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Preface 

The work presented in this dissertation is spread over a span of two years. The present work has 

been investigated through in silico studies of quantitative structure-property (QSPR) relationship 

of selected classes of organic pollutants having defined endpoint (KSA and K) towards single and 

multi-walled carbon nanotubes. In silico techniques constitute an integral part of the high 

throughput screening (HTS) methodology for the screening of new chemical entities with 

desirable properties. In silico methods are capable of providing information about the 

physicochemical properties of chemicals and the necessary structural fragments influencing the 

molecular properties. The use of statistical models to predict biological and physicochemical 

properties started with linear regression models developed by Hansch in 1960s. Since the 

appearance of computer-aided structure–activity studies, the term “Quantitative structure-activity 

relationship (QSAR)” has become one of the most popular techniques in medicinal, 

environmental and synthetic chemistry. QSARs represent predictive models derived from 

application of statistical tools correlating biological activity/property of chemicals 

(drugs/toxicants/environmental pollutants) with descriptors representative of molecular structure 

and/or property. 

 

 

Nanotechnology has introduced a new generation of adsorbents like carbon nanotubes (CNTs), 

which have drawn a widespread attention due to their outstanding ability for the removal of 

various inorganic and organic pollutants. The goal of this study was to develop regression-based 

quantitative structure–property relationship (QSPR) models for organic pollutants using only 

easily computable 2D descriptors to explore the key structural features essential for adsorption to 

multi-walled and single-walled CNTs. 

 

Using the molecular features as independent variables and molecular property as dependent 

variable, statistically validated models are developed. The statistically significant models are 

selected for property prediction of untested molecules, which have similar structural features to 

the compounds used for development of models. If the model shows good predictive power then 

the compound with those structural features may show efficient response profile and then only 

the compound may be subjected for subsequent wet laboratory analysis. Thus, the QSPR models 

help to reduce the number of compounds to be synthesized and tested. 

In this present dissertation, we have developed predictive models for adsorption coefficient using 

easily computable 2D descriptors. The models developed have showed acceptable statistical 

significance. The models developed were validated rigorously based on internal and external 

validation strategies. The following analyses have been performed in this dissertation: 
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Study 1: Predictive quantitative structure–property relationship (QSPR) modeling for adsorption 

of organic pollutants by carbon nanotubes (CNTs). 

Study 2: Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals 

(SOCs) by SWCNTs. 

 

The work has been presented in this dissertation under the following sections: 

 

Chapter 1 : Introduction 

Chapter 2 : Present work 

Chapter 3 : Materials and methods 

Chapter 4 : Results and discussions 

Chapter 5 : Conclusion 

Chapter 6 : References 

Appendix : Reprints 
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              1. INTRODUCTION 
 

Chemistry is one of the fundamental natural sciences affecting a wide variety of processes. In the 

other words, we are controlled by a multitude of chemical processes from birth to death. The 

main objective of scientific discipline lies in exploration of the systematic knowledge of nature 

and its application aid the human exertion. Different kinds of chemicals influence a large part of 

human endeavor spanning from laboratory experiments to industrial processes, including 

household applications. Hence, considering the importance of chemicals from our daily life to 

complex industrial operations, it will be important to gather suitable knowledge about the 

chemicals to efficiently modify the behavior of the chemicals (Roy et. al., 2015). 

 

Quantification of chemistry and incorporation of mathematical algorithms in chemical sciences 

allows the development of a logical basis to define a chemistry-activity/property/toxicity 

correlation. The aftermath of chemical interactions producing the pharmacological effects of 

chemicals can be understood from such analysis. Although it sounds simple, such correlation 

analysis can be amplified in a very broad way to solve complex problems spanning from 

prediction of drug action in human body to the assessment of environmental hazard produced by 

chemicals. 

 

Hazardous effect produced by chemicals has been a serious issue of concern since the past. A 

cherished goal of chemists therefore lies in designing novel methods to control the harmful effect 

of hazardous chemicals towards the environment. Nanomaterials are specifically used for 

pollution management because they contain high surface area and possess high adsorption 

affinity towards the organic contaminants, and they can be modified in several ways to increase 

their selectivity towards specific target pollutants (Chen et al., 2007).  Among them carbon 

nanotubes (CNT) have been investigated widely as alternative adsorbents for the organic 

compounds (OCs) removal from the environment.  

 

The chemistry of compounds provides a wide opportunity to scientists for the design and 

development of purpose specific and harmless novel strategies. Rational strategies are always 

acceptable in this regard to minimize the amount of biological assessments and thereby aid the 
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development of potent analogues employing less resource. Quantitative structure−activity 

relationship (QSAR) studies present such an opportunity in exploring the encoded chemical 

information of molecules through the development of predictive mathematical models using 

selected experimental data (Dearden., 2003).  

 

1.1. Quantitative structure-activity relationship (QSAR) analysis 

Development of suitable techniques which allow modification of the chemical features of 

molecules is very useful not only in the field of chemistry but also in other branches of natural 

sciences. Quantitative structure-activity relationship (QSAR) modeling is one such technique 

that allows the interdisciplinary exploration of knowledge on compounds covering the aspects of 

chemistry, physics, biology, and toxicology (Lowis, 1997). Quantitative structure-activity 

relationship (QSAR) modeling, originally evolved from physical organic chemistry, has seen 

wide application in the screening of chemicals for their target property thus helping in the 

prioritization of experimental testing and providing excellent statistical filtering tools of the 

structure–activity/property relationships (QSAR/QSPR). QSAR has now evolved as a well-

recognized tool for application in chemistry when a biological activity or property or toxicity is 

the end point of the study for a series of chemicals of certain degree of structural similarity. 

QSAR modeling can serve as a primary screening technique before different intensive screening 

methodologies can be performed, such as in vivo in vitro toxicity determination and molecular 

docking. QSAR is directly related to the molecular structures of a chemical which correlate with 

physicochemical, biological or toxicological properties of molecules using various numerical 

values associated with experimentally derived parameters, which are known as descriptors. It 

offers an in silico tool for the development of predictive models towards various activity and 

property endpoints of a series of chemicals using the response data that have been determined 

through experiments and molecular structure information derived computationally or sometimes 

from experiments. Once developed and validated, such models may be used for prediction of the 

response/endpoint(s) for new and untested chemicals and also for obtaining a mechanistic 

interpretation. The naming of QSAR study depends on type of response or the endpoint used for 

a modeling and is of three classes, namely quantitative structure–property/activity/toxicity 

relationship (QSPR/QSAR/QSTR) which are composed of physicochemical property, biological 

activity, and toxicological data, respectively. QSPR, i.e., quantitative structure–property 
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relationship modeling covers all the area related to biological, toxicological as well as 

physicochemical behavior. The term QSAR is used to denote all such study. QSAR is 

mathematically represented as follows: 

 

                            Biological activity= f (Chemical attributes)                                 1.1 

 

Chemical attribute is use here to denote the fundamental information of the chemical which can 

control the response. The main objective is to develop a mathematical correlation, these 

attributes are precise quantitative chemical information which are derived from experimental 

analysis or theoretical algorithm that analyze chemistry of the molecule. Physicochemical 

properties like melting point, boiling point and surface tension are often explain the behavioral 

manifestation of the chemical species. Hence, the chemical attributes in Eq. (1.1) is often 

described in terms of the information obtained from the chemical structure and the 

physicochemical information usually derived using experimental techniques represent the 

following expression (Katritzky et al., 2002). 

 

                     Response=f (chemical structure, physicochemical property)                           1.2 

 

When we consider a series of chemical information in presence /absence of physicochemical 

property, response specific QSAR equation can be expressed in following manner: 

 

                              𝑌 = 𝑎0 + 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 +⋯+ 𝑎𝑛𝑋𝑛                                         1.3 

 

In this expression, Y is the dependent variable represent the response i.e., 

activity/property/toxicity being modeled, X1, X2, …Xn are the independent variables denoting 

different structural features or physicochemical properties in the form of numerical quantities or 

descriptors and a1, a2,…, an are the contributions/coefficients of individual descriptors to the 

response, and  a0 is a constant. 
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1.1.1. Objectives of QSAR 

The principal objective of any QSAR model is to develop a rational strategy towards the design 

of new molecule with desired activity. Behavioral manifestation of chemicals is largely depends 

on structural and physicochemical parameters. Even a minute change in structure can be a cause 

to a significant change in its pharmacological/toxicological activity. So chemistry is a crucial 

factor for behavioral determination of a compound. 

The principle objectives of QSAR analysis are: 

1. Prediction of new analogs of compounds with better property. 

2. Better understanding and exploration of the modes of actions. 

3. Optimization of the lead compound with decreased toxicity.  

4. Reduction of the cost, time and manpower requirement by developing of more effective 

compounds using a scientifically less exhaustive approach. 

To achieve the aforementioned objectives, it is necessary to have a detailed knowledge on the 

following aspects:  

(i) Detailed knowledge of the mode of action of the molecules. 

(ii) Various factors controlling the experimental condition of the molecules. 

(iii) A thorough examination of molecular structures and their properties. 

 

Quantitative structure-activity relationship is an interdisciplinary study of chemistry, biology, 

and statistics. By the prediction of the essential structural requirements needed for obtaining a 

molecule with optimized activity/toxicity/property, QSAR analysis provides a good platform for 

the synthesis of relatively lesser number of chemicals with improved activity toxicity/property of 

interest (Tong et al., 2005). 

1.1.2. Concept of Descriptors 

The predictor variables used in a QSAR analysis are also known as “descriptors” or molecular 

descriptors. Molecular descriptors are terms that characterize specific information about a 

studied molecule. They are the “numerical values associated with the chemical constitution for 

correlation of chemical structure with various physical properties, chemical reactivity, or 

biological activity (Van de Waterbeemd et al., 1997; Randic, 1997). In other words, the modeled 

response (activity/property/toxicity) is represented as a function of quantitative values of 

structural features or properties that are termed as descriptors for a QSAR model. 
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Cheminformatics methods depend on the generation of chemical reference spaces into which 

new chemical entities are predictable by the developed QSAR model. The definition of chemical 

spaces significantly depends on the use of computational descriptors of studied molecular 

structure, physical or chemical properties, or specific features.  

 

             Response (activity/property/toxicity) = f (information in the form of chemical structure 

or property) = f (descriptors)                                    (1.4) 

 

The type of descriptors used and the extent to which they can encode the structural features of 

the molecules that are correlated to the response are critical determinants of the quality of any 

QSAR model. The descriptors may be physicochemical (hydrophobic, steric, or electronic), 

structural (based on frequency of occurrence of a substructure), topological, electronic (based on 

molecular orbital calculations), geometric (based on a molecular surface area calculation), or 

simple indicator parameters (dummy variables). 

An ideal descriptor should possess the following features for the construction of a reliable QSAR 

model: 

1. A descriptor should be relevant to a broad class of compounds. 

2. A descriptor must be correlated with the studied biological responses while illustrating 

insignificant correlation with other descriptors. 

3. Calculation of the descriptor should be fast and independent of experimental properties. 

4. A descriptor should produce different values for structurally dissimilar molecules, even if the 

structural differences are little. 

5. A descriptor should possess physical interpretability to determine the query features for the 

studied compounds. 

1.1.3. Types of Descriptors 

Descriptors can be classified in multiple ways depending on the method of their computation or 

determination: physicochemical (hydrophobic, steric, or electronic), structural (frequency of 

occurrence of a substructure), topological, electronic (molecular orbital calculations), geometric 

(molecular surface area calculation), or simple indicator parameters (dummy variables). In a 

broader perspective, descriptors (specifically, physicochemical descriptors) can be classified into 

two major groups: (1) substituent constants and (2) whole molecular descriptors (Todeschini  and 
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Consonni, 2008; Livingstone, 2000). Substituent constants are basically physicochemical 

descriptors which are designed on the basis of factors, which govern the physicochemical 

properties of chemical entities. Whole molecular descriptors are expansions of the substituent 

constant approach, but many of them are also derived from experimental approaches. In QSAR 

study most commonly used whole molecular descriptors are octanol-water partition coefficient, 

acidic dissociation constant (pKa), and van der Waals volume (Vw). 

The descriptors can be derived experimentally as well as theoretically. The theoretical 

descriptors are more preferable because chances of error are less. The brief description of 

theoretical and experimental descriptor is as follows, 

Experimental descriptors: Experimental descriptor generally represents various 

physicochemical properties. During experimental determination care should be taken to decrease 

the chances of error. These are basically the “whole molecular descriptors” forming the inherent 

chemical nature of the molecules. Examples of different experimental descriptors are  octanol-

water partition coefficient i.e., logKo/w, melting point, boiling point, pKa values, rate of 

reaction, molar refractivity etc. In the field of QSAR studies partition coefficient is one of the 

most widely used descriptor.  

Theoretical descriptors: Theoretical descriptors are computationally determined chemical 

features which are calculated from mathematical algorithm. Such descriptors are computed for 

the whole molecule and also for the predefined fragments. In QSAR modeling paradigm, 

development of different theoretical descriptors introduce a momentum. In early days 

mathematical graphs are used in solving the problems associated with chemical issues. Graph 

theory was also used for solving  different mathematical problems. In 1736 Eluer has first 

introduced graph theory for solving “Königsberg Bridge problem”. In 1959 William Cullen 

(Crosland, 1959) first used the concept of chemical graph and prepare affinity diagram for 

determining chemical forces. Later William Higgins also used such diagram for designating the 

forces which existing between two atoms. In nineteenth century, Dalton used “ball and stick” 

models for molecular representation where atoms are represent as ball and bonding forces are 

resemble as a stick. Cayley is known for denoting the alkane using kenograms (tree graphs) 

while different conditions required for the development of a chemical graph was proposed by 

Sylvester. The presentation of structural formula of covalent compounds using graphs is termed 

as ‘molecular graphs’ or ‘constitutional graphs’. Here, atoms are known as ‘vertices’ and bonds 
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as ‘edges’. Other forms of graphs in the field of chemistry include reaction graph, synthon graph 

etc. The graph theory finds its importance during the development of the concept of isomerism 

which allows the existence of different constitutional isomers. With progress of graphical 

representation the concept of topology came in consideration. Topology is basically represented 

as the minimum distance between two connecting objects. Encoding of chemical information in 

terms of numbers is determined through the concept of matrix. The numbers representing matrix 

elements were derived from graph theoretical connectivity of chemical structures which upon 

treatment on a suitable algorithmic operator yielded descriptors. The topological indices, i.e., the 

descriptors derived using topological information of molecules can encode essential chemical 

information defining size, shape, branchedness, symmetry, cyclicity etc. In 1947 Wiener and 

Platt started the journey of theoretical descriptor by introducing Wiener index and Platt number 

respectively by developing predictive QSAR models on boiling point of hydrocarbons. The 

Wiener index and Platt number both are topological descriptors which are derived from graph 

theoretical approach. Randić, Balaban, Kier and Hall, Gutman, Trinajstić, Zagreb contributes a 

valuable research on the graph theoretical metrics and topological descriptors which gave a 

momentum to the research of QSAR modeling. In 1970s quantum chemical descriptor were first 

used to develop predictive QSAR model. The names of Pauling, Coulson, Sanderson, Fukui and 

Mulliken can be mentioned in this context (Todeschini and Consonni, 2009) for their notable 

contribution in exploring electronic distribution, charge, chemical bonding etc. In the mid-1980s 

three dimensional chemical features in the topological formalism has been came in light. This 

will open the new path for various three dimensional spatial descriptors as well as for 3D-QSAR. 

Shadow indices, charged partial surface area descriptors, weighted holistic invariant molecular 

(WHIM) descriptors, gravitational indices, Eigen Value (EVA) descriptors, 3D-MoRSE 

descriptors, EEVA descriptors, and GEometry, Topology, and Atom-Weights AssemblY 

(GETAWAY) descriptors etc. represent the 3D-descriptors. 

1.1.4. Classification of QSAR analysis  

QSAR analysis is basically categorized based on their nature of endpoint. QSAR analysis can be 

a QSAR/QSPR/QSTR model depending on the nature of response variable to be biological 

activity, physicochemical property, and toxicity respectively. QSAR can be categorized based on 

dimensionality of the predictor variables such as 0D, 1D, 2D, 3D etc. Classifications of different 

QSAR techniques based on dimensionality are depicted in Fig.1. Apart from that, QSAR 
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analysis based on the type of chemicals used for modeling as for example, modeling of 

nonmaterial is named as quantitative nanostructure-activity relationship (QNAR) analysis. 

Sometimes QSAR methods are also classified into following two categories, such as Linear 

methods [Linear regression (LR), multiple linear regression (MLR), partial least squares (PLS), 

and principal component analysis/regression (PCA/ PCR)] and Nonlinear methods [Artificial 

neural networks (ANN), k-nearest neighbors (kNN), and Bayesian neural nets]. 

 

Fig. 1. Classification of QSAR analysis based on dimensionality of the predictor variables (Das, 

2016). 

1.1.5. Application of QSAR studies 

Chemicals are the essential part of human necessity from laboratory to industrial processes as 

well as household usage. The application of QSAR modeling can be broadly viewed less than 

three major areas namely biological activity, predictive toxicity, and physicochemical property. 

Modeling of biological activity includes design and discovery of drugs for recovery in various 

diseases and disorders like microbial infection, viral infection, cardiovascular disorder, hepatic 
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damage, cancer, disease of the central nervous system, cholinergic system, adrenergic system 

etc. The toxicological modeling deals with all type of toxic chemicals including drugs, 

pharmaceuticals and industrial chemicals. QSAR studies also allows assessing chemical hazards 

towards the living ecosystem i.e., environmental toxicity. , QSAR has also been found to be 

beneficial in agricultural sciences where toxicity potential of chemicals is an essential feature, 

e.g., fungicidal and pesticidal activity. Modeling of property of chemicals encircles a wide field 

of industrial process chemicals to physicochemical properties of drugs. Hence, we can see that 

QSAR modeling can be a very good option to predict chemical response using limited resources 

in any prospective discipline. Needless to say such studies are not only helpful to the users, but 

also beneficial in making crucial regulatory decisions like biological testing using animal 

models. In the recent years, QSAR modeling have been observed to be useful for modeling 

response of novel chemicals like ionic liquids, nanoparticles etc., increasing the area of 

application manifold. Application of the QSAR technique in combination with other in silico 

methods has been very fruitful in the drug-discovery paradigm, and some representative 

examples of such designed drug molecules which were later approved by the US Food and Drug 

Administration (US-FDA) as drug entities are presented in Fig. 2. 
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Fig. 2.  Examples of drugs designed and developed using different in silico techniques including 

QSAR modeling analysis and later approved by the US Food and Drug Administration (US-

FDA) as drug entities (Roy et al., 2015). 

 

1.2. Role of Carbon nanotubes as a nanomaterial in Pollution management 

Fast industrialization and development of agricultural production make the water resources full 

of heavy metals. Waste water discharge from domestic, industrial or agricultural sources 

produces a wide range of contaminants and has drawn major concern worldwide since they 

reduce the quality of water. The presence of heavy metals in water resources is a serious issue 

for both environment and ecosystem. To make the water as well as environment free from all 

kind of toxic contaminants several traditional techniques such as reverse osmosis, chemical 

precipitation, filtration, ion exchange, coagulation and adsorption are used.  (Krishnan et al., 

1998). Among all of this process adsorption is an efficient technique because it is low cost 

process and easy to perform. Nanomaterials are one of the most efficient and actively used 

adsorbent because of their high surface area and ease of synthesis. Carbon nanotubes are such 
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nanomaterials posses’ high surface area with light mass density and shows interaction towards 

toxic environmental contaminants. (Yu et al., 2000; Kang et al., 2006). The contaminants found 

in waste water are heavy metal ions which are non biodegradable, highly toxic and carcinogenic 

causing accumulative poisoning, cancer and nervous system damage. CNTs show wider 

adsorption affinity for such heavy metals as well as environmental pollutants including organic 

materials and radioactive elements (Ong et al., 2010).  

Carbon nanotubes were first discovered by Lijima in 1991 which was a Multi-Walled carbon 

nanotubes (Iijima, 1991). Benning and co-workers discovered C60 fullerene and single wall 

carbon nanotubes in 1992. (Benning et al., 1992). CNTs are one of the most studied 

nanomaterials as they are building blocks of nanotechnology and have gained a great deal of 

attention in research field (Wang et al., 2017). Due to its extraordinary physical, chemical and 

electronic properties, a wide variety of applications has been proposed in different fields like 

nanotechnology, electronic, optics and in the fields of science and technology. CNTs have a 

great potential for application in various environmental field such as waste water treatment, air 

pollution monitoring, biotechnologies, renewable energy technologies, super capacitors and 

green nanocomposites (Ong et al., 2010). 

1.2.1. Chemistry of Carbon nanotubes 

CNTs are allotropes of carbon, seamless cylinder or tube shaped material having a diameter 

measuring on the nanometer scale. Carbon nanotubes consist of graphene sheets, the edges of the 

sheet joint together to form a seamless cylinder. Graphene is known as 2D single layer of 

graphite. Carbon atoms are hexagonally arranged in lattice structure of graphene as shown in 

Fig. 3. The 2s and 2p atomic orbital of isolated single carbon atom consist of four valence 

electrons. In case of graphene, the 2s, 2px and 2py atomic orbitals are hybridized and converted 

into three sp2 orbitals. Graphene is stronger than diamond because a sp2 bond in graphene is 

stronger than sp3 bonds in diamond (Kaushik and Majumder, 2015). 
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Fig. 3. Basic (a) hexagonal and (b) orbital structure of grapheme (Kaushik and Majumder, 2015). 

 

1.2.2. Types of CNTs  

CNTs can be divided into three categories on the basis of the number of tubes present in the 

CNTs.   These are described below. 

(a) Single-walled CNTs: Single-walled CNTs (SWCNTs) are made of a single graphene sheet 

rolled upon itself with a diameter of 1–2 nm. The SWNTs were reported to exist in bundles, to 

have fullerene-like hemispheric caps formed at the end of the tubes (Liew et al., 2016), and to 

have diameters ranging from 0.7 to 1.6 nm. Compared with carbon nanotubes (CNTs) having 

multiple walls, SWNTs were predicted to exhibit superior properties due to their strong one-

dimensionality and the crystalline perfection of their structure. 

(b) Double-walled CNTs: These nanotubes are made of two concentric carbon nanotubes in 

which the outer tube encloses the inner tube.  

(c) Multi-walled CNTs: MWCNTs consist of multiple layers of graphene rolled upon itself with 

diameters ranging from 2 to 50 nm depending on the number of graphene tubes. These tubes 

have an approximate inter-layer distance of 0.34 nm. Multi-walled carbon nanotubes 

(MWCNTs) consist of multiple rolled layers (concentric tubes) of graphene. There are two 

models that can be used to describe the structures of multi-walled nanotubes.  According to 

Russian Doll model, sheets of graphite are arranged in concentric cylinders, e.g., a (0, 8) single-

walled carbon nanotube (SWCNT) within a larger (0,17) single-walled nanotube. Apart from that 

another model known as Parchment model sated that, a single sheet of graphite is rolled in 

around itself, resembling a scroll of parchment or a rolled newspaper. The interlayer distance in 

https://en.wikipedia.org/wiki/Matryoshka_doll
https://en.wikipedia.org/wiki/Scroll_(parchment)
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multi-walled nanotubes is close to the distance between graphene layers in graphite, 

approximately 3.4 Å. The Russian Doll structure is observed more commonly. Its individual 

shells can be described as SWNTs, which can be metallic or semiconducting. Because of 

statistical probability and restrictions on the relative diameters of the individual tubes, one of the 

shells, and thus the whole MWNT, is usually a zero-gap metal (Das, 2013). 

 

1.2.2. Properties of Carbon nanotubes 

CNTs reportedly have extremely high surface areas, large aspect ratios, and remarkably high 

mechanical strength. The tensile strength of CNTs is 100 times greater than that of steel, and the 

electrical and thermal conductivities approach those of copper (Ebbesen et al., 1996). CNTs are 

good incorporating agents due to their unique electrical, mechanical and thermal properties 

(Khalid
 
and Ibrahim, 2013). 

 

(a) Electronic nature of CNTs: CNTs show good electrical properties in chiral forms. If we 

consider the bonding of CNTs carbon atoms are arranged in a hexagonal lattice, each carbon 

atom is covalently bonded to three neighbor carbons via sp2 molecular orbitals. Thus, the fourth 

valence electron remains free in each unit, and these free electrons are delocalized over all atoms 

and contribute to the electrical nature of CNTs. Thus, CNTs can be conducting or semi-

conducting types depending on the type of chirality (Hahm et al., 2011; Saito et al., 1992). 

SWNTs, due to the ballistic nature of electron transport, can be described as quantum wires. On 

the other hand, transport in MWNTs is found to be fairly diffusive or quasi-ballistic. CNTs, due 

to their electronic nature, can be used in transistors and other switching applications in advanced 

electronics. The most recent application of nanotubes was as an emitter. 

(b) Mechanical properties of CNTs: CNTs have excellent potential as they are the stiffest and 

toughest structure ever synthesized by scientists. The literature suggests that CNTs are very 

strong materials, especially in the axial direction. The Young’s modulus ranges from 270 to 950 

GPa, while the tensile strength is also very high, in the range of 11–63 GPa. Falvo et al. (1997) 

observed that MWNTs could be bent at sharp angles without undergoing any structural 

fracturing. Sinnot et al. (1998) also done theoretical work on the mechanical properties of CNTs 

and found that SWCNTs could exhibit a Young’s modulus as high as that of diamond. 
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(c) Thermal properties of CNTs: The incorporation of pristine and functionalized nanotubes to 

different materials can double the thermal conductivity for a loading of only 1%, showing that 

nanotubes composite materials may be useful for thermal management applications in industries. 

Kim et al. measured the thermal conductivity of individual MWNTs and found it to be 3,000 

W/K (higher than that of graphite) at room temperature. Beside this they also determined that the 

value is two orders higher than the magnitude those obtained for bulk MWNTs. A similar study 

was carried for SWCNTs, with this result being greater than 200 W/m K for SWNTs (Yu et al., 

2005). Thermal properties are depends on the atomic arrangement, the diameter and length of the 

tubes, the number of structural defects and the morphology, as well as the presence of impurities 

in the CNTs (Kasuya et al., 1996). 

(d) Adsorption property of CNTs: The outer surface of CNTs provides evenly distributed 

hydrophobic sites creating strong interaction with organic chemicals. The main adsorption 

mechanism of CNTs include π-π interactions (between π systems on CNT surfaces and organic 

molecules with C=C double bonds), hydrogen bonds (because of the functional groups on CNT 

surfaces), and electrostatic interactions (because of the charged CNT surface).The adsorption 

phenomena highly depends on the physical properties of carbon nanotubes, types of functional 

group present on it and the morphology of CNTs. The adsorption mechanism also depends on the 

molecular morphology and type of functional group present in organic chemicals (OCs). On the 

other hand CNTs are effective adsorbents for organic chemicals in solid phase extraction and 

water treatment as compared to C18 (Liu et al., 2004) and activated carbon (Su and Lu, 2007; 

Wang et al., 2007). Thus, adsorption data of various OCs by CNTs may vary with different 

factors and requires experimental measurement for proper application (Pan and Xing, 2008). 

1.2.3. Application of carbon nanotubes 

Nanotechnology is one of the latest and the most developed technologies, presenting many 

advantages and benefits for new materials with significantly improved properties (Kaushik and 

Majumder, 2015). Nanotechnology can be used in different applications in various fields, in-

cluding nano-medicine, energy, the environment, and in sensors (NANOSAFE 2008. Available 

from: http://www.nanosafe2008. org). Although the fields of nanotechnology are vast and new 

materials come into use regularly, the potential of CNTs is most promising. Since their discovery 

by Iijima (Iijima, 1991) in 1991, CNTs are the most rapidly growing nanomaterials in the field of 

nanotechnology due to their various applications. Many investigators and researchers have 
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dedicated much effort to the creation of novel properties and to expanding the number of novel 

applications in diverse fields, from materials science, medicine, electronics and energy storage, 

with many studies focusing on nanotechnology and the use of CNTs as fillers (Helland et al., 

2007). More attractive applications of CNTs can be achieved through the use of CNTs for 

applications that require conductivity and a high absorption capacity and for the creation of high-

strength composites, fuel cells, energy conversion devices, field-emission devices, hydrogen 

storage devices, and semiconductor devices (Baughman et al., 2002; Cao et al., 2001). 

Wastewater treatment by CNTs is also a rapidly growing field for those who are interested in 

adsorption studies. The major problem associated with CNTs is their high cost and nonrenewable 

characteristic. At present, special efforts are in progress to develop certain preparation methods 

for CNTs which minimize their cost. Some of the very important and promising applications of 

CNTs are discussed below in detail: 

(a) Air pollution filter: CNTs have adsorption capacity and large specific area therefore used as 

air filter material. CNT membranes can successfully filter carbon dioxide from emissions of 

different factories and industries. 

 (b) Water filter: CNT membranes also used for water filtration. It can be used to make the 

distillation process more convenient and economical. These thin tubes block the large particles 

and allow the smaller one to pass through CNTs. 

 (c) Chemical Nanowires: The CNTs finds their applications in nanowire manufacturing using 

materials such as gold, zinc oxide, gallium, arsenide, etc. The gold based CNT nanowires are 

used for hydrogen sulfide (H2S) detection. The zinc oxide (ZnO) based CNT nanowires can be 

used for light emitting devices. 

(d) Sensors: CNT based sensors can be used for detection of temperature, air pressure, chemical 

gases (such as carbon monoxide, ammonia), molecular pressure, strain, etc. The working 

principle of these sensors is mainly dependent on the generation of current/voltage. The electric 

current is generated by the flow of free charged carrier induced on any material.  

(e) Loudspeaker: CNTs also finds their applications in loudspeakers manufacturing. Such a 

loudspeaker is able to produce sound having frequency similar to the sound of lightening 

producing thunder. 
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1.3. Role of   predictive QSAR models on the adsorption of CNTs 

As we can see that CNTs are associated with considerable  adsorption affinity, explicit 

assessment of  environmental pollutants (organic materials, heavy metal ions and radioactive 

elements) is  necessary  to evaluate the adsorption property of both SWCNTs and MWCNTs. 

However, considering a sufficient number of such chemicals (pesticides, herbicides and 

fungicides) synthesized in factories and industries, it will be impracticable to perform an 

exhaustive testing of chemical hazard. Thus, alternative strategies using limited experimental 

data can be of much use. The predictive QSAR modeling paradigm investigates the chemical 

features of the compounds responsible for their high adsorption towards CNTs. Apart from that, 

this work provides an understanding of the important structural requirements or essential 

molecular properties and the requisite features of molecules that is important to increase or 

decrease the adsorption of organic contaminants. The developed models could be useful as 

preliminary support tools for the identification and prioritization of new potential organic 

pollutants among already existing chemicals as well as ‘‘screening prior to synthesis’’ 

procedures to avoid the production, and consequent release into the environment, of new organic 

pollutants. The models provide an important guidance for the chemist to increase the efficient 

application of CNTs which may be useful for reducing the environmental pollution. Recent 

studies have reported predictive QSAR models on various physicochemical properties of organic 

chemicals towards CNTs. Modeling physicochemical properties enables the design and 

development of purpose specific efficient analogues, while models property response allows the 

user to capture specific information on the adsorption coefficient. However, considering the 

scope of this dissertation we would like to present an account on some of the representative 

published QSAR models on adsorption of chemicals onto CNTs.  

Hassanzadeh et al., (2015) developed a QSPR approach based on whole space GA-RBFN 

(wsGA-RBFN) and applied to predict the adsorption coefficients (logk), of 40 small molecules 

on the surface of multi-walled carbon nanotubes (MWCNTs). In their investigation the authors 

have used, a combination of RBFN and GA for QSPR studies of adsorption of OCs on MWCNTs 

surface. RBFN is used to construct QSPR model and GA is used to optimize the numerical 

values of RBFN centers (Hassanzadeh et  al., 2015). 
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Wang et al., (2013) developed 3D-QSPR model for adsorption of aromatic compounds by carbon 

nanotubes based on physicochemical properties of adsorbed compounds and compared MLR, 

ANN and support vector machine (SVM) methods (Wang et  al., 2013). 

Rahimi-Nasrabadi and coworkers (2015) reported a predictive QSPR model using stepwise 

multiple linear regression (MLR) technique to examine the adsorption property of aromatic 

chemicals by CNTs. The authors have reported that  molar volume and hydrogen bond accepting 

ability were most influencing factors required for good the adsorption of the aromatic 

compounds (Rahimi-Nasrabadi et al., 2015). 

In another study, Apul et al., used 29 aromatic compounds to develop predictive models with 

multiple linear regression analysis. They used both QSAR and LSER models for adsorption of 

organic contaminants by multi-walled carbon nanotubes (MWCNTs).They also stated that, at 

higher equilibrium concentrations, hydrogen bond donating (A) and hydrogen bond accepting 

(B) terms play important role on  the adsorption coefficient values of the compounds (Apul et al., 

2012). 

Recently, Ahmadi and Akbari used Monte Carlo method to investigate, quantitative structure–

property relationship (QSPR) modelling of adsorption coefficients of 69 aromatic compounds on 

multi-wall carbon nanotubes (MWCNTs) (Ahmadi and Akbari, 2018). The authors used CORAL 

software descriptors for the modelling of the surface area normalized adsorption coefficients of 

small organic compounds on MWCNTs. 

Ding et al., used linear solvation energy relationship (LSER) method for prediction of the 

adsorption coefficient (K) of synthetic organic compounds (SOCs) on single-walled carbon 

nanotubes (SWCNTs). They used a total of 40 compounds for their study. The results portrayed 

major contribution Hydrogen bond donating interaction (bB) and cavity formation and dispersion 

interactions (vV) were controlling the adsorption of SOCs onto SWCNTs (Ding et al., 2015). 

Another study on single-walled carbon nanotubes (SWCNTs) for predicting adsorption 

equilibrium coefficients (logK) of organic compounds was done by Wang et al., (2019) where 

the QSAR models were developed by using Multiple linear regression (MLR) and  support 

vector machine (SVM) algorithms. They also stated that, the adsorption of organic compounds 

toward SWCNTs is mainly determined by van der Waals forces and hydrophobic interactions 

(Wang et al., 2019). 
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The Quantitative Ion Character–Activity Relationship (QICAR) method was used by 

Salahinejada and Zolfonounb for correlating metal ionic characteristics with the maximum 

adsorption capacity (qmax) of multi-walled carbon for heavy metals.  They have used  genetic  

algorithm, and partial least squares (PLS) regression for model development. Furthermore, 

electronegativity, ionic radius and atomic number of the heavy metal ions plays important role 

on the adsorption of multi-walled carbon nanotubes (MWCNTs) (Salahinejada and Zolfonounb, 

2018). 

Liu et al., reported a predictive quantitative structure–activity relationship (QSAR) model to 

predict the adsorption of 25 simple benzene derivatives on CNTs, and evaluate the interaction 

between molecule–SWCNTs by density functional theory (DFT) calculations. The authors also 

stated that, molecules are interacted with SWCNTs through π-π stacking force. The possible 

mechanism for π-π stacking interaction is generally of two types, i.e., indirectly affecting p–p 

stacking by altering the electron density of the benzene ring and directly interacting with the 

nanotube surface (Liu et al., 2014). 

In another study, Lata compares the predictive ability of a LSER model for adsorption of OCs by 

single-walled CNTs (SWCNTs) with a developed QSAR model with using quantum-mechanical 

descriptors. Further the proposed models were used to predict the adsorption of agrochemicals 

such as insecticides, pesticides, herbicides, as well as adsorption of endocrine disruptors and 

biomolecules such as nucleobases and steroid hormones. In addition to that, the mean 

polarizability of the compounds was reported to be a key quantum-mechanical factor influencing 

the adsorption property of organic compounds. 
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2. PRESENT   WORK 
 

The rapid industrial growth leads to an increase in the demand for new inventions and 

technologies for the benefit of human beings. New chemicals have been introduced for various 

purposes, which can, however, be a major threat for humans and animals (Latkar and 

Chakrabarti, 1994). A noticeable amount of organic pollutants is released into the environment 

via various routes like burning of fossil fuels, wastes from incineration, exhausts from 

automobiles, agricultural processes and industrial sectors. The disposals of the by-products from 

the various industries are a challenging job for the environmentalists and for the people of 

industries. The major problem with pollutants is their effective and safe disposal without 

affecting the environment further adversely. The organic pollutants (phenols, cresols, alkyl 

benzene sulfonates, nitro chlorobenzene, chlorinated paraffins, butadiene, synthetic dyes, 

insecticides, fungicides and pesticides etc.) accumulate in food chain and persist in nature and 

possess significant threat to the environment (Garg et al., 2007; Randall et al., 1974; Ferner, 

2001; Lu et al., 2015). 

Recently, nanomaterials are used for pollution management, because they contain high surface 

area, high adsorption affinity towards the organic contaminants, and they can be modified in 

several ways to increase their selectivity towards specific target pollutants (Chen et al., 2007). 

Carbon nanotubes (CNTs) are such type of nanomaterials, which have recently gained special 

attention from the researchers due to their smaller size, large specific surface area, hollow and 

layered structure, responsible for their extraordinary adsorption property (Khani and Moradi, 

2013; Long and Yang, 2001). 

In the present work, diverse organic chemicals with defined adsorption property have been 

modeled using defined chemometric tool. The compounds modeled in this work are summarized 

in table 1 and table 2 and derived from the literature (Chayawan, 2016; Ding et al., 2016). We 

have used only easily predictable 2D descriptors for QSPR model development. For the 

development of QSAR model, the response values (KSA and K) were expressed in logarithmic 

scale. The QSAR models developed here provide quantitative insight regarding the essential 
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structural attributes of the different classes of molecules imparting increased adsorption 

coefficient value to the molecules. It is known that activity depends solely upon the basic 

physicochemical properties and structural features of the compounds, hence the use of 2D 

descriptors helps in finding suitable physicochemical characteristics such as electronegativity, 

unsaturation, bulk of the compound and hydrogen bonding properties, hydrophobic surface of the 

molecules, molecular shape and degree of branching etc. Different chemometric tools were 

employed for determining the correlation of the various types of descriptors and the response.  

Chemometric tools like stepwise regression, multiple linear regression (MLR), partial least 

squares (PLS) have been used to establish relation between the various descriptors and the 

respective activity. The models developed were validated rigorously based on both internal, and 

external validation strategies. Subsequently, the applicability domain  of different models were 

also performed to check either models are able to predict new set of data of similar class or not. 

2.1. Study 1: Dataset 1 

 

 Nanotechnology has introduced to the environmentalists a new generation of adsorbents like 

carbon nanotubes (CNTs) which have drawn a widespread attention due to their outstanding 

ability for the removal of various inorganic and organic pollutants. The goal of this study was to 

develop regression-based quantitative structure-property relationship (QSPR) models for organic 

pollutants and organic solvents using only easily computable 2D descriptors to explore the key 

structural features essential for adsorption to multi-walled CNTs. 

Among the various nanomaterials adsorbents, carbon nanotubes (CNTs) has been investigated 

deeply as they have a large surface area to volume ratio, inertness towards chemicals, light mass 

density, porous structure, great physical and chemical properties, small diameter, extraordinary 

optical and electrical properties, high tensile strength and has efficient affinity towards 

pollutants. The possibility of the surface modification with different functional groups makes it a 

good adsorbent (Al-Saidi et al., 2016; Kumar et al., 2014; Mosayebidorcheh and Hatami, 2017) 

and enhances the reactivity and dispersibility of the carbon nanotubes for environmental 

protection application. 

In this work, QSPR models were developed comprising of a dataset containing 69 organic 

chemicals with defined end point (adsorption affinity of organic contaminants related to specific 
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surface area (logKSA) of multi walled carbon nanotubes) to correlate the adsorption affinity 

(logKSA) in order to determine the structural features which are responsible for adsorption of 

organic contaminants by multi-walled carbon nanotubes (MWCNTs). 

2.2. Study 2: Dataset 2 

 

Introduction of new chemicals for different purposes can be a major threat for humans as well as 

animals. The use of herbicides, for example, has increased during the last two decades due to the 

rejuvenation of agriculture. It was reported that 2.5 million ton pesticides were in use worldwide 

yearly, and the amount is increasing day by day (Pimentel, 1995; Tariq et al., 2007; Carter, 

2000). Endocrine disrupting chemicals (EDCs) act like natural hormones and hamper the 

distribution, as well as metabolic process of natural hormones. EDCs (e.g., ethinyl estradiol) are 

harmful for  the reproductive system of animals and humans (Snyder et al., 2003). Effluents from 

hospitals or radiological clinics have shown high concentration of antibiotics like 

sulfamethoxazole and Lincomycin and contrast medium (ipromide), which are responsible for 

the production of antibiotic resistance bacteria and genes in the aquatic environment (Rand-

Weaver et al., 2013; Michael, 2013). Hence, removal of antibiotics as well as pharmaceuticals 

and contrast medium from water is essential to get purified water. 

 

In this study, we have developed partial least squares (PLS) regression based quantitative 

structure-property relationship (QSPR) models using adsorption coefficient data of 40 diverse 

hazardous synthetic organic chemicals (SOCs) onto SWCNTs. The main objectives of our work 

are: 1) to develop statistically robust and validated QSPR models of hazardous SOCs using 2D 

descriptors only in order to identify the significant structural features essential for effective 

adsorption in SWCNTs; 2) to examine the adsorption behavior of diverse synthetic organic 

chemicals onto SWCNTs; 3) to give a deep insight to understand the mechanisms and factors 

that are responsible for hazardous SOCs and SWCNTs/functionalized SWCNTs interactions. 
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3. METHOD AND MATERIALS 
 

The objective of the present dissertation is to develop or evaluate a clear methodology for the 

development of a predictive and robust QSPR model by using two dimensional dragon and 

PaDEL descriptors. In this section, we have described here the details of datasets comprising 

the structures along with their adsorption coefficient data in logarithmic scale. The section 

has been divided in the following parts: 

 Details of datasets consisting chemical structures along with their adsorption 

coefficient data in logarithmic scale. 

 General description of methods applied for developing QSPR models. 

 Study wise specific description of methodologies utilized in each study. 

