

DEVELOPMENT AND IMPLEMENTATION OF A

WEB BROWSER LOG ANALYSER

A thesis submitted in partial fulfillment of the requirement

for the degree of

Master of Computer Application

Department of Computer Science and Engineering

Jadavpur University, Kolkata

By

RAJDIPTA BARMAN

Registration Number: 137319 of 2016-2017

Examination Roll Number: MCA196009

Under the guidance of

Prof. Chandan Mazumdar

Department of Computer Science and Engineering

Faculty of Engineering and Technology

Jadavpur University, Kolkata-700032

India

May, 2019

JADAVPUR UNIVERSITY

FACULTY OF ENGINEERING AND TECHNOLOGY

CERTIFICATE OF RECOMMANDATION

This is to certify that the thesis entitled “DEVELOPMENT AND
IMPLEMENTATION OF A WEB BROWSER LOG ANALYSER” has been
satisfactorily completed by Rajdipta Barman (University Registration No.:
137319 of 2016-17, Examination Roll No:MCA196009).It is a bonafide piece
of work carried out under my guidance and supervision and be accepted in
partial fulfillment of the requirement for the degree of Master of Computer
Application, Department of Computer Science and Engineering, Faculty of
Engineering and Technology, Jadavpur University, Kolkata.

Prof. Chandan Mazumdar (Thesis Supervisor)

Department of Computer Science and Engineering

Jadavpur University, Kolkata-700032

 Countersigned

 Prof. Mahantapas Kundu

 Head,Department of Computer Science and Engineering,

 Jadavpur University, Kolkata-700032

 Prof. Chiranjib Bhattacharjee

 Dean,Faculty of Engineering and Technology,

 Jadavpur University, Kolkata-700032

 FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

CERTIFICATE OF APPROVAL

This is to certify that the thesis entitled “DEVELOPMENT AND
IMPLEMENTATION OF A WEB BROWSER LOG ANALYSER” is a bonafide
record of work carried out by Rajdipta Barman in partial fulfillment of the
requirements for the award of the degree of Master of Computer Application in
the Department of Computer Science and Engineering, Jadavpur University
during the period of January 2019 to May 2019. It is understood that by this
approval the undersigned do not necessarily endorse or approve any statement
made, opinion expressed or conclusion drawn therein but approve the thesis only
for the purpose for which it has been submitted.

 Signature of Examiner

 Date:

 Signature of Supervisor

 Date:

1

ACKNOWLEDGEMENT

I am pleased to express my deepest gratitude to my thesis guide, Prof. Chandan

Mazumdar, Department of Computer Science and Engineering, Jadavpur

University, Kolkata for his invaluable guidance, constant encouragement and

motivating words during the period of my dissertation.

I would also like to thank Dr. Anirban Sengupta, Principal Research Engineer

CDCJU, Mr. Subhomoy Karmakar, Research Engineer CDCJU and my classmate

Mr. Rishi Dey for sharing their knowledge and experience with me and also their

immense support and co-operation.

 I am thankful to all the teaching and non-teaching staff who helped me to have a

smooth journey during the time of my research.

Last but not the least; I would like to thank my family members, classmates, seniors

and friends for giving me constant encouragement and mental support throughout

my work.

Rajdipta Barman

University Registration No. : 137319 of 2016-17

Examination Roll No. : MCA196009

Master of Computer Application

Department of Computer Science and Engineering

Jadavpur University

2

Contents

1 Introduction

1.1 Advantages of Log file Analysis……………...4

1.2 Limitations of Log File Analysis……………...5

1.3 Objective………………………………………5

1.4 Organization of the thesis……………………..5

2 Web Browser Software

2.1 What is Web browser…………………………6

2.2 The process of browsing……………………...6

2.3 Features of a Web Browser…………………....7

2.4 Example of Web Browsers……………………8

2.5 How a Web Browser works…………………...12

3 Structure of Web Browser logs

3.1 What is browser log……………………………15

3.2 Collection of browser log……………………...15

3.3 Structure of Google Chrome browser log……..19

4 Web browser log analysis

4.1 Log Analysis……………………………………31

4.2 Purpose of wen log analysis……………………31

4.3 Collected log……………………………………33

4.4 Analysis………………………………………...34

4.5 Proposed Analysis for future work…………….37

5 Implementation

5.1 Introduction……………………………………39

5.2 Feature of analyser………………………….....39

5.3 Architecture……………………………………41

5.4 Technologies Used…………………………….42

5.5 Future Work……………………………………42

5.6 Conclusion……………………………………..45

3

Chapter 1:

1. Introduction

Log files are generated by web servers or different applications which

consist of various figures or records about the use of any website or web

browser or any system as well. System generated log files include system

log, server log etc. Web browser log files can be generated as well which

depicts different aspects of web browsing such as URLs, timestamps,

type of event and many more.

Huge records stored in the file can be used for understanding many

statistics about pages or systems and implementing new features or

making predictions. This is where the process of log file analysis comes

into practice. Thorough analysis and decision making from the log files is

an important aspect of ensuring system security and integrity as well.

For system generated log files, analyses can help in mitigating security

problems, auditing, performance optimization etc. Alerts can be

generated if any unwanted event type is detected in the log.

Web browser log files can, too, help in solving security problems and

perform necessary operations in predicting and profiling of users.

Unauthorized entry to a webpage or unethical activities in a network can

be flagged within an organization. Securing log from several turns the

problem of analysis into a problem of big data because of the sheer

amount of that need to be processed. Different methods and tools of Big

Data are used in log analysis tasks to make those systems more efficient

and adaptable to different kinds of data in real time. Huge amount of data

corresponds to bigger processing time. This problem is constantly being

mitigated through various kinds of tools and algorithms which are being

developed by data scientists all around the world.

Data visualization is another important aspect of data analytics and

decision making. Graphical representations help in better understanding

of the data. As number of web browser users are increasing day by day,

4

need for analysing the log files of web browser is increasing. This will

not only be of help in some technical project, but also it can be a tool for

carrying out social experiments as well.

1.1 Advantages of log file analysis

• Realignment of historical data: Web browsers can continuously

record log files. If the files are saved again and again, they can be

evaluated flexibly.

• When a website is accessed from a server, the firewall does not

interfere. The log file can therefore log the access and other records

exactly.

