exploit bofExploit(name:"bofExp31", category:"remote")
precond {x:privilege (x.name == "user3"), y:reachability (y.name == "httpd31")}
postcond {x:privilege (x.name == "user1")}

2. create exploit bofExploit(name:"bofExp32", category:"remote")
 precond {x:privilege (x.name == "user3"), y:reachability (y.name == "httpd32")}
 postcond {x:privilege (x.name == "user2")}

4.2.2.5 Select

AGQL SELECT query is used to query or retrieve data regarding different network components
from a table in the database. These query may retrieve information from specified columns or
from all of the columns in the table or from multiple tables.
Few examples for select query in our language:

1. select x:host where (x.ipAddr=="192.168.148.3")

 Implementation of a Query Language for Attack Graph Analysis

 Page 24

2. select x:host where (x.ipAddr=="192.168.148.3") and (x.name=="h1")
3. select x:host where (x.name=="h1") or (x.os== "win7")
4. select x:host where (x.ipAddr=="192.168.148.5") or (x.ipAddr=="192.168.148.1")
5. select x:host where (x.ipAddr=="192.168.148.3") and (x.host_Id >= 3) and (x.name ==

"h3")
6. select x:host where (x.ipAddr=="192.168.148.3") and (x.name == “h2”) or (x.name ==

"h3")
7. select x:host where (x.name == "h1") or (x:host memberOf nd1:network-domain)

8. select x:host where (x.ipAddr=="192.168.148.3") or (x:host memberOf nd1:network-
domain)

9. select x:host where (x.os== "win7") and (x:host memberOf nd1:network-domain)

10. select x:network-domain where (x.name == "nd1")

4.2.2.6 Delete

AGQL DELETE query is used to delete tuples from relational database.
Few examples for delete query in our language:

1. delete x:host where (x.host_Id >= 3)
2. delete x:host where (x.ipAddr == "192.168.128.1")
3. delete x:host where (x.ipAddr=="192.168.148.3")
4. delete x:host where (x.name=="h1")
5. delete x:host where (x.os=="Win7”)
6. delete x:network-domain where (x.name == "nd1")

4.2.3 Transaction Control Language

These AGQL queries are used for managing changes affecting the data and might have
functionality like to save the changes, to roll back the changes, to create points within the
groups of transactions in which to roll back, to place a name on a transaction, which we will
soon introduce.

4.2.4 Data Control Language

These AGQL queries are used for providing security to database objects. These queries might
have functionality like provide access or privileges on the database objects to the users and
enforce database security in a multiple user database environment, which we will soon
introduce.

4.3 Operator

An operator is a reserved word or a character used primarily in an AGQL statements. Two
types of Operators are widely used in our language: Relational Operator and Logical Operator.

4.3.1 Relational Operator

Operators are used to specify conditions in an AGQL query and to serve as conjunctions for
multiple conditions in a query.

 Implementation of a Query Language for Attack Graph Analysis

 Page 25

 == Checks if the value of two operands are equal or not, if yes then condition
becomes true. Example: (x.ipAddr == “123.111.103.3”) is not true.

 > Checks if the value of left operand is greater than the value of right operand, if
yes then condition becomes true. Example: (x.ipAddr > y.ipAddr) is not true.

 < Checks if the value of left operand is less than the value of right operand, if yes
then condition becomes true. Example: (x.ipAddr < y.ipAddr) is true.

 >= Checks if the value of left operand is greater than or equal to the value of right
operand, if yes; condition becomes true. Example: (x.ipAddr >= y.ipAddr) is not true.

 <= Checks if the value of left operand is less than or equal to the value of right
operand, if yes then condition becomes true Example: (x.ipAddr <= y.ipAddr) is true.

4.3.2 Logical Operator

AGQL Logical Operators are used in a query and has some special functionalities:
Here is a list of all the logical operators available in AGQL.
Operator Description

 AND: The AND operator allows the existence of multiple conditions in an SQL query's
WHERE clause.

 BETWEEN: The BETWEEN operator is used to search for values that are within a set
of values, given the minimum value and the maximum value.

 OR: The OR operator is used to combine multiple conditions in an SQL query's
WHERE clause.

 UNIQUE: The UNIQUE operator searches every tuple of a specified table for
uniqueness (no duplicates).

4.4 Clause

AGQL Clauses was designed to help the programmers and IT professionals. The AGQL WHERE
clause is used to specify a condition while fetching the data from a single table or by joining
with multiple tables. If the given condition is satisfied, then only it returns a specific value from
the table. You should use the WHERE clause to filter the records and fetching only the
necessary records. The WHERE clause is not only used in the SELECT statement, but it is also
used in the DELETE statement, etc. Similarly, there are some more clauses which are
BETWEEN, TO, etc.

4.5 Predicate

In AGQL, Predicates defines a logical condition being applied to rows in a table. AGQL
predicates are found on the tail end of clauses. It is an expression that evaluates to TRUE,
FALSE, or UNKNOWN.

4.5.1 Relationship Predicate

The predicate that is responsible for whether a relationship holds between two instances. For
example: (x:host memberOf nd1:network-domain) is a relationship predicate for the relation
type ‘memberOf’. We have used this in our select queries and many other queries which uses or
checks the existence of an instance or definition itself.

 Implementation of a Query Language for Attack Graph Analysis

 Page 26

4.5.2 Attribute Predicate

The predicate that is responsible for whether value for an attribute of an entity instance
satisfies some relation. For example: (x.host_Id >= 3), (x.ipAddr == "192.168.128.1") are
attribute predicates for the entity type ‘host’. We have used this in our select queries and many
other queries which uses or checks the existence of an instance or definition itself.

4.5.3 Path Predicate

The predicate that is responsible for whether a network path exists between two hosts or not.
This predicate is so far planned to be used inside the queries and is yet to introduce in our
language as an extend characteristics to use.

4.6 Data Type

As of now, we have considered three data types string, int, time in our query language.

