

A Study of Data Parallelism Using a Java Based

Framework-Aparapi

Submitted by

Anindita Mondal

Registration No. : 137325 of 2016-17

 Examination Roll No. : MCA196015

Under the supervision of

Dr. Chintan Kumar Mandal

Assistant Professor, Dept. of Computer Science & Engineering

 Jadavpur University

 Kolkata-700032

A thesis submitted in partial fulfillment of the requirement for degree of

Master of Computer Application in the department of Computer Science &

Engineering

May 2019

Declaration

I hereby declare that except where specific reference is made to the work

of others, the contents of this dissertation are original and have not been

submitted in whole or in part for consideration for any other degree or

qualification in this, or any other university. This dissertation is my own

work as part of my MCA studies and contains nothing which is the outcome

of work done in collaboration with others, except as specified in the text

and Acknowledgements.

 Name : Anindita Mondal

 Registration No. : 137325 of 2016-17

 Examination Roll No. : MCA196015

 Anindita Mondal

Jadavpur University

Department of Computer Science

Jadavpur, Kolkata-700032

Certificate

This is to certify that the work in this project report entitled as “A Study of Data

Parallelism Using a Java Based Framework-Aparapi“ has been satisfactorily completed

by Anindita Mondal. It is a bona-fide piece of work for the fulfillment of the

requirements for the degree of Master of Computer Application, of the Department of

Computer Science & Engineering, Faculty of Engineering & Technology, Jadavpur

University. This work is done during the academic year 2018-19 under my guidance.

Dr. Chintan Kumar Mandal
Assistant Professor

Department of Computer Science and Engineering

Jadavpur University

Dr. Mahantapas Kundu
Head of the Department
Professor
Department of Computer Science and Engineering
Jadavpur University

Prof. Chiranjib Bhattacharjee
Dean
Faculty of Engineering and Technology
Jadavpur University

Jadavpur University

Department of Computer Science

Jadavpur, Kolkata-700032

Certificate of Approval

This is to certify that the project titled “A Study of Data

Parallelism Using a Java Based Framework-Aparapi “ is a bona-

fide record of work carried out by Anindita Mondal in partial

fulfillments for the award of the degree of Master of Computer

Application, of the Department of Computer Science &

Technology, Jadavpur University during the period January 2019

to May 2019. It is understood that by this approval the

undersigned do not necessarily endorse or approve any statement

made, opinion expressed or conclusion drawn therein, but

approve this thesis only for the purpose for which it is submitted.

Signature of the Internal Examiner Signature of the External Examiner

Date: ____________ Date:________________

 Acknowledgement

With my sincere respect and gratitude, I would like to thank my advisor and

project guide Dr. Chintan Kumar Mandal for his continuous support for

this project work, for his patience, motivation and enthusiasm. His guidance

helped me throughout the duration of the work. His valuable suggestions

inspired me a lot. I feel deeply honored that I got the opportunity to work

under his guidance. This accomplishment would not have been possible

without him. Thank you.

Regards,

Anindita Mondal

Master of Computer Application

Jadavpur University

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 1

ABSTRACT

Data parallelism is a very lucrative concept now-a-days. In different
sector of working like finance, education, audit etc, we see extensive
use of data processing. To make this data processing faster we need
parallelism and as we know many of the time we need different set of
data for same type of process then data parallelism will benefit us. To
achieve this to make the process easy, less time consuming and
efficient we take help of Aparapi in java framework. After achieving
data parallelism, our hunger for more efficiency brings another mouth
watering concept name process parallelism. We work hard on it and
achieve some data about it and wish to come up with some more detail
analysis of it on next time.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 2