• Simple formatting: If the log file is not too large, the data can be

read out and segmented with conventional data processing programs

such as Excel. Therefore, no complex program solutions are

required.

• Log file analysis does not only help in understanding activities of

users. Results of different analyses can be helpful in working and

content of different websites, based on user preference.

• Security problems in different organizations can be detected and

mitigated efficiently by log file analysis.

The web server can store the following data in a log file:

• The operating system used by the user or client

• The browser used

• The time and date of access

• Commands requested by the server

• The protocol, e.g. https

• The number of bytes transferred

• The URL previously called up by the user

• The server’s response

• The file name and the file path

• The IP address or DNS address

https://en.ryte.com/wiki/Browser
https://en.ryte.com/wiki/Server

5

But in case of a web browser’s log file, other important details are stored

as well. These will be of immense help in this project where the objective

will be to analyse different aspects of user activities.

1.2 Limitations of Log file Analysis

• If amount of data increases i.e. long hours of browsing is done in

several machines log files can become of huge size. Analysing it in

real time is a challenge.

• Not all the data stored in a log file is relevant or useful towards

achieving an objective. Storing those data can consume space in the

database. If it is to be left out, parsing should be done which can

bring complexities in the development of the tool.

• Log files of different browser are generated in different formats.

Bringing it under one format and analysing it can also be a

challenge in the process.

1.3 Objective

Acquiring log files from different browsers and doing necessary

analyses on the log files is the objective which will be achieved by

making a tool called Web Browser Log Analyser. This tool will

have other necessary features including visualisation option for the

efficient processing and analysis of the files.

1.4 Organization of the Thesis

Chapter 2 describes the different web browsers used around the

world, while chapter 3 discusses about the structure of the web

browser log files collected form Google Chrome. Chapter 4

describes all the implemented and proposed analysis. The Last

chapter discusses the intricate details of the implementation process

of the log analyser.

6

 Chapter 2:

 2. Web Browser Softwares

2.1. What is a Web browser?

A web browser, or in short, a browser is a software application used to

locate, retrieve and display content on the World Wide Web,

including webpages, images, video and other files. They translate

requested web pages and websites to human-readable content using

Hypertext Transfer Protocol (HTTP). Browsers can also display other

protocols and prefixes, such as secure HTTP (HTTPS), File Transfer

Protocol (FTP), email handling (mailto:), and files (file:). In addition to

these, most browsers also support external plug-ins required to display

active content, such as in-page video, audio, game content etc.

2.2. The process of “browsing”

 Every single web page is identified by a unique Uniform Resource

Locator (URL), enabling browsers to retrieve these resources from a web

server and display them on a user's device. All the URLs start with either

“http:” or “https”. It signifies that the browser will retrieve the pages with

Hypertext Transfer Protocol. “https” signifies that the communication

between the browser and the web server is ‘secure’ or encrypted. When

an user types an URL and presses enter, the browser retrieves the

corresponding webpage from the World Wide Web and the browser’s

rendering engine displays in on the user’s device. This process is

described elaborately later in this chapter.

https://www.webopedia.com/TERM/W/World_Wide_Web.html
https://www.webopedia.com/TERM/W/web_page.html

7

2.3. Features of a web browser

Most of today’s web browsers have many common features regarding UI,

privacy and security. Although each type of web browsers offer unique

features that make them distinct.

The UI features of browsers are:

• An address bar for entering URL.

• Navigation buttons which allow users to go back to the previous

page or go forward to the next one.

• A reload or refresh button to reload the current web page.

• Provision to open multiple pages or tabs at the same time(It can

done in separate browser windows as well).

• Home page button to go back directly to user’s home page.

• Default search engine can also be set from ‘Settings’ option.

• Multiple features can be added to the home page from ‘Settings’

option such as ‘Bookmark’ list.

 Fig 1: Google Chrome browser home page with google.com set as

default search engine.

8

Privacy and security features of a typical web browser

• During browsing, cookies are stored by the browsers from different

websites which may contain login credentials and other important

information. The web browser removes cookies when the browser

window gets closed.

• “Incognito” mode can be used to stop tracking of user activities.

• Various security protocol provide authentication, privacy, data

integrity between two communicating computer applications such

as TLS(Transport Layer Security), SSL(Secure Socket Layer) etc.

2.4. Examples of web browsers

There are a number of browsers in use today. The most popular ones are,

• Google Chrome

• Mozilla Firefox

• Google Chromium

• Microsoft Edge

• Internet Explorer

Mozilla Firefox

Mozilla Firefox was developed in 2002 by Mozilla Corporation. It’s

an open source web browser and it is available in multiple operating

systems. It is the second-most widely used web browser in the

world today with 11.78% of usage share. In the recent updated

version, Firefox has improved download manager, stronger phishing

and malware protection.

9

Fig 2: UI of Mozilla Firefox

 Microsoft Edge

 Microsoft Edge was released in July 2015 as a replacement for

Internet Explorer. It is the default browser for Windows 10

operating systems. Edge is exclusive to Windows 10 and cannot be

used on previous Windows versions. It has many improved features

such as,

• A feed of personalized content.

• Built-in Cortana assistance.

• Reading support.

• Snoozing tabs for later.

• Option to scribble over web pages.

• Better speed.

Google Chromium

 It is an open-source fully functional web browser and software

project run by Google. It was released in September 2008.It is similar to

Google Chrome but has less features than Chrome. It is essentially an

10

open-source browser project that aims to build a safer, faster, and more

stable way for all Internet users to experience the web. Chromium runs

on Windows, MAC OS and Linux.

Google Chrome

 Google Chrome is the most widely used web browser in the

world in almost 60% usage share. It was developed by Google and

released in December 2008. It provides synchronization with other

Google products and services as well. It can be used in Windows,

Linux, macOS, iOS, and Android.

Plethora of useful features have made this the most popular browser

and its superiority lies from user security to UI and compatibility.

• Incognito Mode: This feature allows users to browse websites
privately, without saving anything in history. It can be done
from “Customize and control Google Chrome” option or we can
use a short cut (ctrl+shift+n) to activate incognito mode.

11

• Printing an web page: Users cannot always print any
document straight from the website. Chrome enables the users
to save the document in different forms, as per requirement. It
increases user-comfort.

• Task manager: Chrome has its very own task manager.Users
can track each and every task in the task manager. Typing
Shift+ESC brings forward the task manager.