4.5.1 String

This data type in AGQL stores a set of characters within double quotes. It is not restricted with
any length size.

4.5.1 Integer

This data type in AGQL holds decimal value that are not in fraction (i.e. a whole number). Its
range is -232 to 232 -1 or -264 to 264 -1 Bytes depending on the processor of the computer.

4.5.1 Time

This data type holds a set of digits that are of String type in a specified format – <hh:mm:ss>,
where hh means ‘hours hand time’, mm means ‘minute hand time’, ss means ‘second hand
time’.

4.7 Variable

As we know a data type is always associated with a variable in definition or every variable
must be defined by a proper data type given above. The variable is said to have a valid if it
holds the following conditions:

 Starting letter of the variable is any capital English letter alphabet or small English letter
alphabet.

 Rest letters of the variable can be any combination of capital English letter alphabet,
small English letter alphabet, numeric digits or hyphen (-) or underscore (_).

 Implementation of a Query Language for Attack Graph Analysis

 Page 27

5

Chapter 5

5 RDBMS Backend Design

An attack graph describes all possible sequences of exploits an attacker can follow to advance
an intrusion. The attack graph is generated from those inputs as relational views. Also typical
analyses of the attack graph can be realized as relational queries against the views. This
approach eliminates the needs for developing a proprietary algorithm for each different
analysis, because an analysis is now simply a relational query. We have PostgreSQL for our
RDBMS Backend Design. This chapter presents a relational model for representing necessary
inputs including network configuration and domain knowledge.

5.1 Table Schema

The table schema for AGQL are written below, which consists of name, description, identity
column, attributes/ fields and the complete description of the attributes.

5.1.1 Entity Type

Every information about the related query for entity definition will be checked and is
responsible for storing the entity definitions in Entity Type Def Table Schema.

Name ENTITY_TYPE_DEF
Description Stores Entity Type Definitions
Identity Column { Entity_Type_Id }
Attributes/Fields { Entity_Type_Name, Entity_Type_Attr_Def_List, Entity_Type_Unique_Attr_List }

S
l.

Field Name Description Size Type Optional/
Mandatory?

Constraint
s

1 Entity_Type_Id ID of the Entity Type 4B INTEGER Mandatory Primary
Key

2 Entity_Type_Name Name of the Entity Type ∞ TEXT Mandatory
3 Entity_Type_Attr_Def_List Attribute Definition List of the

Entity Type
∞ TEXT Mandatory

4 Entity_Type_Unique_Attr_
List

Attribute List for defining Unique
Constraint(s) of the Entity Type

∞ TEXT Optional

Table 5-1 Table Schema for Entity Type Definition

 Implementation of a Query Language for Attack Graph Analysis

 Page 28

5.1.2 Relation Type

Every information about the related query for relation definition will be checked and is
responsible for storing the relation definitions in Relation Type Def Table Schema.

Name RELATION_TYPE_DEF
Description Stores Relation Type Definitions
Identity Column { Relation_Type_Id }
Attributes/Fields { Relation_Type_Name, From_Entity_Type_Name, To_Entity_Type_Name,

Relation_Type_Attr_Def_List , Relation_Type_Cardinality_Constraint }
S
l.

Field Name Description Size Type Optional/

Mandatory?

Constraint
s

1 Relation_Type_Id ID of the Relation Type 4B INTEGER Mandatory Primary
Key

2 Relation_Type_Name Name of the Relation Type ∞ TEXT Mandatory
3 From_Entity_Type_Name Source Entity Type Name ∞ TEXT Mandatory
4 To_Entity_Type_Name Target Entity Type Name ∞ TEXT Mandatory
5 Relation_Type_Attr_Def_List Attribute Definition List of the

Relation Type
∞ TEXT Mandatory

6 Relation_Type_Cardinality_
Constraint

Attribute List for defining
Cardinality Constraint(s) of the
Relation Type

∞ INTEGER
:
INTEGER

Optional

Table 5-2 Table Schema for Relation Type Definition

5.1.3 Security Condition Type

Every information about the related query for security condition type definition will be
checked and is responsible for storing in Security Condition Type Def Table Schema.

Name SECURITY_CONDITION_TYPE_DEF
Description Stores Security Condition Type Definitions
Identity Column { Security_Condition_Type_Id }
Attributes/Fields { Security_Condition_Type_Name, Security_Condition_Type_Attr_Def_List,

Entity_Relation_List }
S
l.

Field Name Description Size Type Optional/

Mandatory?

Constraint
s

1 Security_Condition_Type_Id ID of the Security Condition Type 4B INTEGER Mandatory Primary
Key

2 Security_Condition_Type_N
ame

Name of the Security Condition
Type

∞ TEXT Mandatory

3 Security_Condition_Type_At
tr_Def_List

Attribute Definition List of the
Security Condition Type

∞ TEXT Mandatory

4 Entity_Relation_List List of Security Conditions
consisting of Entity Names and
Relation Type Names

∞ TEXT Mandatory

Table 5-3 Table Schema for Security Condition Type Definition

 Implementation of a Query Language for Attack Graph Analysis

 Page 29

5.1.4 Exploit Type

Before creating any exploit we must define it. Every information about the related query for
exploit type definition will be checked and is responsible for storing the exploit type definitions
in Exploit Type Def Table Schema.

Name EXPLOIT_TYPE_DEF
Description Stores Exploit Type Definitions
Identity Column { Exploit_Type_Id }
Attributes/Fields { Exploit_Type_Name, CVE(s), Exploit_Type_Attr_Def_List,

Precond_Entity_Type_Name, Postcond_Entity_Type_Name }
S
l.

Field Name Description Size Type Optional/

Mandatory?