TABLE OF CONTENTS Page no

Abstract

List of figures

Chapter 1

1. Introduction………………………………………………………………………………. 5

1.1. Graphical Processing Unit………………………………………………… 6

1.1.1. Early works on GPU……………………………………………………. 6

1.2. OpenCL…………………………………………………………………………… 7

1.2.1. Why we use it…………………………………………………………….. 7

Chapter 2

2. Aparapi……………………………………………………………………………………… 8

2.1. Analysis of Aparapi implementation using an example…….. 9

2.1.1. Expressing data parallelism using Aparapi…………………… 10

2.2. What is Kernel…………………………………………………………………. 11

2.2.1. How Kernel is implemented………………………………………… 11

2.3. Range………………………………………………………………………………. 12

2.3.1. Range Class…………………………………………………………………. 12

2.4. Use of getGlobalID()………………………………………………………… 13

2.5. Code of calculation of square of random integer

numbers stored in a array(repetition not allowed)………….. 13

2.5.1. Result………………………………………………………………………….. 14

2.6. Prime number checking parallely using aparapi……………….. 15

2.6.1. Result………………………………………………………………………….. 15

2.7. Restriction on kernel.run() code……………………………………….. 17

2.8. How to convert a two dimensional array into one

dimensional array…………………………………………………………….. 18

2.8.1. Matrix multiplication program using Aparapi………………. 18

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 3

Chapter 3

3. Application of parallelism on bug’s algorithm…………………………… 22

3.1. Introduction…………………………………………………………………… 22

3.1.1. Why we need it…………………………………………………………. 22

3.2. Bug algorithm 1…………………………………………………………….. 22

3.2.1. Advantages………………………………………………………………. 23

3.2.2. Disadvantages………………………………………………………….. 23

3.3. Bug algorithm 2…………………………………………………………….. 25

3.3.1. Advantages………………………………………………………………. 26

3.3.2. Disadvantages………………………………………………………….. 26

3.4. Our Goal………………………………………………………………………… 28

3.4.1. Our implementation…………………………………………………. 28

3.4.2. Our observation……………………………………………………….. 28

Chapter 4

4. Conclusion and Open challenge………………………………………………. 29

Chapter 5

5. References……………………………………………………………………………… 30

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 4

List of Figures
Figure Title Page
Fig 1 Data parallelism concept 5

Fig 2 Flow diagram of kernel class processing 8

Fig 3 Flow diagram of execution of kernel.execute(size) 10

Fig 4 Obstacle Detected 23

Fig 5 Robot Traverses Back to the Starting Position

 and Calculates Leaving Point 24

Fig 6 Robot Traverses to Leaving Point then Moves

 to Destination 24

Fig 7 Obstacle Detected 26

Fig 8 Robot Traverses the Obstacle until it finds a

 Point with Same Slope 27

Fig 9 Robot Traverses to the Destination 27

Fig 10 Proposed Model 29

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 5

CHAPTER 1
1. INTRODUCTION

Data is nothing but some raw materials. By processing it, we will get information. In present
scenario, we always need to process a huge data set to collect information. Many of the time
we see, process remains same, only the set of data changes. Compilation of huge amount of
data is very time consuming process that reduce our efficiency. So we need an alternative way
to increase efficiency by reducing time of processing. To achieve this, we use data parallelism
concept here.

Data parallelism is parallelization of data across multiple processors in parallel
computing environments. It focuses on distributing the data across different nodes, which
operate on the data in parallel. It can be applied on regular data structures like arrays and
matrices by working on each element in parallel.

A data parallel job on an array of 'n' elements can be divided equally among all the processors.
Let us assume we want to sum all the elements of the given array and the time for a single
addition operation is ‘Ta’ time of units. In the case of sequential execution, the time taken by
the process will be n*Ta time units as it sums up all the elements of an array. On the other
hand, if we execute this job as a data parallel job on 4 processors the time taken would reduce
to (n/4)*Ta + merging overhead time units. Parallel execution results in a speedup of 4 over
sequential execution. One important thing to note is that the locality of data references plays
an important part in evaluating the performance of a data parallel programming model. Locality
of data depends on the memory accesses performed by the program as well as the size of the
cache.

Fig 1. Data parallelism concept

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 6

Steps of parallelization,
 Decomposition:- The program is broken down into tasks, the smallest exploitable unit of

concurrence.
 Assignment:- Tasks are assigned to processes.
 Orchestration:- Data access, communication, and synchronization of processes.
 Mapping:- Processes are bound to processors.