• Developer tools: Chrome’s Developer Tools enable the user to
closely analyse all the visual, interactive, and technical
components of website locations. The developer view allows
users to navigate the web on one side of the window, and
inspect the resource's components and attributes on the other.

12

Inspecting network activity, securing debugging logs,

understanding the web page structure and analysing the HTML

code of the web page can be done from Developer tools. Users

can run Audits and get a report of the website’s performance.

2.5 How a web browser works:

A web browser is made up of a group of components or structured

codes which perfoms a series of tasks to retrive a requested web

page and display it on the screen.Nowadays, browsers can interpret

and display HTML web pages, applications , Javascript, AJAX and

other contents hosted on web server. So, the groups of code are

invoked as per requirement and follows a particular order for a task.

To understand what happens when a user requests for a webpage ,

knowledge of different components of a browser is needed. The

main components are,

• User Interface(UI): This is the component which interacts with
the user. As mentioned earlier in the chapter, this consists of
address bar, navigation buttons, home page, reload button by
defualt. Other features can also be shown by adjusting the
settings.

13

• Browser Engine: Upon receiving inputs from various UIs, it
makes queries and manipulates the rendering engine.Basically,
it works as an connector between user interface and rendering
engine.

• Rendering Engine: It carries out the task of rendering the
requested web pages on the screen after translating HTML, XML
documents and images that are formatted using CSS. Different
we browsers use different rendering engines; Firefox has Gecko,
Google Chrome has Blink etc.

• Networking: This component handles all aspects of internet
communication and security and retrieves the URLs using
internet protocols suchs as http, https ot ftp.

• Javascript Interpreter: It interprets and executes the JavaScript
code embedded in a website and send the results to the
rendering engine so that it can be displayed .

• UI backend: This one is used for forming basic widgets like
combo boxes and widows.

• Data Storage: Web Browsers support different storage
mechanisms such as localStorage, IndexedDB, WebSQL and
FileSystem. A small database gets created on the local drive of
the machine where the browser is installed. User data such as
cache, cookies, bookmarks are managed by it.

14

Fig: Components of a typical web browser

The process starts with URLs being entered on the address bar.

As a response, web browser communicates and sends the

contents. The network layer starts sending contents of the

requested web pages to the rendering engine.HTML documents

gets parsed and elements are converted to ‘DOM nodes’ in a tree

called ‘Content tree’ or ‘DOM tree’.

At the same time, another tree called the ‘render tree’ gets

created which stores the visual element of the page in the order

in which they will be displayed. After that the ‘layout’ process

takes place which is basically giving each node of the render

tree the exact position and size in the screen.

Subsequently, the render tree is traversed and rendering

engine’s ‘paint()’ method gets called which displays the

contents on the screen. It is done by the UI backed layer.

15

Chapter 3:

3. Structure of Web Browser Logs

3.1. What is browser log?

During the course of browsing the internet, the web browser can store

various intricate records of the browsing process such as request type,

event type, event id, URL, timestamp, content type, filename in case of

downloads, source id etc. in different formats. This file is called the

browser log file. Analysing the data stored in a log file, detection of

malicious and unauthorized activities, user profiling and monitoring and

many other important tasks can be done.

All the browsers have their own way of storing browser log. But it does

not get generated until we enable the browser to do so. It may be

retrieved from the developer tools and can be stored in separate files in

the local memory.

Log files are often very large and can have complex structure. Although

the process of generating log files is pretty simple and straightforward.

3.2. Collection of Browser Log

All the browsers mentioned in the previous chapter have their own way of

enabling a retrieving log files. Processes for the same are mentioned

below.

3.2.1 MOZILLA FIREFOX

For Windows operating systems, Command Prompt window needs to be

open first. Depending on the configuration of the OS different commands

can entered.

For 64bit Windows:

16

➢ set MOZ_LOG=timestamp,

rotate:200,nsHttp:5,cache2:5,nsSocketTransport:5,

nsHostResolver:5

➢ set MOZ_LOG_FILE=%TEMP%log.txt

➢ “c:\Program Files\Mozilla Firefox\firefox.exe”

For 32bit Windows:

➢ set MOZ_LOG=timestamp,

rotate:200,nsHttp:5,cache2:5,nsSocketTransport:5,

nsHostResolver:5

➢ set MOZ_LOG_FILE=%TEMP%log.txt

➢ “c:\Program Files (x86) \Mozilla Firefox\firefox.exe”

These commands will only work if Firefox has been installed in the

default location and C is the start-up drive of the machine. Although

necessary adjustments can be made in the commands if the log files are to

be stored in a different location or Firefox has been installed in a different

location.

The log records of firefox gets stored in .O format. The O file type is a

standard executable and linking format for executables, object code,

shared libraries, and core dumps. The format of the log file is shown

below:

17

3.2.2 MICROSOFT EDGE

The browser log of Microsoft Edge is collected from developer tools.

After opening the Developer tools, “Preserve log” box must be ticked. By

clicking on the “Network” tab log records can be seen in this manner.

18

3.2.3 GOOGLE CHROME AND CHROMIUM

The process of storing log files for these two browsers is same. After

opening the browser An URL must be entered i.e “chrome://net-

export”. This redirects to a page that looks like this:

This is the page from where the browsers can be enabled to store log

files by clicking on the “Start Logging to Disk” button. Also, the

maximum log file size can be set. Default value for the same is 100

MB. Upon reaching the limit, logging automatically stops. If not, we

can click on the “Stop Logging” option. The process of logging can be

restarted from the very same page.

The event files get stored in specified location in JSON(Java Script

Object Notation) format. As new tabs are opened in the browser

separate event files get generated. Logging stops when individual limit

of the event files are reached.

19

3.3 Structure of Google Chrome Browser Log

This particular log file is stored in JSON format. Different tags are

used to describe the events such as “priority”, “source”, “type”, “time”,

“url”, “key” etc. Depending on the type of event, different tags get

generated. The types of log records are described below.