3.1. Study 1: Dataset 1 

We have developed a model QSPR model, using a data set for diverse organic contaminants 

with adsorption coefficient (logKSA) of carbon nanotubes reported in the literature 

(Chayawan, 2016). The dataset involves the adsorption affinity of 69 organic contaminants 

related to the specific surface area (KSA) of multi-walled carbon nanotubes (MWCNTs). We 

have not excluded any compound of individual data sets in our modeling analysis.  The 

endpoint values were taken in the logarithmic scale for the modeling purposes. The  data set 

mainly involve adsorption data for synthetic organic compounds like pyrene, naphthalene, 

phenol, benzene, aniline, benzoate, chloroanisole, alcohol, acetophenone, isophoron, 

phenanthrene dicamba, atrazine, carbamazepine, pyrimidinone, acetamide, piperidine, 

propionitrile, acrylic acid, thiodiethanol, ethanolamine, cyclopentanone, acetone and ethylene 

glycol derivatives. KSA is adsorption coefficients that can be obtained from isotherm data. K∞ 

is the ratio of qe and Ce (solid and liquid phase equilibrium concentrations, respectively, at 

infinite dilution conditions with an average of 0.2% aqueous solubility). KSA is the 

normalized value of K∞ and the specific surface area of multi-walled carbon nanotubes 

(MWCNTs). The data set is given in Tables 3.1. 
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        Table 3.1. The chemical name, experimental logKSA and calculated logKSA values of the MLR models. 

No. Chemical name 

 

 

Chemical Structure 

 

 

logKSA 

Expt. Calc. 

Model 

N1 

Model 

N2 

Model 

N3 

Model 

N4 

Model 

N5 

1* 1-Methylnaphthalene 

 

 

 

-0.48 -0.33 -0.41 -0.40 -0.40 -0.36 

2 2,4,6-trichlorophenol 

 

-0.81 -0.62 -0.79 -1.28 -1.27 -0.61 

3 benzene 

 

-2.47 -2.90 -2.81 -2.52 -2.58 -2.82 
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4 oxytetracycline 

 

-0.23 0.12 0.34 0.15 0.15 0.29 

5 pyrogallol 

 

-0.98 -1.45 -1.57 -1.37 -1.40 -1.36 

6 3,5-dimethylphenol 

 

-1.88 -1.87 -1.88 -2.05 -2.09 -2.13 

7 dicamba 

 

-2.64 -2.17 -1.98 -1.72 -1.72 -2.59 
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8 2-chlorophenol 

 

-2.16 -1.96 -2.01 -1.99 -2.02 -1.80 

9 ortho-dichlorobenzene 

 

-1.81 -1.08 -1.12 -1.40 -1.41 -1.19 

10* 
1,2,4,5-

tetrachlorobenzene 

 

0.2 0.07 -0.02 0.10 0.16 0.48 

11 p-nitrophenol 

 

-1.45 -1.14 -1.10 -1.10 -1.11 -1.37 

12 4-chlorotoluene 

 

-1.55 -1.39 -1.45 -1.69 -1.71 -1.70 
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13 
3-methylbenzyl 

alcohol 

 

-2.52 -2.35 -2.75 -2.85 -2.28 -2.08 

14 4-chloroanisole 

 

-1.3 -1.92 -1.75 -1.96 -1.99 -1.62 

15 atrazine 

 

-0.55 -0.36 -1.34 -0.42 -0.40 -0.42 

16 3-methylphenol 

 

-2.29 -2.18 -2.21 -2.17 -2.22 -2.32 
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17* 4-methylphenol 

 

-2.18 -2.18 -2.21 -2.17 -2.22 -2.30 

18 aniline 

 

-3.01 -3.22 -3.12 -2.97 -3.05 -3.07 

19 pentachlorophenol 

 

-0.7 -0.88 -0.97 -0.92 -0.88 -0.89 

20* 1,3-dinitrobenzene 

 

-0.75 0.33 -0.13 0.28 0.32 -0.05 
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21* phenylethylalcohol 

 

-2.83 -2.53 -2.75 -2.85 -2.28 -2.20 

22 pyrene 

 

1.77 2.02 1.80 2.00 2.06 1.61 

23 p-dichlorobenzene 

 

-1.86 -2.04 -2.06 -1.40 -1.41 -1.42 

24 4-chloroaniline 

 

-2.9 -2.57 -2.52 -2.61 -2.68 -2.61 

25* benzonitrile 

 

-2.33 -3.15 -2.78 -2.84 -2.91 -2.61 
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26 phenanthrene 

 

1.13 0.96 0.89 0.92 0.96 0.76 

27 carbamazepine 

 

-1.47 -1.25 -0.73 -0.99 -1.03 -1.02 

28 4-chlorophenol 

 

-1.5 -1.96 -2.08 -2.07 -2.11 -2.03 

29 biphenyl 

 

-0.17 -0.20 -0.02 -0.23 -0.22 -0.32 
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30* bisphenol A 

 

-0.73 -0.20 0.20 -0.51 -0.50 -0.45 

31* m-dichlorobenzene 

 

-1.72 -1.03 -1.12 -1.40 -1.41 -1.43 

32 2-nitroaniline 

 

-0.64 -1.46 -1.71 -1.37 -1.39 -1.38 

33* 2-chloronaphthalene 

 

0.36 0.10 -0.04 -0.07 -0.06 -0.14 
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34 azobenzene 

 

0.35 -1.18 -0.63 -1.05 -1.08 -1.20 

35 tetracycline 

 

0.21 -0.38 -0.15 -0.25 -0.28 -0.12 

36 3-bromophenol 

 

-1.58 -1.67 -1.76 -1.75 -1.78 -1.93 

37 4-ethylphenol 

 

-1.75 -2.13 -1.88 -2.05 -2.09 -1.89 
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38* methylbenzoate 

 

-1.67 -1.75 -1.39 -1.60 -1.62 -1.45 

39* 17α-ethynylestradiol 

 

0.99 1.07 1.36 0.84 0.87 0.91 

40 bromobenzene 

 

-1.87 -1.80 -1.83 -1.85 -1.88 -1.96 

41 1,2,4-trichlorobenzene 

 

-1 -1.02 -1.08 -0.70 -0.67 -0.48 
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42 isophorone 

 

-2.36 -1.92 -2.01 -2.32 -2.38 -2.37 

43 4-fluorophenol 

 

-2.69 -1.97 -2.03 -1.98 -2.02 -2.14 

44 acetophenone 

 

-2.11 -2.10 -1.90 -2.06 -2.10 -2.08 

45 2-phenylphenol 

 

-1.16 -0.81 -0.53 -0.71 -0.72 -0.75 

46 chlorobenzene 

 

-2.35 -2.00 -2.01 -2.01 -2.05 -2.12 
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47 p-xylene 

 

-2.11 -1.73 -1.76 -1.95 -1.98 -1.96 

48* 2-nitrophenol 

 

-1.69 -1.17 -1.10 -1.10 -1.11 -1.25 

49 naphthalene 

 

-0.45 -0.80 -0.93 -0.65 -0.67 -0.74 

50 
methyl 2-

methylbenzoate 

 

-1.25 -1.53 -1.13 -1.53 -1.55 -1.23 
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51 1-naphthol 

 

-1.24 -1.15 -1.20 -0.94 -0.97 -1.00 

52* catechol 

 

-1.95 -1.99 -2.06 -1.82 -1.86 -1.89 

53 3-nitrophenol 

 

-1.32 -1.14 -1.10 -1.10 -1.11 -1.39 

54* 4-chloroacetophenone 

 

-1.09 -1.57 -1.45 -1.85 -1.88 -1.58 

55 iodobenzene 

 

-1.49 -1.59 -1.64 -1.69 -1.71 -1.80 
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56 ethylbenzene 

 

-2.18 -2.02 -1.76 -1.95 -1.98 -1.73 

57 benzylalcohol 

 

-3.27 -2.66 -3.04 -2.94 -2.38 -2.22 

58 phenol 

 

-2.73 -2.48 -2.50 -2.23 -2.28 -2.49 

59 ethyl benzoate 

 

-1.23 -1.66 -1.13 -1.53 -1.55 -1.44 
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60 nitrobenzene 

 

-1.86 -1.46 -1.39 -1.38 -1.40 -1.58 

61 3-chlorophenol 

 

-1.75 -1.93 -2.04 -2.03 -2.06 -2.77 

62* 2,4-dichlorophenol 

 

-1.28 -1.34 -1.48 -1.72 -1.74 -1.33 

63 3-nitroaniline 

 

-1.53 -1.28 -1.71 -1.21 -1.23 -1.37 

64* 4-nitroaniline 

 

-1.29 -1.13 -1.71 -1.06 -1.07 -1.21 
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65 m-nitrotoluene 

 

-1.17 -1.28 -1.17 -1.39 -1.40 -1.50 

66 

2,4,5-

trichlorophenoxyacetic 

acid 

 

-2.51 -2.60 -2.62 -2.64 -2.64 -1.27 

67 4-nitrotoluene 

 

-0.93 -1.28 -1.17 -1.39 -1.40 -1.48 

68* propylbenzene 

 

-1.61 -1.64 -1.23 -1.64 -1.65 -1.51 



CHAPTER 3 METHOD AND MATERIALS 

 

39 
 

69 2,4-dinitrotoluene 

 

0.21 0.32 -0.06 0.13 0.17 -0.01 

* denotes the test set compounds 
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3.2. Study 2: Dataset 2 

      A diverse set of 40 hazardous synthetic organic chemicals (SOC) with defined adsorption 

coefficient onto SWCNTs reported in the literature (Ding et al., 2016) were used to develop the 

QSPR models. The whole data set of 40 synthetic organic chemicals was assembled from 14 

published articles containing experimental adsorption coefficient (K in, L/kg) values. The 

adsorption coefficient K was calculated by using following formula: 

𝐾 =
𝑞𝑒

𝐶𝑒
 

where, qe (mg/kg) is equilibrium concentration on the surface and Ce (mg/L) is the equilibrium 

concentration in the aqueous phase of SWCNTs. The adsorption coefficient depends on the 

equilibrium concentration whenever the adsorption isotherm is nonlinear in nature (Zhao et al., 

2014). The effect of concentration on K was investigated. The equilibrium concentration on the 

surface (qe) could be obtained from isotherm data at Ce=0.00002, 0.0002, 0.002, 0.02 and 0.2 Cs, 

(where Cs is the aqueous solubility of the adsorbate). The consequent K values are represented as 

K0.00002, K0.0002, K0.002, K0.02 and K0.2 respectively. The endpoint K values were taken in the 

logarithmic scale for the development of QSPR models. We have used logK0.002values for the 

development of QSPR models due to its relatively wide distribution than rest of the logK values. 

The data set is given in Table 3.2.  
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Table 3.2.The chemical name, experimental logK and calculated logK values of the MLR and PLS models. 

 

Sl. No. Chemical name Chemical Structure 

logK 

Expt. 

Predicted 

Model 

M1 

Model

M2 

Model 

M3 

Model

M4 

Model

M5 

1* 
1,2,4,5-

Tetrachlorobenzene 

 

3.68 4.11 4.06 4.46 4.36 4.28 

2 1,2,4-Trichlorobenzene 

 

2.94 3.03 2.99 3.27 3.21 3.16 

3 1,2-Dichlorobenzene 

 

2.33 2.07 1.95 2.11 2.10 2.07 
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4 2,4-Dinitrotoluene 

 

2.07 1.83 2.05 2.00 2.03 2.09 

5* 2-Aminopyrimidine 

 

-0.54 -0.27 -0.41 -0.52 -0.42 -0.40 

6 4,6-Diaminopyrimidine 

 

-0.27 0.33 0.19 0.11 0.24 0.19 

7 4-Nitrotoluene 

 

1.67 1.28 1.59 1.51 1.49 1.63 
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8 Aniline 

 

-0.16 0.03 -0.07 -0.14 -0.08 -0.04 

9 Benzene 

 

0.25 -0.28 -0.27 -0.32 -0.35 -0.21 

10 Biphenyl 

 

2.87 2.54 2.64 2.38 2.37 2.33 

11 Chlorobenzene 

 

1.16 0.90 0.89 0.94 0.92 0.98 

12 Cyclohexane 

 

0.44 0.44 0.52 0.56 0.48 0.63 
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13* Dibutyl phthalate 

 

2.95 2.28 2.53 2.59 2.47 2.66 

 

 

 

 

 

14 

Diethyl phthalate 

 

1.68 1.62 1.70 1.65 1.65 1.77 

15 Dimethyl phthalate 

 

1 1.49 1.46 1.36 1.42 1.50 

16 Diuron 

 

2.28 1.80 2.07 2.05 2.02 2.14 
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17 Ethinyl estradiol 

 

3.64 3.65 3.33 3.48 3.46 3.49 

18 Fluridone 

 

1.81 1.86 2.10 1.68 1.96 2.14 

19 Iopromide 

 

0.89 0.94 0.86 0.68 0.80 0.86 
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20 Lincomycin 

 

-0.53 -0.49 -0.58 -0.64 -0.12 -0.55 

21 Methyl orange 

 

0.49 0.57 0.59 0.78 0.90 0.32 

22 Naphthalene 

 

1.8 2.22 2.19 1.86 1.93 1.84 
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23 Nitrobenzene 

 

0.61 0.67 0.49 0.46 0.55 0.53 

24 PFOS 

 

1.29 1.34 1.24 1.92 1.78 1.54 

25 Phenanthrene 

 

3.67 3.92 3.81 3.67 3.69 3.54 
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26 Pyrimidine 

 

-1.56 -1.05 -1.13 -1.29 -1.24 -1.12 

27 Sulfamethoxazole 

 

1.43 0.68 0.63 1.15 0.53 0.64 

28* Thiophene 

 

-0.07 -0.84 -0.89 -1.03 -1.00 -0.87 

29 Toluene 

 

0.78 0.71 1.14 0.70 0.70 0.75 
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30 Tylosin 

 

0.43 0.15 0.16 0.63 -0.03 0.05 

31* 2-Chlorophenol 

 

0.75 1.00 0.77 0.77 0.87 0.82 

32 4-Chlorophenol 

 

0.81 0.86 0.77 0.77 0.84 0.82 

33* 2,4-Dichlorophenol 

 

1.76 1.75 1.57 1.66 1.73 1.65 
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34* 2,6-Dichlorophenol 

 

1.61 1.87 1.57 1.66 1.75 1.65 

35* 2,4,5-Trichlorophenol 

 

2.45 2.61 2.40 2.58 2.63 2.51 

36* 2,4,6-Trichlorophenol 

 

2.35 2.60 2.40 2.58 2.63 2.51 

37 2-Phenylphenol 

 

2.16 2.08 2.07 2.07 2.05 2.17 

38 Bisphenol A 

 

1.93 2.27 2.30 2.33 2.29 2.41 
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39* Phenol 

 

-0.7 0.04 -0.06 -0.13 -0.06 -0.03 

40 p-Nitrophenol 

 

0.44 0.84 0.63 0.60 0.74 0.65 

*denotes the test set compounds 
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3.3. General description of methods applied for developing QSPR models 

3.3.1. Descriptor calculation 

“The molecular descriptor is the final result of a logic and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a molecule into 

a useful number or the result of some standardized experiments.” The descriptors were 

calculated using two software tools namely Dragon software version 6 

(http://www.talete.mi.it/products/dragon description.htm.) and PaDEL-descriptor 

(http://www.yapcwsoft.com/dd/padeldescriptor) software. In this work, we have calculated 

only 2D descriptors covering constitutional, ring descriptors, connectivity index, functional 

group counts, atom centered fragments, atom type E-states, 2D atom pairs, molecular 

properties (using Dragon software version 6) and ETA indices (using PaDEL-Descriptor 

software). Table 3.3 contains nine types of 2D descriptors which are used during model 

development. 

 

Table 3.3. Description of 2D descriptors used for the QSAR studies 

Dimension of descriptors Class of descriptors Representative example 

2D Constitutional indices Number of atoms, number of non-H atoms, number of 

binds, number of aromatic bonds, sum of atomic van der 

Waals volumes (scaled on carbon atom) etc. 

2D Ring descriptors Number of rings (cyclomatic number),  number of circuits 

,total ring size,  ring perimeter, ring bridge count ,  

molecular cyclized degree, ring fusion density, ring 

complexity index, number of ring systems, normalized 

number of ring systems. 

2D Connectivity index Connectivity index of order 0, connectivity index of order 

1, modified Randic index, average connectivity index of 

order 0. 

2D Functional group Number of terminal primary C(sp3), number of total 
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count secondary C(sp3), number of total tertiary C(sp3), 

number of esters (aliphatic), number of esters (aromatic), 

number of hydrazones, number of hydroxyl groups 

2D Atom centered 

fragment 

CH3R / CH4, CH2R2, CHR3, CR4, CH3X, CH2RX, 

CH2X2, CHR2X, CHRX2 

2D Atom type E-states Sum of sCH3, Sum of dCH2 E-states, Sum of ssCH2 E-

states, Sum of sOH E-states, Sum of tN E-states 

2D 2D atom pairs Sum of topological distances between N..N, T(N..O) sum 

of topological distances between N..O, sum of topological 

distances between N..S, sum of topological distances 

between N..P, sum of topological distances between N..F. 

2D Molecular properties Unsaturation index, hydrophilic factor, Ghose-Crippen 

molar refractivity, Moriguchi octanol-water partition 

coeff. (logP), squared Moriguchi octanol-water partition 

coeff. (logP^2). 

2D ETA indices First and second generation ETA indices 

 

(a) Constitutional indices 

These are the most simple and commonly used descriptors, reflecting the molecular composition 

of a compound without any information about its molecular geometry or topology. The most 

common constitutional descriptors are number of atoms, number of bonds, absolute and relative 

numbers of specific atom-types, absolute and relative numbers of single, double, triple, and 

aromatic bonds, number of rings, number of rings divided by the number of atoms or bonds, 

number of benzene rings, number of benzene rings divided by the number of atoms and 

information on hybridization (Todeschini and Consonni, 2009). The descriptors used during the 

model development are constitutional, ring descriptors, connectivity index, functional group 

counts, atom centered fragments, atom type E-states, 2D atom pairs, molecular properties .The 

details of all these descriptors are given in Table 3.4 to Table 3.12 in the following section. 
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Table 3.4. The details of constitutional indices with their symbols. 

 
Descriptor Symbol Descriptor 

MW molecular weight 

AMW average molecular weight 

Sv sum of atomic van der Waals volumes (scaled on Carbon atom) 

Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) 

Sp sum of atomic polarizabilities (scaled on Carbon atom) 

Si sum of first ionization potentials (scaled on Carbon atom) 

Mv mean atomic van der Waals volume (scaled on Carbon atom) 

Me mean atomic Sanderson electronegativity (scaled on Carbon atom) 

Mp mean atomic polarizability (scaled on Carbon atom) 

Mi mean first ionization potential (scaled on Carbon atom) 

nAT number of atoms 

nSK number of non-H atoms 

nBT number of bonds 

nBO number of non-H bonds 

nBM number of multiple bonds 

SCBO sum of conventional bond orders (H-depleted) 

RBN number of rotatable bonds 

RBF rotatable bond fraction 

nDB number of double bonds 

nTB number of triple bonds 

nAB number of aromatic bonds 

nH number of Hydrogen atoms 

nC number of Carbon atoms 

nN number of Nitrogen atoms 

nO number of Oxygen atoms 

nP number of Phosphorous atoms 

nS number of Sulfur atoms 

nF number of Fluorine atoms 

nCL number of Chlorine atoms 

nBR number of Bromine atoms 

nI number of Iodine atoms 

nB number of Boron atoms 

nHM number of heavy atoms 

nHet number of heteroatoms 

nX number of halogen atoms 

H% percentage of H atoms 

C% percentage of C atoms 

N% percentage of N atoms 

O% percentage of O atoms 

X% percentage of halogen atoms 

nCsp3 number of sp3 hybridized Carbon atoms 

nCsp2 number of sp2 hybridized Carbon atoms 

nCsp number of sp hybridized Carbon atoms 
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Table 3.5.  The details of ring descriptors with their symbols. 

Descriptor Symbol Description 

nCIC number of rings (cyclomatic number) 

nCIR number of circuits 

TRS total ring size 

Rperim ring perimeter 

Rbrid ring bridge count 

MCD molecular cyclized degree 

RFD ring fusion density 

RCI ring complexity index 

NRS number of ring systems 

NNRS normalized number of ring systems 

nR03 number of 3-membered rings 

nR04 number of 4-membered rings 

nR05 number of 5-membered rings 

nR06 number of 6-membered rings 

nR07 number of 7-membered rings 

nR08 number of 8-membered rings 

nR09 number of 9-membered rings 

nR10 number of 10-membered rings 

nR11 number of 11-membered rings 

nR12 number of 12-membered rings 

nBnz number of benzene-like rings 

ARR aromatic ratio 

D/Dtr03 distance/detour ring index of order 3 

D/Dtr04 distance/detour ring index of order 4 

D/Dtr05 distance/detour ring index of order 5 

D/Dtr06 distance/detour ring index of order 6 

D/Dtr07 distance/detour ring index of order 7 

D/Dtr08 distance/detour ring index of order 8 

D/Dtr09 distance/detour ring index of order 9 

D/Dtr10 distance/detour ring index of order 10 

D/Dtr11 distance/detour ring index of order 11 

D/Dtr12 distance/detour ring index of order 12 

nCIC number of rings (cyclomatic number) 

nCIR number of circuits 

TRS total ring size 
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Table 3.6. The details of connectivity indices with their symbols. 

Descriptor Symbol Description 

X0 connectivity index of order 0 

X1 connectivity index of order 1 (Randic connectivity 

index) 

X2 connectivity index of order 2 

X3 connectivity index of order 3 

X4 connectivity index of order 4 

X5 connectivity index of order 5 

X0A average connectivity index of order 0 

X1A average connectivity index of order 1 

X2A average connectivity index of order 2 

X3A average connectivity index of order 3 

X4A average connectivity index of order 4 

X5A average connectivity index of order 5 

X0v valence connectivity index of order 0 

X1v valence connectivity index of order 1 

X2v valence connectivity index of order 2 

X3v valence connectivity index of order 3 

X4v valence connectivity index of order 4 

X5v valence connectivity index of order 5 

X0Av average valence connectivity index of order 0 

X1Av average valence connectivity index of order 1 

X2Av average valence connectivity index of order 2 

X3Av average valence connectivity index of order 3 

X4Av average valence connectivity index of order 4 

X5Av average valence connectivity index of order 5 

X0sol solvation connectivity index of order 0 

X1sol solvation connectivity index of order 1 

X2sol solvation connectivity index of order 2 

X3sol solvation connectivity index of order 3 

X4sol solvation connectivity index of order 4 

X5sol solvation connectivity index of order 5 

XMOD modified Randic index 

RDCHI reciprocal distance sum Randic-like index 

RDSQ reciprocal distance sum inverse Randic-like index 

X1Kup Kupchik connectivity index 

X1Mad connectivity topochemical index 

X1Per perturbation connectivity index 
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Table 3.7. The details of functional group count descriptors with their symbols. 

Descriptor Symbol 

 

Description 

nCp number of terminal primary C(sp3) 

nCs number of total secondary C(sp3) 

nCt number of total tertiary C(sp3) 

nCq number of total quaternary C(sp3) 

nCrs number of ring secondary C(sp3) 

nCrt number of ring tertiary C(sp3) 

nCrq number of ring quaternary C(sp3) 

nCar number of aromatic C(sp2) 

nCbH number of unsubstituted benzene C(sp2) 

nCb- number of substituted benzene C(sp2) 

nCconj number of non-aromatic conjugated C(sp2) 

nR=Cp number of terminal primary C(sp2) 

nR=Cs number of aliphatic secondary C(sp2) 

nR=Ct number of aliphatic tertiary C(sp2) 

n=C= number of allenes groups 

nR#CH/X number of terminal C(sp) 

nR#C- number of non-terminal C(sp) 

nROCN number of cyanates (aliphatic) 

nArOCN number of cyanates (aromatic) 

nRNCO number of isocyanates (aliphatic) 

nArNCO number of isocyanates (aromatic) 

nRSCN number of thiocyanates (aliphatic) 

nArSCN number of thiocyanates (aromatic) 

nRNCS number of isothiocyanates (aliphatic) 

nArNCS number of isothiocyanates (aromatic) 

nRCOOH number of carboxylic acids (aliphatic) 

nArCOOH number of carboxylic acids (aromatic) 

nRCOOR number of esters (aliphatic) 

nArCOOR number of esters (aromatic) 

nRCONH2 number of primary amides (aliphatic) 

nArCONH2 number of primary amides (aromatic) 

nRCONHR number of secondary amides (aliphatic) 

nArCONHR number of secondary amides (aromatic) 

nRCONR2 number of tertiary amides (aliphatic) 

nArCONR2 number of tertiary amides (aromatic) 

nROCON number of (thio-) carbamates (aliphatic) 

nArOCON number of (thio-) carbamates (aromatic) 

nRCOX number of acyl halogenides (aliphatic) 

nArCOX number of acyl halogenides (aromatic) 

nRCSOH number of thioacids (aliphatic) 

nArCSOH number of thioacids (aromatic) 

nRCSSH number of dithioacids (aliphatic) 

nArCSSH number of dithioacids (aromatic) 

nRCOSR number of thioesters (aliphatic) 

nArCOSR number of thioesters (aromatic) 

nRCSSR number of dithioesters (aliphatic) 

nArCSSR number of dithioesters (aromatic) 

nRCHO number of aldehydes (aliphatic) 

nArCHO number of aldehydes (aromatic) 
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nRCO number of ketones (aliphatic) 

nArCO number of ketones (aromatic) 

nCONN number of urea (-thio) derivatives 

nC=O(O)2 number of carbonate (-thio) derivatives 

nN=C-N< number of amidine derivatives 

nC(=N)N2 number of guanidine derivatives 

nRC=N number of imines (aliphatic) 

nArC=N number of imines (aromatic) 

nRCNO number of oximes (aliphatic) 

nArCNO number of oximes (aromatic) 

nRNH2 number of primary amines (aliphatic) 

nArNH2 number of primary amines (aromatic) 

nRNHR number of secondary amines (aliphatic) 

nArNHR number of secondary amines (aromatic) 

nRNR2 number of tertiary amines (aliphatic) 

nArNR2 number of tertiary amines (aromatic) 

nN-N number of N hydrazines 

nN=N number of N azo-derivatives 

nRCN number of nitriles (aliphatic) 

nArCN number of nitriles (aromatic) 

nN+ number of positively charged N 

nNq number of quaternary N 

nRNHO number of hydroxylamines (aliphatic) 

nArNHO number of hydroxylamines (aromatic) 

nRNNOx number of N-nitroso groups (aliphatic) 

nArNNOx number of N-nitroso groups (aromatic) 

nRNO number of nitroso groups (aliphatic) 

nArNO number of nitroso groups (aromatic) 

nRNO2 number of nitro groups (aliphatic) 

nArNO2 number of nitro groups (aromatic) 

nN(CO)2 number of imides (-thio) 

nC=N-N< number of hydrazones 

       nROH        number of hydroxyl groups 

nArOH number of aromatic hydroxyls 

nOHp number of primary alcohols 

nOHs number of secondary alcohols 

nOHt number of tertiary alcohols 

nROR number of ethers (aliphatic) 

nArOR number of ethers (aromatic) 

nROX number of hypohalogenides (aliphatic) 

nArOX number of hypohalogenides (aromatic) 

nO(C=O)2 number of anhydrides (-thio) 

nH2O number of water molecules 

nSH number of thiols 

nC=S number of thioketones 

nRSR number of sulfides 

nRSSR number of disulfides 

nSO number of sulfoxides 

nS(=O)2 number of sulfones 

nSOH number of sulfenic (thio-) acids 

nSOOH number of sulfinic (thio-/dithio-) acids 

nSO2OH number of sulfonic (thio-/dithio-) acids 

nSO3OH number of sulfuric (thio-/dithio-) acids 
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nSO2 number of sulfites (thio-/dithio-) 

nSO3 number of sulfonates (thio-/dithio-) 

nSO4 number of sulfates (thio-/dithio-) 

nSO2N number of sulfonamides (thio-/dithio-) 

nPO3 number of phosphites/thiophosphites 

nPO4 number of phosphates/thiophosphates 

nPR3 number of phosphanes 

nP(=O)O2R number of phosphonates (thio-) 

nP(=O)R3/nPR5 number of phosphoranes (thio-) 

nCH2RX number of CH2RX 

nCHR2X number of CHR2X 

nCR3X number of CR3X 

nR=CHX number of R=CHX 

nR=CRX number of R=CRX 

nR#CX number of R#CX 

nCHRX2 number of CHRX2 

nCR2X2 number of CR2X2 

nR=CX2 number of R=CX2 

nCRX3 number of CRX3 

nArX number of X on aromatic ring 

nCXr number of X on ring C(sp3) 

nCXr= number of X on ring C(sp2) 

nCconjX number of X on exo-conjugated C 

nAziridines number of Aziridines 

nOxiranes number of Oxiranes 

nThiranes number of Thiranes 

nAzetidines number of Azetidines 

nOxetanes number of Oxetanes 

nThioethanes number of Thioethanes 

nBeta-Lactams number of Beta-Lactams 

nPyrrolidines number of Pyrrolidines 

nOxolanes number of Oxolanes 

ntH-Thiophenes number of tetrahydro-thiophenes 

nPyrroles number of Pyrroles 

nPyrazoles number of Pyrazoles 

nImidazoles number of Imidazoles 

nFuranes number of Furanes 

nThiophenes number of Thiophenes 

nOxazoles number of Oxazoles 

nIsoxazoles number of Isoxazoles 

nThiazoles number of Thiazoles 

nIsothiazoles number of Isothiazoles 

nTriazoles number of Triazoles 

nPyridines number of Pyridines 

nPyridazines number of Pyridazines 

nPyrimidines number of Pyrimidines 

nPyrazines number of Pyrazines 

n135-Triazines number of 1-3-5-Triazines 

n124-Triazines number of 1-2-4-Triazines 

nHDon number of aromatic hydroxyls 

nHAcc number of primary alcohols 

nHBonds number of secondary alcohols 
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Table 3.8. The details of atom centered fragment descriptors with their symbols. 

Descriptor 

Symbol 
Description 

C-001 CH3R / CH4 

C-002 CH2R2 

C-003 CHR3 

C-004 CR4 

C-005 CH3X 

C-006 CH2RX 

C-007 CH2X2 

C-008 CHR2X 

C-009 CHRX2 

C-010 CHX3 

C-011 CR3X 

C-012 CR2X2 

C-013 CRX3 

C-014 CX4 

C-015 =CH2 

C-016 =CHR 

C-017 =CR2 

C-018 =CHX 

C-019 =CRX 

C-020 =CX2 

C-021 #CH 

C-022 #CR / R=C=R 

C-023 #CX 

C-024 R--CH--R 

C-025 R--CR--R 

C-026 R--CX--R 

C-027 R--CH--X 

C-028 R--CR--X 

C-029 R--CX--X 

C-030 X--CH--X 

C-031 X--CR--X 

C-032 X--CX--X 

C-033 R--CH..X 

C-034 R--CR..X 

C-035 R--CX..X 

C-036 Al-CH=X 

C-037 Ar-CH=X 

C-038 Al-C(=X)-Al 

C-039 Ar-C(=X)-R 

C-040 R-C(=X)-X / R-C#X / X=C=X 

C-041 X-C(=X)-X 

C-042 X--CH..X 

C-043 X--CR..X 

C-044 X--CX..X 

H-046 H attached to C0(sp3) no X attached to next C 
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H-047 H attached to C1(sp3)/C0(sp2) 

H-048 H attached to C2(sp3)/C1(sp2)/C0(sp) 

H-049 H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 

H-050 H attached to heteroatom 

H-051 H attached to alpha-C 

H-052 H attached to C0(sp3) with 1X attached to next C 

H-053 H attached to C0(sp3) with 2X attached to next C 

H-054 H attached to C0(sp3) with 3X attached to next C 

H-055 H attached to C0(sp3) with 4X attached to next C 

O-056 alcohol 

O-057 phenol / enol / carboxyl OH 

O-058 #NOME? 

O-059 Al-O-Al 

O-060 Al-O-Ar / Ar-O-Ar / R..O..R / R-O-C=X 

O-061 O-- 

O-062 O- (negatively charged) 

O-063 R-O-O-R 

Se-064 Any-Se-Any 

Se-065 #NOME? 

N-066 Al-NH2 

N-067 Al2-NH 

N-068 Al3-N 

N-069 Ar-NH2 / X-NH2 

N-070 Ar-NH-Al 

N-071 Ar-NAl2 

N-072 RCO-N< / >N-X=X 

N-073 Ar2NH / Ar3N / Ar2N-Al / R..N..R 

N-074 R#N / R=N- 

N-075 R--N--R / R--N--X 

N-076 Ar-NO2 / R--N(--R)--O / RO-NO 

N-077 Al-NO2 

N-078 Ar-N=X / X-N=X 

N-079 N+ (positively charged) 

F-081 F attached to C1(sp3) 

F-082 F attached to C2(sp3) 

F-083 F attached to C3(sp3) 

F-084 F attached to C1(sp2) 

F-085 F attached to C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X 

Cl-086 Cl attached to C1(sp3) 

Cl-087 Cl attached to C2(sp3) 

Cl-088 Cl attached to C3(sp3) 

Cl-089 Cl attached to C1(sp2) 

Cl-090 Cl attached to C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X 

Br-091 Br attached to C1(sp3) 

Br-092 Br attached to C2(sp3) 

Br-093 Br attached to C3(sp3) 

Br-094 Br attached to C1(sp2) 

Br-095 Br attached to C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X 

I-096 I attached to C1(sp3) 

I-097 I attached to C2(sp3) 

I-098 I attached to C3(sp3) 

I-099 I attached to C1(sp2) 

I-100 I attached to C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X 
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F-101 fluoride ion 

Cl-102 chloride ion 

Br-103 bromide ion 

I-104 iodide ion 

S-106 R-SH 

S-107 R2S / RS-SR 

S-108 R=S 

S-109 R-SO-R 

S-110 R-SO2-R 

Si-111 >Si< 

B-112 >B- as in boranes 

P-115 P ylids 

P-116 R3-P=X 

P-117 X3-P=X (phosphate) 

P-118 PX3 (phosphite) 

P-119 PR3 (phosphine) 

P-120 C-P(X)2=X (phosphonate) 

 

  

         Table 3.9. The details of atom centered fragment descriptors with their symbols. 

 

Descriptor 

Symbol 
Description 

T(N..N) sum of topological distances between N..N 

T(N..O) sum of topological distances between N..O 

T(N..S) sum of topological distances between N..S 

T(N..P) sum of topological distances between N..P 

T(N..F) sum of topological distances between N..F 

T(N..Cl) sum of topological distances between N..Cl 

T(N..Br) sum of topological distances between N..Br 

T(N..I) sum of topological distances between N..I 

T(O..O) sum of topological distances between O..O 

T(O..S) sum of topological distances between O..S 

T(O..P) sum of topological distances between O..P 

T(O..F) sum of topological distances between O..F 

T(O..Cl) sum of topological distances between O..Cl 

T(O..Br) sum of topological distances between O..Br 

T(O..I) sum of topological distances between O..I 

T(S..S) sum of topological distances between S..S 

T(S..P) sum of topological distances between S..P 

T(S..F) sum of topological distances between S..F 

T(S..Cl) sum of topological distances between S..Cl 

T(S..Br) sum of topological distances between S..Br 

T(S..I) sum of topological distances between S..I 

T(P..P) sum of topological distances between P..P 

T(P..F) sum of topological distances between P..F 

T(P..Cl) sum of topological distances between P..Cl 

T(P..Br) sum of topological distances between P..Br 

T(P..I) sum of topological distances between P..I 
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T(F..F) sum of topological distances between F..F 

T(F..Cl) sum of topological distances between F..Cl 

T(F..Br) sum of topological distances between F..Br 

T(F..I) sum of topological distances between F..I 

T(Cl..Cl) sum of topological distances between Cl..Cl 

T(Cl..Br) sum of topological distances between Cl..Br 

T(Cl..I) sum of topological distances between Cl..I 

T(Br..Br) sum of topological distances between Br..Br 

T(Br..I) sum of topological distances between Br..I 

T(I..I) sum of topological distances between I..I 

        B04[C-C] Presence/absence of C - C at topological distance 4 

B04[C-N] Presence/absence of C - N at topological distance 4 

B04[C-O] Presence/absence of C - O at topological distance 4 

B04[C-S] Presence/absence of C - S at topological distance 4 

B04[C-P] Presence/absence of C - P at topological distance 4 

B04[C-F] Presence/absence of C - F at topological distance 4 

B04[C-Cl] Presence/absence of C - Cl at topological distance 4 

B04[C-Br] Presence/absence of C - Br at topological distance 4 

B04[C-I] Presence/absence of C - I at topological distance 4 

B04[C-B] Presence/absence of C - B at topological distance 4 

B04[C-Si] Presence/absence of C - Si at topological distance 4 

B04[C-X] Presence/absence of C - X at topological distance 4 

B04[N-N] Presence/absence of N - N at topological distance 4 

B04[N-O] Presence/absence of N - O at topological distance 4 

B04[N-S] Presence/absence of N - S at topological distance 4 

B04[N-P] Presence/absence of N - P at topological distance 4 

B04[N-F] Presence/absence of N - F at topological distance 4 

B04[N-Cl] Presence/absence of N - Cl at topological distance 4 

B04[N-Br] Presence/absence of N - Br at topological distance 4 

B04[N-I] Presence/absence of N - I at topological distance 4 

B04[N-B] Presence/absence of N - B at topological distance 4 

B04[N-Si] Presence/absence of N - Si at topological distance 4 

B04[N-X] Presence/absence of N - X at topological distance 4 

B04[O-O] Presence/absence of O - O at topological distance 4 

B04[O-S] Presence/absence of O - S at topological distance 4 

B04[O-P] Presence/absence of O - P at topological distance 4 

B04[O-F] Presence/absence of O - F at topological distance 4 

B04[O-Cl] Presence/absence of O - Cl at topological distance 4 

B04[O-Br] Presence/absence of O - Br at topological distance 4 

B04[O-I] Presence/absence of O - I at topological distance 4 

B04[O-B] Presence/absence of O - B at topological distance 4 

B04[O-Si] Presence/absence of O - Si at topological distance 4 

B04[O-X] Presence/absence of O - X at topological distance 4 

B04[S-S] Presence/absence of S - S at topological distance 4 

B04[S-P] Presence/absence of S - P at topological distance 4 

B04[S-F] Presence/absence of S - F at topological distance 4 

B04[S-Cl] Presence/absence of S - Cl at topological distance 4 

B04[S-Br] Presence/absence of S - Br at topological distance 4 

B04[S-I] Presence/absence of S - I at topological distance 4 
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B04[S-B] Presence/absence of S - B at topological distance 4 

B04[S-Si] Presence/absence of S - Si at topological distance 4 

B04[S-X] Presence/absence of S - X at topological distance 4 

B04[P-P] Presence/absence of P - P at topological distance 4 

B04[P-F] Presence/absence of P - F at topological distance 4 

B04[P-Cl] Presence/absence of P - Cl at topological distance 4 

B04[P-Br] Presence/absence of P - Br at topological distance 4 

B04[P-I] Presence/absence of P - I at topological distance 4 

B04[P-B] Presence/absence of P - B at topological distance 4 

B04[P-Si] Presence/absence of P - Si at topological distance 4 

B04[P-X] Presence/absence of P - X at topological distance 4 

B04[F-F] Presence/absence of F - F at topological distance 4 

B04[F-Cl] Presence/absence of F - Cl at topological distance 4 

B04[F-Br] Presence/absence of F - Br at topological distance 4 

B04[F-I] Presence/absence of F - I at topological distance 4 

B04[F-B] Presence/absence of F - B at topological distance 4 

B04[F-Si] Presence/absence of F - Si at topological distance 4 

B04[F-X] Presence/absence of F - X at topological distance 4 

B04[Cl-Cl] Presence/absence of Cl - Cl at topological distance 4 

B04[Cl-Br] Presence/absence of Cl - Br at topological distance 4 

B04[Cl-I] Presence/absence of Cl - I at topological distance 4 

B04[Cl-B] Presence/absence of Cl - B at topological distance 4 

B04[Cl-Si] Presence/absence of Cl - Si at topological distance 4 

B04[Cl-X] Presence/absence of Cl - X at topological distance 4 

B04[Br-Br] Presence/absence of Br - Br at topological distance 4 

B04[Br-I] Presence/absence of Br - I at topological distance 4 

B04[Br-B] Presence/absence of Br - B at topological distance 4 

B04[Br-Si] Presence/absence of Br - Si at topological distance 4 

B04[Br-X] Presence/absence of Br - X at topological distance 4 

B04[I-I] Presence/absence of I - I at topological distance 4 

B04[I-B] Presence/absence of I - B at topological distance 4 

B04[I-Si] Presence/absence of I - Si at topological distance 4 

B04[I-X] Presence/absence of I - X at topological distance 4 

B04[B-B] Presence/absence of B - B at topological distance 4 

B04[B-Si] Presence/absence of B - Si at topological distance 4 

B04[B-X] Presence/absence of B - X at topological distance 4 

B04[Si-Si] Presence/absence of Si - Si at topological distance 4 

B04[Si-X] Presence/absence of Si - X at topological distance 4 

B04[X-X] Presence/absence of X - X at topological distance 4 

B05[C-C] Presence/absence of C - C at topological distance 5 

B05[C-N] Presence/absence of C - N at topological distance 5 

B05[C-O] Presence/absence of C - O at topological distance 5 

B05[C-S] Presence/absence of C - S at topological distance 5 

B05[C-P] Presence/absence of C - P at topological distance 5 

B05[C-F] Presence/absence of C - F at topological distance 5 

B05[C-Cl] Presence/absence of C - Cl at topological distance 5 

B05[C-Br] Presence/absence of C - Br at topological distance 5 

B05[C-I] Presence/absence of C - I at topological distance 5 

B05[C-B] Presence/absence of C - B at topological distance 5 
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B05[C-Si] Presence/absence of C - Si at topological distance 5 