In our thesis, we implement this concept using kernel implementation using a java based
framework called an Aparapi. Kernel will convert this code into OpenCL to make it run on
Graphics Processing Unit(GPU).

1.1 GRAPHICAL PROCESSING UNIT (GPU)

GPU computing is the use of a GPU (graphics processing unit) as a co-processor to accelerate
CPUs for general-purpose scientific and engineering computing. The GPU accelerates
applications running on the CPU by offloading some of the compute-intensive and time
consuming portions of the code. The rest of the application still runs on the CPU. From a user's
perspective, the application runs faster because it's using the massively parallel processing
power of the GPU to boost performance. This is known as "heterogeneous" or "hybrid"
computing.

A CPU consists of four to eight CPU cores, while the GPU consists of hundreds of smaller cores.
Together, they operate to crunch through the data in the application. This massively parallel
architecture is what gives the GPU its high compute performance. There are a number of GPU-
accelerated applications that provide an easy way to access high-performance computing
(HPC).

1.1.1 EARLY WORKS ON GPU

Graphics processing units(GPU) are devices present in most modern PCs. They provide a
number of basic operations to the CPU, such as rendering an image in memory and then
displaying that image onto the screen. A GPU will typically process a complex set of polygons, a
map of scene to be rendered. It then applies textures to the polygons and then performs
shading and lighting calculations.

One of the important steps was the development of programmable shaders. These were
effectively little programs that the GPU ran to calculate different effects. No longer was the
rendering fixed in the GPU through downloadable shaders, it could be manipulated. This was
the first evolution of general purpose graphical processor unit (GPGPU) programming.

However, these shaders were operations that by their very nature took a set of 3D points that
represented a polygon map. The shaders applied the same operation to many such datasets,in
a hugely parallel manner, giving huge throughput of computing power.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 7

1.2 OpenCL

OpenCL (Open Computing Language)is a framework or writing programs that execute across
heterogeneous platforms consisting of CPUs, GPUs, Digital Signal Processors(DSPs) and other
processors or hardware accelerators. OpenCL is an open standard that designed to utilize the
computing power provided by GPUs for general computing applications. It is a low-level API
that situates above GPU drivers and below applications. It is maintained by
the industrial consortium Khronos who is also responsible for graphics API OpenGL.

In addition to its C-like programming language, OpenCL defines an application programming
interface (API) that allows programs running on the host to launch kernels on the compute
devices and manage device memory, which is (at least conceptually) separate from host
memory. Programs in the OpenCL language are intended to be compiled at run-time, so that
OpenCL-using applications are portable between implementations for various host devices.

1.2.1 WHY WE USE IT

OpenCL provides a standard interface for parallel computing using task- and data-based

parallelism.Java code cannot directly run on GPU. So we will take help of OpenCL binding. Java

code firstly convert into OpenCL code then it will execute directly on GPU. So OpenCL provides

us environment on which we can run gpu programs directly.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 8

CHAPTER 2

2. APARAPI

Aparapi is an Open-source framework for expressing data parallel workloads in java. To

perform this, developer extends a Kernel base class which compiles to java byte code using

existing tool chain to debug the logic of their kernel implementation. It can perform this

parallelism by executing the javacode in a java thread pool. But Aparapi allows java developers

 to take advantage of the computer power of GPU and APU devices by executing data parallel

code fragments on the GPU rather than being confined to the local CPU. It does this by

converting java bytecode to OpenCL dynamically at runtime and executing ion the GPU.

Fig 2. Flow diagram of kernel class processing

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 9

2.1 ANALYSIS OF APARAPI IMPLEMENTATION USING AN

EXAMPLE

To view the implementation of aparapi we will an example of squaring each number of an

integer array.

Firstly we will see the simple java code:

 int[] square= new int[size];

int[] in = new int[size];

for(int i=0;i< size;i++){

 in[i] = (int) (math.random() * 1000);

}

for(int=0;i< size;i++){

 Square[i] = in[i] * in[i];

}

In this code, we take some random numbers and calculate their square values sequentially. But

in parallel programming, the squaring of the numbers in the array will not execute sequentially.