TYPE 1:

{"params":
 {

"created":true,
"key":https://cdn-images-

1.medium.com/freeze/max/30/1*nUts_YuQ6FZR93gNM01WEA.png?q=
20

},
"phase":1,
"source":
{

"id":299579,
"type":13

},
"time":"335808481",

https://cdn-images-1.medium.com/freeze/max/30/1*nUts_YuQ6FZR93gNM01WEA.png?q=20
https://cdn-images-1.medium.com/freeze/max/30/1*nUts_YuQ6FZR93gNM01WEA.png?q=20
https://cdn-images-1.medium.com/freeze/max/30/1*nUts_YuQ6FZR93gNM01WEA.png?q=20

20

"type":125
}

• “created”:

Types of values- “true” and “false”

Significance: Related to disk/memory cache. Value is true if entry is

created.

• “phase”- Types of values- 0 , 1 and 2

This enumeration can be one of BEGIN, END, NONE. To log the

duration of a URL_REQUEST, BEGIN and END is used specify the

phases. Absence of an event is specified by NONE.

• “source”-
 "source":

 {

 "id":299579,

 "type":13

 },

 Type: Object

 The source object itself is comprised of two sub-fields “id” and “type”.

The “id” is unique across all types. The type field is included as a

convenience so that processing the event stream can be done in a stateless

manner. Type is the ID of the event type.

Events for the different values of “type”:

“type”:0 signifies SOURCE_TYPE(URL_REQUEST)

“type”:1 signifies SOURCE_TYPE(PAC_FILE_DECIDER)

“type”:2 signifies
SOURCE_TYPE(HTTP_PROXY_CONNECT_JOB)

“type”:3 signifies SOURCE_TYPE(SOCKS_CONNECT_JOB)

21

“type”:4 signifies SOURCE_TYPE(SSL_CONNECT_JOB)

“type”:5 signifies
SOURCE_TYPE(TRANSPORT_CONNECT_JOB)

“type”:6 signifies
SOURCE_TYPE(WEB_SOCKET_TRANSPORT_CONNECT_JOB
)

“type”:7 signifies SOURCE_TYPE(SOCKET)

“type”:8 signifies SOURCE_TYPE(HTTP2_SESSION)

“type”:9 signifies SOURCE_TYPE(QUIC_SESSION)

“type”:10 signifies
SOURCE_TYPE(QUIC_CONNECTION_MIGRATION)

“type”:11 signifies
SOURCE_TYPE(HOST_RESOLVER_IMPL_JOB)

“type”:12 signifies SOURCE_TYPE(DISK_CACHE_ENTRY)

“type”:13 signifies SOURCE_TYPE(MEMORY_CACHE_ENTRY)

“type”:14 signifies SOURCE_TYPE(HTTP_STREAM_JOB)

“type”:15 signifies
SOURCE_TYPE(EXPONENTIAL_BACKOFF_THROTTLING)

“type”:16 signifies SOURCE_TYPE(UDP_PACKET)

“type”:17 signifies SOURCE_TYPE(CERT_VERIFIER_JOB)

“type”:18 signifies SOURCE_TYPE(PROXY_CLIENT_SOCKET)

“type”:19 signifies SOURCE_TYPE(BIDIRECTIONAL_STREAM)

“type”:20 signifies
SOURCE_TYPE(NETWORK_QUALITY_ESTIMATOR)

“type”:21 signifies
SOURCE_TYPE(HTTP_STREAM_JOB_CONTROLLER)

“type”:22 signifies
SOURCE_TYPE(CT_TREE_STATE_TRACKER)

“type”:23 signifies
SOURCE_TYPE(SERVER_PUSH_LOOKUP_TRANSACTION)

22

“type”:24 signifies
SOURCE_TYPE(QUIC_STREAM_FACTORY_JOB)

“type”:25 signifies
SOURCE_TYPE(HTTP_SERVER_PROPERTIES)

“type”:26 signifies
SOURCE_TYPE(HOST_CACHE_PERSISTENCE_MANAGER)

“type”:27 signifies
SOURCE_TYPE(TRIAL_CERT_VERIFIER_JOB)

“type”:28 signifies SOURCE_TYPE(COOKIE_STORE)

“type”:29 signifies
SOURCE_TYPE(HTTP_AUTH_CONTROLLER)

• “time”- The time in milliseconds when the event occurred.

This is a time tick count and not a Unix timestamp. However it is

easily convertible given the time tick offset.

TYPE 2:

{
"params":
{
"priority":"HIGHEST",
"url":https://glyph.medium.com/font/78ce731/0-
3j_4g_6bu_6c4_6c8_6c9_6cc_6cd_6ci_6cm/fell-400-normal.woff },
"phase":1,
"source":
{
"id":299642,
"type":1
},
"time":"335808965",
"type":2
}

• “priority”:

https://glyph.medium.com/font/78ce731/0-3j_4g_6bu_6c4_6c8_6c9_6cc_6cd_6ci_6cm/fell-400-normal.woff
https://glyph.medium.com/font/78ce731/0-3j_4g_6bu_6c4_6c8_6c9_6cc_6cd_6ci_6cm/fell-400-normal.woff

23

Types of values- “HIGHEST”, “LOW”, “LOWEST”, “MEDIUM”,

“IDLE”.

Specifies resource prioritization to better handle how websites are

currently built and to optimize the loading for the user experience.

• "url":

 The URL actually being used for the steam job, it is different from

“original_url” if an alternate service is being used.

➢ "source_dependency":

{

"id":299581,

"type":23

}

Parameters of “source_dependency” specifies the source identifier for

the request of the HTTP_STEAM_JOB.

• The last tag of a particular log record is “type”. This can have 402

values starting from 0 to 401. Each value signifies a different event

such as EVENT_TYPE(CANCELLED),

EVENT_TYPE(REQUEST_ALIVE),

EVENT_TYPE(HOST_RESOLVER_IMPLE_REQUEST),

EVENT_TYPE(HOST_RESOLVER_IMPL_IPV6_REACHABILI

TY_CHECK),

EVENT_TYPE(HOST_RESOLVER_IMPL_CHACHE_HIT),

EVENT_TYPE(TCP_CONNECT),

EVENT_TYPE(SSL_CONNECT) and many more.

Some of the events seen during the collection of log are described

afterwards. Detailed description of the tags that get created during

the course of logging process are attached also.

• “type”:0 signifies EVENT_TYPE(CANCELLED)

An event got cancelled (What has been cancelled can be determined

based on the log context around it.)

• “type”:1 signifies EVENT_TYPE(FAILED)

24

Something failed (What has been cancelled can be determined based on

the log context around it.)