B05[C-X] Presence/absence of C - X at topological distance 5 

B05[N-N] Presence/absence of N - N at topological distance 5 

B05[N-O] Presence/absence of N - O at topological distance 5 

B05[N-S] Presence/absence of N - S at topological distance 5 

B05[N-P] Presence/absence of N - P at topological distance 5 

B05[N-F] Presence/absence of N - F at topological distance 5 

B05[N-Cl] Presence/absence of N - Cl at topological distance 5 

B05[N-Br] Presence/absence of N - Br at topological distance 5 

B05[N-I] Presence/absence of N - I at topological distance 5 

B05[N-B] Presence/absence of N - B at topological distance 5 

B05[N-Si] Presence/absence of N - Si at topological distance 5 

B05[N-X] Presence/absence of N - X at topological distance 5 

B05[O-O] Presence/absence of O - O at topological distance 5 

B05[O-S] Presence/absence of O - S at topological distance 5 

B05[O-P] Presence/absence of O - P at topological distance 5 

B05[O-F] Presence/absence of O - F at topological distance 5 

B05[O-Cl] Presence/absence of O - Cl at topological distance 5 

B05[O-Br] Presence/absence of O - Br at topological distance 5 

B05[O-I] Presence/absence of O - I at topological distance 5 

B05[O-B] Presence/absence of O - B at topological distance 5 

B05[O-Si] Presence/absence of O - Si at topological distance 5 

B05[O-X] Presence/absence of O - X at topological distance 5 

B05[S-S] Presence/absence of S - S at topological distance 5 

B05[S-P] Presence/absence of S - P at topological distance 5 

B05[S-F] Presence/absence of S - F at topological distance 5 

B05[S-Cl] Presence/absence of S - Cl at topological distance 5 

B05[S-Br] Presence/absence of S - Br at topological distance 5 

B05[S-I] Presence/absence of S - I at topological distance 5 

B05[S-B] Presence/absence of S - B at topological distance 5 

B05[S-Si] Presence/absence of S - Si at topological distance 5 

B05[S-X] Presence/absence of S - X at topological distance 5 

B05[P-P] Presence/absence of P - P at topological distance 5 

B05[P-F] Presence/absence of P - F at topological distance 5 

B05[P-Cl] Presence/absence of P - Cl at topological distance 5 

B05[P-Br] Presence/absence of P - Br at topological distance 5 

B05[P-I] Presence/absence of P - I at topological distance 5 

B05[P-B] Presence/absence of P - B at topological distance 5 

B05[P-Si] Presence/absence of P - Si at topological distance 5 

B05[P-X] Presence/absence of P - X at topological distance 5 

B05[F-F] Presence/absence of F - F at topological distance 5 

B05[F-Cl] Presence/absence of F - Cl at topological distance 5 

B05[F-Br] Presence/absence of F - Br at topological distance 5 

B05[F-I] Presence/absence of F - I at topological distance 5 

B05[F-B] Presence/absence of F - B at topological distance 5 

B05[F-Si] Presence/absence of F - Si at topological distance 5 

B05[F-X] Presence/absence of F - X at topological distance 5 

B05[Cl-Cl] Presence/absence of Cl - Cl at topological distance 5 

B05[Cl-Br] Presence/absence of Cl - Br at topological distance 5 
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B05[Cl-I] Presence/absence of Cl - I at topological distance 5 

B05[Cl-B] Presence/absence of Cl - B at topological distance 5 

B05[Cl-Si] Presence/absence of Cl - Si at topological distance 5 

B05[Cl-X] Presence/absence of Cl - X at topological distance 5 

B05[Br-Br] Presence/absence of Br - Br at topological distance 5 

B05[Br-I] Presence/absence of Br - I at topological distance 5 

B05[Br-B] Presence/absence of Br - B at topological distance 5 

B05[Br-Si] Presence/absence of Br - Si at topological distance 5 

B05[Br-X] Presence/absence of Br - X at topological distance 5 

B05[I-I] Presence/absence of I - I at topological distance 5 

B05[I-B] Presence/absence of I - B at topological distance 5 

B05[I-Si] Presence/absence of I - Si at topological distance 5 

B05[I-X] Presence/absence of I - X at topological distance 5 

B05[B-B] Presence/absence of B - B at topological distance 5 

B05[B-Si] Presence/absence of B - Si at topological distance 5 

B05[B-X] Presence/absence of B - X at topological distance 5 

B05[Si-Si] Presence/absence of Si - Si at topological distance 5 

B05[Si-X] Presence/absence of Si - X at topological distance 5 

B05[X-X] Presence/absence of X - X at topological distance 5 

B06[C-C] Presence/absence of C - C at topological distance 6 

B06[C-N] Presence/absence of C - N at topological distance 6 

B06[C-O] Presence/absence of C - O at topological distance 6 

B06[C-S] Presence/absence of C - S at topological distance 6 

B06[C-P] Presence/absence of C - P at topological distance 6 

B06[C-F] Presence/absence of C - F at topological distance 6 

B06[C-Cl] Presence/absence of C - Cl at topological distance 6 

B06[C-Br] Presence/absence of C - Br at topological distance 6 

B06[C-I] Presence/absence of C - I at topological distance 6 

B06[C-B] Presence/absence of C - B at topological distance 6 

B06[C-Si] Presence/absence of C - Si at topological distance 6 

B06[C-X] Presence/absence of C - X at topological distance 6 

B06[N-N] Presence/absence of N - N at topological distance 6 

B06[N-O] Presence/absence of N - O at topological distance 6 

B06[N-S] Presence/absence of N - S at topological distance 6 

B06[N-P] Presence/absence of N - P at topological distance 6 

B06[N-F] Presence/absence of N - F at topological distance 6 

B06[N-Cl] Presence/absence of N - Cl at topological distance 6 

B06[N-Br] Presence/absence of N - Br at topological distance 6 

B06[N-I] Presence/absence of N - I at topological distance 6 

B06[N-B] Presence/absence of N - B at topological distance 6 

B06[N-Si] Presence/absence of N - Si at topological distance 6 

B06[N-X] Presence/absence of N - X at topological distance 6 

B06[O-O] Presence/absence of O - O at topological distance 6 

B06[O-S] Presence/absence of O - S at topological distance 6 

B06[O-P] Presence/absence of O - P at topological distance 6 

B06[O-F] Presence/absence of O - Cl at topological distance 6 

B06[O-Cl] Presence/absence of O - Br at topological distance 6 

B06[O-Br] Presence/absence of O - I at topological distance 6 

B06[O-I] Presence/absence of O - B at topological distance 6 
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B06[O-B] Presence/absence of O - Si at topological distance 6 

B06[O-Si] Presence/absence of O - X at topological distance 6 

B06[O-X] Presence/absence of S - S at topological distance 6 

B06[S-S] Presence/absence of S - P at topological distance 6 

B06[S-P] Presence/absence of S - F at topological distance 6 

B06[S-F] Presence/absence of S - Cl at topological distance 6 

B06[S-Cl] Presence/absence of S - Br at topological distance 6 

B06[S-Br] Presence/absence of S - I at topological distance 6 

B06[S-I] Presence/absence of S - B at topological distance 6 

B06[S-B] Presence/absence of S - Si at topological distance 6 

B06[S-Si] Presence/absence of S - X at topological distance 6 

B06[S-X] Presence/absence of P - P at topological distance 6 

B06[P-P] Presence/absence of P - F at topological distance 6 

B06[P-F] Presence/absence of P - Cl at topological distance 6 

B06[P-Cl] Presence/absence of P - Br at topological distance 6 

B06[P-Br] Presence/absence of P - I at topological distance 6 

B06[P-I] Presence/absence of P - B at topological distance 6 

B06[P-B] Presence/absence of P - Si at topological distance 6 

B06[P-Si] Presence/absence of P - X at topological distance 6 

B06[P-X] Presence/absence of F - F at topological distance 6 

B06[F-F] Presence/absence of F - Cl at topological distance 6 

B06[F-Cl] Presence/absence of F - Br at topological distance 6 

B06[F-Br] Presence/absence of F - I at topological distance 6 

B06[F-I] Presence/absence of F - B at topological distance 6 

B06[F-B] Presence/absence of F - Si at topological distance 6 

B06[F-Si] Presence/absence of F - X at topological distance 6 

B06[F-X] Presence/absence of Cl - Cl at topological distance 6 

B06[Cl-Cl] Presence/absence of Cl - Br at topological distance 6 

B06[Cl-Br] Presence/absence of Cl - I at topological distance 6 

B06[Cl-I] Presence/absence of Cl - B at topological distance 6 

B06[Cl-B] Presence/absence of Cl - Si at topological distance 6 

B06[Cl-Si] Presence/absence of Cl - X at topological distance 6 

B06[Cl-X] Presence/absence of Br - Br at topological distance 6 

B06[Br-Br] Presence/absence of Br - I at topological distance 6 

B06[Br-I] Presence/absence of Br - B at topological distance 6 

B06[Br-B] Presence/absence of Br - Si at topological distance 6 

B06[Br-Si] Presence/absence of Br - X at topological distance 6 

B06[Br-X] Presence/absence of I - I at topological distance 6 

B06[I-I] Presence/absence of I - B at topological distance 6 

B06[I-B] Presence/absence of I - Si at topological distance 6 

B06[I-Si] Presence/absence of I - X at topological distance 6 

B06[I-X] Presence/absence of B - B at topological distance 6 

B06[B-B] Presence/absence of B - Si at topological distance 6 

B06[B-Si] Presence/absence of B - X at topological distance 6 

B06[B-X] Presence/absence of Si - Si at topological distance 6 

B06[Si-Si] Presence/absence of Si - X at topological distance 6 

B06[Si-X] Presence/absence of X - X at topological distance 6 

B06[X-X] Presence/absence of C - C at topological distance 7 

B07[C-C] Presence/absence of C - N at topological distance 7 
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B07[C-N] Presence/absence of C - O at topological distance 7 

B07[C-O] Presence/absence of C - S at topological distance 7 

B07[C-S] Presence/absence of C - P at topological distance 7 

B07[C-P] Presence/absence of C - F at topological distance 7 

B07[C-F] Presence/absence of C - Cl at topological distance 7 

B07[C-Cl] Presence/absence of C - Br at topological distance 7 

B07[C-Br] Presence/absence of C - I at topological distance 7 

B07[C-I] Presence/absence of C - B at topological distance 7 

B07[C-B] Presence/absence of C - Si at topological distance 7 

B07[C-Si] Presence/absence of C - X at topological distance 7 

B07[C-X] Presence/absence of N - N at topological distance 7 

B07[N-N] Presence/absence of N - O at topological distance 7 

B07[N-O] Presence/absence of N - S at topological distance 7 

B07[N-S] Presence/absence of N - P at topological distance 7 

B07[N-P] Presence/absence of N - F at topological distance 7 

B07[N-F] Presence/absence of N - Cl at topological distance 7 

B07[N-Cl] Presence/absence of N - Br at topological distance 7 

B07[N-Br] Presence/absence of N - I at topological distance 7 

B07[N-I] Presence/absence of N - B at topological distance 7 

B07[N-B] Presence/absence of N - Si at topological distance 7 

B07[N-Si] Presence/absence of N - X at topological distance 7 

B07[N-X] Presence/absence of O - O at topological distance 7 

B07[O-O] Presence/absence of O - S at topological distance 7 

B07[O-S] Presence/absence of O - P at topological distance 7 

B07[O-P] Presence/absence of O - F at topological distance 7 

B07[O-F] Presence/absence of O - Cl at topological distance 7 

B07[O-Cl] Presence/absence of O - Br at topological distance 7 

B07[O-Br] Presence/absence of O - I at topological distance 7 

B07[O-I] Presence/absence of O - B at topological distance 7 

B07[O-B] Presence/absence of O - Si at topological distance 7 

B07[O-Si] Presence/absence of O - X at topological distance 7 

B07[O-X] Presence/absence of S - S at topological distance 7 

B07[S-S] Presence/absence of S - P at topological distance 7 

B07[S-P] Presence/absence of S - F at topological distance 7 

B07[S-F] Presence/absence of S - Cl at topological distance 7 

B07[S-Cl] Presence/absence of S - Br at topological distance 7 

B07[S-Br] Presence/absence of S - I at topological distance 7 

B07[S-I] Presence/absence of S - B at topological distance 7 

B07[S-B] Presence/absence of S - Si at topological distance 7 

B07[S-Si] Presence/absence of S - X at topological distance 7 

B07[S-X] Presence/absence of P - P at topological distance 7 

B07[P-P] Presence/absence of P - F at topological distance 7 

B07[P-F] Presence/absence of P - Cl at topological distance 7 

B07[P-Cl] Presence/absence of O - Cl at topological distance 6 

B07[P-Br] Presence/absence of O - Br at topological distance 6 

B07[P-I] Presence/absence of O - I at topological distance 6 

B07[P-B] Presence/absence of P - Br at topological distance 7 

B07[P-Si] Presence/absence of P - I at topological distance 7 
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B07[P-X] Presence/absence of P - B at topological distance 7 

B07[F-F] Presence/absence of P - Si at topological distance 7 

B07[F-Cl] Presence/absence of P - X at topological distance 7 

B07[F-Br] Presence/absence of F - F at topological distance 7 

B07[F-I] Presence/absence of F - Cl at topological distance 7 

B07[F-B] Presence/absence of F - Br at topological distance 7 

B07[F-Si] Presence/absence of F - I at topological distance 7 

B07[F-X] Presence/absence of F - B at topological distance 7 

B07[Cl-Cl] Presence/absence of F - Si at topological distance 7 

B07[Cl-Br] Presence/absence of F - X at topological distance 7 

B07[Cl-I] Presence/absence of Cl - Cl at topological distance 7 

B07[Cl-B] Presence/absence of Cl - Br at topological distance 7 

B07[Cl-Si] Presence/absence of Cl - I at topological distance 7 

B07[Cl-X] Presence/absence of Cl - B at topological distance 7 

B07[Br-Br] Presence/absence of Cl - Si at topological distance 7 

B07[Br-I] Presence/absence of Cl - X at topological distance 7 

B07[Br-B] Presence/absence of Br - Br at topological distance 7 

B07[Br-Si] Presence/absence of Br - I at topological distance 7 

B07[Br-X] Presence/absence of Br - B at topological distance 7 

B07[I-I] Presence/absence of Br - Si at topological distance 7 

B07[I-B] Presence/absence of Br - X at topological distance 7 

B07[I-Si] Presence/absence of I - I at topological distance 7 

B07[I-X] Presence/absence of I - B at topological distance 7 

B07[B-B] Presence/absence of I - Si at topological distance 7 

B07[B-Si] Presence/absence of I - X at topological distance 7 

B07[B-X] Presence/absence of B - B at topological distance 7 

B07[Si-Si] Presence/absence of B - Si at topological distance 7 

B07[Si-X] Presence/absence of B - X at topological distance 7 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 METHOD AND MATERIALS 

 

70 
 

Table 3.10 . The details of molecular properties descriptors with their symbols. 

Descriptor Symbol 
Description 

 

Uc unsaturation count 

Ui unsaturation index 

Hy hydrophilic factor 

AMR Ghose-Crippen molar refractivity 

TPSA(NO) topological polar surface area using N,O polar contributions 

TPSA(Tot) topological polar surface area using N,O,S,P polar contributions 

MLOGP Moriguchi octanol-water partition coeff. (logP) 

MLOGP2 squared Moriguchi octanol-water partition coeff. (logP^2) 

ALOGP Ghose-Crippen octanol-water partition coeff. (logP) 

ALOGP2 squared Ghose-Crippen octanol-water partition coeff. (logP^2) 

SAtot total surface area from P_VSA-like descriptors 

SAacc surface area of acceptor atoms from P_VSA-like descriptors 

SAdon surface area of donor atoms from P_VSA-like descriptors 

Vx McGowan volume 

VvdwMG van der Waals volume from McGowan volume 

VvdwZAZ van der Waals volume from Zhao-Abraham-Zissimos equation 

PDI packing density index 

BLTF96 Verhaar Fish base-line toxicity from MLOGP (mmol/l) 

BLTD48 Verhaar Daphnia base-line toxicity from MLOGP (mmol/l) 

BLTA96 Verhaar Algae base-line toxicity from MLOGP (mmol/l) 

 

Table 3.11. Definitions of different basic ETA parameters 

Descriptor Symbol Description 

Nv Vertex count (excluding hydrogen) 

N Total number of atoms including hydrogens 

 Sum of  values of all non-hydrogen vertices of a molecule 

[]P 
Sum of  values of all non-hydrogen vertices each of which is 

joined to only one other non-hydrogen vertex of the molecule 

[]X 
Sum of  values of all non-hydrogen vertices each of which is 
joined to four other non-hydrogen vertex of the molecule 

[]Y 
Sum of  values of all non-hydrogen vertices each of which is 
joined to three other non-hydrogen vertex of the molecule 

ε Measure of electronegativity 

 The composite ETA index 

R The composite index for the reference alkane 

's 
Sum of 's values of all non-hydrogen vertices of a molecule; 's 

is defined as [s]/NV. 

'ns 
Sum of 'ns values of all non-hydrogen vertices of a molecule; 

'ns is defined as [ns]/NV. 

['F] Total functionality contribution 

['F]X 
Functionality contribution for the atom/group/fragment X (e.g., 

−F, −CN, −OH etc.) 
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Table 3.12. An overview of the newly derived more novel indices under the ETA formalism 

 

Descriptor Symbol Description 

 A measure of count of non-hydrogen heteroatoms 

[NV stands for total number of atoms excluding 
hydrogens] 

 A measure of count of hydrogen bond acceptor 

atoms and/or polar surface area 

 
A measure of electronegative atom count [N 

stands for total number of atoms including 
hydrogens] 

 A measure of electronegative atom count [EH 

stands for excluding hydrogens] 

 [R stands for reference alkane] 

 [SS stands for saturated carbon skeleton] 

 [XH stands for those hydrogens which are 
connected to a heteroatom] 

 
A measure of contribution of unsaturation and 

electronegative atom count 

 A measure of contribution of unsaturation 

 A measure of contribution of electronegativity 

 
A measure of contribution of hydrogen bond 

donor atoms 

 
A measure of hydrogen bonding propensity of the 

atoms 

 A measure of hydrogen bonding propensity of the 

molecules and/or polar surface area 

 
A measure of hydrogen bonding propensity of the 

molecules 

 
A measure of hydrogen bonding propensity of the 

molecules 

 A measure of relative unsaturation content 

 A measure of relative unsaturation content 

 A measure of lone electrons entering into 
resonance 

 
A measure of lone electrons entering into 

resonance 
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3.3.2 Dataset division 

Data set division is a very important step for QSPR modeling. The dataset was divided into 

training and test sets using different data division methods such as Euclidean distance (diversity-

based), Kennard Stone, k-means clustering and sorted response. The splitting of the dataset was 

done in such a way that the training set would capture all the information of the dataset enabling 

correct predictions for the test set compounds from the corresponding QSPR model. The 

algorithm of division method is discussed below. 

(a) Kennard Stone method (Euclidean distance based): The optimal division of dataset into 

training and independent test subset is an important and critical step in the QSAR modeling analysis. The 

steps involved in the selection of training set based on Euclidean-based KS algorithm are as follows 

(Kennard and Stone, 1969; Snarey et al., 1997)  

 

 The first two compounds of training set are selected by choosing two compounds that are 

quite farthest apart in terms of Euclidean distance. The normalized mean distance for all 

the compounds are calculated by following equations: 

𝑑𝑖𝑗 = ||𝑋𝑖 − 𝑋𝑗 || =  √∑ (xik − xjk)2
𝑚

𝑘=1
                       (i) 

 

𝑑𝑖̅ = ∑ dij

𝑚

𝑘=1
/n − 1                                                     (ii) 

𝑀𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑) =  
(𝑀𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛_𝑀𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

(𝑀𝑎𝑥_𝑀𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒−𝑀𝑖𝑛_𝑀𝑒𝑎𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
      (iii) 

 

where, 

𝑑𝑖𝑗 = The distance score between two compounds 

𝑑𝑖̅= Mean distance 

 

 Find the compound which has the maximum dissimilarity (maximum minimum distance) 

from each of the previously selected chemicals and place this chemical in the training set. 

 Repeat step 2 until the desired number of chemicals have been added to the training set. 

The remaining chemicals were placed in the test set. 

 

(b) k-Means clustering: k-Means is one of the simplest unsupervised learning algorithms 

(https://sites.google.com/site/dataclusteringalgorithms) that solves the well known clustering 

problem. The procedure follows a simple and easy way to classify a given data set through a 
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certain number of clusters (assume k clusters) fixed a priori. The main idea is to define k centers, 

one for each cluster. These centers should be placed in a cunning way because of different 

location causes different result. So, the better choice is to place them as much as possible far 

away from each other. This algorithm aims at minimizing an objective function known as 

squared error function given b: 

𝐽(𝑉) = ∑𝑖=1
𝑐 ∑𝑗=1

𝑐𝑖 (||𝑥𝑖 − 𝑣𝑗||)2                 (3.1) 

 

Where, ||𝑥𝑖 − 𝑣𝑗|| is the Euclidean distance between xi and vj  

ci is the number of data points in the ith cluster  

‘c’ is the number of cluster centers. 

 

The steps involved in the k-means clustering method are as follows: 

Let  X = {x1,x2,x3,……..,xn} be the set of data points and V = {v1,v2,…….,vc} be the set of 

centers. 

i) Randomly select ‘c’ cluster centers. 

ii) Calculate the distance between each data point and cluster centers. 

iii) Assign the data point to the cluster center whose distance from the cluster center is minimum 

of all the cluster centers. 

iv) Recalculate the new cluster center using: 

𝑣𝑖 = (
1

𝑐𝑖
) ∑𝑗=1

𝑐𝑖  𝑥𝑖                                         (3.2) 

where, ‘ci’ represents the number of data points in ith cluster. 

v) Recalculate the distance between each data point and new obtained cluster centers. 

vi) If no data point was reassigned then stop, otherwise repeat from step iii). 

 

3.3.3. Selections of variables using multilayered strategy 

Variable selection is another important step in QSPR modeling. However, when modelling a 

particular property or biological activity, it is reasonable to assume that only a small number 

of descriptors is actually correlated to the experimental response and is, therefore, relevant 

for building the mathematical model of interest. The subsequent design of a quantitative 

structure-activity relationship (QSAR) model (regression or discriminant) would lead to poor 
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performance if little significant features are selected. As a consequence, a key step is the 

selection of the optimal subset of variables (i.e. molecular descriptors) for the development 

of the model. In the present thesis work, we have used Stepwise regression technique was 

used for the selection of optimal descriptors. 

 

3.3.4. Model development 

Training set molecules are employed for model development purposes. Various statistical 

tools required to develop a QSPR model are summarized as follows; 

 

(a) Stepwise regression: Stepwise regression is a type of multiple linear regression equation 

made step by step which is altered by adding or removing a predictor variable. Forward 

selection and backward elimination are two parts of stepwise regression method. Forward 

selection starts   with no variable and then ‘statistically significant’ variables are included one 

by one. In case of backward elimination, initially, all the candidate variables are selected and 

then deleting   statistically   insignificant variables one by one. The objective function of the 

selection in stepwise regression may be “F-for-inclusion”, also known as “steeping criteria”. 

The F-value is square of t value of incoming variable which signify the regression 

coefficient. In stepwise regression process, a multiple term linear regression equation is built 

up using a “stepping criteria” also known as “Fisher criteria”. In this present study, we have 

fixed the “stepping criteria” or “Fisher criteria” F=4 to enter and F=3.9 to remove (Das et al., 

2017) because at this value of the F-criterion, the descriptors are considered to be significant 

at the 95% confidence level. In this study, the stepwise regression has been performed using 

initial pool of descriptors and selected the model descriptors and kept aside. After removing 

the selected descriptors from the initial pool, stepwise regression was done again and selected 

the model descriptors and so on. The variable selection approach using stepwise regression 

technique was applied for the dataset containing 69 organic contaminants. In this way, we 

have selected 47 descriptors (reduced pool) for the dataset containing 69 organic 

contaminants. 

 

(b) Best subset selection: The best descriptor combination out of total descriptor sets is 

selected by best subset selection software developed in our laboratory 
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(http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab by evaluating the possible combinations of 

descriptors. Different statistical parameters such as R2, Q2, Q2
F1, Q

2
F2 are also calculated by 

this method. In this work, we have run best subset selection using the reduced pool of 

descriptors obtained after applying different variable selection approaches and selected best 

five multiple linear regression models based on MAE based criteria (Roy et al., 2016). 

 

(c) Intelligent consensus predictor (ICP) (Roy et al., 2018): This software was used to judge 

the performance of consensus predictions and compares them with the prediction quality 

obtained from the individual (MLR) models based on MAE based criteria (95%). It is 

obvious that a single model might not be equally useful in prediction for the whole test set 

compounds which means one QSAR model may be the best model for prediction of a test 

compound while other model may be the best predictor for another test compounds. For this 

reason, we have selected five models (M1-M5) and performed consensus prediction using 

“Intelligent consensus predictor” tool to explore whether the quality of predictions of test set 

compounds can be enhanced through an “intelligent” selection of multiple MLR models. 

 

     (d) Partial least squares (PLS): Although MLR is relatively simpler and widely used in the 

QSAR literature, MLR has several shortcomings some of them are mentioned here: (a) it 

cannot handle strongly correlated predictor variables; (b) it assumes that the predictor 

variables are noise-free, which is not true in most of the cases; (c) it cannot handle missing 

values in predictor variables; (d) MLR requires that number of data points much greater than 

number of predictor variables, which may be impractical in many circumstances leading to 

suboptimal predictions. These shortcomings of MLR can be obviated by using latent variable 

modeling (LVM) which is more generalized and robust than MLR (Wold et al.,2001; Geladi 

and Kowalski, 1986; Wold et al., 1987) LVM uses a dimension reduction technique which 

may be unsupervised (like principal component analysis) or supervised (like partial least 

squares). Partial least squares (PLS) technique generalize and combines features of MLR and 

principle component analysis (PCA) that enables analysis with collinear, noisy, and 

numerous variables. It allows modeling of several response variables (Y), which is not 

possible in MLR. The PLS technique finds secondary variables also known as latent 

variables (LVs) which captures the information of the actual variables. However, the final 

PLS equation is presented using the actual variables. PLS technique also avoids the 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab
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overfitting problem observed in MLR, when the number of predictor variables is high. It may 

be noted that when the number of LVs equals the number of actual predictor variables in the 

equation, the PLS model becomes an MLR model. Hence, it is necessary to keep the number 

of LVs at least one less than the total number of descriptors while running a PLS analysis. 

The PLS regression is based on the Non-linear iterative Partial Least Squares (NIPALS) 

algorithm as described in the literature (Wold et al., 2001). In the present study, we have 

performed PLS using MINITAB (version 14.13) software (http://www.minitab.com/en-

US/default.aspx).   

3.3.5. Computation of different statistical metrics for assessing model quality 

 

3.3.5.1. Quality measures in fitting of a QSPR model 

 

(a) Squared correlation coefficient (R2): This parameter is termed as the determination 

coefficient or squared correlation coefficient. The squared correlation coefficient of a model 

can be obtained from the following equation Eq. 3.3: 
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    (3.3) 

The R2 statistic represents the ratio of the regression variance to the original variance where 

the former is determined using the original variance minus the variance around the line of 

regression. The R2 bears a value between zero (no correlation) to one (perfect correlation). A 

model possessing a value of R2 more than 0.8 can be considered to elicit acceptable correlation 

while the quality enhancing with the increasing value of R2 until it reaches a maximum value 

of unity (which is unusual in real cases).Yobs and Ycalc are the respective observed and 

calculated values of the response variable and is their mean value. R2 gives a measure of 

explained variance. Each additional X variable added to a model increases R2. The prime 

drawbacks of the R2 parameter lies in the facts that it does not provide any information on 

whether: (i) the independent variables are a true cause of the changes in the dependent 

variable, (ii) the correct regression was used, (iii) the most appropriate set of independent 

variables has been chosen, (iv) the model might be improved by using transformed versions of 

the existing set of independent variables and (v) whether any collinearities exists in the data or 

not. 

http://www.minitab.com/en-US/default.aspx
http://www.minitab.com/en-US/default.aspx
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  (b) Adjusted R2 or R2
a: 

   (3.4) 
 

Adjusted Ra
2 is a modified version of the determination coefficient and is also known as the 

explained variance. The R2
a parameter incorporates the information of the number of samples 

and the independent variables used in model, and can be defined as follows (Snedecor and 

Cochran, 1967). Here, R2 is the determination coefficient of a QSAR model comprising p 

number of predictor variables and n number of samples. Hence, instead of using only the 

initial observed (i.e., experimental) and final predicted response values, Ra
2 considers 

information on the model history in terms of the number of descriptors and number of 

chemicals used to develop the model (i.e., training set chemicals). The Ra
2 penalizes the R2 

value of a model containing too many independent variables compared to the total number of 

compounds. The Ra
2 improves only if the addition of a new term enhances the model quality 

avoiding chance. The Ra
2 value usually is less than the corresponding R2 value. 

(c) Standard error of estimate (s): The error in the estimation of individual activity values 

of the compounds under study using the MLR method can be quantified based on their 

residual data. The standard error of estimate (SEE or s) for the residuals is calculated by 

taking the root-mean square of the residuals. The standard error of the estimate is a measure 

of the accuracy of fitting. Lower values of SEE correspond to improved model acceptability. 
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In Eq. 3.26, Yobs and Ycalc are the actual and estimated scores respectively, while n is the 

number of scores and p is the number of descriptors. 

 

(d) F-value: F-value is called the variance ratio and is defined 
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3.3.5.2 Validation strategies 

Both internal and external validation statistics constitute the primary methods for validation of 

the developed QSPR models. Both the methods have been widely used by different groups of 

researchers for assessing the predictive ability of the developed model. Another method employs 

fitting of the dependent X matrix to randomized response parameters. Several metrics are used to 

check the predictivity of the QSPR models. For the validation of QSPR models, three strategies 

are primarily adopted: (i) internal validation using the training set molecules and (ii) external 

validation based on the test set compounds.  

 

3.3.5.2.1 Validation metrics for Training set 

(a) Q2 or Q2
int: The models developed from the training set by using stepwise regression or 

genetic methods have been subjected to internal validation by means of calculating leave-one-out 

cross-validation R2 (Q2) and predicted residual sum of squares (PRESS) (Wold et al., 1995) and 

the acceptable models have been further processed for the prediction of toxicity and/or property 

of the test set compounds. Cross-validated correlation coefficient R2 (LOO−Q2) is calculated 

according to the formula: 

                                                     (3.7) 

Here, Yobs(training), Ypred(training), and  are the observed, predicted and the average value of the 

response variable of the training set. In this technique, one compound is omitted from the data set 

at random in each cycle and then model is built using the rest of the compounds. The model thus 

formed in this way is used for the prediction of activity of the omitted compound. The process is 

iterated until all the compounds are eliminated once. On the basis of the predicting ability of the 

model, the cross-validated R2 (Q2) for the model is determined. Acceptable value of Q2 is 0.5 
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with a maximum value of 1.0 and hence more the value is closer to 1, more will be the internal 

predictivity of the model. 

(b) rm
2

(LOO) : It was shown that  (Roy et al., 2009) squared cross-validated correlation coefficient 

alone might not indicate the true predictive capability of a model and hence a modified r2 

[rm
2

(LOO)] term was used to indicate the leave-one-out prediction capacity of the model for the 

training set compounds. The parameter rm
2

(LOO)  is defined as: 

                                                                                                                               

   (3.8) 

where r2 and r0
2 are the squared correlation coefficients between the observed and LOO predicted 

values of the training set compounds with and without intercept respectively. The value of 

rm
2

(LOO) should be greater than 0.5 for an acceptable model. 

(c) Root mean square error in prediction for training set (rmsepint): This parameter suggests 

that it is possible to determine the internal predictive ability of the training set compounds simply 

by taking the square root of the squared difference between the observed and predicted response 

value divided by the number of compounds in the training set (Consonni et al., 2010). 

Mathematically: 

   (3.9) 

where, nint is the number of compounds present in the training set and Yobs and Ypred corresponds 

to the corresponding observed and LOO predicted response value. It should have a minimum 

value. 

(d) Golbraikh and Tropsha criteria 

Golbraikh and Tropsha (Tropsha, 2010) defined a set of criteria to be followed in order to 

ascertain the external predictive potential of a QSAR model. As we can see that the basic 

objective of model validation is to determine how close the observed i.e., experimental values 

are to the corresponding predicted ones. Hence, the simple correlation coefficient between the 

observed (y) and predicted (ŷ) response apparently should give a value of 1 in an ideal case. In 

this situation, if a regression line is drawn all the points will be located on the line which passes 

through the origin point (0, 0) in a Cartesian plane. However, in real cases, deviation occurs and 

the best fitted line poses a definite intercept value. It may be here noted that the plots of 
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experimental versus fitted or fitted versus experimental response are not equivalent (Besalu et 

al., 2007). Golbraikh and Tropsha (Tropsha, 2010) proposed that regression of observed (y) 

against predicted (ŷ) or predicted (ŷ) against observed (y) response through the origin must be 

determined and the corresponding slopes k or k′ of the regression lines should be close to unity. 

This process is known as regression through origin (RTO) method, where a regression line is 

forcefully passed through the origin point (0, 0) and the corresponding regression lines can be 

presented as 
0 ˆr

y ky  and 
0ˆ r

y k y . The slopes k and k′ can be defined as follows: 
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Golbraikh and Tropsha  calculated the determination coefficient values r0
2 and r′0

2 of the 

regression lines passing through origin (y against ŷ or ŷ against y) and, argued that these values 

should be close to the value of the normal R2 of the model in case of good predictivity. The r0
2 

and r′0
2 represent the squared correlation coefficient between the observed and predicted 

response values with and without intercept respectively and can be defined as follows: 
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Here, y  and ŷ  refers to the respective mean values of the observed and predicted response data. 

A set of conditions for model acceptability was proposed by Golbraikh and Tropsha and are 

summarized below. 

 

2

( )

2

2 2 2 2

0 0

2 2

2 2

0 0

) 0.5

) 0.6

) 0.1 and 0.85 1.15  0.1 and 0.85 1.15

) 0.3

LOO

test

a Q

b R

r r r r
c k or k

r r

d r r





 
     

 
 



CHAPTER 3 METHOD AND MATERIALS 

 

81 
 

Here, Q2
(LOO) is for the training set only while rest of the parameters correspond to test set 

chemicals. 

(e) The rm
2 metrics: Using the concept of regression through origin approach, Roy et. al (2009) 

introduced a new parameter rm
2 or modified r2 that penalizes the R2 value of a model with respect 

to an ideal condition (Roy and Mitra, 2012). The rm
2 metric can be defined as follows: 

  2 2 2 2

01mr r r r   
 (3.14)         

  2 2 2 2

01mr r r r    
        (3.15)    

where, r2 is the squared correlation coefficient value between observed and predicted response 

values, and r0
2 and r′0

2 are the respective squared correlation coefficients when the regression 

line is passed through the origin by interchanging the axes. Roy and co-workers (Ojha et al., 

2011; Roy et al., 2013) further defined average and difference of the two rm
2 metric values (i.e., 

rm
2 and r′m

2) to be used as the acceptable criteria to judge the predictive ability of a model as 

follows. 

 2 2

2 0.5
2

m m

m

r r
r


 

     (3.16)  

2 2 2 0.2m m mr r r   
           (3.17) 

The rm
2 metrics can not only be computed for the test set compounds (rm

2
(test)) to judge external 

predictivity, but it can also be used to determine the internal predictivity of the model using the 

training set. In the latter case, leave-one-out predicted values (rm
2

(LOO)) of the training set 

observations are used against their observed response. Furthermore, Roy et al. (Roy and Mitra, 

2012) also reported the use of the rm
2 metric in characterizing the overall predictive capability of 

the model by using leave-one-out predicted values for the training set and equation (i.e., model) 

based predicted values for the test set together against their corresponding observed response 

(rm
2

(overall)). Later, a rank based rm
2 (Roy and Kabir, 2012) as well as a scaled Roy et al., 2013  

version of the rm
2 metric was introduced by the same authors’ group and these have been used in 

this present study. 

(f) MAE based criteria: In a recent study, Roy et al. (Roy et al., 2016) have shown that the 

conventional Q2 based external validation metrics (Q2
ext(F1), Q2

ext(F2), Q2
ext(F3)) often provide 

biased judgment of model predictivity since such metrics are influenced by factors such as 

response range and distribution of data. Here, the authors have defined a set of criteria using 

simple ‘mean absolute error’ (MAE) and the corresponding standard deviation (σ) measure of the 

predicted residuals to judge the external predictivity of the models. Note that, 
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1
obs predMAE Y Y

n
  

, where Yobs and Ypred are the respective observed and predicted 

response values of the test set comprising n number of compounds. The response range of 

training set compounds has been employed here to define the threshold values. Furthermore, the 

authors have proposed application of the ‘MAE based criteria’ on 95% of the test set data by 

removing 5% data with high predicted residual values precluding the possibility of any outlier 

prediction. The criteria are described below.   

(i) Good predictions: The criteria for good predictions are as follows: 

0.1 training set range AND ( 3 ) 0.2 training set rangeMAE MAE       

In simpler terms, an error of 10% of the training set range should be acceptable while an error 

value more than 20% of the training set range may be considered as high. 

(ii) Bad predictions: The predictions considered as bad can be defined using the 

following criteria: 

0.15 training set range OR ( 3 ) 0.25 training set rangeMAE MAE       

Here, a value of MAE more than 15% of the training set range is considered high while an error 

more than 25% of the training set range is judged as very high. 

The predictions which do not fall under either of the above two conditions may be considered as 

of moderate quality. The above criteria should be applied for judging the quality of test set 

predictions when the number of data points is at least 10 (statistical reliability) and there is no 

systematic error in model predictions (statistical applicability). 

 

3.3.5.2.2. Validation metric for Test set 

(a) R2
pred or Q2

ext(F1) 

After the prediction of toxicity and/or property of the test set compounds, this parameter was 

calculated. It can be defined as: 

   (3.18) 

 

where, Yobs(test) is the observed activity of the test set compounds, Ypred (test) is the predicted activity 

of the test set compounds and  corresponds to the mean of observed activity of the 

 
 







2

)(

2

)()(2

)1(

2 1

trainingtestobs

testpredtestobs

Fextpred

YY

YY
QR

trainingY



CHAPTER 3 METHOD AND MATERIALS 

 

83 
 

training set compounds. R2
pred value for an acceptable model should be greater than 0.5 

(maximum value 1). 

 

(b) Q2
ext (F2): This function as a metric for external set validation was described in the paper of 

Hawkins (Hawkins, 2004) and can be calculated as: 

    (3.19) 

The only notable difference from Q2
ext (F1) is that, in Equation 3.77 the average value of external 

or test set is used in the denominator instead the internal or training set average value. 

Both these functions Q2
ext (F1) and Q2

ext (F2) were compared and discussed by Schuurmann et al. 

(Schuuuurmann et al., 2008). 

 

(c) Q2
ext(F3): This function was described by Consonni et al. (Consonni et al., 2009)  and is 

defined as: 

  (3.20) 

Since the terms for summation in the numerator deals totally with the test set values and the 

denominator with training set values, division with ntest and ntraining of the numerator and 

denominator summation expression respectively makes the two squares comparable. The 

threshold value of acceptance for all the three parameters Q2
ext (F1), Q

2
ext (F2) and Q2

ext (F3) is 0.5. 

(d) rm
2

(test): For test set compounds, rm
2

(test) has been determined which penalizes a model for 

large differences between observed and predicted values of the test set compounds. The formula 

is: 

    (3.21) 

 

r2 and r0
2 are the squared correlation coefficients between the observed and predicted values of 

the test set compounds with and without intercept respectively. 

 

 

2

( ) ( )2

( 2) 2

( )

1
obs test pred test

ext F

obs test test

Y Y
Q

Y Y


 







 

 

2

( ) ( )

2

( 3) 2

( )

1

obs test pred test

test
ext F

obs training training

training

Y Y

n
Q

Y Y

n



 






   2

0

222 1 rrrr testm 



CHAPTER 3 METHOD AND MATERIALS 

 

84 
 

(e) Root mean square error in prediction for test set (rmsepext): We have also calculated the 

rmsepext parameter for the evaluation of external predictive ability of a model as follows 

(Consonni  et al., 2010):  

   (3.22) 

where, next represents the number of training set compounds, and Yobs and Ypred corresponds to the 

observed and predicted activity of the test set compounds respectively. It should have a 

minimum value. The rmsep value for test and training set depends on the scale of the response 

activity and therefore comparison makes no sense when a model is compared to another 

modeling a different activity. 

 

3.3.5.2.3. Validation metric for overall set 

For the purpose of determination of an overall validation strength of a model, we have calculated 

the overall rm
2 metric between the observed toxicity and/or property value of a dataset and the 

calculated and predicted value of the training and test set respectively. The formula is: 

    (3.23) 

The rm
2 metric has been developed by the present authors’ group and has been extensively used 

by them (Mitra et al., 2009; Roy and Roy, 2009; Roy and Popelier, 2009). 

3.3.5.3. Y-randomization 

The relationships between the response variable and the descriptors can be checked for further 

statistical significance by randomization test (Y-randomization) of the models. The method can 

be executed in two ways namely: 

i) Process randomization and  

ii) Model randomization 

 

In process randomization, random scrambling of the dependent response variables is performed 

accompanied with fresh selection of variables from the whole descriptor matrix and in model 

randomization scrambling or randomization of the response variable is performed within the 

descriptors present in an existing model. We have performed process as well as the model 

 

ext

predobs

ext
n

YY
rmsep

 


2

   2

0

222 1 rrrr overallm 



CHAPTER 3 METHOD AND MATERIALS 

 

85 
 

randomization of the genetic models. A parameter was proposed by Roy and Paul (Roy and Paul, 

2009) named Rp
2 that penalises the model R2 for a small difference between squared mean 

correlation coefficient (Rr
2) of randomized models and squared correlation coefficient (R2) of the 

non-randomized model and was defined as: 

    (3.24) 

and the acceptable value of Rp
2 was proposed to greater than or at least equal to 0.5. Later a 

correction for this parameter has been suggested by Todeschini and the rebuilt formula is as 

follows: 

    (3.25) 

We have used the new parameter cRp
2 which should be above 0.5 for a good model. 