It will execute in random order parallelly with each other. That can be implemented by using

aparapi by extending kernel class or by taking its object. Lets see how it is implemented:

Final int[] square= new int[size];

Final int[] in = new int[size];

for(int i=0;i< size;i++){

 in[i] = (int) (math.random() * 1000);

}

Kernel kernel = new Kernel();

@override

Public void run() {

 Int i= getGlobalID();

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 10

 Square[i]= in[i] * in[i];

}

Kernel.execute(size);

In this code we create an object of Kernel class and then get the random syntax of the element

and take the square of it and store it in array. For this we need to import a package

com.aparapi.Kernel.

2.1.1 EXPRESSING DATA PARALLELISM IN APARAPI

Lets see what will happen when kernel.execute(size) is called:-

Fig 3. Flow diagram of execution of kernel.execute(size)

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 11

2.2 WHAT IS KERNEL?

The kernel is the central module of an operating system (OS). It is the part of the operating

system that is loaded first, and it remains in main memory. As it stays in memory, it is

important for the kernel to be as small as possible while still providing all the essential services

required by other parts of the operating system and applications. The the kernel code is usually

loaded into a protected area of memory to prevent it from being overwritten by programs or

other parts of the operating system.

2.2.1 How kernel is implemented?

In computing, a compute kernel is a routine compiled for high throughput accelerators such

as graphics processing units (GPUs), digital signal processors (DSPs) or field-programmable gate

arrays (FPGAs) used by a main program (typically running on a central processing unit). They are

sometimes called compute shaders, sharing execution units with vertex shaders and pixel

shaders on GPUs, but are not limited to execution on one class of device, or graphics APIs.

Compute kernels roughly correspond to inner loops when implementing algorithms in
traditional languages (except there is no implied sequential operation), or to code passed
to internal iterators.

They may be specified by a separate programming language such as "OpenCL C" (managed by
the OpenCL API), as "compute shaders" (managed by a graphics API such as OpenGL), or
embedded directly in application code written in a high level language.

https://en.wikipedia.org/wiki/OpenCL_C
https://en.wikipedia.org/wiki/OpenCL

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 12

2.3 RANGE
It is a class of Aparapi api which defines the amount of parallelism will be occurred in a
program. When kernel.execute() method is called range is passed as a rgument through it.
suppose kernel.execute(50); which means range size is 50. That means 50 parallel execution
will occur.

2.3.1 RANGE CLASS :

public class Range extends RangeJNI

A representation of 1, 2 or 3 dimensional range of execution. This class uses factory methods to

allow one, two or three dimensional ranges to be created.

For a Kernel operating over the linear range 0..1024 without a specified groups size we would

create a one dimensional Range using

Range.create(1024);

To request the same linear range but with a groupSize of 64 (range must be a multiple of group

size!) we would use

Range.create(1024,64);

To request a two dimensional range over a grid (0..width)x(0..height) where width==512 and

height=256 we would use

 int width=512;

 int height=256;

 Range.create2D(width,height);

Again the above does not specify the group size. One will be chosen for you. If you want to

specify the groupSize (say 16x8; 16 wide by 8 high) use

 int width=512;

 int height=256;

 int groupWidth=16;

 int groupHeight=8;

https://static.javadoc.io/com.aparapi/aparapi/1.4.0/com/aparapi/internal/jni/RangeJNI.html

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 13

2.4 USE OF getGlobalID()
It is a method which returns a integer value. This value decides which index value data will be
selected and executed. Suppose value comes 2 then the value present in index value 2 will be
evaluated according to the program.