The event has the following parameters:

{

"net_error": <The net error code integer for the failure>,

}
Acquired values from the log file for “net_error”

are 2,118,109,804.

• “type”:2 signifies EVENT_TYPE(REQUEST_ALIVE)

Marks the creation/destruction of a request (net::URLRequest).

• “type”:3 signifies

EVENT_TYPE(HOST_RESOLVER_IMPLE_REQUEST)

The start/end of a host resolve (DNS) request. These events are logged

for all DNS requests, though not all requests result in the creation of a

HostResolvedImpl::Request object.

The BEGIN phase contains the following parameters:

{

 "host": <Hostname associated with the request>,

 "address_family": <The address family to restrict results to>,

 "allow_cached_response": <Whether it is ok to return a result from the

host cache>,
Possible values are “true” and “false”

 "is_speculative": <Whether this request was started by the DNS

 prefetcher>
Possible values are “true” and “false”

}

If an error occurred, the END phase will contain these parameters:

{

"net_error": <The net error code integer for the failure>,

}
Acquired values from the log file for “net_error”

are 2,118,109,804.

• “type”:4 signifies

EVENT_TYPE(HOST_RESOLVER_IMPL_IPV6_REACHABILI

TY_CHECK)

25

This event is created (in a source of the same name) when the host

resolver creates a UDP socket to check for global IPv6 connectivity.

It contains the following parameter:

{

 "ipv6_available": <True if the probe indicates ipv6 connectivity>,

}
Possible values are “true” and “false”.

• “type”:5 signifies

EVENT_TYPE(HOST_RESOLVER_IMPL_CHACHE_HIT)

This event is logged when a request is handled by a cache entry.

It contains the following parameter:

{

"address_list": <The resolved addresses>,

}

• “type”:9 signifies

EVENT_TYPE(HOST_RESOLVER_IMPL_JOB_EVICTED)

This event is created when a HostResolverImpl::Job is evicted from

PriorityDispatch before it can start, because the limit on number of

queued jobs was reached.

• “type”:34 signifies EVENT_TYPE(SOCKET_ALIVE)

Marks the begin/end of a socket

(TCP/SOCKS/SSL/UDP/"SpdyProxyClientSocket").

The BEGIN phase contains the following parameters:

{

"source_dependency": <Source identifier for the controlling entity>,

}

Example: "source_dependency":{"id":299685,"type":6}

• “type”:35 signifies EVENT_TYPE(TCP_CONNECT)

The start/end of a TCP connect(). This corresponds with a call to

26

TCPClientSocket::Connect().

The START event contains these parameters:

{

"address_list": <List of network address strings>,

}

And the END event will contain the following parameters:

{

"net_error": <Net integer error code, on error>,

"source_address": <Local source address of the connection, on success>,

}

• “type”:48 signifies EVENT_TYPE(SSL_CONNECT)

The start/end of an SSL "connect" (aka client handshake).

The following parameters are attached to the END event:

{

"version": <String name of the TLS version negotiated>,

"cipher_suite": <Integer code for the cipher suite>,

"is_resumed": <Whether we resumed a session>,
Possible values are “true” and “false”

"next_proto": <The next protocol negotiated via ALPN>,

}

EXAMPLE:

{"cipher_suite":49199,"is_resumed":false,"next_proto":"unknown","versi

on":"TLS 1.2"}

• “type”:61 signifies

EVENT_TYPE(SSL_HANDSHAKE_MESSAGE_SENT)

An SSL connection sent or received a handshake message.

The following parameters are attached:

{

27

"type": <The type of the handshake message, as an integer>

"bytes": <The exact bytes sent, Base64 encoded.May be elided in some

cases>

}

EXAMPLE:

{"bytes":"CAAACwAJABAABQADAmgy","type":8}

• “type”:70 signifies

EVENT_TYPE(SSL_CERTIFICATES_RECEIVED)

Certificates were received from the SSL server (during a handshake or

renegotiation).

The following parameters are attached to the event:

{

"certificates": <A list of PEM encoded certificates in the order that they

were sent by the server>,

}

• “type”:71 signifies

EVENT_TYPE(SIGNED_CERTIFICATE_TIMESTAMPS_RECEI

VED)

Signed Certificate Timestamps were received from the server.

The following parameters are attached to the event:

{

"embedded_scts": Base64-encoded SignedCertificateTimestampList,

"scts_from_ocsp_response":Base64-encoded

SignedCertificateTimestampList,

"scts_from_tls_extension": Base64-encoded

SignedCertificateTimestampList,

}

The SignedCertificateTimestampList is defined in RFC6962 and is

exactly as received from the server.

EXAMPLE:

28

{"embedded_scts":"",

"scts_from_ocsp_response":"",

"scts_from_tls_extension":"APAAdgCkuQmQtBhYFIe7E6LMZ3A

KPDWYBPkb37jjd80OyA3cEAAAAWk4tw0iAAAEAwBHMEU

CIQDg4t7nf8YWsy+VGawnvrwlWFUK5eGbpO1G7jXc2gVHdAI

gEa44gF+eQT9IAWO1j0wA0HzgBomT3B52TujsLjk8aWIAdgBV

gdTCFpA2AUrqC5tXPFPwwOQ4eHAlCBcvo6odBxPTDAAAAW

k4tw1kAAAEAwBHMEUCIHVaCXhkQuDrVSaI53VBKlmk5AG

vzP47m5XAgntJcPY9AiEA0jFA8Tzhf69ZqDAJVpkgBOaFtYoyJJ

dQ4Gq2izwLdbc="}

• “type”:138 signifies

EVENT_TYPE(HTTP2_HEADERS_SEND_HEADERS)

This event is sent for sending an HTTP/2 HEADERS frame.

The following parameters are attached:

{

"headers": <The list of header:value pairs>,

"fin": <True if this is the final data set by the peer on this stream>,

"stream_id": <The stream id>,

"has_priority": <True if the PRIORITY flag is set>,

"parent_stream_id": <Optional; the stream id of the parent stream>,

"priority": <Optional; the priority value of the stream>,

"exclusive": <Optional; true if the exclusive bit is set>.