Constraint
s

1 Exploit_Type_Id ID of the Exploit Type 4B INTEGER Mandatory Primary
Key

2 Exploit_Type_Name Name of the Exploit Type ∞ TEXT Mandatory
3 CVE(s) List of CVE(Id’s) ∞ TEXT Mandatory
4 Exploit_Type_Attr_Def_List Attribute Definition List of the

Exploit Type
∞ TEXT Mandatory

5 Precond_Entity_Type_Name List of Pre Conditions consisting
of Entity Type Name(s)

∞ TEXT Mandatory

6 Postcond_Entity_Type_Name List of Post Conditions consisting
of Entity Type Name(s)

∞ TEXT Mandatory

Table 5-4 Table Schema for Exploit Type Definition

 Implementation of a Query Language for Attack Graph Analysis

 Page 30

6

Chapter 6

6 GraphDB Backend Design

Attack graphs can help to harden a network at the least cost through finding critical
vulnerabilities whose removal can prevent potential attacks. By providing the context of
attacks, an attack graph can reveal threats in a more meaningful way compared to isolated
vulnerabilities. Attack graphs are used to monitor and predict intrusions for real-time attack
responses. Attack graphs may also be used as a basis for designing network security metrics.
The delay is usually unacceptable due to rapidly changing needs in defending against network
intrusions. This chapter basically focuses on the concept that is required to develop the
backend design using Graph database. We have taken the popular open source software for
graph database i.e. Neo4j [14] for storing graph information.

6.1 Concept

In our approach we have planned to model network configuration information as graph data
[17] also and the domain knowledge is encoded as graph patterns. Graph queries are used to
look for existence of such patterns over the graph data representing network configuration
information. Results of those queries provide information about which vulnerabilities can be
exploited based on the present network configuration information [18]. The exploitation of
such vulnerabilities may generate new network conditions which we also model as graph
patterns i.e. set of new nodes and edges, which are added to the existing graph data. The graph
model consists of set of nodes V and set of edges E. Nodes can be used to represent entities
VEntity, Security Conditions VSecurityCondition, Exploits VExploit. Therefore we can say, V = VEntity ⋃
VSecurityCondition ⋃ VExploit. Edges ERelation represent relations between entities. Later, we may
introduce relations between security conditions and relation between exploits. Each type of
entity may have any number of properties as key-value pairs which uniquely describe those
entities.

6.1.1 Graph Data Model

The graph data corresponding to the simple example network (shown in Figure 6-1). The sshd
service has a vulnerability CVE-2002-0640 which allows remote attacker to gain user privilege
on the host running the service. sshd(1) and sshd(2) are the service instance fact nodes
representing the facts that there are two instances of sshd service running at host1 and host2
respectively. The service access instance fact nodes sshd(3, 1), sshd(3, 2), sshd(1,2) represent
facts about different hosts from which those service instances can be accessed. The goal
instance node user(3) means that the attacker has user privilege at host3 and this is the only
privilege the attacker initially has.

 Implementation of a Query Language for Attack Graph Analysis

 Page 31

Figure 6-1 Data representing Simple Network Configuration

The generated attack graph is stored in the same graph database, with direct links to input
information for each. Our approach is advantageous compared to approaches based on
relational databases where large table joins are necessary for determining network conditions
that enables an attacker to execute exploits. Another key benefit is that Cypher graph query
language has rich support for path queries. Most of the attack graph based analysis tasks can be
easily implemented using Cypher path queries.

 Implementation of a Query Language for Attack Graph Analysis

 Page 32

7

Chapter 7

7 Methodology

We have implemented our interpreter using java compiler compiler (javacc). This chapter
portrays the entire implementations with the algorithms running in the back end.

7.1 Flowchart

Figure 7-1 Flowchart of the Interpreter

7.2 E-R Diagram

An Entity-Relationship diagram describes interrelated things of interest in a specific domain of
knowledge. A basic ER model is composed of entity types (which classify the things of interest)

 Implementation of a Query Language for Attack Graph Analysis

 Page 33

and specifies relationships that can exists between entities (instances of those entity types).
Below is the ER diagram of our model. It is generated with the help of popular website [15],
after we added our data’s present in the database as input.

Figure 7-2 E-R Diagram

 Implementation of a Query Language for Attack Graph Analysis

 Page 34

7.3 Class Diagram

A class diagram is a type of static structure diagram that describes the structure of a system’s
classes, their attributes, their operations (or methods), and the relationships among objects.
The class diagram given below (figure 7-3) of our backend is generated from tools of eclipse,
which are available in [16].

Figure 7-3 Class Diagram

 Implementation of a Query Language for Attack Graph Analysis

 Page 35

7.4 Algorithms

Algorithm is an unambiguous specification of how to solve a class of problems. Therefore the
backend algorithms running behind for each successful query is listed below one by one. Each
example of query is taken and given as input in any certain time, then the output by the
interpreter is given within box.

7.4.1 Entity Type Definition

Input: AGQL Entity Type Definition Query
Output: An Entity Type is defined in relational database.

If query is define entity-type host (name:string, ipAddr:string, macAddr:string, os:string)

Example:

Encountered: define entity-type host (name:string, ipAddr:string, macAddr:string, os:string)
1 tuple added, Values: [(host) , (name:string, ipAddr:string, macAddr:string, os:string) , ()]
inserted in 'ENTITY_TYPE_DEF'
Entity Type 'host' created successfully
Query Processing Time: 72.64 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 36

7.4.2 Relation Type Definition

Input: AGQL Relation Type Definition Query
Output: A Relation Type is defined in relational database.

If the query is define relation-type memberOf (since:time) between {host,firewall},
{network-domain}

Example:

Encountered: define relation-type memberOf (since:time) between {host,firewall}, {network-
domain}
1 tuple added, Values: [(memberOf) , (host,firewall) , (network-domain), (since:time), ()]
inserted in 'ENTITY_TYPE_DEF'
Relation Type 'memberOf' created successfully
Query Processing Time: 73.91 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 37

7.4.3 Security Condition Type Definition

Input: AGQL Security Condition Type Definition Query
Output: A Security Condition Type is defined in relational database.