 

3.3.5.4. Applicability Domain 

“The applicability domain of a (Q)SAR is the physico-chemical, structural, or biological space, 

knowledge or information on which the training set of the model has been developed, and for 

which it is applicable to make predictions for new compounds. The applicability domain of a 

(Q)SAR should be described in terms of the most relevant parameters, i.e., usually those that are 

descriptors of the model. Ideally the (Q)SAR should only be used to make predictions within that 

domain by interpolation not extrapolation.” The AD of QSAR model is characterized by the 

molecular properties of the training set compounds. The AD criteria help to check whether the 

test/query compound under consideration is inside the AD or not. The predictability of a QSPR 

model is good if the molecules were present within the domain of chemical space of training set 

molecules. Here, we have checked the applicability domain of test set compounds of the 

developed models, employing the standardization approach  using the software developed in our 

laboratory (Roy et al., 2015) and a DModX (distance to model X) approach (Wold et al., 2001) 

at 99% confidence level using SIMCA-P software (www. umetrics. com). The predictability of a 

QSPR model is good if the molecules are present within the domain of the chemical space of the 

training set molecules. 

 

3.3.5.5. Model validation based on OECD guidelines 
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To authenticate the applicability of the developed QSPR models and to judge the reliability of 

the predictions made, the models were further analyzed based on the OECD guidelines 

(Gramatica, 2007). Thus, the QSPR models developed in this work were validated based on 

these five guidelines laid down by the OECD. The compliance of the developed models with the 

OECD guidelines for applicability in regulatory purposes was assessed as follows: 

(a) Principle 1 (a defined endpoint): The response parameter (CMC) modeled in the present 

work for the three different datasets were measured under similar conditions of temperature 

using identical solvent system. Thus the QSPR models were developed in accordance with the 1st 

OECD principle. 

(b) Principle 2 (an unambiguous algorithm): Various chemometric tools based on specific 

algorithms were employed for the calculation of the different categories of descriptors and 

subsequent QSPR model development using specific software packages. Thus the model 

development pathway employed for the present studies follow a definite algorithm. 

(c) Principle 3 (a defined domain of applicability): The domain of applicability of all the 

statistically significant QSPR models was analyzed in case of all the three datasets using the 

leverage method. The leverage values thus calculated were subsequently plotted against the 

standardized predicted residuals in William’s plot for identification of response outliers and 

influential chemicals. Thus the selection of the best QSPR model was done in corroboration with 

this principle. 

(d) Principle 4 (appropriate measures of goodness-of-fit, robustness and predictivity): All the 

developed models were rigorously validated using internal, external and overall validation 

techniques. The quality of fitness and the predictive potential of the developed models was 

assessed based on the different validation metrics while the robustness of the models was judged 

using the randomization approach. The selection of the most significant models based on the 

acceptable values of the various validation metrics account for the compliance of the models 

with the 4th guideline. 

(e) Principle 5 (a mechanistic interpretation): All the descriptors appearing in the developed 

QSPR models could aptly define the essential structural attributes of the molecules imparting 

optimum CMC values to the cationic surfactants thus signifying suitable mechanistic 

interpretation of the developed models. 

 3.3.6. Software packages employed 
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Marvin Sketch version 5.5.0.1 (http://www.chemaxon.com/) was used to draw chemical 

structures. Descriptors were calculated by PADEL Descriptor software 

(http://www.yapcwsoft.com/dd/padeldescriptor) and Dragon software version 6 (http:// 

www.talete.mi.it/products/dragon description.htm). Clustering of the data set was done by 

“Modified K-Medoid” tool version 1.3 (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab) for its 

splitting into training set and test set. Data Pretreatment version 1.2 was used to remove 

intercorrelated descriptors. Stepwise regression analysis was done by MINITAB software 

version13.14 (http://www.minitab.com/en-US/default.aspx). Best subset selection (http:// 

teqip.jdvu.ac.in/QSAR_Tools/DTCLab)and intelligent consensus predictor (Roy et al., 2018) 

were used to generate the QSAR models. 

 

3.4. Study wise specific description of methodologies utilized in each study 

 

3.4.1. Study1: Predictive quantitative structure–property relationship (QSPR) modeling for 

adsorption of organic pollutants by carbon nanotubes (CNTs) 

 

3.4.1.1. Selection of Dataset: The dataset involves the adsorption affinity of 69 organic 

contaminants related to the specific surface area (KSA) of multi-walled carbon nanotubes 

(MWCNTs). The endpoint values were taken in the logarithmic scale for the modeling purposes. 

The  data set mainly involve adsorption data for synthetic organic compounds like pyrene, 

naphthalene, phenol, benzene, aniline, benzoate, chloroanisole, alcohol, acetophenone, 

isophoron, phenanthrene dicamba, atrazine, carbamazepine, pyrimidinone, acetamide, piperidine, 

propionitrile, acrylic acid, thiodiethanol, ethanolamine, cyclopentanone, acetone and ethylene 

glycol derivatives. KSA is adsorption coefficients that can be obtained from isotherm data. KSA is 

the specific surface area of multi-walled carbon nanotubes. KSA is the normalized value of K∞ 

which is the ratio of solid and liquid phase equilibrium concentrations at infinite dilution 

conditions with an average of 0.2% aqueous solubility. 

3.4.1.2. Molecular descriptors: The descriptors were calculated using two software tools 

namely Dragon software version 6 (http://www.talete.mi.it/products/dragon description.htm.) and 

PaDEL-descriptor (http://www.yapcwsoft.com/dd/padeldescriptor.) software. In this work, we 

have calculated only 2D descriptors covering constitutional, ring descriptors, connectivity index, 

http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab
http://www.minitab.com/en-US/default.aspx
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functional group counts, atom centered fragments, atom type E-states, 2D atom pairs, molecular 

properties (using Dragon software version 6) and ETA indices (using PaDEL-Descriptor 

software). 

3.4.1.3. Dataset division: Division of the dataset is a very important step for QSAR. The present 

work deals with three datasets containing diverse organic pollutants or solvents. In each case, all 

the dataset compounds were divided into a training set and a test set using “Modified k-medoid” 

clustering technique. Six clusters were generated for the dataset. We have selected approximately 

25% compounds of the total data set for the test set and remaining 75% compounds selected for 

the training set. 

3.4.1.4. Variable selection and model development: After the step of dataset division, we have 

performed data pretreatment to remove inter correlated descriptors from all three sets of datasets. 

Prior to development of final models, we have tried to extract the important descriptors from the 

large pool of initial descriptors using various variable selection strategies (Das et al., 2017b).We 

have run stepwise regression and selected some descriptors. After removing the selected 

descriptors obtained from first stepwise regression run, we have run again stepwise regression 

using remaining pool of descriptors and we have repeated the same procedure. In this way, we 

have selected some manageable number of descriptors and made a pool (reduced pool of 

descriptors). 

The validation of the models was done by both internal and external validation tools. Internal 

validation metrics measured: R2, Ra
2, and QLOO

2. For external validation the measured metrics 

were: R pred
2 (QF1

2) and QF2
2. The MAE (95%) and RMSE values were also calculated. 
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Fig. 4. Schematic representation of the steps involved for the development of QSPR models. 

 

3.3.2. Study 2: Exploring QSPR modeling for adsorption of hazardous synthetic organic 

chemicals (SOCs) by SWCNTs 

 

3.3.2.1. Selection of Dataset: A data set of 40 hazardous synthetic organic chemicals (SOC) 

with defined adsorption coefficient onto SWCNTs reported in the literature (Ding et al., 2016a) 

were used to develop the QSPR models. The whole data set of 40 synthetic organic chemicals 

was collected from 14 published articles containing experimental adsorption coefficient (K in, 

L/kg) values. The endpoint K is the ratio of  qe  and Ce .Where qe is the equilibrium concentration 

on the surface and Ce is the equilibrium concentration in the aqueous phase of (Zhao et al., 2014). 

 

3.3.2.2. Molecular descriptors: All the structures were drawn by using Marvin sketch software 

(http://www.chemaxon.com). The descriptors were calculated using two software tools, Dragon 

descriptor version 6 and PaDEL-Descriptor (http://www.yapcwsoft.com/dd/padeldescriptor) 

http://www.chemaxon.com/
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software. Constitutional indices, ring descriptors, connectivity indices, functional group count, 

atom centered fragments, atom type E-state indices, 2D atom pairs and molecular properties 

were calculated using Dragon software, while extended topochemical atom (ETA) indices were 

calculated using PaDEL-Descriptor software. 

 

3.3.2.3. Dataset division: In this work, the whole data set was divided by using the 

“datasetDivisionGUI1.2” (http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab) software tool. We have 

employed the Kennard-Stone method for data set division. The selection of objects in the 

Kennard-Stone algorithm was done in such a manner that they were uniformly distributed 

throughout the descriptor space of the data set. In this study, 75% compounds were selected for 

the training set, and the remaining 25% compounds were selected for the test set (i.e., 30 

compounds for the training set and 10 compounds for the test set). 

 

3.3.2.4. Variable selection and model development: Prior to the development of the final 

models, data pretreatment was performed to eliminate intercorrelated descriptors. Various 

variable selection strategies were employed to prepare the descriptor pool. We have excluded the 

variables with constant and near constant values (standard deviation less than 0.0001), 

descriptors with at least one missing value, descriptors with all missing values and descriptors 

with (absolute) pair correlation larger than or equal to 0.95 from the initial pool of descriptors. 

Initially, stepwise regression analysis was run and modeled descriptors were selected. The 

previously selected descriptors were removed from the initial pool of descriptors and stepwise 

regression analysis was rerun by using remaining pool of descriptors. In this manner, 31 

descriptors were selected for the development of final models. Among the best subset equations, 

five models were selected based on Mean Absolute Error (MAE) criteria (Roy et al., 2016) along 

with some other parameters, and then carried out partial least squares (PLS) regression (Wold et 

al., 2001), in each case, using the selected descriptors. Finally, “intelligent consensus prediction” 

was performed of the test set compounds based on the selected five models using intelligent 

consensus predictor (ICP) tool (Roy et al., 2018) in order to investigate whether prediction 

quality of the external set compounds was increased or not through an “intelligent” selection. 
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We have used various statistical parameters like determination coefficient (R2), explained 

variance (Ra
2), variance ratio (F) and standard error of estimate (s) were used for model 

validation. Apart from that, Q2, rm
2

(LOO) and Δrm
2

 (LOO)were used for internal validation while 

R2
pred, Q

2
F2, CCC, rm

2
 (test) and Δrm

2
 (test) were used for external validation. 

           

 

Fig. 5. Schematic representation of the steps involved in the development of final PLS model 
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4. RESULT S AND DISCUSSIONS 

4.1. Study 1: Predictive Quantitative Structure-Property Relationship (QSPR) Modeling 

for Adsorption of Organic Pollutants by Carbon Nanotubes (CNTs) 

In the present work, QSPR models were developed comprising of a dataset containing 69 

organic chemicals (Chayawan., 2016) with defined end point (adsorption affinity of organic 

contaminants related to specific surface area of multi walled carbon nanotubes (logKSA) to 

correlate the adsorption affinity (logKSA) in order to determine the structural features which are 

responsible for adsorption of organic contaminants by multi-walled carbon nanotubes 

(MWCNTs). Thus the aim of this study is: 

(a) Development of QSPR models. 

(b) Validation of models using different validation parameters to judge the statistical          

quality of the models. 

(c) Interpret the model descriptors and provide some information to the chemist 

regarding the structural features of organic pollutants which can change the 

adsorption affinity of organic contaminants by MWCNTs without any experimental 

work. 

The significant descriptors obtained from the five MLR models using the adsorption properties 

(logKSA) of 69 organic pollutants related to the specific surface area of MWCNTs are 

Eta_Epsilon_3, X1A, X2A, nOHp, VAdjMat, F04(O-Cl), B05(O-Cl), MLOGP2, T(N..N), O%, 

and T(O..Cl). We have discussed here all the significant descriptors which are the key 

properties to alter the adsorption properties of organic pollutants. The definition, contribution 

and frequency of the modeled descriptors are shown in Tables 4.1. The applicability domain of 

the developed models using standardization approach showed that one test set compound 

(compound number 10) for model 1, two test set compounds (compound number 10 and 21) for 

model 2, one test set compound (compound number 21) for model 3 are situated outside the 

applicability domain while in case of model nos. 4 and 5, all the test set compounds are situated 

within the domain of applicability. Statistical quality and  dofferent validation parameters of the 
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models are given in Table 4.2 The scatter plot of observed vs predicted adsorption coefficient 

related to specific surface area of MWCNTs for all the MLR models are shown in Fig. 6. 

 
 

Fig. 6. The scatter plot of the observed and the predicted adsorption coefficient property related 

to specific surface area of MWCNTs (logKSA) of the developed MLR models (models 1-5). 
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Table 4.1.Definition and contribution of different descriptors obtained from five PLS models. 

 

Sl. 

No. 

Name of 

descriptor 

Contribution 

 

Discussion Mechanism Freq

uenc

y of 

descr

iptors 

1 ETA_Epsilon_3 

 

+ve Summation of electronegativity 

or ϵ value relative to the total no. 

of atoms including hydrogen in 

the connected molecular graph of 

the reference alkane 

Electrostatic 

interaction 

2 

2 X1A -ve Average connectivity index of 

order 1 

Hydrophobic 

interaction 

1 

3 X2A -ve Average connectivity index of 

order 2 

Hydrophobic 

interaction 

1 

4 nOHp -ve Number of primary alcohols π-π interaction 2 

5 VAdjMat +ve Vertex adjacency information 

(magnitude) 

Hydrophobic 

interaction 

1 

6 F04(O-Cl) -ve Number of (O..Cl) fragment at 

topological distance 4 

π-π interaction 1 

7 B05[Cl-Cl] -ve Presence/absence of Cl - Cl at 

topological distance 5 

π-π interaction 2 

8 MLOGP2 +ve Squared Moriguchi octanol-water 

partition coefficient (logP^2) 

Hydrophobic 

interaction 

5 

9 T(N..N) +ve Sum of topological distances 

between N..N 

π-π interaction 4 
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log 4.29( 2.194) .0965( 0.014) % -16.4( 4.397) 1 0.145( 0.032) ( .. )
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Table 4.2. Statistical quality and validation parameters obtained from the developed MLR  models. 

 

 

CM0=Ordinary consensus predictions. 

CM1 = Average of predictions from individual models IM1 through IM5. CM2 = Weighted average predictions from individual models IM1 through IM5.  

CM3 = Best selection of predictions (compound-wise) from individual models IM1 through IM5. 

 *Note that we have run the “Intelligent consensus predictor tool” using the options, 

 AD: No; Dixon Q-test: No; Euclidean distance: N

Data
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model 
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(LOO)  

 

MAE_tra

in 

2
m(LOO)r  

 

2
m(LOO)Δr
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a
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M
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IM1 0.845 0.798 Moderate 0.709 0.087 0.809 0.795 0.908 0.783 0.048 0.319 0.271 Moderate 

IM2 0.842 0.790 Moderate 0.723 0.114 0.830 0.818 0.918 0.805 0.050 0.359 0.323 Good 

IM3 0.842 0.788 Good 0.714 0.081 0.783 0.768 0.890 0.712 0.140 0.340 0.265 Good 

IM4 0.829 0.785 Good 0.709 0.087 0.812 0.799 0.903 0.748 0.044 0.330 0.286 Moderate 

IM5 0.793 0.743 Good 0.709 0.087 0.890 0.882 0.940 0.836 0.090 0.273 0.247 Good 

C
o

n
se

n
su

s 

M
o

d
el

s 

CM0 - -    0.862 0.852 0.929 0.818 0.002 0.284 0.245 Good 

CM1 - -    0.862 0.852 0.929 0.818 0.002 0.284 0.245 Good 

CM2 - -    0.865 0.852 0.930 0.820 0.014 0.279 0.241 Good 

CM3 - -    0.887 0.879 0.941 0.851 0.040 0.263 0.235 Good 
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4.1.1. The descriptors related to hydrophobic interaction 

The descriptor, X1A, indicates average connectivity index of order one, it encodes the ‘chi’ 

value across one bond which can be calculated on the basis of Kier and Hall’s connectivity index 

and defined as follows:  

                                                               1X =∑ (δi. δj)b
−0.5𝐵

𝑏=1
 

In this equation, b runs over the 1st order sub graphs having n vertices with B edges, δi and δj are 

number of other vertices attached to vertex i and j respectively. The negative regression 

coefficient of this descriptor implies that the higher numerical values of this descriptor are not 

favorable to enhance the adsorption property of organic pollutants related to the specific surface 

area of MWCNTs as shown in compound nos. 3 (benzene), 56 (ethylbenzene) and 57 (benzyl 

alcohol) (corresponding numerical values of these compounds are 0.5, 0.491, 0.491 respectively 

showing lower range of adsorption affinity). On the other hand, compounds like 35 

(tetracycline), 22 (pyrene) and 26 (phenanthrene) show better adsorption affinity (logKSA) due 

to their lower numerical value of this descriptor. 

Another significant descriptor, X2A, indicates average connectivity index of order 2, encodes the 

‘chi’ value across two bonds which can be calculated on the basis of Kier and Hall’s connectivity 

index and defined in the following equation: 

                                                                                          2X =∑ (δi. δj)b
−0.5𝐵

𝑏=2
 

Here, b runs over the 2nd order sub graphs having n vertices with B edges, δi and δj are number of 

other vertices attached to vertex i and j respectively. This descriptor is also having a negative 

contribution towards the adsorption profile (logKSA) of organic pollutants by MWCNTs as 

evidenced by the negative regression coefficient. This indicates that the adsorption property of 

organic pollutants decreases with an increase in the numerical value of this descriptor as shown 

in compounds 3 (benzene), 18(aniline) and 40 (bromobenzene) and vice versa in case of 

compounds 22 (pyrene), 26 (Phenanthrene) and 35 (tetracycline). 

The VAdjMat descriptor represents vertex adjacency information, gives information about 

molecular dimension and hydrophobicity. This descriptor can be calculated by using the 

following formula:  

𝑉𝐴𝑑𝑗𝑀𝑎𝑡 = 1 + log2(𝑚) 

Here, m depicts the number of heavy-heavy bonds. This descriptor contributed positively 

towards the adsorption property (logKSA) of organic pollutants as indicated by the positive 
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regression coefficient. Thus, the higher numerical value of this descriptor is influential to the 

adsorption affinity of organic pollutants. This indicates that hydrophobicity plays a crucial role to 

alter the adsorption property of organic pollutants by MWCNTs. As for example, compounds 22 

(pyrene), 26 (Phenanthrene) and 35 (tetracycline) show higher range of adsorption property as 

these compounds contain higher numerical value of this descriptor whereas compounds 3 

(benzene), 55 (iodobenzene) and 46 (chlorobenzene) show lower range of adsorption property 

as these compounds contain higher numerical value of this descriptor. From this descriptor, it can 

be suggested that the hydrophobic organic pollutants can easily be adsorbed by MWCNTs 

through hydrophobic interactions between the pollutants and CNTs. 

The next descriptor, MLOGP2, represents squared Moriguchi octanol water partition coefficient, 

calculated from the regression equation of Moriguchi logP model (Moriguchi et al., 1994; Ojha, 

and Roy., 2018) consisting of 13 parameters as depicted in the below mentioned equation.  

log 𝑃 = −1.244(𝐶𝑋)0.6 − 1.017(𝑁𝑂)0.9 + 0.406𝑃𝑅𝑋 − 0.145(𝑈𝐵)0.8 + 0.511𝐻𝐵

+ 0.268𝑃𝑂𝐿 − 2.215𝐴𝑀𝑃 + 0.912𝐴𝐿𝐾 − 0.392𝑅𝑁𝐺 − 3.684𝑄𝑁 + 0.474𝑁𝑂2

+ 1.582𝑁𝐶𝑆 + 0.773𝐵𝐿𝑀 − 1.041 

Here, ‘CX’ depicts summation of weighted number of carbon atoms; ‘NO’ depicts total number 

of N and O atoms; ‘PRX’ represents Proximity effect of N/O; ‘UB’ represents number of 

unsaturated bonds including semi polar bonds; ‘POL’ depicts number of aromatic polar 

substituent; ’AMP ’depicts amphoteric   property; ‘ALK’ represents dummy variable for alkane, 

alkene; ‘RNG’ depicts Indicator variable for presence of ring structure except benzene and its 

condensed ring; ‘QN’ represents Quaternary nitrogen; ‘NO2’ represents number of nitro groups; 

‘HB’ represents a dummy variable for the presence of intermolecular hydrogen bond; ‘NCS 

depicts ’isothiocyanito; thicyanito; ‘BLM’ represents a dummy variable for the presence of β-

lactam. 

The positive regression coefficient of this descriptor indicates that hydrophobicity plays a crucial 

role to regulate the adsorption property of organic pollutants. The highly hydrophobic organic 

pollutants can easily get adsorbed by MWCNTs as evidenced by the compounds 22 (pyrene), 26 

(phenanthrene) and 34 (azobenzene) as their corresponding MLOGP2 values are 22.653, 

18.762 and 10.539 respectively whereas hydrophilic molecules are poorly adsorbed by 

MWCNTs as evidenced by the compounds 18 (aniline), 57 (benzylalcohol) and 63 (3-

nitroaniline) as their corresponding MLOGP2 values are 2.268, 2.532 and 1.816 respectively. 
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Therefore, it can be inferred that the organic pollutants are adsorbed to the CNTs through 

hydrophobic interactions. Thus, for proper adsorption, organic pollutant should be hydrophobic 

in nature. MLOGP2 is not strictly a 2D descriptor. Here, a term ‘intramolecular H-bonds’ is used 

to calculate MLOGP value which is conformation dependent. 

The information obtained from the descriptors X1A, X2A, VAdjMat and MLOGP2 suggested 

that adsorption of organic pollutants related to specific surface area of MWCNTs may occur 

through hydrophobic interactions. Molecular connectivity index (X1A and X2A) has a direct 

relationship with count of interacting C-H bonds present in a molecule. The number of C-H 

bonds in a molecule is equal to the number of H atoms. As the C-H bond increases, the 

hydrophobicity of the molecule increases. The 𝛅 value (depends on the number of H atoms, 

definition of a 𝛅 value for a carbon atom in a molecular graph is: 𝛅= 4–H) is decreasing with the 

average connectivity index. Thus, the hydrophobic interaction between the organic contaminants 

and MWCNTs is reduced and the adsorption of organic pollutants related to the specific surface 

area of MWCNTs may also reduce (Kier and Hall, 2002) 

The descriptors VAdjMat and MLOGP2 give information about hydrophobicity of molecules. It 

is obvious that the hydrophobic organic pollutants will interact with hydrophobic CNTs through 

hydrophobic interactions. This is implied that the hydrophobic organic pollutants can easily be 

adsorbed by MWCNTs through hydrophobic interactions. The descriptors involved for 

hydrophobic interaction are graphically depicted in Fig.7. 
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Fig.7. Mechanistic interpretation of the descriptors related to hydrophobic interaction between 

organic pollutants and MWCNTs. 

 

4.1.2. The descriptors related to π-π interaction 

A functional group count descriptor, nOHp, describes the number of primary alcohols. The 

negative regression coefficient of this descriptor points out that the primary alcoholic group is 

not favored to enhance the adsorption property (logKSA) of organic pollutants as found in 

compounds 13 (3-methyl benzyl alcohol) and 57 (benzyl alcohol). On the contrary, organic 

pollutants do not containing any primary alcoholic group have higher adsorption affinity 

(logKSA) as shown in compounds 22 (pyrene), 26 (Phenanthrene) and 34 (azobenzene). Thus, 

the organic pollutants which do not contain any primary alcoholic group may be highly adsorbed 

by MWCNTs.  

F04[O-Cl] is a 2D atom pair descriptor which indicates the number of (O-Cl) fragments at a 

topological distance 4. The negative regression coefficient of this descriptor indicates that the 

frequency of O–Cl fragment at the topological distance 4 is inversely proportional to the 
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adsorption property of organic pollutants. A higher number of this fragment correlates to lower 

adsorption property of organic pollutants as observed in compounds 7 (dicamba), 61 (3-

chlorophenol) and 66 (2,4,5-trichlorophenoxyacetic acid) (these compounds contain 3, 1 and 1 

such fragments respectively at topological distance 4), while a lower numerical value of this 

descriptor correlates to higher adsorption property of organic pollutants as observed in 

compounds 22 (pyrene), 26 (phenanthrene), 34 (azobenzene) and 69 (2,4-dinitrotoluene) 

(these compounds contain no such fragments at topological distance 4). Thus, presence of this 

fragment at the topological distance 4 may hinder adsorption of the organic pollutants by 

MWCNTs. Adsorption of organic contaminants to the CNTs decreases when frequency of (O-

Cl) fragment at topological distance 4 increases. Compounds 2 (2,4,6-trichlorophenol) also 

contains a O-Cl fragment but not at topological distance 4. So, the adsorption affinity related to 

the specific surface area of MWCNTs value of compound 2 is (logKSA value=-0.81) not low as 

compared to compounds 7 (dicamba), 61 (3-chlorophenol) and 66 (2,4,5-

trichlorophenoxyacetic acid) (these compounds contain 3, 1 and 1 such fragments respectively 

at topological distance 4 and the logKSA value is -2.64, -1.75 and -2.51 respectively). 

T(O..Cl), a 2D atom pair descriptor, indicates sum of topological distance between oxygen and 

chlorine. The negative regression coefficient of this descriptor suggested that higher numerical 

value of this descriptor is detrimental to enhance the adsorption property of organic pollutants 

related to specific surface area of MWCNTs as shown in compounds 2 (2,4,6-trichlorophenol), 

7(dicamba) and 66 (2,4,6-trichlorophenoxyacetic acid). On the other hand, the organic 

pollutants containing no such fragments have higher adsorption property as shown in compounds 

22 (pyrene), 26 (phenanthrene) and 34 (azobenzene). From this observation, it can be 

suggested that the organic pollutants without (O..Cl) fragments may adsorb better to MWCNTs 

surface.  

A 2D atom pair descriptor, B05(Cl-Cl), describes the presence or absence of Cl-Cl fragments at 

topological distance 5. The negative regression coefficient of this descriptor indicates that the 

presence of the Cl–Cl fragment at the topological distance 5 may reduce the adsorption property 

of organic pollutants related to the specific surface area of MWCNTs (logKSA). A higher number 

of this fragment correlates to lower adsorption property of organic pollutants as observed in 

compounds 7 (dicamba), 41 (1,2,4-trichlorobenzene) and 66 (2,4,5-trichlorophenoxyacetic 

acid) (containing one such fragment each) while absence of this fragment in organic pollutants 
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correlates to higher adsorption property as evidenced from compounds 22 (pyrene), 26 

(phenanthrene) and 34 (azobenzene). From this descriptor, it can be suggested that presence of 

this fragment at topological distance 5 may retard adsorption of the organic pollutants by 

MWCNTs.  

Another 2D atom pair descriptor, T(N..N), indicates the sum of topological distances between 

two nitrogen atom. A positive contribution towards the adsorption property of organic pollutants 

related to the specific surface area of MWCNTs (logKSA) indicated that for better adsorption of 

organic pollutants by MWCNTs, the topological distance between two nitrogen atoms should be 

more as shown in compounds 4 (oxytetracycline), 35 (tetracycline) and 69 (2,4-dinitrotoluene) 

(as their corresponding topological distance between two nitrogen atoms are 5, 5 and 4 

respectively) and vice versa in case of compounds 42 (isophorone), 43 (4-fluorophenol) and 44 

(acetophenone). Thus, it can be inferred that the topological distances between two nitrogen 

atoms should be more for better adsorption of organic pollutants by MWCNTs. 

As discussed earlier in the introduction section that π-π interactions is one of the key 

mechanisms for the adsorption of organic pollutants to CNTs. The information obtained from 

these descriptors nOHp, F04[O-Cl], B05[Cl-Cl], T(N..N) and T(O..Cl) strongly support this 

statement. The descriptor nOHp weaken the π-π interaction that occurs between the organic 

pollutants and CNTs. In this case, the hydroxyl group is alcoholic in nature (aliphatic hydroxyl 

group). Thus, it cannot donate the lone pair of electrons to the aromatic ring (not directly bonded 

with aromatic carbon) and ultimately weaken the π-π interactions of the aromatic ring though it 

can form hydrogen bonds with the surface modified CNTs. On the other hand, the phenolic 

hydroxyl group can donate the lone pair of electrons to the aromatic ring (bonded directly to the 

aromatic carbon atom) as discussed previously (section 3.1) thus strengthening the π-π 

interactions between organic pollutants and CNTs. In case of phenolic hydroxyl group, it can 

also act as a π donor but it is not possible in case of alcoholic hydroxyl group. From this 

observation, it can be suggested that aliphatic hydroxyl (alcoholic) group is not favorable for the 

adsorption affinity of organic pollutants to the CNTs. In case of the descriptors B05[Cl-Cl], 

T(O..Cl) and F04[O-Cl], the  chlorine atom  has an electron inductive  effect and decrease  the 

electron density in the benzene ring, which compensates for the electron-donating effect of the 

oxygen atom (in case of compound nos. 7 and 66), even after -OH dissociated into -O-. The 

withdrawing inductive character of chlorine substituents decreases the electron density of the    
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p-chlorophenol ring compared with that of phenol ring. Thus, when O-Cl or Cl-Cl fragment is 

present in an aromatic molecule, it decreases the electron density of that aromatic ring (compared 

with that of –OH substituted benzene ring (phenolic) or benzene ring itself) and ultimately, 

electron donor-acceptor interactions does not occur easily between CNTs and organic 

contaminants. Hence, the compound could not be easily adsorbed to the MWCNTs. In case of 

the descriptor T(N..N), the lone pair of electrons of nitrogen atom can be donated to the ring 

system (when directly attached) and enhance the π-π interaction with the CNTs. The nitrogen can 

be present as amino form (electron donating) or in nitro form (electron withdrawing). Both the 

forms strengthen the π-π interaction between the organic pollutants and CNTs by increasing or 

decreasing the π-electrons density of the aromatic ring system and act as π electron donor or 

acceptor respectively. If the nitrogen is not attached directly to the aromatic ring system then 

adsorption happens through electrostatic interaction between nitrogen of the pollutants and 

hydrogen of CNTs by forming dipoles when they are coming close to each other, the position of 

placing nitrogen atom hardly matters here. The descriptors influencing the π-π interaction are 

graphically represented in Fig.8. 

                
 

Fig. 8. Mechanistic interpretation of the descriptors related to π-π interaction between organic 

pollutants and MWCNTs. 
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4.1.3. The descriptors related to hydrogen bonding interaction 

The descriptor, O%, indicates the percentage of oxygen atoms present in a particular molecule. 

The positive regression coefficient of this descriptor suggested that presence of oxygen atom is 

highly influential to adsorb the organic pollutants on the surface of MWCNTs. As for example, 

compounds 4 (oxytetracycline), 35 (tetracycline) and 69 (2,4-dinitrotoluene) show better 

adsorption affinity as their corresponding percentage of oxygen atom is 15.8, 14.3 and 21.1 

respectively. On the contrary, compounds. 3 (benzene), 18 (aniline) and 24 (4-chloroaniline) 

show poor adsorption affinity as these compounds do not contain any oxygen atom. The oxygen 

atom may be present in different organic pollutants in keto, phenolic (favorable for adsorption) 

or alcoholic forms (not favorable for adsorption as discussed in this section previously). These 

different types of oxygen may interact with CNTs in different ways like hydrogen bonding, 

strengthening the π-π interactions and electrostatic interactions. On the other hand, a high 

percentage of oxygen atoms may enhance the polarity of the pollutants. As the side wall of the 

CNTs is also electrically polarized, the polar group of organic pollutants can easily be adhered to 

the surface of CNTs. The descriptor involved for hydrogen bonding interaction is given in Fig. 9. 

                 
 

Fig. 9. Mechanistic interpretation of the descriptors related to hydrogen bonding interaction 

between organic pollutants and MWCNTs. 
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4.1. 4. The descriptors related to electrostatic interaction 

The descriptor, Eta_Epsilon_3, indicates summation of epsilon values relative to the total 

number of atoms including hydrogen in the connected molecular graph of the reference alkane 

which can be calculated by the following equation.   

𝜖3 =
𝜖𝑅

𝑁𝑅
⁄  

In the above equation, ε denotes electronegativity; NR denotes number of atom present in 

reference alkane. This descriptor has a positive contribution towards the adsorption property of 

organic pollutants related to the specific surface area of MWCNTs. This indicated that electron 

rich organic pollutants will be highly adsorbed by MWCNTs. Thus, the higher numerical value 

(due to strong electrostatic interactions between organic pollutants and CNTs) of this descriptor 

is required to increase the adsorption property of organic pollutants by MWCNTs as shown in 

compound nos. 22 (pyrene), 26 (phenanthrene) and 35 (tetracycline) and vice versa in case of 

compound nos.7 (dicamba), 13 (3-methylbenzyl alcohol) and 18 (aniline) (due to weak 

electrostatic interactions between these organic pollutants and CNTs). 

The information obtained from the descriptor O% suggested that the organic pollutants can 

adhere to the surface of MWCNTs by electrostatic interaction. There may be a chance to form 

electrostatic interactions between organic pollutants (negative charged atom like oxygen atom of 

hydroxyl group) and MWCNTs (sidewall of the CNTs are electrically polarizable thus polar 

molecules can easily adhere to their surface). The descriptors involved for electrostatic 

interaction are shown graphically in Fig. 10. 
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Fig. 10. Mechanistic interpretation of the descriptors related to electrostatic interaction between 

organic pollutants and MWCNTs. 

 

4.2. Study 2: Exploring QSPR modeling for adsorption of hazardous synthetic 

organic chemicals (SOCs) by SWCNTs 

In the current study, five PLS models [Box 2] were developed for the dataset containing 40 

diverse hazardous SOCs having significant adsorption affinity for SWCNTs, using a reduced 

descriptor pool obtained by stepwise regression method, as discussed in Methods and Materials 

section. We have validated the models using various internal and external validation parameters, 

which showed that the models are statistically significant (Table 4.3). The MAE based criteria of 

all the models were passed which indicates that all the models are acceptable. We have also 

checked the consensus predictivity of all the individual models (1-5) using “Intelligent consensus 

predictor” tool to see whether the quality of predictions of test set compounds can be enhanced 

or not.  The consensus predictivity of the test set compounds were found to be better than the 
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individual models based on MAE based criteria as depicted in Table 4.3 (the winner model is 

CM3).The descriptors obtained from the individual models are discussed elaborately in this 

section. To judge the predicting ability of the developed PLS models, we have also validated the 

model using Golbraikh and Tropsha criteria, and the results are given in Table 4.4. The results 

showed that the models are acceptable based on these criteria. Randomization test was also 

performed by using the SIMCA-P software to verify whether the model was obtained by any 

chance or not. The intercept of both R2 and Q2 values are below the stipulated values of R2
int< 

0.4 and Q2
int< 0.05 which confirmed that the models are not obtained by any chance (Fig. 11-

15).The definitions and contributions of different descriptors obtained from five PLS models are 

depicted in Table 4.5. In equations as depicted below, ntraining is the number of compounds used 

to develop the models, and ntest is the number of compounds used for external prediction. The 

leave one out (LOO) cross validated correlation coefficient Q2 (Q2=0.861-0.901) above the 

critical value of 0.5 signifies the statistical reliability of the models. The predictive R2 (R2
pred) or 

Q2
F1 (Q

2
F1=0.898-0.929) and Q2

F2 (Q
2

F2=0.897-0.928) show good predictive ability of the models. 

We have also checked the applicability domain of the compounds using the standardization 

approach. All the compounds are found to be present within the AD. The scatter plot of observed 

vs. predicted adsorption coefficient for five PLS models are depicted in Fig. 16. 
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 Fig. 11. The randomization plot for the QSPR model 1 derived from PLS analysis. 

 

Fig. 12. The randomization plot for the QSPR model 2 derived from PLS analysis 
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             Fig. 13. The randomization plot for the QSPR model 3 derived from PLS analysis. 

Fig. 14. The randomization plot for the QSPR model 4 derived from PLS analysis. 
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Fig. 15. The randomization plot for the QSPR model 5 derived from PLS analysis. 
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Fig.16.The scatter plot of the observed and the predicted adsorption coefficient (logK) of the 

developed PLS models (models 1-5). 
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Table 4.3. Statistical quality and validation parameters obtained from the developed PLS models. 

 

Type of 

Model 

Training set statistics Test set statistics 

Model 

R2 

 

Model 

Q2
(LOO) 

 

MAE_t

rain 

2
m(LOO)r  

 

2
m(LOO)Δr

 

R2
pred 

or 

Q2F1 

Q2F2 CCC 
2
m(test)r  

 

2
m(test)Δr  

MAE 

(100%) 

 

MAE 

(95%) 
MAE 

 

IM1 

(LV=4) 

0.928 

 

0.894 

 
Good 

0.850 

 
0.056 0.900 0.899 0.950 0.867 0.043 0.382 0.338 

Moder

ate 

IM2 

(LV=4) 

0.938 

 

0.901 

 

Good 

 

0.860 

 
0.036 0.929 0.928 0.965 0.904 0.054 0.275 0.214 Good 

IM3 

(LV=3) 
0.949 0.890 Good 0.846 0.063 0.901 0.900 0.956 0.851 0.061 0.320 0.249 

Moder

ate 

IM4 

(LV=4) 

0.920 

 

0.861 

 
Good 

0.806 

 
0.059 0.898 0.897 0.953 0.875 0.065 0.359 0.295 Good 

IM5 

(LV=3) 

0.937 

 

0.886 

 
Good 

0.842 

 
0.008 0.923 0.922 0.963 0.905 0.053 0.322 0.263 Good 

 

CM0      0.914 0.913 0.959 0.894 0.059 0.282 0.219 Good 

CM1      0.912 0.911 0.958 0.890 0.060 0.327 0.268 Good 

CM2      0.913 0.912 0.959 0.889 0.060 0.322 0.262 Good 

 CM3      0.938 0.937 0.971 0.903 0.044 0.250 0.189 Good 

CM0 = Ordinary consensus predictions 

CM1 = Average of predictions from individual models IM1 through IM5 

CM2 = Weighted average predictions from individual models IM1 through IM5 

CM3 = Best selection of predictions (compound-wise) from individual models IM1 through IM5  

*Note that we have run the “Intelligent consensus predictor tool” using the options, AD: No; Dixon Q-test: No; Euclidean distance cut-off: 0.4 
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Table  4.4. Validation results for the final PLS models obtained according to Golbraikh and 

Tropsha’s criteria. 

Sl. 

No. 

Models r^2 [(r^2-r0^2)/r^2] [(r^2-r0^'2)/r^2] k k' 

Remarks 
Threshold 

value 
>0.6 <0.1 <0.1 

0.85<k 

<1.15 

0.85< 

k'<1.15 

1 M1 
0.906 

 

-0.094 

 
-0.088 0.940 1.013 

Passed 

 

2 M2 0.932 -0.065 -0.068 0.981 0.982 Passed 

3 M3 0.927 -0.065 -0.072 0.910 1.054 Passed 

4 M4 0.918 -0.079 -0.082 0.912 1.049 Passed 

5 M5 0.933 -0.065 -0.067 0.936 1.031 Passed 

 

 

Table 4.5. Definition and contribution of different descriptors obtained from five PLS models. 

 

Sl. 

no. 

Name of the  

descriptors 

Contribution Discussion Mechanism Frequency 

1 MLOGP2 

 

+ve 

 

Squared Moriguchi octanol-

water partition coeff. (logP^2) 

Hydrophobic 

interaction 

5 

2 ETA_Shape_Y +ve 

 

ETA_Shape_Y=(∑α)Y/∑α, 

(∑α)Y stands for summation 

of α values of the vertices that 

are joined to three other non-

hydrogen vertices in the 

connected molecular graph. 

Gives a measure of molecular 

shape. 

 5 

3 nRNR2 

 

-ve 

 

Number of tertiary amines 

(aliphatic) 

Unable to form 

hydrogen bond 

due to the 

absence of free 

hydrogen atom. 

5 

4 B07[C-S] 

 

-ve 

 

Presence/absence of C-S at 

topological distance 7 

 3 

5 B04[C-C] 

 

+ ve 

 

Presence/absence of C-C at 

topological distance 4 

Hydrophobic 

interaction 

1 

6 X2A 

 

-ve 

 

average connectivity index of 

order 2 

Hydrophobic 

interaction 

2 

7 H-051 + ve H attached to alpha-C Electrostatic 

interaction.H 

atoms attached 

1 
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to α carbon 

atom can easily 

donate protons 

and may 

involve in 

electrostatic 

interaction. 

8 B06[C-O] 

 

+ ve 

 

Presence/absence of C-O at 

topological distance 6 

Formation of 

hydrogen bond 

3 

 

4.2.1. Descriptors related to hydrophobic interaction 

The descriptor MLOGP2, represents squared Moriguchi octanol water partition coefficient, 

calculated from the regression equation of Moriguchi logP model (Moriguchi et al., 1994; Ojha  

and Roy, 2018) consisting of 13 parameters.  

The positive regression coefficient of this descriptor indicates that hydrophobicity is directly 

correlated with the adsorption property of organic pollutants. Thus, the organic pollutants 

bearing highly hydrophobic property can easily get adsorbed onto SWCNTs as evidenced by the 

compounds 25 (Phenanthrene), 2 (1,2,4-trichlorobenzene) and 17 (Ethinyl estradiol) as their 

corresponding MLOGP2 values are 18.762, 16.507 and 16.033 respectively, whereas less 

hydrophobic organic pollutants are poorly adsorbed onto SWCNTs as evidenced by the 

compounds   6 (4,6-Diaminopyrimidine), 26 (Pyrimidine) and 8 (Aniline),  as their 

corresponding MLOGP2 values are 0.256,0 and 2.268  respectively. Therefore, it can be inferred 

that the hazardous SOCs get adsorbed onto the SWCNTs through hydrophobic interactions. For 

proper adsorption, synthetic organic chemicals should be hydrophobic in nature. MLOGP2 is not 

strictly a 2D descriptor as its numerical value depends on intermolecular H-bonds (as it depends 

on molecular conformation). 