2.5 Code of calculation of square of random integer numbers
stored in a array(repetition not allowed)

import com.aparapi.Kernel;

import com.aparapi.Range;

public class SquareKernel {

 public static void main(String[] _args) {

 final int[] values = new int[100];

 int num,sum=0;

 int j;

 // fill the values array

 for (int i = 0; i < values.length; i++) {

 int flag=0;

 num = (int) (Math.random() * 1000);

 for(j=0;j<=i;j++){

 if(values[j] == num){

 System.out.println("same number "+num+" occured");

 flag=1;

 }

 }

 if(j>i && flag==0){

 values[i]=num;

 }

 else{

 i=i-1;

 }

 }

 for(int k=0;k<values.length;k++){

 sum = sum + values[k];

 }

 System.out.println("sum="+sum);

 final int[] squares = new int[values.length];

 final Range range = Range.create(values.length);

 Kernel kernel = new Kernel() {

 public void run() {

 int gid = getGlobalId();

 squares[gid] = values[gid] * values[gid];

 }

 };

 kernel.execute(range);

 for (int i = 0; i < values.length; i++) {

 System.out.printf("%4d %4d %8d\n", i, values[i], squares[i]);

 }

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 14

 kernel.dispose();

 }

}

2.5.1 Result

same number 495 occured

same number 506 occured

same number 299 occured

same number 342 occured

same number 309 occured

sum=54342

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 15

2.6 Prime number Checking parallely using aparapi

import com.aparapi.Kernel;

import java.util.Arrays;

import java.util.stream.IntStream;

public class GetPrime {

 public static void main(String[] args) {

 final int size = 25;

 final int[] a = IntStream.range(2, size + 2).toArray();

 final boolean[] primeNumbers = new boolean[size];

 Kernel kernel = new Kernel() {

 @Override

 public void run() {

 int gid = getGlobalId();

 int num = a[gid];

 System.out.println(num+"a["+gid+"]");

 boolean prime = true;

 for (int i = 2; i < num; i++) {

 if (num % i == 0) {

 prime = false;

 //break is not supported

 }

 }

 primeNumbers[gid] = prime;

 }

 };

 long startTime = System.currentTimeMillis();

 kernel.execute(size);

 System.out.printf("time taken: %s ms%n", System.currentTimeMillis() -

startTime);

 System.out.println(Arrays.toString(Arrays.copyOf(primeNumbers, size)));//just

print a sub array

 kernel.dispose();

 }

}

2.6.1 Result

a[0]=2 a[4]=6 a[8]=10 a[12]=14 a[16]=18 a[20]=22 a[2]=4 a[6]=8 a[10]=12 a[14]=16

a[18]=20 a[22]=24 a[3]=5 a[7]=9 a[11]=13 a[15]=17 a[19]=21 a[23]=25 a[1]=3 a[5]=7

 a[9]=11 a[13]=15 a[17]=19 a[21]=23

time taken: 984 ms

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 16

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 17

2.7 RESTRICTION ON kernel.run() CODE

 Only the Java primitive data types boolean, byte, short, int, long, and float and
one-dimensional arrays of these primitive data types are supported by
Aparapi.

 Aparapi support for the primitive data type double will depend on your

graphics card, driver, and OpenCL version. Aparapi will query the

device/platform to determine if double is supported (at runtime). If your

platform does not support double, Aparapi will drop back to Java Thread Pool

(JTP) mode.

 The primitive data type char is not supported.
 Elements of primitive array fields can be read from kernel code.
 Elements of primitive array fields can be written to by kernel code.
 Java creates ‘hidden’ fields for captured final primitive arrays (from

anonymous inner classes) and they can be accessed as if they were fields of

the kernel.

 Primitive scalar fields can only be read by the kernel code. Because kernel
run-reachable methods execute in parallel in an indeterminate order, any
reliance on the result of modifications to primitive scalar fields is discouraged
even when executing in Java Thread Pool mode.

 Static final fields can be read from kernel code.
 Static non-final fields are not supported for either read or write.
 Arrays cannot be aliased either by direct local assignment or by passed

arguments to other methods.
 References to or through a Java Object other than your kernel instance will

cause Aparapi to abandon attempting to create OpenCL

 Static methods are not supported by Aparapi.
 Recursion is not supported, whether direct or indirect.

 Methods with varargs argument lists are not supported by Aparapi.
 Overloaded methods (i.e. methods with the same name but different

signatures) are not supported by Aparapi.