}

EXAMPLE:

{"params":

{"exclusive":true,

"fin":true,

"has_priority":true,

"headers":

[":method: GET",":authority: cdn-images-1.medium.com",":scheme:

https",":path: /freeze/max/30/1*rXBBvMaeRp0wM-mS-

8A9vw.png?q=20","origin: https://towardsdatascience.com","user-agent:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36","accept:

image/webp,image/apng,image/*,*/*;q=0.8","referer:

https://towardsdatascience.com/data-exploration-and-visualization-with-

29

r-ggplot-7f33c10ec1c","accept-encoding: gzip, deflate, br","accept-

language: en-US,en;q=0.9"],

"parent_stream_id":25,

"source_dependency":

{

"id":299595,

"type":15

},

"stream_id":27,

"weight":147},

"phase":0,

"source":

{"id":299575,"type":9},

"time":"335808510",

"type":183}

N.B:

The log record for downloading a file from the internet is as follows:

{"params":

{"headers":

["HTTP/1.1 200 OK","Date: Sun, 19 May 2019 18:26:09 GMT","Server:

Apache/2.4.25 (Debian)","Set-Cookie: [44 bytes were

stripped]","Expires: 0","Cache-Control: must-revalidate, post-check=0,

pre-check=0","Pragma: public","Content-Description: File

Transfer","Content-Disposition: attachment; filename=\"The

Chainsmokers - Roses ft. ROZES (Official Music

Video).mp4\"","Content-Transfer-Encoding: binary","Content-Length:

10367619","Connection: Close","Content-Type: application/octet-

stream"]},

"phase":0,

"source":{"id":17338,"type":1},"time":"22392091",

"type":169

}

 This event is specified as

EVENT_TYPE(HTTP_TRANSACTION_READ_RESPONSE_HEADE

RS) for “type”=169.

This event is sent on receipt of the HTTP response headers.

https://cs.chromium.org/chromium/src/net/log/net_log_event_type.h?l=11&ct=xref_jump_to_def&gsn=EVENT_TYPE
https://cs.chromium.org/chromium/src/net/log/net_log_event_type_list.h?l=1226&gs=kythe%253A%252F%252Fchromium.googlesource.com%252Fchromium%252Fsrc%253Flang%253Dc%25252B%25252B%253Fpath%253Dsrc%252Fnet%252Flog%252Fnet_log_event_type_list.h%2523npjl0CPpRDO7jLgvxciYAm4om8InUJFtpGt95Rj3394&gsn=HTTP_TRANSACTION_READ_RESPONSE_HEADERS&ct=xref_usages
https://cs.chromium.org/chromium/src/net/log/net_log_event_type_list.h?l=1226&gs=kythe%253A%252F%252Fchromium.googlesource.com%252Fchromium%252Fsrc%253Flang%253Dc%25252B%25252B%253Fpath%253Dsrc%252Fnet%252Flog%252Fnet_log_event_type_list.h%2523npjl0CPpRDO7jLgvxciYAm4om8InUJFtpGt95Rj3394&gsn=HTTP_TRANSACTION_READ_RESPONSE_HEADERS&ct=xref_usages

30

The following parameters are attached:

 {

 "headers": <The list of header:value pairs>,

 }

The header tag describes the time of download, server used, content type(

html, plain_text, javascript, video, application, filename, cache control

tec.).

31

Chapter 4:

4. Web Browser Log Analysis

4.1 Log Analysis

Log analysis is the process of analysing computer generated records and

making important inferences and conclusions for mitigating different

security risks and stopping unauthorized and unethical activities in the

network. Log analysis also helps in reducing problem diagnosis and

resolution time and in effective management of applications and

infrastructure.

Now, analysing Web Browser log is the process of understanding what

kind of activities a user gets involved in during browsing time. As we

have seen in the previous chapter, the structure and type of browser log

records the user activity. It might involve downloading content in

different formats or simple browsing of plain text files or logging into an

account and filling up a form for example.

The whole process may seem less risky and harmless at a glance but there

can be numerous risks and unethical activities in a network. Tracking

these activities and mitigating risks is essential for different institutions

and organizations, be it educational or corporate.

4.2 Purpose of Web Log Analyser

A log analyser can handle the logs stored in the database and run

necessary queries which can retrieve and reveal different user activities. It

32

can also store log in real time is given proper features and can run

analysis on it in real time also.

Continuous and prolonged analysis and necessary visualisations can be

extremely important in creating an activity profile of any particular user

or a machine. Also it can help in understanding preferred activities and

preferred websites of user such as downloading image, video etc. or

spending more time in social media. But the real problem lies in finding

out whether any content of undefined type is being downloaded or any

security problem is happening which can jeopardize the data stored in the

machine or the whole system for that matter.

The log files used in log analysis are generally provided by operating

systems, applications, network equipment or similar devices. Logs are

usually stored in a storage unit such as a hard drive or to an application

such as a log collector.

For data driven analysis and decision making, many log analysis tools are

available. Those are properly equipped with visualisation tools and other

necessary statistical features.

 For example,

• Loggly.

• Logentries.

• GoAccess.

• logz.io.

• Graylog.

• Splunk.

• Logmatic.io.

And many more.

 The objective of this project is to develop a log analyser for the log files

of a web browser with necessary features than can be useful for the tasks

needed to be done.

33

4.3 Collected Log

The log files collected for the purpose of this project is for the web

browser Google Chrome. The process of procuring the log files of

Chrome is mentioned in the previous chapter.

The log files are in JSON(Java Script Object Notation) format. JSON

data is written as name/value pairs. JSON objects are written inside curly

braces.

For Example:

{"Name":"Rajdipta", "Surname”: “Barman"}

JSON arrays are written inside square brackets.

For example:

"employees":

[

 {"firstName":"raj", "lastName":"barman"},

 {"firstName":"ria", "lastName":"paul"},

 {"firstName":"deb", "lastName":"barman"}

]

The collected logs are stored in similar manner. Different event files are

created for different tabs that were opened. So several files should be

stored and analysed. But first the acquired records are converted from

JSON format to CSV (Comma Separated Value) using python language

to better understand the structure and the information stored in the log

file.

34

4.4 Analysis

Different kinds of analyses can be done on the data by taking each taking

each tag and useful information can be procured.

4.4.1 Finding the number of secure and unsecure websites visited.

The first part of URL has ‘http’ or ‘https’ which signifies whether a

website is secure on or not. The protocol ‘https’ states that the website is

secure.