The next descriptor B04[C-C] is a 2D binary fingerprint descriptor corresponding to 

presence/absence of C-C bond at topological distance 4. The positive regression coefficient of 

this descriptor indicates that presence of C-C bond at the topological distance 4 is important for 

good adsorption of SWCNTs. The descriptor is related to the size of molecule. If the size of the 

molecule increases, hydrophobic interaction of the molecule with SWCNTs also increases hence 

adsorption coefficient also increases. As for example, compounds 25 (phenanthrene), 22 

(Naphthalene) and 17 (ethinyl estradiol) contain single C-C bond at the topological distance 4, 



CHAPTER 4                                                                       RESULTS AND DISCUSSIONS 

 

116 
 

and their corresponding adsorption coefficient values are 3.67, 1.8 and 2.87 respectively (higher 

adsorption coefficient values). While absence of such fragment decreases the adsorption of 

organic pollutants to SWCNTs as shown in compounds 26 (pyrimidine), 6 (4,6-

diaminopyrimidine) and 8 (aniline) (adsorption coefficient -1.56, -0.27 and -0.16 respectively). 

Another significant descriptor, X2A, indicates average connectivity index of order 2, it encodes 

the ‘chi’ value across two bonds, which can be calculated on basis of Kier and Hall’s 

connectivity index and defined in the following equation: 

2X=∑ (δi. δj. δk)b
−0.5𝐵

𝑏=2
 

Here, b runs over the 2nd order sub graphs having n vertices with B edges, δi, δj and δk are number 

of other vertices attached to vertex i, j and k respectively. This descriptor has a negative 

contribution towards the adsorption coefficient (logK) of organic pollutants by SWCNTs as 

evidenced by the negative regression coefficient. This indicates that the adsorption property of 

hazardous SOCs decreases with an increase in the numerical value of this descriptor. For 

example, compounds 26 (Pyrimidine), 8(Aniline) and 6(4,6-Diaminopyrimidine) have descriptor 

values 0.354,0.343 and 0.338 in that order, and their corresponding adsorption coefficient values 

are -1.56,-0.16 and -0.27 respectively. If we consider compounds 25(Phenanthrene) and 

17(Ethinyl estradiol), their descriptor values are less (0.272 and 0.257 respectively), thus their 

corresponding adsorption coefficient value is high (logK value is 3.67 and 3.64 respectively). 

 

4.2.1.1 Mechanistic interpretation of hazardous SOCs containing higher and lower adsorption 

coefficient based on hydrophobic interaction 

Phenanthrene (Compound 25) (shown in Fig. 17) is a poly aromatic hydrocarbon (PAH) and non 

ionic in nature. Its MLOGP2 value is 18.76. Due to its hydrophobic property, it can strongly 

interact with hydrophobic surface of SWCNTs. The B04[C-C] value for phenanthrene is 1 

(positive contribution) and X2A value is also low (0.272) (negative contribution) which supports 

that strong interactions occur between phenanthrene and SWCNTs (Chen et al., 2008). 

Phenanthrene has an intensive electron donor property. Phenanthrene donates its π-electron and 

can easily get converted to  a cationic form, and thus more easily interacts with the surface of 

functionalized (with –COOH) SWCNTs (Gotovac et al., 2007). 
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Fig. 17. Contribution of descriptors MLOGP2,B04[C-C] and X2A related to hydrophobic 

interaction between SWCNTs and synthetic organic chemicals 

 

When we compare between Phenanthrene (compound 25) and Naphthalene (compound 22) (Fig. 

17), both are poly aromatic hydrocarbons (PAHs) and non ionic in nature. Their corresponding 

MLOGP2 values are 18.76 and 11.46 respectively. Due to their hydrophobic property, they can 

strongly interact with hydrophobic surface of SWCNTs. The B04[C-C] value for phenanthrene 

and naphthalene is also 1. Both phenanthrene and naphthalene show strong interactions with 

SWCNTs. They only differ in polarity and electron donor-acceptor ability (Chen et al., 2008). 

Thus, the adsorption coefficient of phenanthrene (logK=3.67) is higher than naphthalene 

(logK=1.8) because naphthalene contains less number of aromatic rings and is therefore less 

hydrophobic than phenanthrene.  

Another example, 1,2,4-Trichlorobenzene (compound number 2) (Fig. 17) present in the data set, 

shows higher adsorptive property (logK=2.94) due to its bulkiness. As the size of chlorine atom 

is high, substitution of three chlorine atoms in the benzene ring is responsible for the bulkiness of 

molecule. SWCNTs shows molecular sieving effect, so based on the unit surface area (Chen et 

al., 2007), it shows a stronger affinity towards trichlorobenzene. As the volume of molecule 
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increases, the molecule would preferentially like to be in the non-polar phase. As a result, the 

partition-coefficient also increases (logP value for benzene and chlorobenzene are 2.13 and 2.84 

respectively). The numerical value for MLOGP2 (squared Moriguchi octanol-water partition 

coefficient) of this compound is also high (21.476). At the same time, the molecule contains a 

benzene ring, which is responsible for π-π interaction with graphene sheets of carbon nanotubes. 

Chlorobenzene is also able to participate in hydrogen bonding (though moderately). Thus, the 

hazardous SOCs containing bulky hydrophobic groups (reflected in the MLOGP2 descriptor) is 

influential for adsorption of organic pollutants to SWCNTs. 

Another compound, Ethinyl estradiol (compound number 17) (Fig. 17) shows good adsorptive 

property to the SWCNTs due to its hydrophobicity  (Borisover  and Graber, 2003) The higher 

MLOGP2 value (16.033), presence of single C-C fragment at topological distance 4 and low 

X2A value (0.257) also give evidences for its hydrophobicity as well as higher adsorptive 

property. Another mechanism, π-π electron donor-acceptor interaction, also supports the higher 

adsorptive property of Ethinyl estradiol onto SWCNTs. Due to the presence of two phenolic 

groups (charge donor), it can strongly interact with SWCNTs through π-π electron donor-

acceptor interaction. (Chen et al., 2007; Zhao et al., 2002). Hydrogen bonding between two -OH 

groups of Ethinyl estradiol and SWCNTs is also possible, which supports a favorable mechanism 

for adsorption of this compound with SWCNTs (Pan and Xing., 2008). 

We can consider 4,6-diaminopyrimidine(compound number6) in comparison to pyrimidine 

(compound 26) (Fig. 17) (lower range of adsorption coefficient). Pyridine is an electron deficient 

system in comparison to benzene. Thus, it can weaken the π-π electron donor acceptor 

interaction with SWCNTs (Wang et al., 2010b). On the other hand, 4,6-diaminopyrimidine 

contains two amino groups which are strong electron donating groups and increase the electron 

density of aromatic ring. They may form stronger π-π interaction as compared to pyrimidine. The 

numerical value of X2A descriptor for 4,6-Diaminopyrimidine and Pyrimidine are 0.338 and 

0.358 respectively. For all these reasons, the adsorption coefficient value of 2,6-

diaminopyrimidine (logK=-0.27) and pyrimidine (logK=-1.56, lowest active compound present 

in dataset) are in the lower range. 

Thus, the information obtained from the descriptors, MLOGP2, B04[C-C] and X2A suggested 

that the organic pollutants can adhere to the surface of SWCNTs by strong hydrophobic 

interaction. 
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4.2.2. Descriptors related to electrostatic interaction 

The descriptor H-051 indicates the number of H atoms attached to α carbon atom. Such H atoms 

are very active in nature. They can easily donate protons and may involve in electrostatic 

interaction between SWCNTs and synthetic organic chemicals. The positive regression 

coefficient of this descriptor indicates that organic pollutants contain higher number of such 

hydrogen atoms have good adsorption property as shown in compounds 30 (Tylosin) and 27 

(Sulfamethoxazole). The numerical values of H-051 for compounds 30 and 27 are 5 and 3, 

respectively, and their corresponding logK values are 0.43 and 1.43, respectively. On the other 

hand, in case of compounds 6(4,6-Diaminopyrimidine) and 8(Aniline), the adsorption coefficient 

values (logK values are -0.27 and -0.16 respectively) decrease due to the absence of α H atoms. 

 

Fig. 18. Contribution of descriptor H-051 related to electrostatic interaction between SWCNTs 

and synthetic organic chemicals. 
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4.2.2.1. Mechanistic interpretation of hazardous SOCs containing higher and lower 

adsorption coefficient based on electrostatic interaction  

Molecules like Sulfamethoxazole and Tylosin (Fig. 18) are large in size. Larger molecules adopt 

themselves in such a manner that they can easily fit with the curvature surface and make stable 

complex with CNTs (Zhou et al., 2001; Richard et al., 2003; Karajanagi et al., 2004; Gurevitch 

and Srebnik, 2008). The adsorption energy provides the steric energy required for the 

conformational changes of organic molecules (Pan et al., 2008). Sulfamethoxazole is well 

adsorbed to the SWCNTs as its corresponding H-051 value is 3.In case of Tylosin, its descriptor 

value for H-051 is 5 but it adsorption coefficient value is moderate as compared to 

Sulfamethoxazole, because its MLOGP2 value is very less (1.604). On the other hand, 4,6-

diaminopyrimidine(compound 6) and aniline  (compound 8) show poor adsorption affinity 

towards the SWCNTs as discussed above. 

 

 

 

Fig. 19. Contribution of descriptors B06[C-O] and nRNR2 related to hydrogen bonding 

interaction between SWCNTs and synthetic organic chemicals. 
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4.2.3. Descriptors related to hydrogen bonding interaction 

2D binary fingerprints descriptor, B06[C-O], indicates presence/absence of C-O bond at 

topological distance 6. B06[C-O] have a positive regression coefficient which implies that 

presence of C-O fragment at topological distance 6 is beneficial for the adsorption of organic 

pollutants to SWCNT, as the C-O fragment is capable of forming hydrogen bonds with 

SWCNTs. For example, each of compounds 17 (Ethinyl estradiol), 16(Diuron) and 4(2,4-

Dinitrotoluene)contains single C-O fragment at the topological distance 6, and their 

corresponding adsorption coefficient values are 3.64,2.28 and 2.07, whereas compounds 

26(Pyrimidine), 6(4,6-Diaminopyrimidine) and 8(Aniline) have lower adsorption affinity to 

the SWCNTs due to the absence of such fragment (Fig. 19). Compounds 17 (Ethinyl estradiol) 

and 4 (2,4-Dinitrotoluene) contain C-O fragment  at topological distance 6, which indicates that 

they are capable of forming hydrogen bonds with functionally modified SWCNTs. Therefore, 

their adsorption coefficient values are in higher (3.64 and 2.07 respectively) range. On the other 

hand, both compounds 30 (Tylosin) and 20 (Lyncomycin) contain one aliphatic tertiary amine, 

so, they are not capable of forming any hydrogen bond and thus adsorption coefficient value is 

less (briefly discuss in ETA_Shape_Y). 

The descriptor, nRNR2 indicates the number of aliphatic tertiary amines present in a compound. 

Due to absence of free hydrogen atoms, tertiary amine does not act as a hydrogen bond donor 

like primary or secondary amine. The negative regression coefficient of this descriptor indicates 

that higher number of aliphatic tertiary amine weakens the interaction between synthetic organic 

chemicals and SWCNTs and vice versa. For example, compounds 30 (Tylosin) and 20 

(Lyncomycin) have descriptor value 1, and their corresponding adsorption coefficient is less 

(0.43 and -0.53 respectively), while compounds with lower descriptor value (no such group) 

have higher adsorption coefficient as shown in case of compounds 17(Ethinyl estradiol)and 

25(Phenanthrene) (logK values 3.64 and 3.67 respectively).If we consider 

compounds30(Tylosin) and 20(Lyncomycin), Tylosin is moderately active as compared to 

Lyncomycin because the latter contains 5 α-H atom(H-051 value is 5)and C-O fragment at 

topological distance 6(B06[C-O] value is 1). 
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4.2.4. Other modeled descriptors essential for adsorption of hazardous SOCs to SWCNTs 

 

The descriptor ETA_Shape_Y is a first generation extended topochemical atom index. 

ETA_Shape_Y (Roy, 2015) can be calculated by using the following formula: 

                                                       ETA_Shape_Y= (∑α) Y/∑α 

 (∑α)Y stands for summation of α value (a volume measure) of the vertices that are joined to 

three other non-hydrogen vertices in the connected molecular graph and forming a Y-shaped 

structural fragment like tertiary groups ( ). It gives a measure of molecular shape. The 

positive regression coefficient of this descriptor indicates that the branching is directly correlated 

with adsorption of organic pollutants to SWCNTs. The higher degree of branching plays a 

crucial role to enhance the adsorption affinity of synthetic organic chemicals to SWCNTs as 

evidenced by the compounds 4 (2, 4-Dinitrotoluene) and 16 (Diuron) (corresponding logK 

values are 2.07 and 2.28 respectively) (Fig. 20) with their corresponding descriptor values are in 

the higher range (0.408 and 0.340 respectively).  
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Fig. 20. Contribution of descriptor Eta_Shape_Y for adsorption of synthetic organic chemicals 

onto SWCNTs 

 

On the other hand, compounds 26 (Pyrimidine) and 9 (Benzene) have the descriptor value of 

0and thus, their corresponding adsorption coefficient is also low (-1.56 and 0.25 respectively). 

Between 2,4-Dinitrotoluene (compound 4) and Diuron(compound 16), the adsorption affinity of 

Diuron is higher (though its ETA_Shape_Y value is comparatively less) than that of 2,4-

Dinitrotoluenedue to its hydrophobicity (MLOGP2 values are 7 and 5.02 respectively). 
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Fig. 21. Contribution of descriptor B07[C-S] for adsorption of synthetic organic chemicals onto 

SWCNTs 

 

Another descriptor, B07[C-S], indicates the presence/absence of C-S at topological distance 

7.The negative regression coefficient of this descriptor indicates that presence of C-S fragment at 

the topological distance 7 in hazardous SOCs is not beneficial for the adsorption of SWCNTs as 

evidenced by compounds 20 (Lincomycin) and 21 (Methyl Orange) (they contain C-S fragment 

at the topological distance 7, and their corresponding adsorption coefficient value is-0.53 and 

0.49 respectively). On the other hand, compounds 25 (Phenanthrene) and 22 (naphthalene) (Fig. 

21) do not contain any such fragments, so their adsorption coefficient value is higher. 

The adsorption coefficient value of Lyncomycin (compound number 20) is low (in spite of high 

ETA_Shape_Y) as compared to Methyl orange (-0.53) because of its low hydrophobicity 

(MLOGP2 is 0.538). 
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5. CONCLUSION 
 

Innovative scientific solutions are the key strength for meeting the needs of novel applications. 

Nanomaterials are used for pollution management, because they contain high surface area, high 

adsorption affinity towards the organic contaminants, and they can be modified in several ways 

to increase their selectivity towards specific target pollutants (Chen et al., 2007). Carbon 

nanotubes (CNTs) are such type of nanomaterials, which have recently gained special attention 

from the researchers due to their smaller size, large specific surface area, hollow and layered 

structure, responsible for their extraordinary adsorption property. Hence, it will be important to 

explore the chemical attributes of the CNTs for effective adsorption in greater extent so that they 

can be designed for better application. 

5. 1. Predictive Quantitative Structure-Property Relationship (QSPR) Modeling for 

Adsorption of Organic Pollutants by Carbon Nanotubes (CNTs) 

The present work deals with a variable selection strategy and development of QSPR model to 

find out the important structural parameters of organic contaminants which are essential to alter 

the adsorption property of organic contaminants related to the specific surface area of MWCTs. 

We have developed a predictive QSPR model using diverse classes of organic contaminants with 

reported experimental logKSA values. Various type of descriptors including constitutional 

indices, ring descriptors, connectivity indices, functional group count, atom centered fragments, 

atom type E-state indices, 2D atom pairs and extended topochemical atom (ETA) indices 

descriptors were used to developed the predictive models. The whole dataset was divided into a 

training set and a test set based on modified k-Medoids method. We have developed statistically 

robust QSPR models using different chemometric tools like stepwise regression, best subset 

selection and intelligent consensus predictor (ICP). We have checked the statistical quality of the 

final models using various internal and external parameters like Q2, R2
pred, Q2

F2, CCC, rm
2 

metrics and MAE based criteria. The MAE based criteria were employed in case of both internal 

and external validation. 
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The insights obtained from developed model suggested that: i) Electronegative atoms like N, Cl, 

O, F etc. will increase adsorption of organic contaminants by MWCNTs. ii) Average 

connectivity index of order one and two causes decrease in adsorption affinity of organic 

contaminants. iii) Presence of higher number of primary alcohol will decrease the adsorption 

property of organic contaminants. iv) Hydrophobicity is an important structural parameter to 

enhance the adsorption property of organic contaminants. The highly hydrophobic organic 

pollutants can adsorb easily by MWCNTs. v) To enhance the adsorption property of organic 

contaminants by MWCNTs, the number of (O-Cl) fragment at the topological distance 4 should 

be lower. vi) To enhance the adsorption property of organic contaminants, the number of (Cl-Cl) 

fragment at the topological distance 5 should be higher. vii) The sum of the topological distances 

between two nitrogen atoms should be high for increase the adsorption property of organic 

contaminants. viii) Presence of oxygen atoms in a molecule is important to enhance the 

adsorption of organic contaminants. ix) Sum of topological distances between oxygen and 

chlorine atoms should be less to increase the adsorption property of organic contaminants. Thus, 

this work provides an understanding of the important structural requirements or essential 

molecular properties and the requisite features of molecules that is important to increase or 

decrease the adsorption of organic contaminants. The developed models could be useful as 

preliminary support tools for the identification and prioritization of new potential organic 

pollutants among already existing chemicals as well as ‘‘screening prior to synthesis’’ 

procedures to avoid the production, and consequent release into the environment, of new organic 

pollutants. The models provide an important guidance for the chemist to increase the efficient 

application of MWCNTs which may be useful for reducing the environmental pollution. 

5. 2. Exploring QSPR modeling for adsorption of hazardous synthetic organic 

chemicals (SOCs) by SWCNTs 

In this present study, we have developed PLS QSPR models for a dataset containing 40 diverse 

synthetic organic chemicals (herbicides, fungicides, EDCs, PAH, contrasting agent, dyes) having 

defined adsorption affinity for SWCNTs, by applying different strategies. We have validated the 

models using various internal and external validation parameters, which showed that the models 

were statistically significant. We have also checked the consensus predictivity of all the 

individual models (IM1-IM5) using “Intelligent consensus predictor” tool and found that the 
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consensus predictivity of the test set compounds was better than the individual models based on 

MAE based criteria as depicted in Table 4.3 (winner model is CM3) 

The present study shows how the chemical and structural features of diverse hazardous SOCs 

alter the adsorption property to SWCNTs. From the insights obtained from five PLS models, we 

have concluded that hydrophobic surface of the molecules, molecular shape and degree of 

branching, presence of two carbon atoms at topological distance 4, number of H atom attached 

with α-C atom, presence of carbon and oxygen atom at the topological distance 6 can enhance 

the adsorption of hazardous SOCs to the SWCNTs. On the other hand, number of tertiary 

aliphatic amine, presence of carbon and sulphur at topological distance 7 may be detrimental for 

the adsorption of hazardous SOCs to the SWCNTs. The adsorption mechanism as evidenced 

from different contributed descriptors is depicted in Fig 22. Among all the above mentioned 

descriptors, MLOGP2 has the strongest impact on the adsorption of hazardous SOCs onto 

SWCNTs. The conclusions drawn in the present study are also supported by several studies 

published previously. Sun et al. (Sun et al., 2012) and Wang et al. (Wang et al., 2010a) suggested 

that hydrophobic interaction is very crucial for adsorption of hazardous SOCs to SWCNTs. Ding 

et al. (Ding et al., 2016b) reported that the potency of adsorption is positively correlated with 

hydrophobicity and it is the principal reason behind the adsorption capacities of different 

hazardous SOCs. Thus, the developed models give information about the important structural 

requirements or essential molecular properties and the requisite features of molecules that are 

important to increase or decrease the adsorption of the hazardous SOCs onto SWCNTs. The 

information obtained from the developed models may be useful for the management of 

environmental pollution. 
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Fig. 22. Adsorption mechanism of contributed descriptors for the adsorption of synthetic organic 

chemicals onto SWCNTs/functionalized SWCNTs. 

To the best of our knowledge, this work presents the QSPR modeling for adsorption coefficient 

of organic chemicals towards carbon nanotubes which may serve as an efficient tool giving some 

insight for designing and synthesis of potent molecules to address the increasing threat of 

environmental pollution throughout the world. Furthermore, the employed chemical descriptors, 

recognized as the crucial component in QSPR analysis, are based on two dimensional 

representation of molecular structures allowing prompt application for unknown molecules. 



 Chapter 6 

 

 

    

 REFERENCES 



 

 

 



CHAPTER 6 REFERENCE 

 

129 
 

6. REFERENCE 
 

Ahmadi, S. and Akbari, A., 2018. Prediction of the adsorption coefficients of some aromatic 

compounds on multi-wall carbon nanotubes by the Monte Carlo method. SAR and QSAR in 

Environmental Research, 29(11), pp.895-909. 

Apul, O.G., Wang, Q., Shao, T., Rieck, J.R. and Karanfil, T., 2012. Predictive model 

development for adsorption of aromatic contaminants by multi-walled carbon nanotubes. 

Environmental science & technology, 47(5), pp.2295-2303. 

Al-Saidi, H.M., Abdel-Fadeel, M.A., El-Sonbati, A.Z. and El-Bindary, A.A., 2016. Multi-

walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth 

from aqueous media: Kinetic and thermodynamic studies and analytical applications. Journal 

of Molecular Liquids, 216, pp.693-698. 

Baughman, R.H., Zakhidov, A.A. and De Heer, W.A., 2002. Carbon nanotubes--the route 

toward applications. science, 297(5582), pp.787-792. 

Borisover, M. and Graber, E.R., 2003. Classifying NOM− organic sorbate interactions using 

compound transfer from an inert solvent to the hydrated sorbent. Environmental science & 

technology, 37(24), pp.5657-5664. 

Benning, P.J., Poirier, D.M., Ohno, T.R., Chen, Y., Jost, M.B., Stepniak, F., Kroll, G.H., 

Weaver, J.H., Fure, J. and Smalley, R.E., 1992. C 60 and C 70 fullerenes and potassium 

fullerides. Physical Review B, 45(12), p.6899. 



CHAPTER 6 REFERENCE 

 

130 
 

Besalu, E., de Julian-Ortiz, J.V. and Pogliani, L., 2007. Trends and plot methods in MLR 

studies. Journal of chemical information and modeling, 47(3), pp.751-760. 

Cao, A., Zhu, H., Zhang, X., Li, X., Ruan, D., Xu, C., Wei, B., Liang, J. and Wu, D., 2001. 

Hydrogen storage of dense-aligned carbon nanotubes. Chemical physics letters, 342(5-6), 

pp.510-514. 

Carter, A.D., 2000. Herbicide movement in soils: principles, pathways and processes. Weed 

Research (Oxford), 40(1), pp.113-122. 

Chen, J., Chen, W. and Zhu, D., 2008. Adsorption of nonionic aromatic compounds to single-

walled carbon nanotubes: effects of aqueous solution chemistry. Environmental science & 

technology, 42(19), pp.7225-7230. 

Chen, W., Duan, L. and Zhu, D., 2007. Adsorption of polar and nonpolar organic chemicals to 

carbon nanotubes. Environmental science & technology, 41(24), pp.8295-8300. 

Chayawan, V., 2016. Quantum-mechanical parameters for the risk assessment of multi-walled 

carbon-nanotubes: A study using adsorption of probe compounds and its application to 

biomolecules. Environmental Pollution (1987), 218, pp.615-624. 

Consonni, V., Ballabio, D. and Todeschini, R., 2010. Evaluation of model predictive ability by 

external validation techniques. Journal of chemometrics, 24(3‐4), pp.194-201. 

Consonni, V., Ballabio, D. and Todeschini, R., 2009. Comments on the definition of the Q 2 

parameter for QSAR validation. Journal of chemical information and modeling, 49(7), 

pp.1669-1678. 

Crosland, M.P., 1959. The use of diagrams as chemical ‘equations’ in the lecture notes of 

William Cullen and Joseph Black. Annals of Science, 15(2), pp.75-90. 



CHAPTER 6 REFERENCE 

 

131 
 

Das, R.N., 2016. Exploring “ETA” Indices for Effective Encoding of Chemical Information in 

Modeling Different Toxicity Endpoints of Ionic Liquids. 

Das, S., 2013. A review on Carbon nano-tubes-A new era of nanotechnology. Int J Emer Tech 

Adv Eng, 3(3), pp.774-783. 

 Das, S., Ojha, P.K. and Roy, K., 2017a. Development of a temperature dependent 2D-QSPR 

model for viscosity of diverse functional ionic liquids. Journal of Molecular Liquids, 240, 

pp.454-467. 

Das, S., Ojha, P.K. and Roy, K., 2017b. Multilayered variable selection in QSPR: a case study 

of modeling melting point of bromide ionic liquids. International Journal of Quantitative 

Structure-Property Relationships (IJQSPR), 2(1), pp.106-124. 

Dearden, J.C., 2003. In silico prediction of drug toxicity. Journal of computer-aided molecular 

design, 17(2-4), pp.119-127. 

Ding, H., Chen, C. and Zhang, X., 2016a. Linear solvation energy relationship for the 

adsorption of synthetic organic compounds on single-walled carbon nanotubes in water. 

SAR and QSAR in Environmental Research, 27(1), pp.31-45. 

Ding, H., Li, X., Wang, J., Zhang, X. and Chen, C., 2016b. Adsorption of chlorophenols from 

aqueous solutions by pristine and surface functionalized single-walled carbon nanotubes. 

Journal of Environmental Sciences, 43, pp.187-198. 

Ebbesen, T.W., Lezec, H.J., Hiura, H., Bennett, J.W., Ghaemi, H.F. and Thio, T., 1996. 

Electrical conductivity of individual carbon nanotubes. Nature, 382(6586), p.54. 

Falvo, M.R., Clary, G.J., Taylor Ii, R.M., Chi, V., Brooks Jr, F.P., Washburn, S. and Superfine, 

R., 1997. Bending and buckling of carbon nanotubes under large strain. Nature, 

389(6651), p.582. 



CHAPTER 6 REFERENCE 

 

132 
 

Ferner, D.J., 2001. Toxicity, heavy metals. Med. J, 2(5), p.1. 

Geladi, P. and Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Analytica 

chimica acta, 185, pp.1-17. 

Garg, U.K., Kaur, M.P., Garg, V.K. and Sud, D., 2007. Removal of hexavalent chromium from 

aqueous solution by agricultural waste biomass. Journal of Hazardous materials, 140(1-

2), pp.60-68. 

Gotovac, S., Yang, C.M., Hattori, Y., Takahashi, K., Kanoh, H. and Kaneko, K., 2007. 

Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different 

functionalities and diameters. Journal of colloid and interface science, 314(1), pp.18-24. 

Gramatica, P., 2007. Principles of QSAR models validation: internal and external. QSAR & 

combinatorial science, 26(5), pp.694-701. 

Gurevitch, I. and Srebnik, S., 2008. Conformational behavior of polymers adsorbed on 

nanotubes. The Journal of chemical physics, 128(14), p.144901. 

Hahm, M.G., Hashim, D.P., Vajtai, R. and Ajayan, P.M., 2011. A review: controlled synthesis 

of vertically aligned carbon nanotubes. Carbon letters, 12(4), pp.185-193. 

Hansch, C., Leo, A., Hoekman, DH., 1995. Exploring QSAR: structure activity relations in 

chemistry and biology. American Chemical Society. 

Hassanzadeh, Z., Kompany-Zareh, M., Ghavami, R., Gholami, S. and Malek-Khatabi, A., 2015. 

Combining radial basis function neural network with genetic algorithm to QSPR modeling 

of adsorption on multi-walled carbon nanotubes surface. Journal of Molecular Structure, 

1098, pp.191-198. 

Hawkins, D.M., 2004. The problem of overfitting. Journal of chemical information and 

computer sciences, 44(1), pp.1-12. 



CHAPTER 6 REFERENCE 

 

133 
 

Helland, A., Wick, P., Koehler, A., Schmid, K. and Som, C., 2007. Reviewing the 

environmental and human health knowledge base of carbon nanotubes. Environmental 

health perspectives, 115(8), pp.1125-1131. 

Ibrahim, K.S., 2013. Carbon nanotubes-properties and applications: a review. Carbon letters, 

14(3), pp.131-144. 

Kang, I., Heung, Y.Y., Kim, J.H., Lee, J.W., Gollapudi, R., Subramaniam, S., Narasimhadevara, 

S., Hurd, D., Kirikera, G.R., Shanov, V. and Schulz, M.J., 2006. Introduction to carbon 

nanotube and nanofiber smart materials. Composites Part B: Engineering, 37(6), pp.382-

394. 

Karajanagi, S.S., Vertegel, A.A., Kane, R.S. and Dordick, J.S., 2004. Structure and function of 

enzymes adsorbed onto single-walled carbon nanotubes. Langmuir, 20(26), pp.11594-

11599. 

Khani, H. and Moradi, O., 2013. Influence of surface oxidation on the morphological and 

crystallographic structure of multi-walled carbon nanotubes via different oxidants. Journal 

of Nanostructure in Chemistry, 3(1), p.73. 

Katritzky, A.R., Fara, D.C., Petrukhin, R.O., Tatham, D.B., Maran, U., Lomaka, A. and 

Karelson, M., 2002. The present utility and future potential for medicinal chemistry of 

QSAR/QSPR with whole molecule descriptors. Current Topics in Medicinal Chemistry, 

2(12), pp.1333-1356 

Kier, L.B. and Hall, L.H., 2002. The meaning of molecular connectivity: A bimolecular 

accessibility model. Croatica chemica acta, 75(2), pp.371-382. 

Lata, S., 2018. Concentration dependent adsorption of aromatic organic compounds by 

SWCNTs: Quantum-mechanical descriptors for nano-toxicological studies of 



CHAPTER 6 REFERENCE 

 

134 
 

biomolecules and agrochemicals. Journal of Molecular Graphics and Modelling, 85, 

pp.232-241. 

Liew, K.M., Jianwei, Y. and Zhang, L.W., 2016. Mechanical Behaviors of Carbon Nanotubes: 

Theoretical and Numerical Approaches. William Andrew. 

Liu, G., Wang, J., Zhu, Y. and Zhang, X., 2004. Application of multiwalled carbon nanotubes 

as a solid‐phase extraction sorbent for chlorobenzenes. Analytical letters, 37(14), pp.3085-

3104. 

Liu, Y., Zhang, J., Chen, X., Zheng, J., Wang, G. and Liang, G., 2014. Insights into the 

adsorption of simple benzene derivatives on carbon nanotubes. RSC Advances, 4(101), 

pp.58036-58046. 

Long, R.Q. and Yang, R.T., 2001. Carbon nanotubes as superior sorbent for dioxin removal. 

Journal of the American Chemical Society, 123(9), pp.2058-2059. 

Lowis, D.R., 1997. HQSAR: a new, highly predictive QSAR technique. Tripos Technical Notes, 

1(5), p.17. 

Kasuya, A., Saito, Y., Sasaki, Y., Fukushima, M., Maedaa, T., Horie, C. and Nishina, Y., 1996. 

Size dependent characteristics of single wall carbon nanotubes. Materials Science and 

Engineering: A, 217, pp.46-47 

Kaushik, B.K. and Majumder, M.K., 2015. Carbon nanotube: Properties and applications. In 

Carbon Nanotube Based VLSI Interconnects (pp. 17-37). Springer, New Delhi. 

Kennard, R.W. and Stone, L.A., 1969. Computer aided design of experiments. Technometrics, 

11(1), pp.137-148. 

Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J., 1998. Young’s 

modulus of single-walled nanotubes. Physical review B, 58(20),  p.14013. 



CHAPTER 6 REFERENCE 

 

135 
 

Kumar, S., Bhanjana, G., Dilbaghi, N. and Umar, A., 2014. Multi walled carbon nanotubes as 

sorbent for removal of crystal violet. Journal of nanoscience and nanotechnology, 14(9), 

pp. 7054-7059. 

Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature, 354(6348),  p.56. 

Latkar, M. and Chakrabarti, T., 1994. Performance of up flow anaerobic sludge blanket reactor 

carrying out biological hydrolysis of urea. Water environment research, 66(1), pp.12-15. 

Livingstone, D.J., 2000. The characterization of chemical structures using molecular properties. 

A survey. Journal of chemical information and computer sciences, 40(2), pp.195-209. 

Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A.J., Jenkins, A., Ferrier, R.C., Li, 

H.,Luo, W. and Wang, T., 2015. Impacts of soil and water pollution on food safety and 

health risks in China. Environment international, 77, pp.5-15. 

Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. and 

Fatta-Kassinos, D., 2013. Urban wastewater treatment plants as hotspots for the release of 

antibiotics in the environment: a review. Water research, 47(3), pp.957-995. 

Mitra, I., Saha, A. and Roy, K., 2009. Quantitative structure–activity relationship modeling of 

antioxidant activities of hydroxyl benzalacetones using quantum chemical, 

physicochemical and spatial descriptors. Chemical biology & drug design, 73(5), pp.526-

536. 

Moriguchi, I., Hirono, S., Nakagome, I. and Hirano, H., 1994. Comparison of reliability of log P 

values for drugs calculated by several methods. Chemical and pharmaceutical bulletin, 

42(4), pp.976-978. 



CHAPTER 6 REFERENCE 

 

136 
 

Mosayebidorcheh, S. and Hatami, M., 2017. Heat transfer analysis in carbon nanotube-water 

between rotating disks under thermal radiation conditions. Journal of Molecular Liquids, 

240, pp.258-267. 

Ojha, P.K., Mitra, I., Das, R.N. and Roy, K., 2011. Further exploring rm2 metrics for validation 

of QSPR models. Chemometrics and Intelligent Laboratory Systems, 107(1), pp.194-205. 

Ojha, P.K. and Roy, K., 2018. Development of a robust and validated 2D-QSPR model for 

sweetness potency of diverse functional organic molecules. Food and Chemical 

Toxicology, 112, pp.551-562. 

Ong, Y.T., Ahmad, A.L., Zein, S.H.S. and Tan, S.H., 2010. A review on carbon nanotubes in an 

environmental protection and green engineering perspective. Brazilian Journal of 

Chemical Engineering, 27(2), pp.227-242. 

Pan, B. and Xing, B., 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. 

Environmental science & technology, 42(24), pp.9005-9013. 

Pan, B., Lin, D., Mashayekhi, H. and Xing, B., 2008. Adsorption and hysteresis of bisphenol A 

and 17α-ethinyl estradiol on carbon nanomaterials. Environmental science & technology, 

42(15), pp.5480-5485. 

Pimentel, D., 1995. Amounts of pesticides reaching target pests: environmental impacts and 

ethics. Journal of Agricultural and environmental Ethics, 8(1), pp.17-29. 

Pratim Roy, P., Paul, S., Mitra, I. and Roy, K., 2009. On two novel parameters for validation of 

predictive QSAR models. Molecules, 14(5), pp.1660-1701. 

Rahimi-Nasrabadi, M., Akhoondi, R., Pourmortazavi, S.M. and Ahmadi, F., 2015. Predicting 

adsorption of aromatic compounds by carbon nanotubes based on quantitative structure 

property relationship principles. Journal of Molecular Structure, 1099, pp.510-515. 



CHAPTER 6 REFERENCE 

 

137 
 

Randall, J.M., Hautala, E. and Waiss Jr, A.C., 1974, May. Removal and recycling of heavy 

metal ions from mining and industrial waste streams with agricultural by-products. In 

Proceedings of the Fourth Mineral Waste Utilization Symposium. Chicago, IL (pp. 329-

334). 

Randic, M., 1997. On characterization of chemical structure. Journal of chemical information 

and computer sciences, 37(4), pp.672-687.   

Rand-Weaver, M., Margiotta-Casaluci, L., Patel, A., Panter, G.H., Owen, S.F. and Sumpter, 

J.P., 2013. The read-across hypothesis and environmental risk assessment of 

pharmaceuticals. Environmental science & technology, 47(20), pp.11384-11395. 

Richard, C., Balavoine, F., Schultz, P., Ebbesen, T.W. and Mioskowski, C., 2003. 

Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 

300(5620), pp.775-778. 

Roy, K. ed., 2015. Quantitative structure-activity relationships in drug design, predictive 

toxicology, and risk assessment. IGI Global. 

Roy, K., Ambure, P., Kar, S. and Ojha, P.K., 2018. Is it possible to improve the quality of 

predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models?. Journal of 

Chemometrics, 32(4), p.e2992. 

Roy, K., Chakraborty, P., Mitra, I., Ojha, P.K., Kar, S. and Das, R.N., 2013. Some case studies 

on application of “rm2” metrics for judging quality of quantitative structure–activity 

relationship predictions: emphasis on scaling of response data. Journal of computational 

chemistry, 34(12), pp.1071-1082 



CHAPTER 6 REFERENCE 

 

138 
 

Roy, K., Das, R.N., Ambure, P. and Aher, R.B., 2016. Be aware of error measures. Further 

studies on validation of predictive QSAR models. Chemometrics and Intelligent 

Laboratory Systems, 152, pp.18-33. 

Roy, K. and Kabir, H., 2012. QSPR with extended topochemical atom (ETA) indices, 3: 

modeling of critical micelle concentration of cationic surfactants. Chemical engineering 

science, 81, pp.169-178. 

Roy, K., Kar, S. and Ambure, P., 2015. On a simple approach for determining applicability 

domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, pp.22-

29. 

Roy, K., Kar, S. and Das, R.N., 2015. Understanding the basics of QSAR for applications in 

pharmaceutical sciences and risk assessment. Academic press. 

Roy, K. and Mitra, I., 2012. On the use of the metric rm 2 as an effective tool for validation of 

QSAR models in computational drug design and predictive toxicology. Mini reviews in 

medicinal chemistry, 12(6), pp.491-504. 

Roy, K. and Paul, S., 2009. Exploring 2D and 3D QSARs of 2, 4‐diphenyl‐1, 3‐oxazolines for 

ovicidal activity against Tetranychus urticae. QSAR & Combinatorial Science, 28(4), 

pp.406-425. 

Roy, K. and Popelier, P.L., 2009. Predictive QSPR modeling of the acidic dissociation constant 

(pKa) of phenols in different solvents. Journal of Physical Organic Chemistry, 22(3), 

pp.186-196. 

Roy, K. and Roy, P.P., 2009. Comparative chemometric modeling of cytochrome 3A4 

inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, 



CHAPTER 6 REFERENCE 

 

139 
 

GFA, G/PLS and ANN techniques. European journal of medicinal chemistry, 44(7), 

pp.2913-2922. 

Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, U.M., 1992. Electronic structure of chiral 

graphene tubules. Applied physics letters, 60(18), pp.2204-2206. 

Salahinejad, M. and Zolfonoun, E., 2018. An exploratory study using QICAR models for 

prediction of adsorption capacity of multi-walled carbon nanotubes for heavy metal ions. 

SAR and QSAR in Environmental Research, 29(12), pp.997-1009. 

Schuuuurmann, G., Ebert, R.U., Chen, J., Wang, B. and Kuuhne, R., 2008. External validation 

and prediction employing the predictive squared correlation coefficient Test set activity 

mean vs training set activity mean. Journal of Chemical Information and Modeling, 

48(11), pp.2140-2145. 

Sinnott, S.B., Shenderova, O.A., White, C.T. and Brenner, D.W., 1998. Mechanical properties 

of nanotubule fibers and composites determined from theoretical calculations and 

simulations. Carbon, 36(1-2), pp.1-9. 

Snarey, M., Terrett, N.K., Willett, P. and Wilton, D.J., 1997. Comparison of algorithms for 

dissimilarity-based compound selection. Journal of Molecular Graphics and Modelling, 

15(6), pp.372-385. 

Snyder, S.A., Westerhoff, P., Yoon, Y. and Sedlak, D.L., 2003. Pharmaceuticals, personal care 

products, and endocrine disruptors in water: implications for the water industry. 

Environmental engineering science, 20(5), pp.449-469. 

Su, F. and Lu, C., 2007. Adsorption kinetics, thermodynamics and desorption of natural 

dissolved organic matter by multiwalled carbon nanotubes. Journal of Environmental 

Science Health, Part A, 42(11), pp.1543-1552. and 



CHAPTER 6 REFERENCE 

 

140 
 

Sun, K., Zhang, Z., Gao, B., Wang, Z., Xu, D., Jin, J. and Liu, X., 2012. Adsorption of diuron, 

fluridone and norflurazon on single-walled and multi-walled carbon nanotubes. Science of 

the Total Environment, 439, pp.1-7. 

Tariq, M.I., Afzal, S., Hussain, I. and Sultana, N., 2007. Pesticides exposure in Pakistan: a 

review. Environment international, 33(8), pp.1107-1122. 

Todeschini, R. and Consonni, V., 2008. Handbook of molecular descriptors (Vol. 11). John 

Wiley & Sons. 

Todeschini, R. and Consonni, V., 2009. Molecular descriptors for chemoinformatics: volume I: 

alphabetical listing/volume II: appendices, references (Vol. 41). John Wiley & Sons. 

Tong W, Hong H, Xie Q, Shi L, Fang H, Perkins R, CurrComput Aided Drug Des 2005,1: 195. 

Tropsha, A., 2010. Best practices for QSAR model development, validation, and exploitation. 

Molecular informatics, 29(6‐7), pp.476-488. 

Van de Waterbeemd, H., Carter, R.E., Grassy, G., Kubinyi, H., Martin, Y.C., Tute, M.S. and 

Willett, P., 1997. Glossary of terms used in computational drug design (IUPAC 

Recommendations 1997). Pure and applied chemistry, 69(5), pp.1137-1152. 

Wang, F., Yao, J., Sun, K. and Xing, B., 2010a. Adsorption of dialkyl phthalate esters on carbon 

nanotubes. Environmental science & technology, 44(18), pp.6985-6991. 

Wang, L., Zhu, D., Duan, L. and Chen, W., 2010b. Adsorption of single-ringed N-and S-

heterocyclic aromatics on carbon nanotubes. Carbon, 48(13), pp.3906-3915. 