 Exceptions are not supported (no throw, catch. or finally).
 New is not supported either for arrays or objects
 Synchronized blocks and synchronized methods are not supported.
 Only simple loops and conditionals are supported; switch, break, and continue

are not supported.
 A variable cannot have its first assignment be the side effect of an expression

evaluation or a method call.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 18

2.8 HOW TO CONVERT A TWO DIMENSIONAL ARRAY INTO

ONE DIMENSIONAL ARRAY

Lets take a two dimensional array:-

Int arr[5][5];

For(int i=0;i<5;i++){

 For(j=0;j<5;j++){

 Arr[i][j] = (int)(math.random()*100);

 }

}

Now we will implement it into one dimensional array:-

Int arr[5*5];

For(int i=0;i<5;i++){

 For(j=0;j<5;j++){

 Arr[(i*5) + j] = (int)(math.random()*100);

 }

}

2.8.1 Matrix multiplication program using aparapi

import java.util.Random;

import com.aparapi.Kernel;

public class MatrixMul {

 public static void main(String [] args)

 {

 final int r = 1024;

 final int c1 = r;

 final int c2 = r;

 AparapiMatMul ap = new AparapiMatMul(r, c1, c2);

 try {

 long time1 = System.currentTimeMillis();

 //ap.setExecutionMode(Kernel.EXECUTION_MODE.JTP);

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 19

 //ap.setExecutionMode(Kernel.EXECUTION_MODE.GPU);

 //ap.setExecutionMode(Kernel.EXECUTION_MODE.CPU);

 ap.execute(r,c2);

 System.out.println("Time taken for kenel execution in GPU mode is :"+

(System.currentTimeMillis() - time1));

 }catch(NullPointerException ne){

 ne.printStackTrace();

 }

 //ap.printResults();

 long time1 = System.currentTimeMillis();

 ap.normalMatMulCalc();

 System.out.println("Time taken for kenel execution in Sequential CPU mode

is :"+ (System.currentTimeMillis() - time1));

 ap.printResults();

 ap.compareResults();

 ap.dispose();

 }

 }

 class AparapiMatMul extends Kernel {

 float matA[];

 float matB[];

 float matC[];

 float C[];

 int rows ;

 int cols1;

 int cols2;

 @Override

 public void run() {

 int i = getGlobalId();

 int j = getPassId();

 float value = 0;

 for(int k = 0; k < cols1; k++)

 {

 value += matA[k + i * cols1] * matB[k * cols2 + j];

 }

 matC[i * cols1 + j] = value;

 }

 public AparapiMatMul(int r, int c1, int c2)

 {

 rows = r;

 cols1 = c1;

 cols2 = c2;

 matA = new float [r * c1];

 matB = new float [c1 * c2];

 matC = new float [r * c2];

 C = new float[r * c2];

 //matC should be initialized with zeros

 for(int i = 0; i < r; i++)

 {

 for(int j = 0 ; j < c1; j++)

 {

 matC[i * c1 + j] = 0;

 }

 }

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 20

 //Here matrix A is initialized with random numbers

 for(int i = 0; i < r; i++)

 {

 for(int j = 0 ; j < c1; j++)

 {

 matA[i * c1 +j] = new Random().nextFloat();

 }

 }

 // Here matrix B is initialized with random numbers

 for(int i = 0; i < r; i++)

 {

 for(int j = 0 ; j < c1; j++)

 {

 matB[i * c2 + j] = new Random().nextFloat();

 }

 }

 }

 public void printResults()

 {

 for(int i = 0; i < rows; i++)

 {

 for(int j = 0 ; j < cols2; j++)

 {

 System.out.print(matC[i * cols2 + j]+" ");

 }

 System.out.print(" ");

 }

 }

 public void normalMatMulCalc()

 {

 System.out.println();

 System.out.println("Sequential Execution on CPU");

 for(int i = 0;i < rows; i++)

 {

 for(int j = 0; j < cols2; j++)

 {

 float sum = 0;

 for(int k = 0; k < cols1; k++)

 {

 sum += matA[i*cols1+k] * matB[k*rows+j];

 }

 C[i * cols2 + j] = sum;

 }

 }

 }

 public void compareResults()

 {

 boolean equal = true;

 for(int i = 0; i < rows * cols2 ; i++)

 {

 if(matC[i] != C[i])

 {

 equal = false;

 break;