The ‘url’ tag stores the complete URL of the web page visited. This tag

can be parsed to using regular expression to check whether the fifth

character of the URL has ‘s’ or not. If it has ‘:’ then the protocol used for

the website is ‘http’, if not, there can only be ‘s’ in the fifth position. This

will signify that the protocol used for the website is ‘https’ i.e the website

is secure.

The result of this analysis shows the number of secure and unsecure

websites visited which can, in turn, mitigate some security problems for

the machine.

For example:

"url": “http://jaduniv.edu.in/”

The above mentioned URL has been found in the log files of Google

Chrome web browser. This clearly shows that the website

“jaduniv.edu.in” is not using a secure protocol.

Algorithm:

Step 1: Taking a single entry from ‘url’ column from the database.

Step 2: Parsing the ‘url’ with regular expression.

Step 3: If the fifth character is ‘s’ increase the number of secured

websites. If “:” is found increase the number the of unsecured websites.

http://jaduniv.edu.in/

35

Step 4: If next entry exists then go to step 2. If next entry doesn’t exist go

to step 6.

Step 5: Show the number of secure and unsecure websites visited.

Step 6: Stop.

4.4.2 Finding the frequency of ‘GET’ and ‘POST’ methods.

HTTP POST requests supply additional data from the client (browser) to

the server in the message body. In contrast, GET requests include all

required data in the URL.

In the ‘params’ dictionary of a particular log record, ‘method’ is a tag

which can have values ‘GET’ and “POST’. If the value is ‘POST’, then

the record signifies that large amount of data or confidential information

has been sent during the course of browsing activity. Corresponding URL

can also be found to which can show for websites GET or POST methods

were used.

All the tags are separately stored in the database in a tabular manner. A

simple SQL query would be sufficient to retrieve the data.

For example:

{"params":

{

"load_flags":832,

"method":"POST",

"privacy_mode":1,

"upload_id":"0",

"url":https://clientservices.googleapis.com/uma/v2

}

….

https://clientservices.googleapis.com/uma/v2

36

The aforementioned log record has five tags two of which are "method":

"POST" and "url":https://clientservices.googleapis.com/uma/v2. This

information will be shown in the analyser window when asked for.

Algorithm:

Step 1: Taking a single entry from ‘method’ column from the database.

Step 2: If the value of the tag is ‘POST’ increase the value of the variable

which stores the number of ‘POST’ method. Go to step 4. Otherwise go

to Step 3.

Step 3: If the value of the tag is ‘GET’ increase the value of the variable

which stores the number of ‘GET’ method. Go to step 5.

Step 4: If flag indicates that the last entry was POST then add the value

of the ‘url’ tag to a separate array. The URLs stored in this array will be

shown with number of POST methods. Go to step 6.

Step 5: If flag indicates that the last entry was GET then add the value of

the ‘url’ tag to a separate array. The URLs stored in this array will be

shown with number of GET methods.

Step 6: Stop.

4.4.3 Names and content type of downloaded files

During the course of browsing different kinds of files can be downloaded.

Be it audio, video, image etc. The log data distinctly shows the names of

those files and the type of content stored in that.

Procuring this data can keep track of users’ activity, especially in

educational institutions and corporate offices, where maintaining

discipline and decorum is an essential aspect. Unethical activities can

jeopardize the ethics of an institution.

To analyse the log and get this data, an example has been shown:

{"params":

https://clientservices.googleapis.com/uma/v2

37

{"headers":

["HTTP/1.1 200 OK",

"Cache-Control: private",

"Content-Type: image/jpeg; charset=utf-8",

"Server: Microsoft-IIS/8.0",

"Content-Disposition: attachment;

filename=Mount_Elbrus_Mountain_Volcano_in_Russia_4K_Wallp

aper.jpg"

…..

…..

The ‘params’ dictionary in this data has another dictionary in it called

‘headers’. This dictionary has different tags one of which is "Content-

Type:” This tag shows the content type i.e ‘image’ and the extension used

for the file.

The next tag is “Content-Desposition” which has the ‘filename’=<name

of the file downloaded with extension>

As all the information is stored in the ‘header’ tag as a list, the whole data

has been uploaded in the database in a single entry. Firstly the names of

the tags are parsed i.e. ‘Content-Type’ and ‘filemame’. For ‘Content-

Type’, value has been taken until a semicolon (;) has been encountered.

For ‘filename’, data is taken until an inverted comma (“) is encountered.

4.5 Proposed Analyses For Future work

The collected log files consist of almost 60 types of records

corresponding to different event types. Each tag and their values depict

important aspects of activities done on a web browser. On detailed and

efficient analysis, a number of user activity related predictions and

security issues can be detected.

38

Proposed analyses are given below:

➢ Number of downloading events within specified time duration can

be detected.

➢ A list of PEM encoded certificates in the order that they were sent

by the server can be parsed from the log file.

➢ With ‘host’ tag, hostnames associated with a HTTP request can be

found.

➢ By parsing the URLs visited by the users, user preference can be

predicted.

➢ If any content of undefined type is accessed and downloaded, it can

put system security in danger. Any occurrence of this sort can be

detected.

39

Chapter 5:

5. Implementation

5.1 Introduction

Manual analysis of browser log can be a tedious and extremely time

consuming task. The sheer size and amount of data can get too difficult to

handle. A web browser log analyser may serve the purpose of making

these tasks easier, unambiguous and far more efficient.

Any irregularity, unauthorized activity or users’ preferred tasks can be

found using this analyser. Name of the downloaded files, the websites

from which those are being downloaded, whether any content of

unknown type is being downloaded which raise security concerns can be

found. Visualizations can also be implemented after prolonged logging

and analysis of logs.

For the objective of this project, browser log files of Google Chrome

have been used. Log files of other browsers can be used also with

necessary adjustments.

These tabs are shown in the analyser which serves different purposes:

• Upload

• View

• Analyse

5.2 Features of Analyser

Following features have been added to the tool:

5.2.1 Collection and Uploading the Data

The process of acquiring the log files of Google Chrome has been

described earlier. The log files are stored in JSON format. So, those are

40

converted into CSV files first. This allows the developer to understand

the data in a structured manner. The objective of this tab would be to

upload the separate log files in the database. For that purpose the log files

need to be in tab delimited text files. A python program is executed to

store the log file in the database on clicking the upload button of the

analyser. Other log files can be subsequently uploaded by browsing from

the analyser window. The files are uploaded in MySQL database. On

successful upload, a message will show “File uploaded successfully.”