Wang, Q., Apul, O.G., Xuan, P., Luo, F. and Karanfil, T., 2013. Development of a 3D QSPR 

model for adsorption of aromatic compounds by carbon nanotubes: comparison of 

multiple linear regression, artificial neural network and support vector machine. RSC 

Advances, 3(46), pp.23924-23934. 



CHAPTER 6 REFERENCE 

 

141 
 

Wang, S.G., Liu, X.W., Gong, W.X., Nie, W., Gao, B.Y. and Yue, Q.Y., 2007. Adsorption of 

fulvic acids from aqueous solutions by carbon nanotubes. Journal of Chemical 

Technology & Biotechnology: International Research in Process, Environmental & Clean 

Technology, 82(8), pp.698-704. 

Wang, Ya, Jingwen Chen, Weihao Tang, Deming Xia, Yuzhen Liang, and Xuehua Li. 

"Modeling adsorption of organic pollutants onto single-walled carbon nanotubes with 

theoretical molecular descriptors using MLR and SVM algorithms." Chemosphere 214 

(2019): 79-84. 

Wang, Y., Yan, F., Jia, Q. and Wang, Q., 2017. Assessment for multi-endpoint values of carbon 

nanotubes: Quantitative nanostructure-property relationship modeling with norm indexes. 

Journal of Molecular Liquids, 248, pp.399-405. 

Wold, S., Esbensen, K. and Geladi, P., 1987. Principal component analysis. Chemometrics and 

intelligent laboratory systems, 2(1-3), pp.37-52. 

Wold, S., Eriksson, L. and Clementi, S., 1995. Statistical validation of QSAR results. 

Chemometric methods in molecular design, pp.309-338. 

Wold, S., Sjostrom, M. and Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. 

Chemometrics and intelligent laboratory systems, 58(2), pp.109-130. 

Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S., 2000. Tensile loading of ropes of single wall 

carbon nanotubes and their mechanical properties. Physical review letters, 84(24), p.5552. 

Yu, C., Shi, L., Yao, Z., Li, D. and Majumdar, A., 2005. Thermal conductance and 

thermopower of an individual single-wall carbon nanotube. Nano letters, 5(9), pp.1842-

1846. 



CHAPTER 6 REFERENCE 

 

142 
 

Zhao, J., Buldum, A., Han, J. and Lu, J.P., 2002. Gas molecule adsorption in carbon nanotubes 

and nanotube bundles. Nanotechnology, 13(2), p.195. 

Zhao, Q., Yang, K., Li, W. and Xing, B., 2014. Concentration-dependent polyparameter linear 

free energy relationships to predict organic compound sorption on carbon nanotubes. 

Scientific reports, 4, p.3888. 

Zhou, G., Duan, W. and Gu, B., 2001. First-principles study on morphology and mechanical 

properties of single-walled carbon nanotube. Chemical Physics Letters, 333(5), pp.344-

349. 

 



 Chapter 7  

 

 

 

Appendix 



 

 

 



Environmental
Science
Nano

PAPER

Cite this: Environ. Sci.: Nano, 2019,

6, 224

Received 22nd September 2018,
Accepted 16th November 2018

DOI: 10.1039/c8en01059e

rsc.li/es-nano

Predictive quantitative structure–property
relationship (QSPR) modeling for adsorption of
organic pollutants by carbon nanotubes (CNTs)†

Joyita Roy,‡ Sulekha Ghosh,‡ Probir Kumar Ojha and Kunal Roy *

Nanotechnology has introduced a new generation of adsorbents like carbon nanotubes (CNTs), which have

drawn a widespread attention due to their outstanding ability for the removal of various inorganic and or-

ganic pollutants. The goal of this study was to develop regression-based quantitative structure–property re-

lationship (QSPR) models for organic pollutants and organic solvents using only easily computable 2D de-

scriptors to explore the key structural features essential for adsorption to multi-walled CNTs and improve

the dispersibility index of single-walled CNTs. The statistical results of the developed models showed good

quality and predictivity based on both internal and external validation metrics (dataset 1: R2 range of 0.893–

0.920, Q2
(LOO) range of 0.863–0.895, Q2

F1 range of 0.887–0.919; dataset 2: R2 range of 0.793–0.845, Q2
(LOO)

range of 0.743–0.798, Q2
F1 range of 0.783–0.890; dataset 3: R2 = 0.830, Q2

(LOO) = 0.775, Q2
F1 = 0.945). We

have also tried to explore whether the quality of the predictions of test set compounds can be enhanced

through an “intelligent” selection of multiple models using the “Intelligent consensus predictor” tool. The

consensus results suggested that the consensus predictivity of the test set compounds gave better results

than those from the individual MLR models based on different criteria (dataset 1: Q2
F1 = 0.935, Q2

F2 = 0.935,

MAE(95%) = good; dataset 2: Q2
F1 = 0.887, Q2

F2 = 0.879, MAE(95%) = good). The contributed descriptors

obtained from different models suggested that the organic pollutants may adsorb to the CNTs through hy-

drogen bonding interactions, π–π interactions, hydrophobic interactions and electrostatic interaction. Based

on the observations obtained from the developed models, we have inferred that the adsorption of the or-

ganic pollutants onto the CNTs can be enhanced by the following factors: a higher number of aromatic

rings, high unsaturation or electron richness of molecules, the presence of polar groups substituted in the

aromatic ring, the presence of oxygen and nitrogen atoms, the size of the molecules, and the hydrophobic

surface of the molecules. On the other hand, the presence of C–O groups, aliphatic primary alcohols and

the presence of chlorine atoms may retard the adsorption of organic pollutants. The results also suggest

that the organic solvents bearing the >N- fragment, a higher degree of branching (compactness), polar

solvents with low donor number and lower ionization potential may be better solvents for enhancing the

dispersibility of single-walled CNTs.

1. Introduction

A noticeable amount of organic pollutants is released into
the environment via various routes like the burning of fossil
fuels, wastes from incineration, exhausts from automobiles,
agricultural processes and industrial sectors. The disposal of
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Environmental significance

Nanotechnology has introduced a new generation of adsorbents such as carbon nanotubes (CNTs), which have drawn widespread attention due to their
outstanding ability for the removal of various inorganic and organic pollutants. The goal of this study was to develop quantitative structure–property
relationship (QSPR) models to explore the key structural features of organic pollutants, which are essential for adsorption to multi-walled CNTs. We have
also developed models to investigate the characteristics that can improve the dispersibility of single-walled CNTs. This information may be helpful in the
process of removal of the harmful and toxic contaminants/disposal of the by-products from various industries by increasing the adsorption of pollutants
and the dispersibility of CNTs, thus making a pollution-free environment.
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the by-products from the various industries is a challenging
job for environmentalists and industries. The major problem
with pollutants is their effective and safe disposal without
further affecting the environment adversely. The organic pol-
lutants (phenols, cresols, alkyl benzene sulfonates, nitro
chlorobenzene, chlorinated paraffins, butadiene, synthetic
dyes, insecticides, fungicides and pesticides, etc.) accumulate
in the food chain and persist in nature and cause a signifi-
cant threat to the environment.1–4 The United States Environ-
mental Protection Agency (EPA) has set maximum contami-
nation levels (MCLs) and maximum contamination level
goals (MCLG) for each pollutant, with no ill health effects.
Sometimes the MCL level goes beyond the MCLG level be-
cause of the problem in determining small quantities of con-
taminants and due to lack of availability of treatment tech-
nologies and analytical methods.5–14 Thus, for the protection
of the environment, the use of new and advanced materials
is important. In recent years, greater focus has been placed
on nanostructures as adsorbents and catalysts for removing
the harmful and toxic contaminants from the
environment.15–17 Among the various nanomaterial adsor-
bents, carbon nanotubes (CNTs) have been thoroughly inves-
tigated because they have a large surface area to volume ra-
tio, inertness towards chemicals, light mass density, porous
structure, great physical and chemical properties, small di-
ameter, extraordinary optical and electrical properties, high
tensile strength and efficient affinity towards pollutants. The
possibility of surface modification with different functional
groups makes CNTs good adsorbents18–20 and enhances their
reactivity and dispersibility for environmental protection
applications.

SWCNTs have some unique mechanical, electrical and
thermal properties but possess poor solubility as well as poor
dispersibility in aqueous and other common organic sol-
vents.21 They possess high polarizability along with van der
Waals interactions and hydrophobic surface, so they are able
to form aggregates with each other and with other biological
and chemical systems to produce mixtures of aggregates, spe-
cifically in water.22,23 This bundling or entangling feature of
SWCNTs causes difficulties in the dispersion of CNTs in vari-
ous solvents or matrices.24–26 This also prevents the explora-
tion of the chemistry of CNTs at a molecular level and hin-
ders their applications27 as well as limits the availability of
adsorption sites for the adsorption of pollutants on the CNT
surface.28 The morphology variation of CNTs may also result
in a difference in their aggregation tendencies, which may
additionally impact their adsorption capability. The major in-
teractions are van der Waals interactions, π–π stacking, and
hydrophobic interactions for dispersibility, as suggested by
many researchers.29

Hyung et al.30 reported that organic contaminants can
interact with carbon nanotubes in aquatic systems and in-
crease their stability and transport and thus, the mobility of
the adsorbed organic matters on CNTs can be enhanced. The
popularity of CNTs has increased since Long and Yang first
reported that they can efficiently remove dioxins as compared

to activated carbon.31 The sorption studies performed on
CNTs for metal ions32 and organic contaminants, such as bu-
tane,33 trihalomethanes,34 dioxin,31 xylenes,35 chloro-
phenols,36 1,2-dichlorobenzene,37 resorcinol38 and polycyclic
aromatic hydrocarbons (PAHs),15,39 suggest that CNTs can re-
move both organic and inorganic pollutants from water and
gases.

Although a large number of pollutants are reported in the
literature, adsorption data is available for only around 70 000
pollutants.40 The determination of experimental data for a
large number of pollutants is time-consuming as well as labo-
rious and costly. The surface properties of CNTs can be modi-
fied by treating them with some active chemicals so that the
CNTs do not aggregate or form bundles and hence, the dis-
persion of CNTs can be enhanced. QSPR modeling of organic
pollutants/solvents using adsorption properties/dispersibility
index by CNTs can, therefore, be of great importance for re-
searchers and practitioners. The quantitative structure–prop-
erty relationship (QSPR) approach is easier than the thermo-
dynamic model since the input parameters of QSPR can be
more easily obtained as compared to the thermodynamic
models.41 QSPR not only reduces the experimental work but
also predicts the features based on the chemical structures.
Thus, the rationalization ideas obtained from such models
provide the researchers with a conceptual framework upon
which a firm discussion can be based. Recently, a great deal
of work has been done with QSPR and linear surface energy
relationship (LSER) modeling to develop predictive models
for CNTs, including the adsorption of organic chemicals
(OCs) by CNTs,41–47 dispersibility of CNTs in organic
solvents48–51 and other properties similar to CNTs. In the
past, some work has been done by researchers, for example,
linear LSER models were developed by Xia et al.43 using the
biological surface index (BSAI) for the prediction and charac-
terization of the intermolecular adsorption of OCs by CNTs.
Apul et al.45 reported a 3D-QSPR modeling applying the same
data sets for the adsorption of aromatic compounds by CNTs
and compared it with MLR, ANN and SVM methods. Another
QSPR model was reported by Yilmaz et al.48 using additive
descriptors and quantum-chemical descriptors for the deter-
mination of the dispersibility of CNTs in different organic
solvents.

The objective of the present study has been to develop sta-
tistically significant QSPR models of organic pollutants with
multiple-endpoints using only easily computable 2D descrip-
tors to explore the key structural features that are essential
for adsorption to MWCNTs. We have also developed a QSPR
model for organic solvents to investigate the characteristics
of molecules that can improve the dispersibility of SWCNTs
and may overcome the drawbacks of SWCNTs. A variable se-
lection strategy was also employed prior to the development
of final models to reduce noise in the input. We have also
tried to explore whether the quality of predictions of test set
compounds can be enhanced through the “intelligent” selec-
tion of multiple MLR models using an “Intelligent consensus
predictor” tool.
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2. Methods and materials
2.1. Dataset

We have developed QSPR models separately, using three dif-
ferent data sets for diverse organic contaminants with
multiple-endpoints of carbon nanotubes reported in the liter-
ature.41,44,52 The first dataset involves the defined adsorption
affinity properties (k∞) of 59 organic contaminants by multi-
walled carbon nanotubes (MWCNTs). The second dataset in-
volves the adsorption affinity of 69 organic contaminants re-
lated to the specific surface area (kSA) of multi-walled carbon
nanotubes (MWCNTs), and the third data set involves 29 or-
ganic solvents with defined dispersibility index values (Cmax)
for single-walled carbon nanotubes (SWCNTs). We have not
excluded any compound of individual data sets in our model-
ing analysis. All the endpoint values were taken in the loga-
rithmic scale for the modeling purposes. The first two data
sets mainly involve adsorption data for synthetic organic com-
pounds like pyrene, naphthalene, phenol, benzene, aniline,
benzoate, chloroanisole, alcohol, acetophenone, isophoron,
phenanthrene dicamba, atrazine, carbamazepine, pyrimidin-
one, acetamide, piperidine, propionitrile, acrylic acid, thio-
diethanol, ethanolamine, cyclopentanone, acetone and ethyl-
ene glycol derivatives, while the third data set is related to
different types of solvents. The dispersibility of single-walled
carbon nanotubes (SWCNTs) was measured in different sol-
vent ranges. Here, Cmax (mg mL−1) represents the maximum
dispersibility of single-walled carbon nanotubes, K∞ and KSA

are both adsorption coefficients that can be obtained from
isotherm data. K∞ is the ratio of qe and Ce (solid and liquid
phase equilibrium concentrations, respectively, at infinite di-
lution conditions with an average of 0.2% aqueous solubility).
KSA is the normalized value of K∞ and the specific surface area
of multi-walled carbon nanotubes (MWCNTs). The data sets
are given in Tables S1, S2 and S3 in the ESI† section.

2.2. Descriptor calculation

“The molecular descriptor is the final result of a logic and math-
ematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into a
useful number or the result of some standardized experiments”.
All the dataset compounds were drawn using the Marvin
Sketch software.53 The descriptors were calculated using two
software tools, namely, Dragon software version 6,54 and
PaDEL-descriptor55 software. In this work, we have calculated
only 2D descriptors covering constitutional, ring descriptors,
connectivity index, functional group counts, atom centered
fragments, atom type E-states, 2D atom pairs, molecular
properties (using Dragon software version 6) and ETA indices
(using PaDEL-Descriptor software).

2.3. Data set division

Division of the dataset is a very important step for QSPR. The
present work deals with three datasets containing diverse or-
ganic pollutants or solvents. In each case, all the dataset

compounds were divided into a training set and a test set
using the “Modified k-medoid” clustering technique. The
clustering technique categorizes a set of compounds into
clusters so that the compounds present in the same cluster
are similar to each other. On the other hand, when two com-
pounds belong to two different clusters, they are said to be
dissimilar in nature. The indicative compounds within a clus-
ter are called medoids. This technique tends to select k from
most middle objects or compounds as the initial medoid.
Three clusters were generated for the dataset containing 59
and 29 compounds, while six clusters were generated for the
dataset containing 69 compounds. We have selected approxi-
mately 25% of compounds from each data set for the test set
and the remaining 75% of compounds were selected for the
training set. The purpose of the training set was to develop
the model and the test set was used to validate the model for
prediction purposes. The same strategy was applied in the
case of all three datasets for training and test set division.

2.4. Variable selection and model development

After the dataset division step, we performed data pretreatment
to remove intercorrelated descriptors from all three sets of
datasets. Prior to the development of final models, we tried to
extract the important descriptors from the large pool of initial
descriptors using various variable selection strategies.56,57 In
case of the dataset containing 59 and 69 organic pollutants, we
separately ran a stepwise regression and selected some descrip-
tors in each case. After removing the selected descriptors
obtained from the first stepwise regression run, we ran the step-
wise regression again using the remaining pool of descriptors,
and we repeated the same procedure. In this way, we selected
some manageable numbers of descriptors and made a reduced
pool of descriptors. In the case of the dataset containing 29
compounds, we developed GA equations and made a descriptor
pool using the descriptors obtained from the GA (genetic algo-
rithm) equations. After that, we ran the best subset selection
for all three datasets using the reduced pools of descriptors.
For this, we used a tool developed in our laboratory.58 Five
(three models were selected) and four (two models were se-
lected) descriptor models were generated in the case of the
dataset containing 59 organic pollutants, whereas six (three
models were selected) and five (two models were selected) de-
scriptor models were generated for the dataset containing 69
organic pollutants. Among the equations generated from the
best subset selection, we selected five models, five models and
four models for 59, 69 and 29 compounds, respectively, based
on MAE criteria.59 Descriptors were selected from the GA and
stepwise regression models and a descriptor pool was gener-
ated. Finally, the selected models were run using the intelligent
consensus predictor (ICP) tool developed in our laboratory60 to
explore whether the quality of predictions of external com-
pounds could be enhanced through an “intelligent” selection of
multiple models (in this report, five models were selected).

The multilayered strategies like data pretreatment,58 step-
wise regression,61 genetic method62 and best subset
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selection58 were involved for the selection of variables prior
to the development of the final models and different steps
are discussed separately in the ESI† section.

2.4.1. Intelligent consensus predictor (ICP).60 This soft-
ware was used to judge the performance of consensus predic-
tions in comparison to their quality obtained from the indi-
vidual (MLR) models based on the MAE based criteria (95%).
It is obvious that a single model might not be equally useful
for prediction for the whole test set compounds, which
means that one QSPR model may be the best model for pre-
diction of a test compound while the other model may be the
best predictor for another test compounds. For this reason,
we have selected five models in the case of a dataset
containing 59 (M1–M5) and 69 (N1–N5) organic contami-
nants, and performed consensus prediction using the “Intel-
ligent consensus predictor” tool to explore whether the qual-
ity of the predictions of the test set compounds could be
enhanced through an “intelligent” selection of multiple
models. The steps involved in the development of both MLR
and PLS models are represented schematically in Fig. 1.

2.5. Statistical validation metrics

In order to judge the predictivity and reliability of the devel-
oped QSPR models, we have examined the statistical quality,
applying both internal and external validation metrics. In this
work, we have used various statistical parameters like deter-
mination coefficient R2, explained variance R2

a, variance ratio
(F), and standard error of estimate (s). These parameters are

not sufficient to evaluate the predictive potential of the
model, so we have used some other classical parameters for
validation of the models. The internal predictivity parameters
like the leave-one-out cross-validated correlation coefficient
(Q2

LOO), and external predictivity parameters like R2
pred or Q2

F1,
Q2
F2 and concordance correlation coefficient (CCC), were also

calculated. We also calculated some r2m parameters like
r2m(LOO) and Δr2m(LOO) for internal validation and r2m(test) and
Δr2m(test) for external validation.63 The basic objective of the
predictive performance of QSPR models is to investigate the
prediction errors of an external set, which should be within
the chemical and response-based domain of the internal set
(i.e., training set). The Q2

ext-based metrics (i.e., R2
pred and Q2

F2)
are not always able to provide the correct indication of the
prediction quality because of the influence of the response
range as well as the distribution of the values of response in
both the training and test set compounds.59 Thus, we have
also validated the models using the mean absolute error
(MAE) criteria for both external and internal validation.59 The
error based metrics were used to determine the true indica-
tion of the prediction quality in terms of prediction error
since they do not evaluate the performance of the model in
comparison with the mean response (Roy et al., 2016 (ref.
59)). The threshold values of Q2, Q2

F2, R
2
pred, r

2
m(test), r

2
m(LOO)

are 0.5 and for CCC, it is 0.750.64,65 The limit for Δr2m(test) and
Δr2m(LOO) is 0.2. Recently, Roy et al. reported that a single
model might not be equally useful in the prediction for the
whole test set compounds, i.e., one QSPR model may be the
best model for prediction of a test compound while the other

Fig. 1 Schematic representation of the steps involved in the development of QSPR models.
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model may be the best predictor for another test compound.
For this reason, we have also performed Intelligent consen-
sus prediction (ICP) using multiple QSPR models to deter-
mine whether the quality of the predictions of test set com-
pounds can be enhanced through an “intelligent” selection.
Here, a simple average of predictions from all the models is
not considered; only ‘qualified models’ are taken into
account.

2.6. Applicability domain

“The applicability domain of a (Q)SAR is the physicochemical,
structural, or biological space, knowledge or information on which
the training set of the model has been developed, and for which it
is applicable to make predictions for new compounds. The appli-
cability domain of a (Q)SAR should be described in terms of the
most relevant parameters, i.e., usually those that are descriptors
of the model. Ideally, the (Q)SAR should only be used to make pre-
dictions within that domain by interpolation not extrapolation”.
The AD of the QSAR model is characterized by the molecular
properties of the training set compounds. The AD criteria help
to check whether the test/query compound under consideration
is inside the AD or not. Here, we have checked the applicability
domain of test set compounds of the developed models,
employing the standardization approach (for first two data sets)
using the software developed in our laboratory66 and a DModX
(distance to model X) approach67 at 99% confidence level using
SIMCA-P software68 (for the third data set). The predictability
of a QSPR model is good if the molecules are present within
the domain of the chemical space of the training set
molecules.

2.7. Software used

Marvin Sketch version 5.5.0.1 (ref. 53) was used to draw chem-
ical structures. Descriptors were calculated by the PADEL-
Descriptor software55 and Dragon software version 6.54 Clus-
tering of each data set was done by the “Modified K-Medoid”
tool version 1.3 (ref. 58) for its splitting into a training set and
a test set. Data Pretreatment version 1.2 was used to remove
intercorrelated descriptors. Stepwise regression analysis was
done by the MINITAB software version13.14.69 Genetic Algo-
rithm was done by using the Genetic Algorithm tool version
4.1.58 Best subset selection58 and intelligent consensus predic-
tor tool60 were used to generate the QSPR models.

3. Results and discussion

We have developed QSPR models (five MLR models for each
of the datasets containing 59 and 69 organic contaminants,
and one PLS model for the dataset containing 29 organic
contaminants) for three datasets containing diverse organic
pollutants with defined adsorption affinities for MWCNTs
(for datasets 1 and 2), and the dispersibility index of SWCNTs
(for dataset 3), using reduced descriptors pools obtained by
different strategies as discussed in the Materials and
methods section. We checked the statistical quality of all the

individual models using both internal and external validation
parameters, which showed that the models are statistically
significant (Table 1). We also checked the MAE-based criteria
for all the models.59 All the models passed the MAE-based
criteria.59 Besides the routinely used validation parameters,
we also checked the consensus predictions (for datasets 1 and
2 only) using the developed MLR models employing a newly
developed “Intelligent consensus predictor” tool60 to check
whether the quality of the predictions of the test set com-
pounds can be enhanced through an “intelligent” selection of
multiple MLR models. We found that the consensus predic-
tions of multiple MLR models are better (based on MAE based
criteria) than the results obtained from the individual models
as shown in Table 1 (here, in both cases, the winner model is
CM3). It was also found that the consensus predictions of the
test set compounds are better as compared to the individual
MLR models based on not only the MAE-based criteria but
also the other external validation metrics used in this work as
shown in Table 1. All the individual models are mentioned be-
low and the descriptors are discussed elaborately. In the equa-
tion, ntraining is the number of compounds used to develop
the models and ntest is the number of compounds used for
the external prediction of the developed models. The values of
leave-one-out (LOO) cross-validated correlation coefficient
(Q2) (Q2 in the range of 0.863–0.895 for dataset 1; 0.743–0.798
for data set 2 and 0.775 for dataset 3) above the critical value
of 0.5 signify the statistical reliability of the models. The pre-
dictability of the models was judged by means of predictive
R2 (R2

pred) or Q2
F1 (Q2

F1 range of 0.887–0.919 for dataset 1;
0.783–0.890 for data set 2 and 0.945 for dataset 3) and Q2

F2

(Q2
F2 range of 0.886–0.919 for dataset 1; 0.768–0.882 for data

set 2 and 0.938 for dataset 3), which show the good predictive
ability of the models. The statistical results of all the models
are summarized in Table 1. The PLS model developed from
dataset 3 was also validated using a randomization test
through randomly reordering (100 permutations) the depen-
dent variable (logCmax) using the SIMCA-P software.68 Here,
the intercept values for both R2 and Q2 are below the stipu-
lated values (R2

int < 0.4 and Q2
int < 0.05), which confirmed

that the developed model was not obtained by chance (Fig.
S1 in ESI†). We have also checked the intercorrelation
among the modeled descriptors for MLR models based on
the Pearson correlation coefficient using the SPSS soft-
ware.70 The results showed that there is no intercorrelation
between the modeled descriptors.

From the observations obtained from the modeled de-
scriptors, it has been found that the organic pollutants may
interact with the MWCNTs through different mechanisms
like hydrogen bonding interactions, hydrophobic interac-
tions, π–π interactions and electrostatic interactions as
discussed below.

3.1. Dataset 1 : 59 organic pollutants

The significant descriptors obtained from the five MLR
models (see Models M1–M5) for the adsorption properties
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(logKα) of 59 organic chemicals on MWCNTs are X0v,
nArOH, B01[C–O], B06[C–Cl], Ui, F03[O–O], F04[N–O],
ETA_BetaP, minsCH3, B03[O–O] and nHBint4, which regulate
the adsorption properties of the organic pollutants. The con-
tribution of the descriptors can be easily identified from the
regression coefficient of the independent variables. In this
case, all the descriptors contributed positively (positive re-
gression coefficients), except the B01[C–O] descriptor (nega-
tive regression coefficient). The definition, contribution and
frequency of the contributed descriptors are shown in Table
S4 in the ESI.† We have checked the applicability domain of
the developed MLR models using the standardization ap-
proach to confirm whether there is any compound present
outside the applicability domain or not. It was found that
one compound (compound number 41) for model M1 is situ-
ated outside the applicability domain, while compound num-
ber 56 is situated outside the domain of applicability in case
of models M2, M3, M4 and M5; however, these compounds
showed good predictivity based on the models. The scatter
plot of the observed vs. predicted adsorption coefficient for
all the MLR models are shown in Fig. 2.

Model M1. log k∞ = −4.62(±0.337) + 0.834(±0.155) × Ui
+ 0.663(±0.220) × B06[C–Cl]
+ 0.641(±0.057) × X0v
+ 0.600(±0.091) × nArOH
− 0.611(±0.121) × B01[C–O]

n R R S Ftraining adj

PRESS

    



44 0 920 0 908 0 294 85 93

4

2 2, . , . , . , . ,

.2267 0 895 0 851

0 078

2 2

2

, . , . ,

. , ,

Q r

r

 

  

 

 

m LOO

m LOO MAE Good

n Q Q r rtest F1 F2 m test m test        15 0 887 0 886 0 7452 2 2 2, . , . , . , 00 104

0 934

. ,

. ,CCC MAE Good 

Model M2. log k∞ = −8.51(±0.722) + 0.803(±0.048) × X0v
+ 0.681(±0.146) × F03[O–O]
+ 0.415(±0.144) × F04[N−O]
+ 3.27(±0.491) × ETA_BetaP
+ 0.204(±0.067) × minsCH3

Fig. 2 The scatter plot of the observed and the predicted adsorption coefficient property (logK∞) of the developed MLR models (models M1–M5).
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n R R S Ftraining adj

PRESS
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Model M3. log k∞ = −8.68(±0.746) + 0.802(±0.050) × X0v
+ 0.603(±0.272) × B03[O–O]
+ 3.39(±0.503) × ETA_BetaP
+ 0.213(±0.069) × minsCH3

+ 0.412(±0.148) × nHBint4

n R R S Ftraining adj
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Model M4. log k∞ = −8.72(±0.782) + 0.785(±0.052) × X0v
+ 0.650(±0.158) × F03[O–O]
+ 3.51(±0.527) × ETA_BetaP
+ 0.202(±0.073) × minsCH3

n R R S Ftraining adj
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Model M5. log k∞ = −8.42(±0.773) + 0.785(±0.052)X0v
+ 3.29(±0.526)ETA_BetaP
+ 0.199(±0.072)minsCH3

+ 0.566(±0.137)nHBint4
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3.1.1. The descriptors related to hydrogen bonding inter-
actions. The functional group count descriptor, nArOH, repre-

sents the number of aromatic hydroxyl groups present in the
compound. This descriptor influences the adsorption proper-
ties of organic pollutants by MWCNTs as indicated by its pos-
itive regression coefficient. Thus, the compounds containing
a large number of aromatic hydroxyl groups may enhance the
adsorption properties of organic pollutants by MWCNTs as
shown in compounds 13 (pyrogallol) (containing 3-OH
groups), 5 (2-phenyl phenol) (containing 1-OH group) and 14
(2,4,6 trichlorophenol) (containing 1-OH group). On the other
hand, the compounds containing no aromatic hydroxyl
groups are detrimental for the adsorption affinity of organic
pollutants by MWCNTs as shown in compounds 18
(4-chloroaniline), 36 (benzyl alcohol) and 42 (phenethyl alco-
hol) (these compounds contain no aromatic hydroxyl groups).
Although some compounds containing no aromatic hydroxyl
groups still show high adsorption affinity for the organic pol-
lutants by MWCNTs, it is due to some other dominating de-
scriptors present in the model. Thus, the substitution of
electron donating groups like hydroxyl groups in the aro-
matic ring of organic pollutants could enhance the adsorp-
tion on MWCNTs.

A 2D atom pair descriptor, F04[N–O], indicates the fre-
quency of the N–O fragment at topological distance 4. The
positive regression coefficient of the descriptor suggests that
an increase in N–O fragments at topological distance 4 is di-
rectly proportional to the adsorption affinity of organic pol-
lutants. The greater number of fragments correlates to higher
adsorption properties as observed in the case of compounds
19 (2-nitroaniline) and 27 (3-nitrophenol), while the absence
of such fragments at topological distance 4 has no influence
on the adsorption by MWCNTs as shown in compounds 18
(4-chloroaniline), 36 (benzyl alcohol) and 42 (phenethyl-
alcohol). This descriptor also indicates that the frequency of
two electronegative atoms of organic pollutants (electron do-
nating or electron withdrawing groups) should be situated at
topological distance 4 for better adsorption on MWCNTs. In
the case of compound number 19, nitrogen (–NH2 group)
acts as an electron donor and oxygen (–NO2 group) acts as an
electron withdrawing group, whereas in the case of com-
pound number 27, nitrogen (–NO2 group) acts as an electron
withdrawing group, and oxygen (–OH group) acts as an
electron donating group.

The E-state descriptor, nHBint4 indicates the count of po-
tential internal hydrogen bonds separated by four edges. The
positive regression coefficient suggests that hydrogen bonds
of organic pollutants have the propensity to play a dominant
role in enhancing the adsorption properties. Thus, the or-
ganic pollutants bearing hydrogen-bonded groups separated
by four path lengths are conducive to adsorption as shown in
compounds 13 (pyrogallol), 19 (2-nitroaniline) and 48
(3-chlorophenol), whereas the absence of such fragment in
organic pollutants are detrimental to the adsorption affinity
as shown in compounds 6 (benzene), 11 (phenol) and 42 (ph-
enethyl alcohol).

B03[O–O] is a 2D atom pair descriptor that indicates the
presence or absence of the O–O fragment at topological
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distance 3. The positive regression coefficient of the descrip-
tor indicates that the higher the frequency of this fragment,
the higher is the adsorption affinity. Thus, the presence of
the O–O fragment at topological distance 3 favors the adsorp-
tion of organic pollutants by MWCNTs as shown in com-
pounds no. 12 (catechol) and 13 (pyrogallol), while com-
pounds no. 6 (benzene), 42 (phenethyl alcohol) and 36
(benzyl alcohol) show low adsorption because these com-
pounds have no such fragments at topological distance 3.

Hydrogen bonding is one of the key mechanisms for the
adsorption of organic contaminants on CNTs. The informa-
tion obtained from the descriptors nArOH, F04[N–O],
nHBint4, F03[O–O] and B03[O–O] suggested that there may
be some hydrogen bonding interactions between organic pol-
lutants and MWCNTs, which regulate the adsorption affinity
(Fig. 3) of organic pollutants toward MWCNTs. In the case of
the descriptor nArOH, the aromatic hydroxyl group may form
hydrogen bonds with the hydroxy/carboxylic groups on the
CNTs surface and the hydrogen bonds may also form be-
tween the surface-adsorbed aromatic hydroxyl group-
containing organic pollutants (phenolics) and dissolved phe-
nolics. Here, the hydroxyl group is always connected to an ar-
omatic ring. Thus, it is obvious that this aromatic ring of or-
ganic pollutants themselves can interact with CNTs by π–π

interactions. The descriptor, F04[N–O], also suggested that
besides the hydrogen bonding interactions, there may also be
a chance to form electrostatic interactions. The electron-
withdrawing groups like NO2 may also strengthen the π–π in-
teractions formed between the benzene derivatives (acting as
π-acceptor) and CNTs (acting as π-donor). In the case of
B03[O–O], two oxygen atoms (hydroxyl groups) are separated
by topological distance 3 and can interact with CNTs by hy-
drogen bonding interactions. These two electronegative
atoms of organic pollutants could also interact electrostati-
cally with CNTs and strengthen the π–π interactions formed
between the organic pollutants and MWCNTs.39,71 It is worth
noting that although the C–O bond is detrimental to the ad-
sorption of organic pollutants on CNTs, the frequency of the
O–O fragment at topological distance 3 can suppress the det-
rimental effect of the C–O group and influence the adsorp-
tion affinity of organic pollutants on MWCNTs. The descrip-
tors involved in the hydrogen bonding interactions between
the organic pollutants and MWCNTs are depicted in Fig. 3.

3.1.2. The descriptors related to hydrophobic interactions.
A 2D atom pair descriptor, B06[C–Cl], represents the presence
or absence of the C–Cl bond at topological distance 6. The
positive regression coefficient of this parameter suggests that
the presence of such a fragment at topological distance 6 en-
hances the adsorption affinity of organic pollutants towards
the MWCNTs as shown in compounds 50
(4-chloroacetophenone) and 57 (2-chloronapthlene). On the
other hand, compounds like 11 (phenol), 22 (4-methylphenol)
and 43 (3-methylbenzyl alcohol) show poor adsorption affinity
for the MWCNTs due to the absence of such a fragment.

The descriptor X0v indicates a valence connectivity index
of the order 0, which can be calculated through Kier and

Hall's connectivity index as shown below. This descriptor
contributed positively to the adsorption affinity of organic
pollutants for the MWCNTs. Thus, the size of the organic pol-
lutants plays a crucial role in regulating the adsorption affin-
ity of organic pollutants to MWCNTs. It has been found that
on increasing the numerical value of this descriptor, the ad-
sorption affinity of organic pollutants for MWCNTs also in-
creases, as shown in the case of compounds 1 (pyrene), 58
(azobenzene) and 5 (2-phenyl phenol) (bigger in size), while
the adsorption affinity of organic pollutants for MWCNTs de-
creases in the case of compounds 6 (benzene), 11 (phenol)
and 36 (benzyl alcohol) (smaller in size).

The valence connectivity index of the zeroth order can be
calculated by the following:

X v v0
0 5

1
  


  i
i

n .

 i
i

i i

Z hi
Z Z

v
v

v


 1

In the above equation, δvi = the valence vertex degree, Zvi =
valence electrons in the ith atom, hi = the number of hydro-
gen atoms connected to the ith atom, Zi = the number of
electrons in the ith atom.

The E-state indices of a particular atom in a certain mole-
cule provide information on its electronic state of that partic-
ular atom, which in turn depends on π bonds, the lone pair
of electrons and ∂ bonds that inform the quantitative avail-
ability of the valence electrons.72 The descriptor minsCH3 in-
dicates the minimum atom type E-state CH3. The positive re-
gression coefficient of this descriptor indicates that the
presence of the CH3 group has an important role in influenc-
ing the adsorption properties of organic pollutants. The nu-
merical value of this descriptor is directly proportional to the
adsorption property, which suggests that with increasing the
numerical value of this descriptor, the adsorption affinity of
the organic pollutants also increases as evidenced by com-
pounds 10 (2,4-dinitrotoluene), 50 (4-chloroacetophenone)
and 52 (1-methylnaphtalene). On the other hand, the adsorp-
tion affinity of organic pollutants decreases with the absence
of the CH3 group as shown in compounds 6 (benzene), 11
(phenol) and 36 (benzyl alcohol).

Hydrophobic interactions between organic pollutants and
CNTs are also an important mechanism for better adsorp-
tion. The descriptors, B06[C–Cl], X0v and minsCH3 suggest
that the organic pollutants may be adsorbed onto the
MWCNTs by hydrophobic interactions. In the case of B06[C–
Cl] and X0v, the size of the molecules (for B06[C–Cl], the dis-
tance between C and Cl atoms is six, which reflects the size
of the molecules) plays an important role in the adsorption
affinity. The size enhances the surface area of molecules,
which can regulate the hydrophobic interactions between or-
ganic pollutants and MWCNTs. The methyl group (informa-
tion obtained from minsCH3 descriptor) and CNTs are hydro-
phobic in nature. Thus, an increase in the minsCH3 value
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would indicate a higher degree of unsaturation and would
enhance the reactivity. There is, therefore, a chance for hy-
drophobic interactions between organic pollutants and
MWCNTs, which reflects better adsorption. The descriptors
involved in hydrophobic interactions between organic pollut-
ants and CNTs are depicted in Fig. 4.

3.1.3. The descriptors related to π–π interactions. The de-
scriptor, Ui, gives information about the unsaturation index,
which contributes positively to the adsorption affinity of or-

ganic pollutants by MWCNTs as indicated by the positive re-
gression coefficient. From this descriptor, it has been
suggested that the presence of unsaturated inorganic pollut-
ants plays a crucial role in enhancing the adsorption affinity.
This was demonstrated in compounds 1 (pyrene), 10 (2,4-
dinitrotoluene) and 58 (azobenzene) (the numerical values of
this descriptor are 3.392, 3 and 3, respectively), and vice versa
in the case of compounds 11 (phenol), 36 (benzyl alcohol)
and 42 (phenethyl alcohol) (the numerical values of this

Fig. 3 Mechanistic interpretation of the descriptors related to hydrogen bonding interactions between organic pollutants and MWCNTs (dataset 1).

Fig. 4 Mechanistic interpretation of the descriptors related to the hydrophobic interaction between organic pollutants and MWCNTs (dataset 1).
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descriptor are 2 in each compound). Here, the compounds, 1
(pyrene), 10 (2,4-dinitrotoluene) and 58 (azobenzene) have a
higher range of unsaturation index values due to the pres-
ence of a large number of double bonds.

The ETA index, ETA_BetaP, gives a measure of sigma, pi
and non-bonded (i.e., lone pairs capable of forming resonance
with the aromatic system) electrons relative to the molecular
size. Therefore, electron-richness (unsaturation) relative to
the molecular size of organic pollutants is an important pa-
rameter for regulating the adsorption properties. The positive
regression coefficient of this parameter indicates that the
electron densities of the molecules should be higher for in-
creasing the adsorption affinity of organic pollutants for
MWCNTs, as found in compounds 1 (pyrene), 28 (1,3-
dinitrobenzene) and 58 (azobenzene), whereas the compounds
with low electron density show a lower range of adsorption af-
finities as shown in compounds 36 (benzyl alcohol), 42 (ph-
enethyl alcohol) and 43 (3-methylbenzyl alcohol). Thus, it can
be concluded that the molecules should be electron-rich for
higher adsorption properties of organic pollutants.

The π–π interaction is another important mechanism in-
volved in the adsorption of organic pollutants to CNTs. The
information obtained from Ui and ETA_BetaP descriptors
suggested that the organic pollutants can adsorb to MWCNTs
by strong π–π interactions. The descriptors B03[O–O], F03[O–

O] and F04[N–O] suggested that the [O–O] fragments at topo-
logical distance 3 and the [N–O] fragments at the topological
distance 4 may strengthen the π–π interactions formed be-
tween organic pollutants and MWCNTs. The descriptor Ui
suggested that unsaturation plays a crucial role for the ad-
sorption of organic pollutants to MWCNTs. CNTs also con-

tain a large number of double bonds (unsaturation), so there
is a chance to form strong π–π interactions between organic
pollutants and MWCNTs, which reflects the better adsorption
of these pollutants to MWCNTs; hence, a higher number of
double bonds of organic pollutants enhance the adsorption
affinity to MWCNTs. The descriptor, ETA_BetaP suggested
that unsaturation (electron-richness) relative to the molecular
size of organic pollutants plays a crucial role in regulating
the adsorption properties. From this descriptor, it can be in-
ferred that the adsorption affinity of organic pollutants to
MWCNTs is increased due to the π–π interactions. The de-
scriptors involved in π–π interactions between organic pollut-
ants and CNTs are described graphically in Fig. 5.

3.1.4. The descriptors related to electrostatic interactions.
F03[O–O], a 2D atom pair descriptor, indicates the frequency
of the O–O fragment at topological distance 3. The positive
regression coefficient of this descriptor suggests that pres-
ence of a greater number of O–O bonds at the topological dis-
tance 3 might be beneficial for the adsorption affinity of or-
ganic pollutants for MWCNTs as shown in compounds 12
(catechol) and 13 (pyrogallol), whereas the opposite happens
in the case of compounds 6 (benzene), 42 (phenethyl alcohol)
and 43 (3-methylbenzyl alcohol) (where, no O–O fragment is
present at topological distance 3). This fragment may also
strengthen the π–π interactions formed between organic pol-
lutants and MWCNTs.73,74 Like B03[O–O], this descriptor also
suppresses the detrimental effect of the C–O group as
discussed earlier in this section.

The information obtained from the descriptors, F03[O–O],
B03[O–O] and F04[N–O] suggests that the organic pollutants
can adhere to the surface of the MWCNTs by strong

Fig. 5 Mechanistic interpretation of the descriptors related to the π–π interactions between organic pollutants and MWCNTs (dataset 1).
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electrostatic interactions. The descriptors F03[O–O] and
B03[O–O] indicate that the frequency or presence/absence of
two electronegative atoms (electron donating group) at the to-
pological distance 3 is essential to enhance the adsorption af-
finity of organic pollutants to MWCNTs. Thus, there may be
a chance to form electrostatic interactions between organic
pollutants (negatively charged atom like oxygen atom of the
hydroxyl group) and MWCNTs (the sidewall of the CNTs are
electrically polarizable and thus polar molecules can easily
adhere to their surface). The descriptors involved for electro-
static interactions between organic pollutants and CNTs are
represented graphically in Fig. 6.