 }

 }

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 21

 if(!equal)

 System.out.println("Results are not equal");

 else

 System.out.println("Results are equal.. Tested thoroughly!!!");

 }

 }

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 22

CHAPTER 3

3. APPLICATION OF PARALLELISM ON BUG’S ALGORITHM

3.1 INTRODUCTION
Robots are basically a mechanical device which performs automated tasks, either according
to human supervision, a predefined program or a set of general guidelines using artificial
intelligence techniques. Nowadays, industrial robots are intensively used in wide variety of
applications. Most of the industrial robots are motionless. They operate from a fixed position
and have limited operating range. These robots efficiently complete tasks such as welding,
drilling, assembling, painting and packaging.
Mobile robots in general are those robots which can move from place to place across the
ground. Mobility gives a robot a much greater flexibility to perform new, complex, exciting
tasks. Navigation of autonomous mobile robot is a very challenging problem. There exist many
algorithms for navigation of autonomous mobile robot. One of the most popular one is
Intelligent Bug Algorithm (IBA). There are many versions of IBA which have already been
proposed previously.

3.1.1 WHY WE NEED IT?
In a multi robotic environment, when a robot get an instruction to perform required task. It
start moving towards the destination. When it moves it try to avoid collision with other robots
and obstacles comes in front of its. To solve this problem there is different type of bug
algorithm available. We will discuss them step by step.

3.2 BUG ALGORITHM 1

Algorithm:
Input: A point robot with a tactile sensor
Output: A path to the Destination or a conclusion no such path exists

while Forever do

repeat
From Start, move toward Destination.

until Destination is reached or an obstacle is encountered.
if Goal is reached then

Exit.
end if
repeat

Follow the obstacle boundary.
until Destination is reached or an obstacle is re-encountered.
Determine the leaving point on the perimeter that has the

shortest distance to the Destination.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 23

Go to the Leaving point.
if the robot were to move toward the Destination then

Conclude Destination is not reachable and exit.
end if

end while

The Bug1 algorithm was the first algorithm in the bug family [1, 11, 17] created by
Lumelsky and Stepanov. In this algorithm the robot follows a straight line towards
the destination. When it encounters an obstacle (Fig. 4), it traverses the boundary
of the obstacle. Simultaneously the robot calculates the distance from current
position to destination until it reaches the point from where it started traversing the
obstacle (Fig.5). Whichever position has the minimum distance from the
destination becomes the leaving point and the robot again traverses the obstacle
and comes to the leaving point. After reaching the leaving point it calculates a
straight line toward the destination (Fig. 6)). Then it starts following the line until
another obstacle is re-encountered or it reaches the destination.

3.2.1 ADVANTAGES
 This algorithm doenot suffer local minima problem.

3.2.2 DISADVANTAGES
 When the robot is following the boundary of obstacle 1, it may collide

with a nearby obstacle 2 where the gap between both the obstacles is
less than the width of the robot; as a result the robot moves far away
from the destination.

 The distance covered by the robot to avoid the obstacle is much more
than the perimeter of the obstacle.

Fig. 4: Obstacle Detected

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 24

 Fig. 5: Robot Traverses Back to the Starting Position and Calculates Leaving Point

 Fig. 6: Robot Traverses to Leaving Point then Moves to Destination

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 25

3.3 BUG ALGORITHM 2

Algorithm:

Input: A point robot with a tactile sensor
Output: A path to Destination or a conclusion no such path exists

while True do

repeat
From Start, move toward Destination along slope (m-line).

until Destination is reached or an obstacle is encountered at hit
point.
 Turn left (or right).