If the query is define security-condition-type reachability (name:string, since:time,
rchType:string) accessBy {network-domain,host} accessTo {service}

Example:

Encountered: define security-condition-type reachability (name:string, since:time,
rchType:string) accessBy {network-domain,host} accessTo {service}
1 Entity_Type dropped: [reachability]
1 tuple added Values: [(reachability) , (name:string, since:time, rchType:string)] inserted in
'SECURITY_CONDITION_TYPE_DEF'
Security Condition Type 'reachability' created successfully
Query Processing Time: 110.88 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 38

7.4.4 Exploit Type Definition

Input: AGQL Exploit Type Definition Query.
Output: An Exploit Type is defined in relational database.

 Implementation of a Query Language for Attack Graph Analysis

 Page 39

If the query is define exploit-type bofExploit (name:string, category:string) CVE ("CVE-
2008-0106") precond {privilege(privType:"user"), reachability(rchType:"xyz")} postcond
{privilege(privType:"user")}

7.4.5 Unique Constraint Definition

Input: AGQL Uniqueness Constraint Definition Query
Output: Uniqueness constraint is defined in relational database.

If the query is define unique vulnerability (cveId)

Example:

Encountered: define exploit-type bofExploit (name:string, category:string) CVE ("CVE-2008-
0106") precond {privilege($privType$:#"user"#), reachability($rchType$:#"xyz"#)}
postcond {privilege($privType$:#"user"#)}
1 tuple added Values: [(bofExploit) , ("CVE-2008-0106") , (name:string, category:string)]
inserted in 'EXPLOIT_TYPE_DEF'
'bofExploit' created successfully
Query Processing Time: 77.55 ms.

Example:

Encountered: define unique vulnerability (cveId)
'ENTITY_TYPE_DEF' updated successfully.
Uniqueness Constraint is assigned to Entity Type :: vulnerability
Query Processing Time: 77.56 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 40

7.4.6 Cardinality Constraint Definition

Input: AGQL Cardinality Constraint Definition Query
Output: Cardinality constraint is defined in relational database.

If the query is define cardinality memberOf n:1

7.4.7 Drop

Input: AGQL Drop Query
Output: Target definition is dropped from relational database.

Example:

Encountered: define cardinality memberOf n:1
'RELATION_TYPE_DEF' updated successfully.
Cardinality Constraint is assigned to Relation Type :: memberOf
Query Processing Time: 11.13 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 41

If the query is drop entity-type (host, network-domain)

7.4.8 Entity Creation

Input: AGQL Entity Creation Query
Output: An Instance of Entity Type is created in relational database.

If the query is create entity host (name:"h1", ipAddr:"192.168.148.1", macAddr:
"xx:xx:xx:xx:xx:xx", os:"Ubuntu")

Example:

Encountered: drop entity-type (host, network-domain)
1 tuple(s) deleted Values: ["Entity_Type_Name" = 'host']
1 deleted: [host]
WARNING.AGQLDrop: "Entity_Type_Name" = 'network-domain' Does not exist.
Query Processing Time: 6.54 ms.

Example:

Encountered: create entity host ($name$:#"h1"#, $ipAddr$:#"192.168.148.1"#,
$macAddr$:#"xx:xx:xx:xx:xx:xx"#, os:#"Ubuntu"#)
1 tuple added Values: [("name","ipAddr","macAddr","os") , ('h1', '192.168.148.1',
'xx:xx:xx:xx:xx:xx', 'Ubuntu')] inserted in 'host'
Query Processing Time: 10.88 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 42

7.4.9 Relation Creation

Input: AGQL Relation Creation Query
Output: An instance of Relation Type is created in relational database.

If the query is create relation x:host (x.ipAddr=="192.168.148.2") memberOf
(since:"10:11:37") y:network-domain (y.netAddr=="192.168.148.0")

Example:

Encountered: create relation x:host (x.ipAddr=="192.168.148.2") memberOf
($since$:#"10:11:37"#) y:network-domain (y.netAddr=="192.168.148.0")
1 tuple(s) added Values: [("since") , ('10:11:37')] inserted in 'memberOf'
Query Processing Time: 21.99 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 43

7.4.10 Security Condition Creation

Input: AGQL Security Condition Creation Query
Output: A Security Condition is created in relational database.

If the query is create security-condition reachability (name:"httpd12", rchType:"xyz")
accessBy {x:host (x.ipAddr == "192.168.148.1")} accessTo {y:service (y.name == "httpd2")}

Example:

Encountered: create security-condition reachability ($name$:#"httpd12"#, $rchType$:
#"xyz"#) accessBy {x:host (x.ipAddr == "192.168.148.1")} accessTo {y:service (y.name ==
"httpd2")}
WARNING: No. of Attributes in Creation = [2] & Defintion = [3] are unequal
1 tuple added Values: [("name","rchType") , ('httpd12','xyz')] inserted in 'reachability'
Query Processing Time: 44.68 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 44

7.4.11 Exploit Creation

Input: AGQL Exploit Creation Query.
Output: An Exploit is created in relational database.

 Implementation of a Query Language for Attack Graph Analysis

 Page 45

If the query is
create security-condition privilege (name:"user1", privType:"user") atHost {x:host
(x.ipAddr == "192.168.148.1")}
create exploit bofExploit (name:"bofExp31", category:"remote") precond {x:privilege
(x.name == "user3"), y:reachability (y.name == "httpd31")} postcond {x:privilege (x.name
== "user1")}

7.4.12 Select

Input: AGQL Select Query
Output: Items are selected from relational database and displayed in the screen.