The 2D atom pair descriptor, B01[C–O], indicates the pres-
ence or absence of the C–O bond at topological distance 1.
The negative regression coefficient of the descriptor supports
that the presence of this fragment at topological distance one
is detrimental to the adsorption affinity of organic pollutants
by MWCNTs, though it can form hydrogen bonds with
MWCNTs. For example, compounds like 1 (pyrene), 57
(2-chloronaphthalene) and 58 (azobenzene) have higher ad-
sorption affinity value due to the absence of such fragments
at topological distance 1, whereas compounds like 11 (phe-
nol), 36 (benzyl alcohol) and 42 (phenethyl alcohol) have
lower adsorption affinity due to the presence of one C–O
bond in each compound.

3.2. Dataset 2 : 69 organic pollutants

The significant descriptors obtained from the five MLR
models using the adsorption properties (logKSA) of 69 or-
ganic pollutants related to the specific surface area of

MWCNTs are Eta_Epsilon_3, X1A, X2A, nOHp, VAdjMat,
F04ĲO–Cl), B05ĲO–Cl), MLOGP2, T(N⋯N), O%, and T(O⋯Cl).
We have discussed here all the significant descriptors, which
are the key properties for altering the adsorption properties
of organic pollutants. The definition, contribution and fre-
quency of the modeled descriptors are shown in Table S5 in
the ESI.† The applicability domain of the developed models
using the standardization approach showed that one test set
compound (compound number 10) for model N1, two test set
compounds (compound number 10 and 21) for model N2,
one test set compound (compound number 21) for model N3
are situated outside the applicability domain, while in the
case of model nos. 4 and 5, all the test set compounds are sit-
uated within the domain of applicability. The scatter plot of
observed vs. predicted adsorption coefficient related to the
specific surface area of MWCNTs for all the MLR models are
shown in Fig. 7.

Model N1. logKSA = 4.29(±2.194) + 0.0965(±0.014) × O%
− 16.4(±4.397) × X1A + 0.145(±0.032)
× T(N⋯N) − 0.0279(±0.009)
× T(O⋯Cl) − 1.01(±0.294)
× B05(Cl⋯Cl) + 0.203(±0.022)
× MLOGP2

n R R Q Straining adj
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Fig. 6 Mechanistic interpretation of the descriptors related to the electrostatic interactions between organic pollutants and MWCNTs (dataset 1).
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Model N2. logKSA = −7.19(±0.571) + 0.0805(±0.015) × O%
− 0.662(±0.323) × nOHp
− 0.0358(±0.009) × T(O⋯Cl)
− 0.943(±0.294) × B05(Cl⋯Cl)
+ 0.185(±0.019) × MLOGP2
+ 0.958(±0.144) × VAdjMat

n R R Q Straining adj

PRESS
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Model N3. logKSA = −42.3(±7.527) + 0.0973(±0.013) × O%
− 0.622(±0.323) × nOHp
+ 0.154(±0.031) × T(N⋯N)
− 0.0407(±0.008) × T(O⋯Cl)
+ 0.160(±0.20) × MLOGP2
+ 89.8(±17.51) × ETA_Epsilon_3

n R R Q Straining adj

PRESS
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Fig. 7 The scatter plots of the observed and the predicted adsorption coefficient properties related to the specific surface area of MWCNTs (log
KSA) of the developed MLR models (models N1–N5).
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Model N4. logKSA = −42.0(±7.743) + 0.101(±0.014) × O%
+ 0.159(±0.032) × T(N⋯N)
− 0.0411(±0.008) × T(O⋯Cl)
+ 0.168(±0.021) × MLOGP2
+ 88.9(±18.01) × ETA_Epsilon_3

n R R Q Straining adj

PRESS
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Model N5. logKSA = 2.49(±1.36) + 0.0757(±0.016) × O%
− 17.3(±3.773) × X2A + 0.145(±0.036)
× T(N⋯N) − 0.721(±0.144)
× F04(O⋯Cl) + 0.158(±0.023)
× MLOGP2
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3.2.1. The descriptors related to the hydrophobic interac-
tion. The descriptor, X1A, indicates an average connectivity
index of the order one, it encodes the ‘chi’ value across one
bond, which can be calculated on the basis of Kier and Hall's
connectivity index and defined as follows:

1 0 5

1
X    


  i j b
b

B .

In this equation, b runs over the 1st order subgraphs hav-
ing n vertices with B edges; δi and δj are the number of other
vertices attached to vertex i and j, respectively. The negative
regression coefficient of this descriptor implies that the
higher numerical values of this descriptor are not favorable
to enhance the adsorption properties of organic pollutants re-
lated to the specific surface area of MWCNTs as shown in
compounds 3 (benzene), 56 (ethylbenzene) and 57 (benzyl al-

cohol) (the corresponding numerical values of these com-
pounds are 0.5, 0.491, 0.491, respectively, showing a lower
range of adsorption affinity). On the other hand, compounds
like 35 (tetracycline), 22 (pyrene) and 26 (phenanthrene)
show better adsorption affinity (logKSA) due to their lower
numerical values of this descriptor.

Another significant descriptor, X2A, indicates an average
connectivity index of the order 2, and encodes the ‘chi’ value
across two bonds, which can be calculated on the basis of
Kier and Hall's connectivity index, defined in the following
equation:

2 0 5

2
X    


  i j b
b

B .

Here, b runs over the 2nd order subgraphs having n verti-
ces with B edges, δi and δj are the numbers of other vertices
attached to vertex i and j, respectively. This descriptor also
has a negative contribution towards the adsorption profile
(logKSA) of organic pollutants by MWCNTs as evidenced by
the negative regression coefficient. This indicates that the ad-
sorption properties of organic pollutants decrease with an in-
crease in the numerical value of this descriptor as shown in
compounds 3 (benzene), 18 (aniline) and 40 (bromobenzene),
and vice versa in the case of compounds 22 (pyrene), 26
(phenanthrene) and 35 (tetracycline).

The VAdjMat descriptor represents the vertex adjacency in-
formation and gives information about molecular dimension
and hydrophobicity. This descriptor can be calculated by
using the following formula:

VAdjMat = 1 + log2(m)

Here, m depicts the number of heavy–heavy bonds. This
descriptor contributed positively towards the adsorption
properties (logKSA) of organic pollutants as indicated by the
positive regression coefficient. Thus, the higher numerical
value of this descriptor is influential toward the adsorption
affinity of organic pollutants. This indicates that hydropho-
bicity plays a crucial role in altering the adsorption properties
of organic pollutants by MWCNTs. For example, compounds
22 (pyrene), 26 (phenanthrene) and 35 (tetracycline) show a
higher range of adsorption properties as these compounds
contain higher numerical values of this descriptor. Com-
pounds 3 (benzene), 55 (iodobenzene) and 46 (chloroben-
zene) show a lower range of adsorption properties as these
compounds contain higher numerical values of this descrip-
tor. It is therefore suggested that the hydrophobic organic
pollutants can easily be adsorbed by MWCNTs through hy-
drophobic interactions between the pollutants and CNTs.

The next descriptor, MLOGP2, represents the squared
Moriguchi octanol–water partition coefficient, calculated
from the regression equation of the Moriguchi logP
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model75,76 consisting of 13 parameters as depicted in the fol-
lowing equation.

log P = −1.244(CX)0.6 − 1.017(NO)0.9 + 0.406PRX − 0.145(UB)0.8

+ 0.511HB + 0.268POL − 2.215AMP + 0.912ALK
− 0.392RNG − 3.684QN + 0.474NO2 + 1.582NCS
+ 0.773BLM − 1.041

‘CX’ depicts the summation of the weighted number of
carbon atoms; ‘NO’ depicts the total number of N and O
atoms; ‘PRX’ represents the proximity effect of N/O; ‘UB’ rep-
resents the number of unsaturated bonds including semi-
polar bonds; ‘POL’ depicts the number of aromatic polar sub-
stituents; ‘AMP’ depicts the amphoteric property; ‘ALK’ rep-
resents the dummy variable for alkanes and alkenes; ‘RNG’
depicts the indicator variable for the presence of a ring struc-
ture, except for benzene and its condensed ring; ‘QN’ repre-
sents quaternary nitrogen; ‘NO2’ represents the number of
nitro groups; ‘HB’ represents a dummy variable for the pres-
ence of intermolecular hydrogen bonds; ‘NCS’ depicts iso-
thiocyanato or thiocyanato; ‘BLM’ represents a dummy vari-
able for the presence of β-lactam.

The positive regression coefficient of this descriptor indi-
cates that hydrophobicity plays a crucial role in regulating
the adsorption properties of organic pollutants. The highly
hydrophobic organic pollutants can easily be adsorbed by
MWCNTs as evidenced by compounds 22 (pyrene), 26 (phen-
anthrene) and 34 (azobenzene) as their corresponding
MLOG2 values are 22.653, 18.762 and 10.539, respectively,
whereas hydrophilic molecules are poorly adsorbed by
MWCNTs as evidenced by compounds 18 (aniline), 57

(benzylalcohol) and 63 (3-nitroaniline) as their corresponding
MLOGP2 values are 2.268, 2.532 and 1.816 respectively.
Therefore, it can be inferred that the organic pollutants are
adsorbed onto the CNTs through hydrophobic interactions.
Thus, for proper adsorption, organic pollutants should be hy-
drophobic in nature. Note that this was also observed in the
case of the VAdjMat descriptor as discussed previously.
MLOGP2 is not strictly a 2D descriptor. Here, the term ‘intra-
molecular H-bonds’ is used to calculate the MLOGP value,
which is conformation dependent.

The information obtained from the descriptors X1A, X2A,
VAdjMat and MLOGP2 suggested that the adsorption of or-
ganic pollutants related to the specific surface area of
MWCNTs may occur through hydrophobic interactions. The
molecular connectivity index (X1A and X2A) has a direct rela-
tionship with the count of interacting C–H bonds present in
a molecule. The number of C–H bonds in a molecule is equal
to the number of H atoms. As the C–H bond increases, the
hydrophobicity of the molecule increases. The δ value (de-
pends on the number of H atoms, the definition of a δ value
for a carbon atom in a molecular graph is: δ = 4 − H) de-
creases with the average connectivity index. Thus, the hydro-
phobic interactions between the organic contaminants and
MWCNTs are reduced and the adsorption of organic pollut-
ants related to the specific surface area of MWCNTs may also
be reduced.77

The descriptors VAdjMat and MLOGP2 give information
about the hydrophobicity of molecules. It is obvious that the
hydrophobic organic pollutants will interact with hydropho-
bic CNTs through hydrophobic interactions. This implies that
the hydrophobic organic pollutants can be easily adsorbed by

Fig. 8 Mechanistic interpretation of the descriptors related to the hydrophobic interactions between organic pollutants and MWCNTs (dataset 2).
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MWCNTs through hydrophobic interactions. The descriptors
involved for hydrophobic interaction are graphically depicted
in Fig. 8.

3.2.2. The descriptors related to the π–π interactions. A
functional group count descriptor, nOHp, describes the num-
ber of primary alcohols. The negative regression coefficient
of this descriptor points out that the primary alcoholic group
is not favored to enhance the adsorption properties (logKSA)
of organic pollutants as found in compounds 13 (3-methyl
benzyl alcohol) and 57 (benzyl alcohol). On the contrary, or-
ganic pollutants that do not contain any primary alcoholic
groups have higher adsorption affinities (logKSA) as shown in
compounds 22 (pyrene), 26 (phenanthrene) and 34
(azobenzene). Thus, the organic pollutants that do not con-
tain any primary alcoholic groups may be highly adsorbed by
MWCNTs.

F04[O–Cl] is a 2D atom pair descriptor that indicates the
number of (O–Cl) fragments at a topological distance of 4.
The negative regression coefficient of this descriptor indi-
cates that the frequency of the O–Cl fragment at the topologi-
cal distance 4 is inversely proportional to the adsorption
properties of organic pollutants. A higher number for this
fragment correlates to lower adsorption properties of organic
pollutants, as observed in compounds 7 (dicamba), 61
(3-chlorophenol) and 66 (2,4,5-trichlorophenoxyacetic acid)
(these compounds contain 3, 1 and 1 such fragments, respec-
tively, at a topological distance of 4), while a lower numerical
value of this descriptor correlates to a higher adsorption
property of organic pollutants as observed in compounds 22
(pyrene), 26 (phenanthrene), 34 (azobenzene) and 69 (2,4-
dinitrotoluene) (these compounds contain no such fragments
at topological distance 4). Thus, the presence of this frag-
ment at the topological distance 4 may hinder the adsorption
of the organic pollutants by MWCNTs. The adsorption of or-
ganic contaminants to the CNTs decreases when the fre-
quency of the (O–Cl) fragment at topological distance 4 in-
creases. Compound 2 (2,4,6-trichlorophenol) also contains a
O–Cl fragment but not at topological distance 4. Therefore,
the adsorption affinity related to the specific surface area of
the MWCNTs value of compound 2 is (logKSA value = −0.81)
not low as compared to compounds 7 (dicamba), 61
(3-chlorophenol) and 66 (2,4,5-trichlorophenoxyacetic acid)
(these compounds contain 3, 1 and 1 such fragments, respec-
tively, at topological distance 4 and the logKSA values are
−2.64, −1.75 and −2.51, respectively).

T(O⋯Cl), a 2D atom pair descriptor, indicates the sum of
the topological distance between oxygen and chlorine. The
negative regression coefficient of this descriptor suggests that
a higher numerical value of this descriptor is detrimental to
enhancing the adsorption properties of organic pollutants re-
lated to the specific surface area of MWCNTs as shown in
compounds 2 (2,4,6-trichlorophenol), 7 (dicamba) and 66
(2,4,6-trichlorophenoxyacetic acid). On the other hand, the or-
ganic pollutants containing no such fragments have higher
adsorption properties as shown in compounds 22 (pyrene),
26 (phenanthrene) and 34 (azobenzene). From this observa-

tion, it can be inferred that the organic pollutants without
(O⋯Cl) fragments may be better adsorbed onto the MWCNTs
surface.

A 2D atom pair descriptor, B05ĲCl–Cl), describes the pres-
ence or absence of Cl–Cl fragments at topological distance 5.
The negative regression coefficient of this descriptor indi-
cates that the presence of the Cl–Cl fragment at the topologi-
cal distance 5 may reduce the adsorption property of organic
pollutants related to the specific surface area of MWCNTs
(logKSA). A higher number of this fragment correlates to
lower adsorption property of organic pollutants as observed
in compounds 7 (dicamba), 41 (1,2,4-trichlorobenzene) and
66 (2,4,5-trichlorophenoxyacetic acid) (containing one such
fragment each) while absence of this fragment in organic pol-
lutants correlates to higher adsorption property as evidenced
from compounds 22 (pyrene), 26 (phenanthrene) and 34
(azobenzene). From this descriptor, it can be suggested that
the presence of this fragment at topological distance 5 may
retard adsorption of the organic pollutants by MWCNTs.

Another 2D atom pair descriptor, T(N⋯N), indicates the
sum of the topological distances between two nitrogen
atoms. A positive contribution towards the adsorption prop-
erties of organic pollutants related to the specific surface area
of MWCNTs (logKSA) indicates that for better adsorption of
organic pollutants by MWCNTs, the topological distance be-
tween two nitrogen atoms should be greater, as shown in
compounds 4 (oxytetracycline), 35 (tetracycline) and 69 (2,4-
dinitrotoluene) (as their corresponding topological distances
between two nitrogen atoms are 5, 5 and 4, respectively), and
vice versa in the case of compounds 42 (isophorone), 43
(4-fluorophenol) and 44 (acetophenone). Thus, it can be in-
ferred that the topological distances between two nitrogen
atoms should be greater for the better adsorption of organic
pollutants by MWCNTs.

As discussed earlier in the introduction section, π–π inter-
actions are one of the key mechanisms for the adsorption of
organic pollutants to CNTs. The information obtained from
these descriptors, nOHp, F04[O–Cl], B05[Cl–Cl], T(N⋯N) and
T(O⋯Cl), strongly support this statement. The descriptor
nOHp weakens the π–π interaction that occurs between the
organic pollutants and CNTs. In this case, the hydroxyl group
is alcoholic in nature (aliphatic hydroxyl group) and cannot
donate the lone pair of electrons to the aromatic ring (not di-
rectly bonded to the aromatic carbon) and ultimately weaken
the π–π interactions of the aromatic ring, though it can form
hydrogen bonds with the surface modified CNTs. On the
other hand, the phenolic hydroxyl group can donate the lone
pair of electrons to the aromatic ring (bonded directly to the
aromatic carbon atom) as discussed previously (section 3.1),
thus strengthening the π–π interactions between organic pol-
lutants and CNTs. In the case of the phenolic hydroxyl group,
it can also act as a π donor, but this is not possible in case of
the alcoholic hydroxyl group. From this observation, it can be
suggested that the aliphatic hydroxyl (alcoholic) group is not
favorable for the adsorption affinity of organic pollutants to
the CNTs. In case of the descriptors B05[Cl–Cl], T(O⋯Cl) and
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F04[O–Cl], the chlorine atom has an electron inductive effect
and decreases the electron density in the benzene ring, which
compensates for the electron-donating effect of the oxygen
atom (in the case of compounds 7 and 66), even after –OH dis-
sociated into –O−. The withdrawing inductive character of
chlorine substituents decreases the electron density of the
p-chlorophenol ring as compared with that of the phenol ring.
Thus, when the O–Cl or Cl–Cl fragment is present in an aro-
matic molecule, it decreases the electron density of that aro-
matic ring (as compared with that of the –OH substituted ben-
zene ring (phenolic) or the benzene ring itself) and ultimately,
electron donor–acceptor interactions do not occur easily be-
tween CNTs and organic contaminants. Hence, the compound
could not be easily adsorbed to the MWCNTs. In case of the
descriptor T(N⋯N), the lone pair of electrons of the nitrogen
atom can be donated to the ring system (when directly at-
tached) and enhance the π–π interaction with the CNTs. The
nitrogen can be present as the amino form (electron donat-
ing) or in the nitro form (electron withdrawing). Both forms
strengthen the π–π interactions between the organic pollut-
ants and CNTs by increasing or decreasing the π-electron den-
sity of the aromatic ring system and act as π electron donor or
acceptor, respectively. If the nitrogen is not directly attached
to the aromatic ring system, then adsorption happens
through electrostatic interactions between the nitrogen of the
pollutants and the hydrogen of CNTs by forming dipoles
when they are close to each other; the position of the nitrogen
atom hardly matters here. The descriptors influencing the π–π

interaction are graphically represented in Fig. 9.

3.2.3. The descriptors related to hydrogen bonding inter-
actions. The descriptor, O%, indicates the percentage of oxy-
gen atoms present in a particular molecule. The positive re-
gression coefficient of this descriptor suggests that the
presence of oxygen atom is highly influential in the adsorp-
tion of the organic pollutants on the surface of MWCNTs. For
example, compounds 4 (oxytetracycline), 35 (tetracycline) and
69 (2,4-dinitrotoluene) show better adsorption affinity as their
corresponding percentages of oxygen atoms are 15.8, 14.3 and
21.1, respectively. In contrast, compounds 3 (benzene), 18 (an-
iline) and 24 (4-chloroaniline) show poor adsorption affinity
as these compounds do not contain any oxygen atoms. The
oxygen atom may be present in different organic pollutants in
keto, phenolic (favorable for adsorption) or alcoholic forms
(not favorable for adsorption as discussed previously). These
different types of oxygen may interact with CNTs in different
ways, e.g., hydrogen bonding, strengthening the π–π interac-
tions and electrostatic interactions. On the other hand, a high
percentage of oxygen atoms may enhance the polarity of the
pollutants. Since the sidewalls of the CNTs are also electrically
polarized, the polar group of organic pollutants can easily ad-
here to the surface of the CNTs. The descriptor involved for
hydrogen bonding interactions is given in Fig. 10.

3.2.4. The descriptors related to the electrostatic interac-
tions. The descriptor, Eta_Epsilon_3, indicates the summa-
tion of epsilon values relative to the total number of atoms
including hydrogen in the connected molecular graph of the
reference alkane, which can be calculated by the following
equation.

Fig. 9 Mechanistic interpretation of the descriptors related to π–π interactions between organic pollutants and MWCNTs (dataset 2).
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ε3 = εR/NR

ε denotes electronegativity, NR denotes the number of
atoms present in the reference alkane. This descriptor has a
positive contribution towards the adsorption properties of
organic pollutants related to the specific surface area of
MWCNTs. This indicates that the electron-rich organic pol-
lutants will be highly adsorbed by MWCNTs. Thus, the
higher numerical value (due to strong electrostatic interac-
tions between organic pollutants and CNTs) of this descrip-
tor is required to increase the adsorption properties of or-
ganic pollutants by MWCNTs as shown in compounds 22

(pyrene), 26 (phenanthrene) and 35 (tetracycline) and vice
versa in the case of compounds 7 (dicamba), 13
(3-methylbenzyl alcohol) and 18 (aniline) (due to weak
electrostatic interactions between these organic pollutants
and CNTs).

The information obtained from the descriptor O% sug-
gests that the organic pollutants can adhere to the surface of
MWCNTs by electrostatic interactions. There may be a
chance to form electrostatic interactions between organic pol-
lutants (negatively charged atoms like the oxygen atom of the
hydroxyl group) and MWCNTs (sidewalls of the CNTs are
electrically polarizable, thus polar molecules can easily ad-
here to their surface). The descriptors involved in electro-
static interactions are shown graphically in Fig. 11.

3.3. Dataset 3 : 29 organic solvents

The significant descriptors obtained from the PLS model
using the dispersibility index (logCmax) values of 29 organic
solvents to SWCNTs are minsssN, SpMin3_Bhe, VPC-6 and
SpMin6_Bhi (arranged according to the variable importance
plot, Fig. S2 in ESI†). The modeled descriptors, which are the
key properties altering the dispersibility indexes of organic
solvents, are discussed below. We have also checked the ap-
plicability domain of test set compounds using the DModX
approach (99% confidence level) to find out whether any test
set compounds lie outside of the AD (D-critical = 4.559). The
results suggested that the entire test set compounds lie
within the AD, except for compound number 29 (Fig. S3 in
ESI†). The scatter plot of the observed vs. predicted
dispersibility index of SWCNTs in different solvents are
presented in Fig. 12.

Fig. 10 Mechanistic interpretation of the descriptors related to
hydrogen bonding interactions between organic pollutants and
MWCNTs (dataset 2).

Fig. 11 Mechanistic interpretation of the descriptors related to the electrostatic interactions between organic pollutants and MWCNTs (dataset 2).
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Model P1. logCmax = −1.379 + 1.379 × VPC-6 − 0.949
× SpMin3_Bhe + 0.659 × minsssN
− 0.375 × SpMin6_Bhi
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The most significant descriptor, minsssN, indicates the mini-
mum atom type E-state >N-. The E-state variable encodes the
intrinsic electronic state of each atom present in the molecu-
lar graph. The intrinsic electronic state of the atom is
changed by the electronic influence of all other atoms in the
molecule within the context of the topological character of
the molecule. Atoms that posses π and lone pairs of electrons
or are terminal atoms possess higher positive values for the
E-state index. Atoms that do not have π and lone pairs of
electrons and are present at the interior part of a molecule
possess lower E-state values. An increase in the minsssN
value would indicate the higher electronegativity of the or-
ganic solvents, which is beneficial for the dispersibility of
SWNTs. The positive regression coefficient of this descriptor
indicates that nitrogen atoms connected to other heavy
atoms play an important role in influencing the dispersibility
of SWNTs in different organic solvents. The numerical values
of this descriptor are directly proportional to the
dispersibility of SWCNTs, suggesting that the dispersibility
index of the SWNTs will increase with increasing the number
of such fragments as evidenced by the compounds 1 (1,3-
dimethyltetrahydro-2Ĳ1H)-pyrimidinone), 2 (1-butylpyrrolidin-2-

one) and 5 (3-(2-oxo-1-pyrrolidinyl)propanenitrile). On the
other hand, the absence of such fragments in different or-
ganic solvents decreases the dispersibility index of SWCNTs
as shown in compounds 24 (cyclohexanone), 27 (formamide)
and 28 (benzyl alcohol). Thus, from this descriptor, it can be
suggested that the dispersibility of CNTs may be enhanced
through electrostatic interactions.

The second highest significant descriptor, SpMin3_Bhe, is
defined as the smallest absolute eigenvalue of Burden modi-
fied matrix-n3/weighted by the relative Sanderson electroneg-
ativities.78 The negative contribution shown by SpMin3_Bhe
indicates that the dispersibility index of SWCNTs in various
solvents can be increased by decreasing the numerical value
of SpMin3_Bhe as shown in compounds 9 (dimethyl-
imidazolidinone), 10 (dimethyl acetamide) and 16 (acrylic
acid). On the other hand, the dispersibility of SWCNTs can
be decreased by increasing the numerical value of
SpMin3_Bhe as shown in compounds 22 (benzyl benzoate)
and 26 (triethyleneglycol). The SpMin3_Bhe descriptor
weighted by the relative Sanderson electronegativity suggests
that the electronegativity of the solvents and polar interac-
tions with CNTs play an important role in the dispersibility
of the SWCNTs. It can be concluded that polar interactions
can have an optimum value. Thus, polar solvents with low
donor number are preferred for the dispersibility of the CNTs
or it would be better to state that solvents with medium po-
larity are satisfactory.

The third highest significant descriptor, VPC-6, is a type of
topological descriptor, which indicates the chi valance path
cluster of order 6. This descriptor differentiates the mole-
cules according to their size, degree of branching, flexibility
and overall shape. Chi cluster descriptor (VPC-6) is an indica-
tor of the nth degree of branching and thus implicates the ef-
fect of substitution in a molecule. The organic solvent mole-
cules that are relatively compact have higher values of this
descriptor,79 suggesting that a small sized molecule with
compactness is most probably a better solvent for SWCNTs.
It has a positive contribution toward the dispersibility index
of SWCNTs in different organic solvents. This indicates that
the degree of branching of organic solvents increases the
dispersibility index of SWCNTs as shown in compounds 1
(1,3-dimethyltetrahydro-2Ĳ1H)-pyrimidinone), 3
(1-benzylpyrrolidin-2-one), and 9 (dimethyl-imidazolidinone),
and vice versa in case of compounds 10 (dimethyl acetamide),
16 (acrylic acid) and 17 (2,2′-thiodiethanol).

The least significant descriptor, SpMin6_Bhi indicates the
smallest absolute eigenvalue of Burden modified matrix – n6/
weighted by the relative first ionization potential.

A modified Burden matrix Q is defined as follows:

[Q]ij = Zi + 0.1δi + 0.01 × nπi and [Q]ij = 0.4/dij

where, Zi depicts the atomic number of the ith atom, di de-
picts the number of non-hydrogen neighbors of the ith atom
(i.e., the vertex degree), nπi depicts the number of π electrons,
and dij depicts the topological distance between the ith and

Fig. 12 The scatter plot of the observed and the predicted dispersibility
index of SWCNTs (logCmax) of the developed PLS model (model P1).
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jth atoms.78 A larger ionization potential of a molecule sug-
gests that higher energy is required to convert the molecule
into cationic form, whereas a smaller ionization potential can
easily convert the molecule into cationic form, which helps
in the easy interaction of the cationic form of the molecule to
the π-system of the carbon nanotube through π-cationic inter-
actions. This descriptor is inversely proportional to the
dispersibility of SWNTs, suggesting that with increasing the
ionization potential, the dispersibility index of the SWNTs de-
creases as evidenced by compounds 27 (formamide), 16
(acrylic acid), and 9 (dimethyl-imidazolidinone). On the other
hand, the dispersibility index of organic solvents increases in
the case of compounds 2 (1-butylpyrrolidin-2-one) and 5 [3-(2-
oxo-1-pyrrolidinyl)propanenitrile]. The effects of the contrib-
uted descriptors on the dispersibility of SWCNTs in diverse
organic solvents are summarized graphically in Fig. 13.

4. Overview and conclusions

MLR and PLS regression-based strategies were employed to
develop QSPR models of organic pollutants (datasets 1 & 2)
and organic solvents (dataset 3). Multiple endpoints related
to CNTs (adsorption coefficient, adsorption coefficient re-
lated to specific surface area of MWCNTs and dispersibility
index) were used to explore the key structural features that
influence the adsorption and dispersibility of the investigated
molecules towards MWCNTs and SWCNTs, respectively. The
models were developed using 2D descriptors only. Prior to
the development of the final models, different strategies for
variable selection were performed to extract the most signifi-
cant descriptors for the generation of the final MLR (5

models for both datasets 1 and 2) and PLS (a single model
for dataset 3) models. Extensive validation of the developed
models was performed, which showed good predictibility and
robustness. The QSPR models were developed in compliance
with the OCED principles. We also used the “Intelligent con-
sensus predictor” tool to explore whether the quality of the
predictions of test set compounds could be enhanced
through an “intelligent” selection of multiple MLR models
(in the case of datasets 1 and 2). The results showed that
based on the MAE-based criteria, the consensus predictions
of multiple MLR models are better than the results obtained
from the individual models. In both cases, the winning
model was CM3. The insights obtained from the developed
MLR models for datasets 1 and 2 are as follows: (i) the de-
scriptors like Ui, F03[O–O], F04[N–O], ETA_BetaP, nOHp,
O%, T(N⋯N), T(O⋯Cl) and F04[O–Cl] influence the adsorp-
tion of organic pollutants either by π–π interactions or by
strengthening π–π interactions. (ii) nArOH, F03[O–O], B03[O–

O], nHBint, F04[N–O], Eta_Epsilon_3 and O% descriptors fa-
vor the adsorption of organic pollutants through electrostatic
interactions. (iii) The organic pollutants adsorbed through
hydrogen bonding interactions are indicated by nArOH,
F03[O–O], B03[O–O], nHBint, F04[N–O] and O%. (iv) The de-
scriptors minsCH3, B06[C–Cl], X0v, VAdjMat, MLOGP2, X2A
and X1A are essential for the adsorption of organic pollutants
through hydrophobic interactions. These observations were
further supported by the following discussion: the organic
adsorbates of CNTs were mostly aromatic compounds,
confirming that aromatic compounds have a better interac-
tion with CNTs than the non-aromatic pollutants, due to
their π electron richness and flat conformation. The

Fig. 13 The effects of the contributed descriptors on the dispersibility of SWCNTs in diverse organic solvents.
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systematic understanding of aromatic contaminants is there-
fore critical since aromaticity plays an important role in ad-
sorption. Several studies have suggested that π–π interactions
are crucial for the adsorption of organic compounds to
CNTs,71,80,81 which in turn depends on the size and shape of
the molecules, due to the curvature of the CNTs and its sub-
stituents. The π-system of the organic pollutants interacts
with the π-system of the CNTs through π–π interactions and
the interactions increase with the number of aromatic rings
in the adsorbates.39,82 Both electron withdrawing groups (e.g.
–NO2 and –Cl) and electron donating groups (e.g. –NH2, –OH)
strengthen the π–π interactions between the pollutants and
MWCNTs73,74 by acting as π-electron acceptors and π-electron
donors, respectively. The hydroxyl group was investigated as
an electron donating substituent on adsorptive interactions
among pollutants and MWCNTs, since the hydroxyls, by dis-
sociating to –O− (which has stronger electron donating abil-
ity), strengthen the n–π electron donor–acceptor (EDA) mech-
anism. Compounds with no aromatic ring (no π electrons)
interact through hydrophobic forces. A study also suggested
that CNTs act as strong adsorbents for hydrophobic com-
pounds due to hydrophobic interactions.15,16,33,83–85 Hydroxyl
groups (phenolic form) can interact through various means,
such as (i) hydrophobic interactions (ii) electrostatic interac-
tions (both attraction and repulsion) (iii) hydrogen bonding
interactions and (iv) enhancing π–π interactions. As the num-
ber of hydroxyl groups (phenolics) in the pollutants in-
creases, the hydrophobicity decreases. Thus, it can be consid-
ered as a major factor in the adsorption of phenolics to
CNTs. Hydrogen bonding can also be a major interaction be-
tween hydroxyl-containing pollutants and substituted carbon
nanotubes.86,87 Hydroxyl and amino group interactions can
be related to the electronic features. In one experiment, it
was observed that 1-naphthylamine has better adsorption to
treated CNTs than the untreated CNTs, and there was an ad-
ditional observation that although both 2,4-dichlorophenol
and 2-naphthol contain an –OH group, the adsorption of
2-naphthol was more significant with variation in the func-
tionality of CNTs.88 This indicates that when the adsorbates
possess electronic properties, the functionality of nanotubes
helps with the improvement of adsorption.88 Chen et al.89

reported that nitro group containing pollutants show stron-
ger adsorption than non-polar aromatics. This indicates that
along with hydrophobic interactions, there is some other es-
sential interaction that controls the adsorption, which is
comparable to the π-electron polarizability that is related to
aromatic compounds and electron donating as well as
accepting properties, similar to compounds having more
than two nitro groups. Nitroaromatic compounds, besides be-
ing polar in nature, have electron accepting capacity when
interacting with adsorbents having high electron polarizabil-
ity properties and also have high electron conjugation with
the π-electrons of CNTs. Thus, the higher affinity of nitro aro-
matic compounds as compared to other pollutants is due to
π–π electron donor–acceptor interactions; since nitrogen is a
strong electron-withdrawing atom, it acts as a π-acceptor and

carbon nanotubes act as the π-donor.90–93 Hydrogen bonding
is also possible between nitro groups of the pollutants, which
act as H-acceptors and functional group-substituted carbon
nanotubes. The presence of two chlorine atoms causes the
electron inductive effect, which may cause a reduction in the
electron density of the aromatic ring attached to it, as
suggested by Sulaymon and Ahmed et al.;94 the electron do-
nating effect of the hydroxyl atom attached to the aromatic
ring compensates for this by dissociating into the stronger
electron donor like –O− (oxygen). We can, therefore, conclude
that the adsorption of the organic pollutants to the CNTs can
be enhanced by the following: a greater number of aromatic
rings, high unsaturation or electron richness of the molecule,
the presence of polar groups substituted on the aromatic
ring, the presence of two oxygen atoms at a topological dis-
tance of 3, the presence of nitrogen and oxygen atoms at the
topological distance of 4, the size of the molecules, and the
hydrophobic surface of the molecules. On the other hand,
the presence of carbon and oxygen atoms at a topological dis-
tance of 1, aliphatic primary alcohols, the presence of two
chlorine atoms at topological distance 5 and the presence of
oxygen and chlorine atoms at topological distance 4 may be
detrimental and can retard the adsorption of organic pollut-
ants. From the insights obtained from the PLS model for
dataset 3, we have interpreted that the organic solvents bear-
ing the >N- fragment, polar solvents with low donor number,
compact molecules and lower ionization potential may be
better solvents to enhance the dispersibility of SWCNTs.
Dispersibility is directly correlated to the adsorption proper-
ties of molecules to CNTs. This PLS model and contributed
descriptors can help with the understanding of the mecha-
nism of the dispersion process and predict organic solvents
that improve the dispersibility of SWCNTs and may overcome
the drawbacks of SWCNTs. This work may, therefore, be
helpful in the removal of the harmful and toxic contami-
nants/disposal of the by-products from the various industries,
making it possible to achieve a pollution-free environment.
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73 L. M. Woods, S. C. Bǎdescu and T. L. Reinecke, Adsorption
of simple benzene derivatives on carbon nanotubes, Phys.
Rev. B: Condens. Matter Mater. Phys., 2007, 75(1–9), 155415.

74 A. Star, T. R. Han, J. C. P. Gabriel, K. Bradley and G. Gruner,
Interaction of aromatic compounds with carbon nanotubes:
correlation to the Hammett parameter of the substituent
and measured carbon nanotube FET response, Nano Lett.,
2003, 3, 1421–1423.

75 I. Moriguchi, S. Hirono, I. Nakagome and H. Hirano,
Comparison of reliability of log P values for drugs calculated
by several methods, Chem. Pharm. Bull., 1994, 42(4), 976–978.

76 P. K. Ojha and K. Roy, Development of a robust and validated
2D-QSPR model for sweetness potency of diverse functional or-
ganic molecules, Food Chem. Toxicol., 2017, 112, 551–562.

77 L. B. Kier and L. H. Hall, The meaning of molecular
connectivity: A bimolecular accessibility model, Croat. Chem.
Acta, 2002, 75(2), 371–382.

78 R. Todeschini and V. Consonni, Molecular Descriptors for
Chemoinformatics: volume I: alphabetical listing/volume II:
appendices, references, John Wiley & Sons, vol. 41, 2009.

79 K. P. Singh and S. Gupta, Nano-QSAR modeling for
predicting biological activity of diverse nanomaterials, RSC
Adv., 2014, 4(26), 13215–13230.

80 F. S, Su and C. S. Lu, Adsorption kinetics, thermodynamics
and desorption of natural dissolved organic matter by
multiwalled carbon nanotubes, J. Environ. Sci. Health, Part A:
Toxic/Hazard. Subst. Environ. Eng., 2007, 42, 1543–1552.

81 Z. W. Wang, C. L. Liu, Z. G. Liu, H. Xiang, Z. Li and Q. H.
Gong, π-π interaction enhancement on the ultrafast third-
order optical nonlinearity of carbon nanotubes/polymer
composites, Chem. Phys. Lett., 2005, 407, 35–39.

82 F. Tournus, S. Latil, M. I. Heggie and J. C. Charlier, π-
stacking interaction between carbon nanotubes and organic

molecules, Phys. Rev. B: Condens. Matter Mater. Phys.,
2005, 72(1–5), 75431.

83 S. B. Fagan, A. G. S. Filho, J. O. G. Lima, J. M. Filho, O. P.
Ferreira, I. O. Mazali, O. L. Alves and M. S. Dresselhaus, 1, 2-
Dichlorobenzene interacting with carbon nanotubes, Nano
Lett., 2004, 4, 1285–1288.

84 S. Gotovac, Y. Hattori, D. Noguchi, J. Miyamoto, M.
Kanamaru, S. Utsumi, H. Kanoh and K. Kanek,
Phenanthrene adsorption from solution on single wall
carbon nanotubes, J. Phys. Chem. B, 2006, 110, 16219–16224.

85 J. Zhao and J. Lu, Noncovalent functionalization of carbon
nanotubes by aromatic organic molecules, Appl. Phys. Lett.,
2003, 82, 3746–3748.

86 X. J. Li, W. Chen, Q. W. Zhan, L. M. Dai, L. Sowards, M.
Pender and R. R. Naik, Direct measurements of interactions
between polypeptides and carbon nanotubes, J. Phys. Chem.
B, 2006, 110, 12621–12625.

87 A. M. Li, Q. X. Zhang, H. S. Wu, Z. C. Zhai, F. Q. Liu, Z. H.
Fei, C. Long, Z. L. Zhu and J. L. Chen, A new amine-
modified hypercrosslinked polymeric adsorbent for remov-
ing phenolics compounds from aqueous solutions, Adsorpt.
Sci. Technol., 2004, 22, 807–819.

88 W. Chen, L. Duan, L. Wang and D. Zhu, Adsorption of
hydroxyl-and amino-substituted aromatics to carbon nano-
tubes, Environ. Sci. Technol., 2008, 42(18), 6862–6868.

89 W. Chen, L. Duan and D. Zhu, Adsorption of polar and
nonpolar organic chemicals to carbon nanotubes, Environ.
Sci. Technol., 2007, 41(24), 8295–8300.

90 L. R. Radovic, C. Moreno-Castilla and J. Rivera-Utrilla,
Carbon materials as adsorbents in aqueous solutions, Chem.
Phys. Carbon, 2001, 227–406.

91 C. A. Hunter and J. K. M. Sanders, The nature of π-π interac-
tions, J. Am. Chem. Soc., 1990, 112, 5525–5534.

92 J. C. Ma and D. A. Dougherty, The cation-π interaction,
Chem. Rev., 1997, 97, 1303–1324.

93 C. A. Hunter, K. R. Lawson, J. Perkins and C. J. Urch,
Aromatic interactions, J. Chem. Soc., Perkin Trans. 1,
2001, 651–669.

94 A. H. Sulaymon and K. W. Ahmed, Competitive adsorption
of furfural and phenolic compounds onto activated carbon
in fixed bed column, Environ. Sci. Technol., 2008, 42,
392–397.

Environmental Science: Nano Paper



Exploring QSPR modeling for adsorption of hazardous synthetic
organic chemicals (SOCs) by SWCNTs
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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� We develop consensus QSPR models
for diverse synthetic organic chem-
icals having defined adsorption af-
finity for SWCNTs.

� Only simple 2D descriptors with
definite physicochemical meanings
have been used.

� The models have been validated
extensively with internal and
external validation metrics.