A drop-down menu can also be added to specify the browser whose log

files would be uploaded.

5.2.2 View

“View” button is added to analyser to view the uploaded the log files

from the analyser window. After successfully uploading the files, queries

can be made to view any particular uploaded log file in a tabular manner.

This allows viewing of the structured log files from the analyser window

and not exiting from it to check the structure or data collected in the log

file. Also, to analyse, the user needs to know the column name of the

tables so that clear queries can be made.

Writing queries can be avoided if a drop-down menu is added to the

window with the currently existing log file names. A particular file can be

selected and it will be shown in the analyser window.

5.2.3 Analyse

 This is similar to the “View” feature, only difference is; the desired

records can be retrieved from the database different queries.

MySQL database is being used in this project for storing the data.

Different SQL queries can be incorporated in the python program which

is also being executed for fetching the data. For example, list of

downloaded files with its content type can be searched and shown, or a

particular type of event can be searched which is in correspondence to a

41

“TCP Connect” job; whether the method was ‘GET’ or ‘POST’ and

frequency of occurrences of both the methods can retrieved. Fetched data

can also be stored and used for the purpose of visualisation.

5.2.4 Visualisation

Visualisation is an extremely essential part of data analysis and

subsequent decision making. Graphical representation of analysed data

can better depict the information and inferences can be drawn rather

easily; also it can save time in decision making for a particular kind of

dataset whose analysis and result can be difficult to understand as well.

On this analyser, ‘Visualization’ button be used to draw bar charts of time

versus and kind of record; be it ‘no of files downloaded files’, ‘no of

visits’ for particular websites which can procured with parsed URLs and

timestamps.

It can also show pie charts which would better visualize a certain

comparison. Type of comparisons, although, would be predefined and

shown as options in a drop-down menu present in the visualisation tab.

5.3 Architecture of the Analyser

This tool has a simple architecture which consists of a UI end which

connects to 4 other modules namely ‘Data upload’, ‘Analysis’, ‘View’

and ‘ Visualisation’. These modules can be inter-connected as well for

any task. For example any queries made in Analysis module will show its

results to the user through the View module.

Below these modules lies the database which is probably the most

essential part of the tool. Every query, result, report or visualisation

would be done with the data stored in there.

A schematic diagram has been made to show the architecture of the tool

in the next page.

42

5.4 Technologies Used

For the objective of this project following softwares were used:

• Python 3.7 was used for programming tasks. Python’s UI

development tools were helpful for this purpose. Other packages

related to database were put into use as well.

• MySQL Workbench 8.0 has been used to for storing the data.

5.5 Future Work

In this project, web browser log files of only one web browser have been

used. The process of procuring log files of other web browsers has been

User Interface

Upload View Analysis Visualisation

Database

43

mentioned in previous chapters. Modifications can made on the log

analyser to put log files from different browser and analyse the same in a

singular and well defined way.

Procuring log files from one machine and analysing them won’t be of too

much help. Also, analysing log files of each machine separately may be

time consuming. Obtaining and assimilating log files from all the

machines of an organization will amount to humongous size of data. This

is where the concept of big data comes into practice.

Different aspects of Big Data analysis can enable the system to analyse

the huge data acquired from all the machines of the organization and may

even do so it real time. The data processing method of MapReduce will

be extremely fruitful for the purpose of efficient parsing and analysis.

The MapReduce algorithm contains two important tasks,

namely Map and Reduce. The Map serves the purpose of processing the

input data. Generally the input data is in the form of file or directory(in

JSON file format for Google Chrome) and is stored in the Hadoop file

system (HDFS). The input file is passed to the mapper function line by

line. The mapper processes the data and creates several small chunks of

data in the form of key-value pairs. This can a very useful way of sorting

out and storing the data with name of the tags as their “key”. Processing

time can be reduced by a significant factor using it.The job of the Reduce

stage is to process the data that comes from the mapper. After processing,

it produces a new set of output, which will be stored in the HDFS.

Fig 1: A Schematic diagram of the MapReduce process

44

Acquiring data from all possible sources and storing it centrally is a

challenge. Apache Hadoop can be helpful towards solving this

problem. It is an open-source software that provides usage of a network

of many computers to solve problems involving massive amounts of data

and computation. It provides a software framework for distributed

storage and processing of big data using the MapReduce programming

model.

Fig 2: A high level architecture of Hadoop

5.6 Conclusion

On completion of this project several aspects of web browser log files

have come into notice. Different kinds of data that get stored into log files

and their implications can be used to implement many tasks. Types of

events that take place and their significance, priorities of http requests and

number and point of occurrence of GET and POST methods are easily

available in the log files.

Downloading activities can also be properly monitored with necessary

adjustments in the tool. Whenever any content is being downloaded alert

can be generated centrally in an organization. Undefined content can be

stopped from getting downloaded. A web log analyser can be useful

towards finding users’ inclination towards any content in the internet.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Clustered_file_system
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Programming_model

45

Other useful information such as security concerns and system’s integrity

can be checked using this tool. Proper modifications which can enhance

this analyser’s functionality need to be made and it would be appreciated.

References:

Chapter1:

1. https://en.ryte.com/wiki/Log_File_Analysis

Chapter 2:

1. https://www.techopedia.com/definition/31756/log-analysis

2. https://www.webopedia.com/TERM/L/log_file.html

3. https://en.wikipedia.org/wiki/Log_analysis

4. https://html5rocks.com

Chapter 3:

1. The Chromium Project –“ https://www.chromium.org”

2. https://w3schools.com

Chapter 5:

1. Figure 1: http://www.dummies.com

 2. Figure 2: https://www.dezyre.com

 3. https://www.tutorialspoint.com

https://en.ryte.com/wiki/Log_File_Analysis
https://www.techopedia.com/definition/31756/log-analysis
https://www.webopedia.com/TERM/L/log_file.html
https://en.wikipedia.org/wiki/Log_analysis
https://html5rocks.com/
https://www.chromium.org/
https://w3schools.com/
http://www.dummies.com/
https://www.dezyre.com/
https://www.tutorialspoint.com/