Example:

Encountered: create security-condition privilege ($name$:#"user1"#, $privType$:#"user"#)
atHost {x:host (x.ipAddr == "192.168.148.1")}
WARNING: No. of Attributes in Creation = [2] & Defintion = [3] are unequal
1 row added Values: [("name","privType") , ('user1','user')] inserted in Table 'privilege'
Query Processing Time: 10.99 ms.
Encountered: create exploit bofExploit ($name$:#"bofExp31"#, $category$:#"remote"#)
precond {x:privilege (x.name == "user3"), y:reachability (y.name == "httpd31")} postcond
{x:privilege (x.name == "user1")}
1 row added Values: [("name","category") , ('bofExp31','remote') , (user3,httpd31) , (user1)]
inserted in Table 'bofExploit'
Query Processing Time: 54.17 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 46

If the query is select x:host where (x.ipAddr == "192.168.148.3") or (x.name == "h1")

7.4.13 Delete

Input: AGQL Delete Query
Output: Target is deleted from relational database.

If the query is delete x:host where (x.name=="h1")

Example:

Encountered: select x:host where (x.ipAddr == "192.168.148.3") or (x.name == "h1")

host_Id name ipAddr macAddr os
1 h3 192.168.148.3 xx:yy:zz:xx:xx:xx Ubuntu
2 h1 192.168.148.1 xx:xx:xx:xx:xx:xx Ubuntu

[2] Records from have been found
Query Processing Time: 60.09 ms.

Example:

Encountered: delete x:host where (x.name=="h1")
1 No. of host objects deleted
Query Processing Time: 47.77 ms.

 Implementation of a Query Language for Attack Graph Analysis

 Page 47

7.5 Assumptions

These assumptions are taken with respect to the current status of the system and few might be
changed in the later process just after assuring that the system is fundamentally correct and is
ready for detailing in advance level. As per as the current implementation stands, below are the
following assumptions that are considered:

 <attr = “name”> must be present for all and must be unique, later “id” will be made
unique instead of “name”.

 Unique constraint and cardinality constraint must be declared before creation of any
instances those shall be particularly restricted with constraints.

 Entities involved as post conditions for exploit must be created before creating exploit.
 CVE (“”) in exploit definition must have one parameter in string format with valid cve-

id(s), whose validating are not added as of now.
 Newline is considered as terminator for any statement unless the statement stands

incomplete.
 Due to internal logic associated in backend algorithms, the users are strictly prohibited

to use characters like ‘$’, ’#’ in the Attribute Value List while using queries for creation.

7.6 Features

7.6.1 Interactivity

The first version of AGQL is implemented as an interpreted language and ready to use as an
alpha version module. The user friendly approach provides the user with immediate feedback
on individual instructions, thus aiding in the debugging and learning process. Besides checking
whether the syntax of the query is perfect, it also is capable of producing error messages on
regard to its post-actions of the query. Error messages are kept descriptive with proper
reasons and also contains the exact messaging source that is responsible for creating such
errors. For example: In EntityType.java contains exact messaging source as AGQLEntityType
which might be useful for debugging the source code while in testing.
Error Statement1 –“ERROR.AGQLEntityType: Entity <" + entityTypeName + "> already exists”.
Error Statement2 –”ERROR.AGQLEntityType: Entity type “ + entityTypeName + “ is not
defined".

7.6.2 Modularity and Extensibility

Extensibility and Modularity is a necessity of the designing, developing and upgrading systems
that needs continuous maintenance for removal of bugs and adding extensive properties for its
large scale use of the language. We have used the concept of modular programming for its
benefit in small unit testing. It also helps us to focus in debugging and working independently
in a particular module for any extension or modification.

7.6.3 Flexibility

Flexibility provides the design to expand and also support changes to requirements during the
development phase. In our case we can call this kind of flexibility as “flexibility by

 Implementation of a Query Language for Attack Graph Analysis

 Page 48

construction” because our system can automatically determine the presence of attributes in
creation from its definition irrespective of position.
J. Schoenmakers mentioned in his Paper titled ‘TOM: On the Flexibility of Programming
Languages’ that “Backward Flexibility is the flexibility to change your mind; to change, as the
developer of past code, aspects of your implementation without affecting future code. Code is
not affected if it does not require recompilation.” In our language the Attribute list’s while
creation doesn’t require to be a Complete Set with respect to the number of attributes defined.
Here we change our mind while creation and it even doesn’t require re-compilation. So, we can
claim our language allows Backward Flexibility.

7.6.4 Strict Data Type Matching

Attributes are strictly checked while creation with that of its data types mentioned in its
definition. At the moment the supported three data types namely; string, int and time does
strict data type checking. Only valid attribute values will be allowed to store in Database.

7.6.5 Scalability

Administrative Scalability for every networks has grown huge and thereby demanding an
additional feature to include in our system. Our system promises to have explored the scalable
features. It can handle a growing amount of data that is obvious in todays’ world by allowing to
store and make use of unlimited storage in the database.

7.6.6 Computational Time Estimation per Query

The System calculates the computational time for each query. Thereby the user can enjoy this
feature without any additional syntax. The time it displays it is in milliseconds. The time starts
just when the query is just checked and the post-action for the syntax begins. And the time
ends when the process for that query gets completed. The difference is displayed to the user.
Such computations are meant to display for each and every query. It helps in research work to
estimate complexity and computing time of the task associated with the query.

7.7 Exception Handling

Exception handling is the process of responding to the occurrence, during computation, of
exceptions – anomalous or exceptional conditions requiring special processing often disrupting
the normal flow of program execution. The syntax for the backend relational database is very
crucial as it must be syntactically correct and specific. Hence, to avoid any run time exception
while running the query, the codes are kept inside try and catch blocks. Common exceptions
are well handled by the try and catch blocks. If any other type of error is encountered, then the
interpreter halts.

7.8 Data Structures & Error Messages

Data Structures plays an important role in the interpreter. The complex data structures used in
the interpreter mostly facilitates the quickness of the interpreter by reducing the complexity of

 Implementation of a Query Language for Attack Graph Analysis

 Page 49

the program as much as possible. In general, we have taken linked hash map for the attribute
definition list and attribute value list for direct access. We have used array list in most of the
cases to work in low memory available zone and also the elements can be directly accessed by
its index value.
Error messages are very essential for interactive interpreter. Our interpreter shows the
appropriate error messages that will benefit the client. Since, it is in the developing phase, it is
kept as such that if any error is occurred, then absolute position from which block is returned
to the user as output with the appropriate error messages with suggestive logics if any. In some
cases there can be different semantics but due to some additional feature of the interpreter, the
code gets overlooked and no longer is treated as an error. In those cases a warning message is
displayed and the backend tasks gets performed successfully.