� The information obtained from the
developed models should be useful
for the management of environ-
mental pollution.
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a b s t r a c t

In order to understand the physicochemical properties as well as the mechanisms behind adsorption of
hazardous synthetic organic chemicals (SOCs) onto single walled carbon nanotubes (SWCNTs), we have
developed partial least squares (PLS)-regression based QSPR models using a diverse set of 40 hazardous
SOCs having defined adsorption coefficient (logK). The models were extensively validated using different
validation parameters in order to assure the robustness and predictivity of the models. We have also
checked the consensus predictivity of all the individual models using “Intelligent consensus predictor”
tool for possible enhancement of the quality of predictions for test set compounds. The consensus
predictivity of the test set compounds were found to be better than the individual models based on not
only the MAE based criteria (MAE(95%)¼Good) but also some other validation parameters (Q2

F1¼0.938,
Q2

F2¼ 0.937). The contributing descriptors obtained from the QSPR models suggested that the hazardous
SOCs may get adsorbed onto the SWCNTs through hydrophobic interaction as well as hydrogen bonding
interactions and electrostatic interaction to the functionally modified SWCNTs. Thus, the developed
models may provide knowledge to scientists to increase the efficient application of SWCNTs as a special
adsorbent, which may be useful for the management of environmental pollution.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid industrial growth leads to an increase in the demand
for new inventions and technologies for the benefit of human be-
ings. New chemicals have been introduced for various purposes,
which can, however, be a major threat for humans and animals
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(Latkar and Chakrabarti, 1994). The use of herbicides, for example,
has increased during the last two decades due to the rejuvenation
of agriculture. It was reported that 2.5 million ton pesticides were
in use worldwide yearly, and the amount is increasing day by day
(Pimentel, 1995; Tariq et al., 2007; Carter, 2000). Endocrine dis-
rupting chemicals (EDCs) act like natural hormones and hamper
the distribution, as well as metabolic process of natural hormones.
EDCs (e.g., ethinyl estradiol) are harmful for the reproductive sys-
tem of animals and humans (Snyder et al., 2003)). Effluents from
hospitals or radiological clinics have shown high concentration of
antibiotics like sulfamethoxazole and lincomycin, and contrast
medium (ipromide), which are responsible for the production of
antibiotic resistance bacteria and genes in the aquatic environment
(Rand-Weaver et al., 2013; Michael et al., 2013). Hence, removal of
antibiotics as well as pharmaceuticals and contrast medium from
water is essential to get purified water. Perfluorinated compounds
(PFCs) are synthesized from 1960s, and they have been used as
surfactants, fire retardants, paints, adhesives, waxes and polishes
(Moody and Field, 2000). Perflurinated sulfonates (PFOS) are
among the most identified perflurinated compounds because of
their high concentration, global sharing, environmental assiduity
and bioaccumulation. They are highly soluble in water and, there-
fore, can easily be transported in water causing water pollution.
PFOS are not easily removed from water sources by conventional
water purification techniques due to their exceptional stability.
Polycyclic aromatic hydrocarbons (PAHs) (naphthalene, phenan-
threne, p-nitrophenol) are highly toxic substances and are hydro-
phobic in nature (May et al., 1978; Walters and Luthy, 1984). The
principal sources of PAHs aremainly various anthropogenic sources
derived from combustion of coal and oil (Nielsen, 1996) exhaust
from motor vehicles (Harrison et al., 1996) and effluents from
petrochemical plants (Domeno and Nerin, 2003). They are not
degraded easily and not efficiently removed from environment by
simple physicochemical methods. Chlorophenols have been iden-
tified as one of the principle pollutants by the US Environmental
Protection Agency (USEPA) (Ahmed Adam and Al-Dujaili, 2013).
Chlorophenols are mainly used for the production of pesticides,
dyes and biocides. They are carcinogenic and toxic in nature, and
thus considered as one of the major sources of environmental
pollutants (Okolo et al., 2000). Chlorine is used to disinfect drinking
water. Chlorophenols may also be produced during the disinfection
of water (Ahmaruzzaman, 2008). The presence of chlorophenol in
drinking water causes unpleasant taste and odor even at very low
concentration(less than 0.1mg/L) (Suffet et al., 1999). Huge quan-
tities of N- and S-heterocyclic (thiophene, 2-aminopyrimidine, 4,6-
diaminopyrimidine) aromatics are used by pharmaceutical, dye and
pesticide manufacturing industries. Heterocyclic aromatics are
common environmental pollutants. They also cannot be removed
easily by simple water treatment process, and they do not degrade
easily (Song, 2003; Padoley et al., 2008; Bi et al., 2007). Chloro-
benzenes (1,2,4,5 tetrachlorobenzene, 1,2,4-trichlorobenzene, 1,2-
dichlorobenzene, chlorobenzene) are basically used as solvents,
degreasing agents and chemical intermediates. Their short term
exposure in animals causes necrosis, restlessness, tremors and
muscle spasms, while long term exposure causes numbness,
cyanosis, and hyperesthesia in humans. Dialkyl phthalate esters
(DPEs) are often used as plasticizers in polyvinyl chloride, polyvinyl
acetates, cellulosics and polyurethanes. They are also used in many
other fields like nanoplasticizer in products such as photographic
films, lubricating oils, paints, insect repellents etc. Due to their
outstretched use with global production, DPEs have been detected
in water, soil and marine ecosystem (Lin et al., 2003; Mackintosh
et al., 2004; Zhu et al., 2006). DPEs have been identified as U.S.
EPA priority pollutants (http://www.epa.gov).

Recently, nanomaterials are used for pollution management,
because they contain high surface area, high adsorption affinity
towards the organic contaminants, and they can be modified in
several ways to increase their selectivity towards specific target
pollutants (Chen et al., 2007). Carbon nanotubes (CNTs) are such
type of nanomaterials, which have recently gained special attention
from the researchers due to their smaller size, large specific surface
area, hollow and layered structure, responsible for their extraor-
dinary adsorption property (Khani and Moradi, 2013; Long and
Yang, 2001). CNTs were first discovered in 1991; they show inter-
esting physical and chemical properties. They are successfully used
in the field of medical and environmental remediation (Kim et al.,
2014b; Singh et al., 2014). CNTs are composed of cylindrical
graphite sheets, which show high van der Waals index (Lohmann
et al., 2005). The graphite sheets of CNTs consist of benzenoid
rings, which have sp2-hybridized carbon atom and high polariz-
ability. CNTs are hydrophobic in nature and strongly attached with
hydrophobic aromatic pollutants by p-p coupling stacking (Lara
et al., 2014). CNTs are generally two types, single layered
graphitic cylinder with few nanometer diameter nanotubes, also
known as single walled carbon nanotubes(SWCNTs), and nano-
tubes with 2e30 concentric cylinders and 30e50 nm diameter
nanotubes, also known as multiwalled carbon nanotubes
(MWCNTs) (Petersen et al., 2011). The four adsorption sites present
on CNTs are outermost surface, inner cavities, Interstitial channels
and grooves (Zhao et al., 2002). Recently, more research has been
carried out for adsorption of various synthetic organic chemicals
like polyaromatic hydrocarbons (PAHs), hydroxyl-, amino-, or
chloro-substituted PAHs, herbicides and endocrine disrupting
chemicals onto CNTs (Chen et al., 2007; Wang et al., 2010c).
Different adsorptions mechanisms for carbon nanotubes described
in various literature are hydrophobic interaction, p-p interaction
and hydrogen bonding interaction (Pan and Xing, 2008; Yang et al.,
2006). Kim et al. (2014a, b) reported that SWCNTs strongly adsorb
lincomycin, sulfamethoxazole and iopromide as compared to
MWCNTs and activated carbon (Kim et al., 2014a). Various LSER
models have been developed for prediction of adsorption of haz-
ardous SOCs (synthetic organic chemicals) on MWCNTs. Recently,
Mosayebidorcheh and Hatami (Mosayebidorcheh and Hatami,
2017) and Nakashima (2005) reported LSER models for adsorp-
tion of aromatic compounds and halogenated aliphatic compounds
onto SWCNTs. Chen et al. reported that SWCNTs possess good
adsorption property as compared to MWCNTs due to the molecular
sieving effect. For this molecular sieving effect, bulky moieties
could not access some of the innermost surfaces of the MWNTs
(Chen et al., 2007; Roy et al., 2019).

In the present study, we have developed partial least squares
(PLS) regression based quantitative structure-property relationship
(QSPR) models using adsorption coefficient data of 40 diverse
hazardous synthetic organic chemicals (SOCs) onto SWCNTs. The
main objectives of our work are: 1) to develop statistically robust
and validated QSPRmodels of hazardous SOCs using 2D descriptors
only in order to identify the significant structural features essential
for effective adsorption in SWCNTs; 2) to examine the adsorption
behavior of diverse synthetic organic chemicals onto SWCNTs; 3) to
give a deep insight to understand the mechanisms and factors that
are responsible for hazardous SOCs and SWCNTs/functionalized
SWCNTs interactions.

2. Method and materials

2.1. The dataset

A diverse set of 40 hazardous synthetic organic chemicals (SOC)
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with defined adsorption coefficient onto SWCNTs reported in the
literature (Ding et al., 2016a) were used to develop the QSPR
models. The whole data set of 40 synthetic organic chemicals were
assembled from 14 published articles containing experimental
adsorption coefficient (Kin,L/kg) values. The adsorption coefficient
K was calculated by using following formula:

K ¼ qe
Ce

where, qe (mg/kg) is equilibrium concentration on the surface and
Ce (mg/L) is the equilibrium concentration in the aqueous phase of
SWCNTs. The adsorption coefficient depends on the equilibrium
concentration whenever the adsorption isotherm is nonlinear in
nature (Zhao et al., 2014). The effect of concentration on K was
investigated. The equilibrium concentration on the surface (qe)
could be obtained from isotherm data at Ce¼ 0.00002, 0.0002,
0.002, 0.02 and 0.2 Cs, (where Cs is the aqueous solubility of the
adsorbate). The consequent K values are represented as K0.00002,
K0.0002,K0.002, K0.02 and K0.2 respectively. The endpoint K values
were taken in the logarithmic scale for the development of QSPR
models. We have used logK0.002 values for the development of QSPR
models due to its relatively wide distribution than rest of the logK
values. The data set is depicted in Supplementary section (Table S1).

2.2. Descriptor calculation

All the structures were drawn by using Marvin sketch software
(http://www.chemaxon.com). The descriptors were calculated us-
ing two software tools, Dragon descriptor version 6 and PaDEL-
Descriptor (http://www.yapcwsoft.com/dd/padeldescriptor) soft-
ware. Constitutional indices, ring descriptors, connectivity indices,
functional group count, atom centered fragments, atom type E-
state indices, 2D atom pairs and molecular properties were calcu-
lated using Dragon software, while extended topochemical atom
(ETA) indices were calculated using PaDEL-Descriptor software.

2.3. Dataset division

Data set division is a very important step for model develop-
ment process. Through dataset division, we can confirm develop-
ment of statistically robust models which have a potential to
predict the activity of new molecules. In this work, the whole data
set was divided by using the “datasetDivisionGUI1.2” (http://teqip.
jdvu.ac.in/QSAR_Tools/DTCLab) software tool. We have employed
the Kennard-Stone method for data set division. The selection of
objects in the Kennard-Stone algorithmwas done in such a manner
that they were uniformly distributed throughout the descriptor
space of the data set. In this study, 75% compounds were selected
for the training set, and the remaining 25% compounds were
selected for the test set (i.e., 30 compounds for the training set and
10 compounds for the test set). The training set was used for model
development, and the test set was used for model validation
purposes.

2.4. Variable selection and model development

Prior to the development of the final models, we have per-
formed data pretreatment to eliminate intercorrelated descriptors.
Various variable selection strategies were employed to prepare the
descriptor pool. We have excluded the variables with constant and
near constant values (standard deviation less than 0.0001), de-
scriptors with at least one missing value, descriptors with all
missing values and descriptors with (absolute) pair correlation
larger than or equal to 0.95 from the initial pool of descriptors.

Initially, we have run stepwise regression analysis and selected the
modeled descriptors. Then we have removed the previously
selected descriptors from the initial pool of descriptors and rerun
stepwise regression using remaining pool of descriptors. In this
manner, we have selected 31 descriptors for the development of
final models. Among the best subset equations, we have selected
fivemodels based onMean Absolute Error (MAE) criteria (Roy et al.,
2016) along with some other parameters, and then carried out
partial least squares (PLS) regression (Wold et al., 2001), in each
case, using the selected descriptors. Finally, we have performed
“intelligent consensus prediction” of the test set compounds based
on the selected five models using intelligent consensus predictor
(ICP) tool (Roy et al., 2018) in order to investigate whether pre-
diction quality of the external set compounds was increased or not
through an “intelligent” selection. The steps involved for develop-
ment of the final models are depicted in Fig. 1. Some additional
details of model development are given in Supplementary
Materials.

2.5. Statistical validation metrics

We have examined the statistical quality of the derived models
to judge the robustness in terms of reliability and predictivity
measures using various internal and external validation parame-
ters. In this work, we have used various statistical parameters like
determination coefficient (R2), explained variance (Ra

2), variance
ratio (F) and standard error of estimate (s). But these parameters
are not sufficient to judge the actual quality and predictability of
the model. So, we have calculated some other classical statistical
metrics like leave-one-out-cross-validated correlation coefficient
(Q2

(LOO)), Rpred
2 , QF2

2 , concordance correlation coefficient (CCC) and
different rm2 metrics. Among the above said parameters, Q2, rm2 (LOO)
and Drm2 (LOO) were used for internal validation while R2

pred, Q2
F2,

CCC, rm2 (test) and Drm2 (test) were used for external validation. The
threshold values of Q2, Q2

F2, R2
pred, rm2 (test), rm2 (LOO) are 0.5 and for

CCC, it is 0.750. The maximum limit for Drm2 (test) and Drm2 (LOO) is 0.2.
Roy et al. (2012) reported that a single model might be not equally
helpful to predict all test set compounds, so we have selected five
models. Additionally, we have also validated the PLS models using
Y-randomization test (Melagraki and Afantitis, 2013) through
randomly shuffling (100 permutations) the dependent variable
vector (logK) using SIMCA-P software (Umetrics, 2002) to ensure
that the model was not obtained by chance. Here, keeping the
descriptor matrix intact, the dependent variable vector (Y) is
randomly permuted, followed by a PLS run and a new predictive
model is developed using the original independent variable matrix.
After several repetitions, the new predictive model generates a
fresh set of R2 and Q2 values. These fresh R2 and Q2 values are
plotted against the correlation coefficient between the original Y-
values and the permuted Y-values. It is expected that the values of
fresh R2 and Q2 should be low. The PLS model is considered to be
valid if the parameter R2

int is less than 0.4 and the parameter Q2
int is

less than 0.05. If the opposite happens, then an acceptable model
cannot be obtained for the specific modeling method and data.
(Zhang et al., 2006; Melagraki and Afantitis, 2015). To judge the
predicting ability of the developed PLS models, we have also used
an external validation parameters proposed by Golbraikh and
Tropsha (2002) (Golbraikh and Tropsha, 2002; Vrontaki et al.,
2017). Based on these criteria, the model can be accepted if:

i) r2> 0.6
ii) (r2-r02)/r2< 0.1 or (r2-r/20)/r2< 0.1
iii) 1.15> k> 0.85 or 1.15> k/> 0.85
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2.6. Applicability domain

The applicability domain is generally defined as the response
and chemical structure space within which the training set com-
pounds are occupied. The developed QSPR models are able to make
predictions for new compounds properly when the compounds lie
within the region of chemical space of the training set molecules. In
this present work, we have checked the applicability domain of the
developed model using the standardization approach (Roy et al.,
2015). All the compounds are found to be present within the AD.

2.7. Software used

We have used Marvin sketch version 5.5.0.1 software to draw
chemical structures. PADEL-Descriptor software and Dragon soft-
ware version 6 were used for descriptor calculation. The data set

division was performed by using “DatasetDivisionGUI1.2”software.
Stepwise regression was performed by using MINITAB software
version 13.14. The PLS analysis was performed by using Partial Least
Squares version 1.0 tool.

3. Results and discussions

In the current study, five PLS models (Box 1) were developed for
the dataset containing 40 diverse hazardous SOCs having signifi-
cant adsorption affinity for SWCNTs, using a reduced descriptor
pool obtained by stepwise regression method, as discussed in
Methods and Materials section. We have validated the models us-
ing various internal and external validation parameters, which
showed that the models are statistically significant (Table 1). The
MAE based criteria of all the models were passed which indicates
that all the models are acceptable. We have also checked the

Fig. 1. Schematic representation of the steps involved in the development of final PLS models.

Table 1
Statistical quality and validation parameters obtained from the developed PLS models.

Type of Model Training set statistics Test set statistics

Model R2 Model Q2
(LOO) MAE_train r2mðLOOÞ Dr2mðLOOÞ R2

pred or Q2F1 Q2F2 CCC r2mðtestÞ Dr2mðtestÞ MAE (100%) MAE (95%) MAE

IM1 (LV¼ 4) 0.928 0.894 Good 0.850 0.056 0.900 0.899 0.950 0.869 0.043 0.382 0.338 Moderate
IM2 (LV¼ 4) 0.938 0.901 Good 0.860 0.036 0.929 0.928 0.965 0.904 0.054 0.275 0.214 Good
IM3 (LV¼ 3) 0.949 0.890 Good 0.846 0.063 0.901 0.900 0.956 0.851 0.061 0.320 0.249 Moderate
IM4 (LV¼ 4) 0.920 0.861 Good 0.806 0.059 0.898 0.897 0.953 0.875 0.065 0.359 0.295 Good
IM5 (LV¼ 3) 0.937 0.886 Good 0.842 0.008 0.923 0.922 0.963 0.905 0.053 0.322 0.263 Good
CM0 0.914 0.913 0.959 0.894 0.059 0.282 0.219 Good
CM1 0.912 0.911 0.958 0.890 0.060 0.327 0.268 Good
CM2 0.913 0.912 0.959 0.889 0.060 0.322 0.262 Good
CM3 0.938 0.937 0.971 0.903 0.044 0.250 0.189 Good

CM0¼Ordinary consensus predictions.
CM1¼Average of predictions from individual models IM1 through IM5.
CM2¼Weighted average predictions from individual models IM1 through IM5.
CM3¼ Best selection of predictions (compound-wise) from individual models IM1 through IM5.
*Note that we have run the “Intelligent consensus predictor tool” using the options, AD: No; Dixon Q-test: No; Euclidean distance cut-off: 0.4.
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consensus predictivity of all the individual models (IM1-IM5) using
“Intelligent consensus predictor” tool to see whether the quality of
predictions of test set compounds can be enhanced or not. The
consensus predictivity of the test set compounds were found to be
better than the individual models based on MAE based criteria as
depicted in Table 1 (the winner model is CM3). The descriptors
obtained from the individual models are discussed elaborately in
this section. To judge the predicting ability of the developed PLS
models, we have also validated the model using Golbraikh and
Tropsha criteria, and the results are given in Table 2. The results
showed that the models are acceptable based on these criteria. We
have performed randomization test using the SIMCA-P software to
verify whether the model was obtained by any chance or not. The
intercept of both R2 and Q2 values are below the stipulated values of
R2

int < 0.4 and Q2
int < 0.05 which confirmed that themodels are not

obtained by any chance (Figs. S1eS5). The definitions and

contributions of different descriptors obtained from five PLS
models are depicted in Table 3. In equations as depicted below,
ntrainingis the number of compounds used to develop the models,
and ntest is the number of compounds used for external prediction.
The leave one out (LOO) cross validated correlation coefficient Q2

(Q2¼ 0.861e0.901) above the critical value of 0.5 signifies the sta-
tistical reliability of the models. The predictive R2 (R2

pred) or Q2
F1

(Q2
F1¼0.898e0.929) and Q2

F2 (Q2
F2¼ 0.897e0.928) show good

predictive ability of the models. We have also checked the appli-
cability domain of the compounds using the standardization
approach. All the compounds are found to be present within the
AD. The scatter plot of observed vs. predicted adsorption coefficient
for five PLS models are depicted in Fig. 2.

Box 1

Table 2
Validation results for the final PLS models obtained according to Golbraikh and Tropsha's criteria.

Sl No. Models r̂ 2 [(r̂ 2-r0^2)/r̂ 2] [(r̂ 2-r0 '̂2)/r̂ 2] k k' Remarks

Threshold value >0.6 <0.1 <0.1 0.85< k< 1.15 0.85< k'<1.15

1 M1 0.906 �0.094 �0.088 0.940 1.013 Passed
2 M2 0.932 �0.065 �0.068 0.981 0.982 Passed
3 M3 0.927 �0.065 �0.072 0.910 1.054 Passed
4 M4 0.918 �0.079 �0.082 0.912 1.049 Passed
5 M5 0.933 �0.065 �0.067 0.936 1.031 Passed

Model1 :
log k ¼ 2:881þ 0:153�MLOGP2þ 4:183� ETA Shape Y
�1:472� nRNR2� 11:116� X2A� 0:569� B07½C � S�
ntraining ¼ 30; LV ¼ 4;R2 ¼ 0:928;R2ðadjÞ ¼ 0:916;Q2 ¼ 0:894; S ¼ 0:348; PRESS ¼ 4:452; F ¼ 80:52

r2mðLOOÞ ¼ 0:850;Dr2mðLOOÞ ¼ 0:056;MAEbasedcriteria ¼ Good

ntest ¼ 10;Q2
F1 ¼ 0:900;Q2

F2 ¼ 0:899; r2mðtestÞ ¼ 0:869;Dr2mðtestÞ ¼ 0:043;CCC ¼ 0:950
MAEbasedcriteria ¼ Moderate

Model2 :
log k ¼ �1:125þ 0:169�MLOGP2þ 4:565� ETA Shape Y � 1:316� nRNR2
�0:639� B07½C � S� þ 0:463� B04½C � C�
ntraining ¼ 30; LV ¼ 4;R2 ¼ 0:938;R2ðadjÞ ¼ 0:928;Q2 ¼ 0:901; S ¼ 0:324; PRESS ¼ 4:175; F ¼ 94:43;

r2mðLOOÞ ¼ 0:860;Dr2mðLOOÞ ¼ 0:036;MAEbasedcriteria ¼ Good

ntest ¼ 10;Q2
F1 ¼ 0:929;Q2

F2 ¼ 0:928; r2mðtestÞ ¼ 0:904;Dr2mðtestÞ ¼ 0:054;CCC ¼ 0:965;MAEbasedcriteria ¼ Good

Model3 :
log k ¼ �1:291þ 0:190�MLOGP2þ 4:871� ETA Shape Y � 1:887� nRNR2
þ0:231� H � 051þ 0:351� B06½C � O�
ntraining ¼ 30; LV ¼ 3;R2 ¼ 0:949;R2ðadjÞ ¼ 0:943;Q2 ¼ 0:890; S ¼ 0:287; PRESS ¼ 4:620; F ¼ 161:42

r2mðLOOÞ ¼ 0:846;Dr2mðLOOÞ ¼ 0:063;MAEbasedcriteria ¼ Good

ntest ¼ 10;Q2
F1 ¼ 0:901;Q2

F2 ¼ 0:900; r2mðtestÞ ¼ 0:851;DrmðtestÞ
2 ¼ 0:061;CCC ¼ 0:956;MAEbasedcriteria ¼ Moderate

Model4 :
log k ¼ �0:448þ 0:176�MLOGP2þ 5:052� ETA Shape Y � 1:520� nRNR2
þ0:240� B06½C � O� � 2:245� X2A
ntraining ¼ 30; LV ¼ 4;R2 ¼ 0:920;R2ðadjÞ ¼ 0:907;Q2 ¼ 0:861; S ¼ 0:366; PERSS ¼ 5:686; F ¼ 72:39

r2mðLOOÞ ¼ 0:806;Dr2m LOOð Þ¼0:059;MAEbasedcriteria ¼ Good

ntest ¼ 10;Q2
F1 ¼ 0:898;Q2

F2 ¼ 0:897; r2mðtestÞ ¼ 0:875;Dr2m testð Þ¼0:065;CCC ¼ 0:953;MAEbasedcriteria ¼ Good
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3.1. Descriptors related to hydrophobic interaction

The descriptor MLOGP2, represents squared Moriguchi octanol
water partition coefficient, calculated from the regression equation
of Moriguchi logP model (Moriguchi et al., 1994; Ojha and Roy,
2018) consisting of 13 parameters.

The positive regression coefficient of this descriptor indicates
that hydrophobicity is directly correlated with the adsorption
property of organic pollutants. Thus, the organic pollutants bearing
highly hydrophobic property can easily get adsorbed onto SWCNTs
as evidenced by the compounds 25 (Phenanthrene), 2 (1,2,4-
trichlorobenzene) and 17 (Ethinyl estradiol) as their corre-
sponding MLOGP2 values are 18.762, 16.507 and 16.033 respec-
tively, whereas less hydrophobic organic pollutants are poorly
adsorbed onto SWCNTs as evidenced by the compounds 6 (4,6-
Diaminopyrimidine), 26 (Pyrimidine) and 8 (Aniline), as their
corresponding MLOGP2 values are 0.256, 0, and 2.268, respectively.
Therefore, it can be inferred that the hazardous SOCs get adsorbed
onto the SWCNTs through hydrophobic interactions. For proper
adsorption, synthetic organic chemicals should be hydrophobic in
nature. MLOGP2 is not strictly a 2D descriptor as its numerical value
depends on intermolecular H-bonds (as it depends on molecular
conformation).

The next descriptor B04[CeC] is a 2D binary fingerprint
descriptor corresponding to presence/absence of CeC bond at to-
pological distance 4. The positive regression coefficient of this
descriptor indicates that presence of CeC bond at the topological
distance 4 is important for good adsorption of SWCNTs. The
descriptor is related to the size of molecule. If the size of the
molecule increases, hydrophobic interaction of the molecule with
SWCNTs also increases hence adsorption coefficient also increases.
As for example, compounds 25 (phenanthrene), 22 (Naphthalene)
and 17 (ethinyl estradiol) contain single CeC bond at the topo-
logical distance 4, and their corresponding adsorption coefficient
values are 3.67, 1.8 and 2.87 respectively (higher adsorption

coefficient values). While absence of such fragment decreases the
adsorption of organic pollutants to SWCNTs as shown in com-
pounds 26 (pyrimidine), 6 (4,6-diaminopyrimidine) and 8 (ani-
line) (adsorption coefficient �1.56, �0.27 and �0.16 respectively).

Another significant descriptor, X2A, indicates average connec-
tivity index of order 2; it encodes the ‘chi’ value across two bonds,
which can be calculated on basis of Kier and Hall's connectivity
index and defined in the following equation:

2X ¼
XB

b¼2

ðdi:dj:dkÞ�0:5
b

Here, b runs over the 2nd order sub graphs having n vertices
with B edges, di, dj and dkare number of other vertices attached to
vertex i, j and k respectively. This descriptor has a negative
contribution towards the adsorption coefficient (logK) of organic
pollutants by SWCNTs as evidenced by the negative regression
coefficient. This indicates that the adsorption property of hazardous
SOCs decreases with an increase in the numerical value of this
descriptor. For example, compounds 26 (Pyrimidine), 8 (Aniline)
and 6 (4,6-Diaminopyrimidine) have descriptor values 0.354,0.343
and 0.338 in that order, and their corresponding adsorption coef-
ficient values are �1.56,-0.16 and �0.27 respectively. If we consider
compounds 25 (Phenanthrene) and 17 (Ethinyl estradiol), their
descriptor values are less (0.272 and 0.257 respectively), thus their
corresponding adsorption coefficient value is high (logK values are
3.67 and 3.64 respectively).

3.1.1. Mechanistic interpretation of hazardous SOCs containing
higher and lower adsorption coefficient based on hydrophobic
interaction

Phenanthrene (Compound 25) (shown in Fig. S1 in Supple-
mentary Materials) is a poly aromatic hydrocarbon (PAH) and non
ionic in nature. Its MLOGP2 value is 18.76. Due to its hydrophobic
property, it can strongly interact with hydrophobic surface of

Table 3
Definition and contribution of different descriptors obtained from five PLS models.

Sl.
no.

Name of the
descriptors

Contribution Discussion Mechanism Frequency

1 MLOGP2 þve Squared Moriguchi octanol-water partition coeff. (logP 2̂) Hydrophobic interaction 5
2 ETA_Shape_Y þve ETA_Shape_Y¼(

P
a)Y/

P
a, (

P
a)Y stands for summation of a values of

the vertices that are joined to three other non-hydrogen vertices in the
connected molecular graph. Gives a measure of molecular shape.

5

3 nRNR2 -ve Number of tertiary amines (aliphatic) Unable to form hydrogen bond due to the absence of
free hydrogen atom.

5

4 B07[CeS] -ve Presence/absence of CeS at topological distance 7 3
5 B04[CeC] þ ve Presence/absence of CeC at topological distance 4 Hydrophobic interaction 1
6 X2A -ve average connectivity index of order 2 Hydrophobic interaction 2
7 H-051 þ ve H attached to alpha-C Electrostatic interaction.H atoms attached to a carbon

atom can easily donate protons and may involve in
electrostatic interaction.

1

8 B06[CeO] þ ve Presence/absence of CeO at topological distance 6 Formation of hydrogen bond 3

Model5 :
log k ¼ �1:117þ 0:179�MLOGP2þ 4:564� ETA Shape Y � 1:437� nRNR2
þ0:457� B06½C � O� � 0:496� B07½C � S�
ntraining ¼ 30; LV ¼ 3;R2 ¼ 0:937;R2ðadjÞ ¼ 0:930;Q2 ¼ 0:886; S ¼ 0:321; PRESS ¼ 4:803; F ¼ 128:07

r2mðLOOÞ ¼ 0:842;Dr2m LOOð Þ¼0:008;MAEbasedcriteria ¼ Good

ntest ¼ 10;Q2
F1 ¼ 0:923;Q2

F2 ¼ 0:922; r2mðtestÞ ¼ 0:905;Dr2mðtestÞ ¼ 0:053;CCC ¼ 0:963;MAEbasedcriteria ¼ Good
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SWCNTs. The B04[CeC] value for phenanthrene is 1 (positive
contribution) and X2A value is also low(0.272) (negative contri-
bution) which supports that strong interactions occur between
phenanthrene and SWCNTs (Chen et al., 2008). Phenanthrene has
an intensive electron donor property. Phenanthrene donates its p-
electron and can easily get converted to a cationic form, and thus it
more easily interacts with the surface of functionalized (with
eCOOH) SWCNTs (Gotovac et al., 2007).

When we compare between Phenanthrene (compound 25) and
Napthalene (compound 22) (Fig. S6 in Supplementary Materials),
both are poly aromatic hydrocarbons (PAHs) and non ionic in na-
ture. Their corresponding MLOGP2 values are 18.76 and 11.46
respectively. Due to their hydrophobic property, they can strongly
interact with hydrophobic surface of SWCNTs. The B04[CeC] value
for phenanthrene and naphthalene is also 1. Both phenanthrene
and naphthalene show strong interactions with SWCNTs. They only
differ in polarity and electron donor-acceptor ability (Chen et al.,
2008). Thus, the adsorption coefficient of phenanthrene
(logK¼ 3.67) is higher than napthalene (logK¼ 1.8) because
naphthalene contains less number of aromatic rings and is there-
fore less hydrophobic than phenanthrene.

Another example, 1,2,4-Trichlorobenzene (compound number
2) (Fig. S6 in Supplementary Materials) present in the data set,
shows higher adsorptive property (logK¼ 2.94) due to its

bulkiness. As the size of chlorine atom is high, substitution of three
chlorine atoms in the benzene ring is responsible for the bulkiness
of molecule. SWCNTs shows molecular sieving effect, so based on
the unit surface area (Chen et al., 2007), it shows a stronger affinity
towards trichlorobenzene. As the volume of molecule increases, the
molecule would preferentially like to be in the non-polar phase. As
a result, the partition-coefficient also increases (logP value for
benzene and chlorobenzene are 2.13 and 2.84 respectively). The
numerical value for MLOGP2 (squared Moriguchioctanol-water
partition coefficient) of this compound is also high (21.476). At
the same time, the molecule contains a benzene ring, which is
responsible for p-p interaction with graphene sheets of carbon
nanotubes. Chlorobenzene is also able to participate in hydrogen
bonding (thoughmoderately). Thus, the hazardous SOCs containing
bulky hydrophobic groups (reflected in the MLOGP2 descriptor) is
influential for adsorption of organic pollutants to SWCNTs.

Another compound, Ethinyl estradiol (compound number 17)
(Fig. S6 in Supplementary Materials) shows good adsorptive
property to the SWCNTs due to its hydrophobicity (Borisover and
Graber, 2003) The higher MLOGP2 value (16.033), presence of
single CeC fragment at topological distance 4 and low X2A value
(0.257) also give evidences for its hydrophobicity as well as higher
adsorptive property. Another mechanism, p-p electron donor-
acceptor interaction, also supports the higher adsorptive property

Fig. 2. The scatter plot of the observed and the predicted adsorption coefficient (logK) of the developed PLS models (models M1-M5).
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of Ethinyl estradiol onto SWCNTs. Due to the presence of two
phenolic groups (charge donor), it can strongly interact with
SWCNTs through p-p electron donor-acceptor interaction. (Chen
et al., 2007; Zhao et al., 2002). Hydrogen bonding between two
-OH groups of Ethinyl estradiol and SWCNTs is also possible, which
supports a favorable mechanism for adsorption of this compound
with SWCNTs (Pan and Xing, 2008).

We can consider 4,6-diaminopyrimidine (compound number 6)
in comparison topyrimidine (compound 26) (Fig. S6 in Supple-
mentary Materials) (lower range of adsorption coefficient). Pyri-
dine is an electron deficient system in comparison to benzene.
Thus, it can weaken the p-p electron donor acceptor interaction
with SWCNTs (Wang et al., 2010b). On the other hand, 4,6-
diaminopyrimidine contains two amino groups which are strong
electron donating groups and increase the electron density of ar-
omatic ring. They may form stronger p-p interaction as compared
to pyrimidine. The numerical value of X2A descriptor for 4,6-
Diaminopyrimidine and pyrimidine are 0.338 and 0.358 respec-
tively. For all these reasons, the adsorption coefficient value of 2,6-
diaminopyrimidine (logK¼�0.27) and pyrimidine (logK¼�1.56,
lowest active compound present in dataset) are in the lower range.

Thus, the information obtained from the descriptors, MLOGP2,
B04[CeC] and X2A suggested that the organic pollutants can
adhere to the surface of SWCNTs by strong hydrophobic interaction.

3.2. Descriptors related to electrostatic interaction

The descriptor H-051, indicates the number of H atoms attached
to a carbon atom. Such H atoms are very active in nature. They can
easily donate protons and may involve in electrostatic interaction
between SWCNTs and synthetic organic chemicals. The positive
regression coefficient of this descriptor indicates that organic pol-
lutants contain higher number of such hydrogen atoms have good
adsorption property as shown in compounds 30 (Tylosin) and 27
(Sulfamethoxazole). The numerical values of H-051 for com-
pounds 30 and 27 are 5 and 3, respectively, and their corresponding
logK values are 0.43 and 1.43, respectively. On the other hand, in
case of compounds 6 (4,6-Diaminopyrimidine) and 8 (Aniline), the
adsorption coefficient values (logK values are �0.27 and �0.16
respectively) decrease due to the absence of a H atoms.

3.2.1. Mechanistic interpretation of hazardous SOCs containing
higher and lower adsorption coefficient based on electrostatic
interaction

Molecules like Sulfamethoxazole and Tylosin (Fig. S7 in Sup-
plementary Materials)are large in size. Larger molecules adopt
themselves in such a manner that they can easily fit with the cur-
vature surface and make stable complex with CNTs (Zhou et al.,
2001; Richard et al., 2003; Karajanagi et al., 2004; Gurevitch and
Srebnik, 2008). The adsorption energy provides the steric energy
required for the conformational changes of organic molecules (Pan
et al., 2008). Sulfamethoxazole is well adsorbed to the SWCNTs as
its corresponding H-051 value is 3. In case of Tylosin, its descriptor
value for H-051 is 5 but it adsorption coefficient value is moderate
as compared to Sulfamethoxazole, because its MLOGP2 value is
very less (1.604). On the other hand, 4,6-diaminopyrimidine
(compound 6) and aniline (compound 8) show poor adsorption
affinity towards the SWCNTs as discussed above.

3.3. Descriptors related to hydrogen bonding interaction

2D binary fingerprints descriptor, B06[CeO], indicates presence/
absence of CeO bond at topological distance 6. B06[CeO] have a
positive regression coefficient which implies that presence of CeO
fragment at topological distance 6 is beneficial for the adsorption of

organic pollutants to SWCNT, as the CeO fragment is capable of
forming hydrogen bonds with SWCNTs. For example, each of
compounds 17 (Ethinyl estradiol), 16 (Diuron) and 4 (2,4-
Dinitrotoluene)contains single CeO fragment at the topological
distance 6, and their corresponding adsorption coefficient values
are 3.64,2.28 and 2.07, whereas compounds 26 (Pyrimidine), 6
(4,6-Diaminopyrimidine) and 8 (Aniline) have lower adsorption
affinity to the SWCNTs due to the absence of such fragment (Fig. S8
in SupplementaryMaterials). Compounds 17 (Ethinyl estradiol) and
4 (2,4-Dinitrotoluene) contain a C-O fragment at the topological
distance 6, which indicates that they are capable of forming
hydrogen bonds with functionally modified SWCNTs. Therefore,
their adsorption coefficient values are in higher (3.64 and 2.07
respectively) range. On the other hand, both compounds 30
(Tylosin) and 20 (Lyncomycin) contain one aliphatic tertiary amine,
so, they are not capable of forming any hydrogen bond, and thus
adsorption coefficient value is less (briefly discuss in ETA_Shape_Y).

The descriptor, nRNR2 indicates the number of aliphatic tertiary
amines present in a compound. Due to absence of free hydrogen
atoms, tertiary amine does not act as a hydrogen bond donor like
primary or secondary amine. The negative regression coefficient of
this descriptor indicates that higher number of aliphatic tertiary
amine weakens the interaction between synthetic organic chem-
icals and SWCNTs and vice versa. For example, compounds 30
(Tylosin) and 20 (Lyncomycin) have descriptor value 1, and their
corresponding adsorption coefficient is less (0.43 and �0.53
respectively), while compounds with lower descriptor value (no
such group) have higher adsorption coefficient as shown in case of
compounds 17 (Ethinyl estradiol)and 25 (Phenanthrene) (logK
values are 3.64 and 3.67 respectively). If we consider compounds
30(Tylosin) and 20(Lyncomycin), Tylosin is moderately active as
compared to Lyncomycin because the latter contains 5 a-H atom(H-
051 value is 5) and CeO fragment at topological distance 6(B06
[CeO] value is 1).

3.3.1. Other modeled descriptors essential for adsorption of
hazardous SOCs to SWCNTs

The descriptor ETA_Shape_Y, is a first generation extended
topochemical atom index. ETA_Shape_Y(Roy, 2015) can be calcu-
lated by using the following formula:

ETA_Shape_Y¼ (
P

a)Y/
P

a

(
P

a)Y stands for summation of a value (a volume measure) of
the vertices that are joined to three other non-hydrogen vertices in
the connected molecular graph and forming a Y-shaped structural

fragment like tertiary groups ( ). It gives a measure of molec-

ular shape. The positive regression coefficient of this descriptor
indicates that the branching is directly correlated with adsorption
of organic pollutants to SWCNTs. The higher degree of branching
plays a crucial role to enhance the adsorption affinity of synthetic
organic chemicals to SWCNTs as evidenced by the compounds 4
(2,4-Dinitrotoluene)and 16 (Diuron) (corresponding logK values
are 2.07 and 2.28 respectively) (Fig. S9 in Supplementary Materials)
with their corresponding descriptor values are in the higher range
(0.408 and 0.340 respectively). On the other hand, compounds 26
(Pyrimidine) and 9 (Benzene) have the descriptor value of 0 and
thus, their corresponding adsorption coefficient is also low (�1.56
and 0.25 respectively). Between 2,4-Dinitrotoluene (compound 4)
and Diuron (compound 16), the adsorption affinity of Diuron is
higher (though its ETA_Shape _Y value is comparatively less) than
that of 2,4-Dinitrotoluene due to its hydrophobicity (MLOGP2
values are 7 and 5.02 respectively).

Another descriptor, B07[CeS], indicates the presence/absence of
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CeS at topological distance 7. The negative regression coefficient of
this descriptor indicates that presence of CeS fragment at the to-
pological distance 7 in hazardous SOCs is not beneficial for the
adsorption of SWCNTs as evidenced by compounds 20 (Linco-
mycin)and 21 (Methyl Orange)(they contain CeS fragment at the
topological distance 7, and their corresponding adsorption coeffi-
cient values are -0.53 and 0.49 respectively). On the other hand,
compounds 25 (Phenanthrene) and 22 (naphthalene)(Fig. S10 in
Supplementary Materials) do not contain any such fragments, so
their adsorption coefficient value is higher.

The adsorption coefficient value of Lyncomycin (compound
number 20) is low (in spite of high ETA_Shape_Y) as compared to
Methyl orange (-0.53) because of its low hydrophobicity (MLOGP2
is 0.538).

4. Overview and conclusion

In this present study, we have developed PLS QSPR models fora
dataset containing 40 diverse synthetic organic chemicals (herbi-
cides, fungicides, EDCs, PAH, contrasting agent, dyes) having
defined adsorption affinity for SWCNTs, by applying different
strategies. We have validated the models using various internal and
external validation parameters, which showed that the models
were statistically significant. We have also checked the consensus

predictivity of all the individual models (IM1-IM5) using “Intelli-
gent consensus predictor” tool and found that the consensus pre-
dictivity of the test set compounds was better than the individual
models based on MAE based criteria as depicted in Table 1 (winner
model is CM3).

The present study shows how the chemical and structural fea-
tures of diverse hazardous SOCs alter the adsorption property to
SWCNTs. From the insights obtained from five PLS models, we have
concluded that hydrophobic surface of the molecules, molecular
shape and degree of branching, presence of two carbon atoms at
topological distance 4, number of H atom attached with a-C atom,
presence of carbon and oxygen atom at the topological distance 6
can enhance the adsorption of hazardous SOCs to the SWCNTs. On
the other hand, number of tertiary aliphatic amine, presence of
carbon and sulphur at topological distance 7 may be detrimental
for the adsorption of hazardous SOCs to the SWCNTs. The adsorp-
tion mechanism as evidenced from different contributed de-
scriptors is depicted in Fig. 3. Among all the above mentioned
descriptors, MLOGP2 has the strongest impact on the adsorption of
hazardous SOCs onto SWCNTs. The conclusions drawn in the pre-
sent study are also supported by several studies published previ-
ously. Sun et al. (2012) and Wang et al. (2010a) suggested that
hydrophobic interaction is very crucial for adsorption of hazardous
SOCs to SWCNTs. Ding et al. (2016b) reported that the potency of

Fig. 3. Adsorption mechanism of contributed descriptors for the adsorption of synthetic organic chemicals onto SWCNTs/functionalized SWCNTs.
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adsorption is positively correlatedwith hydrophobicity, and it is the
principal reason behind the adsorption capacities of different
hazardous SOCs. Thus, the developed models give information
about the important structural requirements or essential molecular
properties and the requisite features of molecules that are impor-
tant to increase or decrease the adsorption of the hazardous SOCs
onto SWCNTs. The information obtained from the developed
models may be useful for the management of environmental
pollution.
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