repeat

Follow boundary
until Destination is reached or hit point is re-encountered or mline

is re-encountered at a point m such that m ≠ hit point (robot did not
reach the hit point), d(m, Destination) < d(m, hit point) (robot is closer),
and if robot moves toward goal, it would not hit the obstacle

if Goal is reached then

Exit.
end if
if hit point is re-encountered then

Conclude Destination is unreachable
end if

Let Start(i+1) = m
Increment i

end while

The Bug2 algorithm was also created by Lumelsky and Stepanov [1, 11, 17]. In this
algorithm the robot follows single non-repeated path throughout its trajectory.
When the source and destination are set, the robot calculates the slope. It follows
that slope and moves forward until encounters an obstacle (Fig. 3(a)). The robot then
changes its behavior from ‘move to goal’ to ‘obstacle avoidance’. While traversing
the boundary of the obstacle, it continuously calculates the slope from its current
position to the destination. When it reaches a point which has the same slope as of
the original straight line (Fig. 3(b)), the robot again changes its behavior from
‘obstacle avoidance’ to ‘move to goal’ and follows the slope until it reaches another
obstacle or destination (Fig. 3(c)). It is more efficient than Bug 1 algorithm as it
allows the robot to reach the destination in less time following a short trajectory.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 26

3.3.1 ADVANTAGES

 The robot follows single non-repeated path throughout its trajectory

 It is more efficient than Bug 1 algorithm as it allows the robot to reach the destination in

less time following a short trajectory.

3.3.2 DISADVANTAGES

 Do not have capability to make optimum use of sensors data for

generation of shorter paths.

Fig. 7: Obstacle Detected

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 27

Fig. 8: Robot Traverses the Obstacle until it finds a Point with Same Slope

Fig. 9: Robot Traverses to the Destination

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 28

3.4 OUR GOAL
We all know a robot can do many works now-a-days. But when a robot move from one place to
other its job become more versatile and it becomes more important to the world. When
navigation comes first thing comes in our mind is how to avoid collision in the path of robot. To
solve this problem we will take help of bug’s algorithm. But our problem is not finished still. Our
motive is to create a navigation system for multiple robots where they can navigate from one
place to other not only without colliding but also independently at the same time.

3.4.1 OUR IMPLEMENTATION
We take javaFx environment for graphical view of this problem. We try to solve this problem for
two robots. We used bug’s algorithm for obstacle avoidance and for line drawing we used
Bresenham line drawing algorithm. Here we take help of Aparapi for kernel implementation
and give OpenCL binding and parallel environment to the whole procedure. Where two robot
will act simultaneously and we will view it in javaFx.

3.4.2 OUR OBSERVATION
There are mainly two important observation we found. They are:-

One,When we use kernel some restriction comes automatically with it. We overcome some of
them. We convert all the two dimensional code into one dimensional system. We worked with
only primitive data types We follow all the restrictions very carefully but we know kernel does
not allow any type of exception. But if we want to implement GUI portion using JavaFx we need
to handle javaFX application Thread. As we can not handle any type of exception inside run so
we can not implement it with JavaFX.
Another, process parallelism is not possible using Aparapi framework.

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 29

CHAPTER 4

4. CONCLUSION AND OPEN CHALLENGE

Towards our goal, we found data parallelism which provide us efficient way of huge data
processing. But same way, we come to know that process parallelism is not possible. Also we
see JavaFx cannot run using aparapi framework. Viewing all types of scenario I propose a model
which may solve our problems and achieve the goal.

I propose a server client model for this problem where in server we will perform parallelism and
calculation and in client we will show the result. But for this we will need to search for a
framework which will provide process parallelism.

FIG 10. Proposed Model

A Study of Data Parallelism Using a Java Based Framework-Aparapi

 Page 30

CHAPTER 5

5. REFERENCES

 https://github.com/Syncleus/aparapi-examples

 https://drive.google.com/drive/folders/1ZmT4cWn7YR5_8JnVbK3d6B3Uq1G8b3Mb

 CUDA Programming by Shane Cook

 https://vasanthexperiments.wordpress.com/2011/11/20/aparapi-java-matrix-

multiplication-example/

 https://www.logicbig.com/tutorials/misc/gpu-programming/aparapi/intro-with-

example.html

 http://aparapi.com/

 http://www.sciencedirect.com > topics

https://vasanthexperiments.wordpress.com/2011/11/20/aparapi-java-matrix-multiplication-example/
https://vasanthexperiments.wordpress.com/2011/11/20/aparapi-java-matrix-multiplication-example/
http://aparapi.com/
http://www.sciencedirect.com/