 Implementation of a Query Language for Attack Graph Analysis

 Page 50

8

Chapter 8

8 Attack Graph Generation

8.1 Experimental Analysis

Instead of modeling an attack graph, we have modeled necessary inputs required for
generating the attack graph. The attack graph then becomes the result of relational queries
over these inputs. Such a result may be simply kept as the definition of relational views. This
chapter focus on the attack graph generation using TVA Approach.

8.1.1 Attack Graph Generation

For generating attack graph two types of information i.e. network configuration and domain
knowledge are necessary. The network configuration information includes network topology
information, firewall (perimeter and/or host based) rule set and per host vulnerability
information. The domain knowledge refers to the interdependency between different types of
vulnerabilities and network conditions.

Example:
To generate the attack graph, we need the network configuration and domain knowledge
shown in Figure 8-1. The left-hand side shows the connectivity between three hosts. Initially,
hosts 1 and 2 satisfy the condition x and host 3 satisfies y. The right-hand side says that an
attacker can exploit the vulnerability A on the destination (denoted by the symbol D) host, if it
satisfies x and the source host satisfies y at the same time. This exploitation will then satisfy y
on the destination host.

Figure 8-1 Example of network configuration and domain knowledge.

 Implementation of a Query Language for Attack Graph Analysis

 Page 51

We assume the domain knowledge required for generating attack graphs is available from
tools like the Topological Vulnerability Analysis (TVA) system, which covers more than 37,000
vulnerabilities taken from 24 information sources including X-Force, Bugtraq, CVE, CERT,
Nessus and Snort. On the other hand, we assume the configuration information including
vulnerabilities and connectivity can be obtained using available tools, such as the Nessus
scanner.
The connectivity relation represents the connectivity from the source host Hs to the destination
host Hd. The condition relation indicates that a host H has an initial condition C. The condition
vulnerability dependency relation indicates that a condition C is required for exploiting a
vulnerability V on the destination host. The attribute F indicates whether the condition C
belongs to the source (S) or the destination (D) host. The vulnerability–condition dependency
relation indicates a condition C is satisfied by exploiting a vulnerability V.
The next three relations and the condition relation together represent the complete attack
graph. Those relations may or may not need to be materialized. The vertices are conditions
(that is, the relation HC) and exploits (that is, the relation EX), and the edges interconnecting
them are represented by relations CE and EC. Each relation has a composite key composed of
all attributes in that relation.

The following relational schemata is given below:

 Connectivity HH = (Hs, Hd),
 Condition HC = (H,C),
 Condition–vulnerability dependency CV = (C, F, V),
 Vulnerability–condition dependency V C = (V ,C),
 Exploit EX = (Hs, Hd, V),
 Condition–exploit CE = (H, C, Hs, Hd, V),
 Exploit–condition EC = (Hs, Hd, V, H, C).

 Implementation of a Query Language for Attack Graph Analysis

 Page 52

8.1.2 Algorithm for TVA

Input: AGQL Relational Database after running AGQL queries.
Output: TVA relations are captured.

 Implementation of a Query Language for Attack Graph Analysis

 Page 53

8.1.3 Sample Output

The sample code that is taken as input is given in Appendix B. This attack graph (given below)
is generated by the interpreter when the sample code is run.

 Implementation of a Query Language for Attack Graph Analysis

 Page 54

Chapter 9

9 AGQL Editor

AGQL Editor is under more improvisation. It is created for sole purpose of writing .agql
programs. The front look of the editor can be seen in the below given screenshot (Figure 9-1).
This Editor can only open, save files only if they are of the .agql extension. It is very clear that
the Editor has four menus in the top bar namely File, Edit, Man and Close. File menu has
options to create a NEW File, OPEN File, SAVE File, PRINT File. Edit menu has options to Cut,
Copy, Paste. Till now no key shortcut is added in Cut, Copy and Paste. Man menu represents
“Manual” meaning the description of any command with respect to Linux Terminal. This menu
option when pressed writes the syntax format of the query on the current position as a hint.
Close menu closes and exits from the editor. The Editor is made simple as of now by using
JFrame.

Figure 9-1 Screenshot of AGQL Editor

 Implementation of a Query Language for Attack Graph Analysis

 Page 55

10

Chapter 10

10 Conclusion & Future Work

In our thesis we have presented a brief description of a query language AGQL and its different
constructs. The provision to define constraints to enforce different network semantics into the
generated data is one key feature of this language. AGQL supersedes other existing query
languages by introducing query constructs to generate attack graph and extract information
form it. AGQL facilitates many data definition queries for definitions of different network
entities as well as many data manipulation queries for creation of data corresponding to
different entity instances. Apart from this two more query categories is kept as a future work
i.e. transaction control query and data control query.
With the growth of language we can construct more formal syntax to build more automated
queries that will help effectively and contribute a lot more to the System / Network
Administrators. Henceforth, up-gradation and maintenance of the interpreter shall lead to its
large scale popularity. One benefit of having a semantic definition is that we can use it as input
to an interpreter back-end generator. In our case it would be from AGQL to SQL or AGQL to
Cypher (or many more as per as requirement). Current interpreter stands as an attractive
solution by providing a natural query interface to the network attack data. This might relieve
the network security analysis of learning any domain specific language to query the network
attack data. This might allow the researchers to model the domain of network security using
formalisms, other than graphs.
In future, it will be great to see the entire interpreter supporting thousands of syntax and their
uses. The interpreter is just capable of acquiring connections with the Neo4j, the graph
database system. And this backend is the other half that we are trying to implement which is
kept as a future work.

 Implementation of a Query Language for Attack Graph Analysis

 Page 56

References

[1] J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane, and others, “DMQL: A data mining query
language for relational databases,” Proc. 1996 SiGMOD, vol. 96, pp. 27–34, 1996.

[2] C. Wang, N. Du, and H. Yang, “Generation and analysis of attack graphs,” Procedia Eng.,
vol. 29, pp. 4053–4057, 2012.

[3] S. Jajodia, S. Noel, and B. O’Berry, “Topological Analysis of Network Attack Vulnerability,”
Manag. Cyber Threat., pp. 247–266, 2005.

[4] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based network vulnerability
analysis,” p. 217, 2004.

[5] L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack graph-based probabilistic
security metric,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect.
Notes Bioinformatics), vol. 5094 LNCS, pp. 283–296, 2008.

[6] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language: Semantic
foundations and query execution,” VLDB J., vol. 15, no. 2, pp. 121–142, 2006.

[7] M. Barrere and E. C. Lupu, “Naggen: A network attack graph generation tool-IEEE CNS 17
poster,” 2017 IEEE Conf. Commun. Netw. Secur. CNS 2017, vol. 2017-January, no. January
2018, pp. 378–379, 2017.

[8] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A Structured English Query Language,” ACM
SIGFIDET (now SIGMOD) Work. Data Descr. Access Control, pp. 249–264, 1974.

[9] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-attack graph generation
tool,” Proc. - DARPA Inf. Surviv. Conf. Expo. II, DISCEX 2001, vol. 2, pp. 307–321, 2001.

[10] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “XML-QL: A Query Language
for XML,” W3C, \url{http//www.w3.org/TR/1998/NOTE-xml-ql-19980819/}, vol. 31, pp.
1155–1169, 1998.

[11] K. Gro\ssjohann and N. Fuhr, “XIRQL: A query language for information retrieval in XML
documents,” Proc. 24th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 172–180, 2001.

[12] S. Noel1, E. Harley, K.H. Tam, M. Limiero and M. Share, “CyGraph: Graph-Based
 Analytics and Visualization fornCybersecurity”, Chapter · January 2016 DOI:
j0.1016/bs.host.2016.07.001.

[13] Xinming Ou, Sudhakar Govindavajhala, Andrew W. Appel, “MulVAL: A Logic-based
fgfgdfjNetwork Security Analyzer”, 14th USENIX Security Symposium, USENIX Association.
[14] Accessed https://www.neo4j.org/
[15] Accessed https://www.lucidchart.com/
[16] Accessed https://www.objectaid.com/
[17] Barik, Mridul Sankar and Chandan Mazumdar, ”A novel approach to collaborative security
sdsdd using attack graph”. In 2011 IEEE 5th International Conference on INTERNET Multimedia
sdsds Systems Architecture and Application (pp. 1-6). IEEE.
[18] Barik, Mridul Sankar, and Chandan Mazumdar, “A graph data model for attack graph
ddfdfdgeneration and analysis.” In International Conference on Security in Computer Networks
23233and Distributed Systems, pp. 239-250. Springer, Berlin, Heidelberg, 2014.

https://www.neo4j.org/
https://www.lucidchart.com/
https://www.objectaid.com/

 Implementation of a Query Language for Attack Graph Analysis

 Page 57

Appendix A

Concrete Syntax

<QueryEntDef> ::= define entity-type <EntityType> <AttrDefList>
<QueryRelDef> ::= define relation-type <RelationType> <AttrDefList> between {<EntityType> [,<EntityType>]*} , { <EntityType>

[,<EntityType>]*}
<QuerySecCondDef> ::= define security-condition-type <SecCondType>(<AttrDefList>) <RelationTypeName> {<EntityType> [,<EntityType>]*}

[<RelationTypeName> {<EntityType> [,<EntityType>]*}]*
<QueryExploitDef> ::= define exploit-type <ExploitType> (<AttrDefList>) CVE (<StringValue>) precond {[<SecCondType> [(<AttrDefList>)]?]+}

postcond {[<SecCondType> [(<AttrDefList>)]?]+}
<QueryEntCrt> ::= create entity <EntityType> (<AttrValList>)
<QueryRelCrt> ::= create relation <EntityVar> (<AttrPredicate>) <RelationType> (<AttrValList>) <EntityVar> (<AttrPredicate>)
<QuerySecCondCrt> ::= create security-condition <SecCondType> (<AttrValList>) <RelationType> <EntityVar> (<AttrPredicate>)

(<RelationType> <EntityVar> (<AttrPredicate>))*
<QueryExploitCrt> ::= create exploit <ExploitVar> (<AttrValList>) precond {[<SecCondVar>(AttrPredicate)]+} postcond

{[<SecCondVar>(AttrPredicate)]+}
<QuerySelect> ::= select <EntityVar> where <Expr>
<QueryDrop> ::= drop <Type> (<TypeName>[, <TypeName>]*)
<QueryDel> ::= delete <EntityVar|RelationVar|SecCondVar|ExploitVar> where <Expr>
<Expr> ::= <Predicate> | (<Predicate> and <Expr>) | (<Predicate> or <Expr>)
<Predicate> ::= <RelPredicate> | <AttrPredicate>
<RelPredicate> ::= (<EntityVar> <RelationVar> <EntityVar>)
<AttrPredicate> ::= (<Variable>.<Attr> <RelOp> <Value>)
<EntityVar> ::= <Variable>: <EntityType>
<RelationVar> ::= <Variable>: <RelationType>
<SecCondVar> ::= <Variable>: <SecCondType>
<ExploitVar> ::= <Variable>: <ExploitType>
<AttrDefList> ::= ∊|(<AttrDef> [,<AttrDef>]*)
<AttrValList> ::= ∊|(<AttrVal> [,<AttrVal>]*)
<AttrList> ::= ∊|(<Attr> [,<Attr>]*)
<AttrDef> ::= <Attr> : <ValueDomain>
<AttrVal> ::= <Attr> : <Value>
<Attr> ::= <Identifier>
<EntityType> ::= <Identifier>
<RelationType> ::= <Identifier>
<SecCondType> ::= <Identifier>
<ExploitType> ::= <Identifier>
<Variable> ::= <Identifier>
<TypeName> ::= <Identifier>
<Type> ::= entity-type | relation-type | security-condition-type | exploit-type
<RelOp> ::= ==|>|<|<=|>=
<Value> ::= <StringValue> | <IntegerValue> |<TimeValue>
<ValueDomain> ::= string | int | time
<StringValue> ::= " (~["])* "
<IntegerValue> ::= [0-9]+
<TimeValue> ::= [0[0-9]|1[0-9]|2[0-3]]:[0-5][0-9]:[0-5][0-9]
<Identifier> ::= ([A-Z, a-z])([A-Z, a-z, 0-9, -, _])*

 Implementation of a Query Language for Attack Graph Analysis

 Page 58

Appendix B

Sample code (for output of the code, refer section 8.1.3)

/*Drop Conditions*/
drop entity-type (host, network-domain, service, vulnerability, firewall, gateway, privilege, reachability)
drop relation-type (memberOf, connect, atHost, accessTo, accessBy, hasVuln, runAt)
drop security-condition-type(reachability, privilege)
drop exploit-type(bofExploit)

/*Entity Type Definitions*/
define entity-type host (name: string, ipAddr: string, macAddr: string, os:string)
define entity-type network-domain (name:string, netAddr:string, subnetMask:string)
define entity-type service (name:string, protocol:string, portNo:int, swName:string, swVer:string)
define entity-type vulnerability (name:string, cveId:string)
define entity-type firewall (name:string, ifCount:int, ifIpAddr:string, ifSubnetMask:string)
define entity-type gateway (name:string, ifCount:int, ifIpAddr:string, ifSubnetMask:string)
define entity-type privilege (name: string, privType:string)
define entity-type reachability (name: string, rchType:string)

/*relation Type Definitions*/
define relation-type memberOf(since: time) between {host,firewall}, {network-domain}
define relation-type connect (ifId: int) between {gateway}, {network-domain}
define relation-type atHost () between {service, privilege}, {host,gateway}
define relation-type accessTo () between {reachability} , {service}
define relation-type accessBy () between {reachability} , {host, network-domain}
define relation-type hasVuln () between {service} , {vulnerability}
define relation-type runAt () between {service} , {host}

/*Security Condition Type Definitions*/
define security-condition-type reachability (name:string, since: time, rchType:string) accessBy {network-domain, host} accessTo {service}
define security-condition-type privilege (name: string, since:time, privType: string) atHost {host,gateway}

/*Constraint Definitions*/
define unique host(ipAddr)
define unique vulnerability (cveId)
define cardinality memberOf n:1
define cardinality hasVuln n:n

/*Exploit Type Definitions*/
define exploit-type bofExploit (name:string, category:string) CVE("CVE-2008-0106") precond {privilege (privType:"user"), reachability (rchType:"xyz")}
 postcond {privilege (privType:"user")}

/*Entities*/
create entity host (name:"h3", ipAddr:"192.168.148.3", macAddr:"xx:yy:zz:xx:xx:xx", os:"Ubuntu")
create entity host (name:"h1", ipAddr:"192.168.148.1", macAddr:"xx:xx:xx:xx:xx:xx", os:"Ubuntu")
create entity host (name:"h2", ipAddr:"192.168.148.2", macAddr:"xx:yy:xx:xx:xx:xx", os:"Ubuntu")
create entity network-domain (name:"nd1", netAddr:"192.168.148.0",subnetMask:"255.255.255.0")
create entity service (name:"httpd1", protocol:"tcp", portNo:80, swName:"Apache-WS", swVer:"1.1.2")
create entity service (name:"httpd2", protocol:"tcp", portNo:80, swName:"Apache-WS", swVer:"1.1.2")
create entity vulnerability (name:"Vuln1", cveId:"CVE-2008-0106")

/*Relations*/
create relation x:host (x.ipAddr == "192.168.148.1") memberOf (since:"10:11:34") y:network-domain (y.netAddr == "192.168.148.0")
create relation x:host (x.ipAddr == "192.168.148.2") memberOf (since:"10:11:37") y:network-domain (y.netAddr == "192.168.148.0")
create relation x:host (x.ipAddr == "192.168.148.3") memberOf (since:"10:11:39") y:network-domain (y.netAddr == "192.168.148.0")
create relation x:service (x.name == "httpd1") runAt() y:host (y.ipAddr == "192.168.148.1")
create relation x:service (x.name == "httpd2") runAt() y:host (y.ipAddr == "192.168.148.2")
create relation x:service (x.name == "httpd1") hasVuln() y:vulnerability (y.cveId == "CVE-2008-0106")
create relation x:service (x.name == "httpd2") hasVuln() y:vulnerability (y.cveId == "CVE-2008-0106")

/*Security Conditions*/
create security-condition reachability (name:"httpd31", rchType:"xyz") accessBy {x:host (x.ipAddr == "192.168.148.3")} accessTo {y:service (y.name == "httpd1")}
create security-condition reachability (name:"httpd32", rchType:"xyz") accessBy {x:host (x.ipAddr == "192.168.148.3")} accessTo {y:service (y.name == "httpd2")}
create security-condition reachability (name:"httpd12", rchType:"xyz") accessBy {x:host (x.ipAddr == "192.168.148.1")} accessTo {y:service (y.name == "httpd2")}
create security-condition reachability (name:"httpd21", rchType:"xyz") accessBy {x:host (x.ipAddr == "192.168.148.2")} accessTo {y:service (y.name == "httpd1")}
create security-condition privilege (name:"user3", privType: "user") atHost {x:host (x.ipAddr == "192.168.148.3")}

/*Exploits*/

