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ABSTRACT 

 

The dependency of major industries on Induction Motors cannot be understated. Production of 

these industries depends upon the reliable operation of these motors.  Sudden failure of a machine 

may lead to huge economic loss. There are different sources of failure in an induction motor, 

among them bearing faults and stator inter turn fault are more common. Early detection of these 

faults is the only solution of preventing the machine as well as the process from devastating 

consequences. The stator-inter turn fault has been addressed in this research work which is based 

on an FEM model because among different types of approaches finite element methods(FEM) can 

imitate the physical machine more accurately. COMSOL Multiphysics has been chosen as the 

simulation tool. Simulation of the induction motor is performed with the help of this tool for two 

conditions. One is healthy condition and other is faulty condition. Here inter-turn fault in stator 

winding has only been considered. All the faults are taken as they are in their incipient stages.  The 

stator current signature has taken for analysis. The results show that the slot harmonics have 

significant contribution in characterizing the stator winding inter-turn fault.  
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1. Chapter I 

Introduction 

1.1 Motivation of the Work:  
Induction motors are becoming more popular in industries and in our everyday life for some 

specific advantages. [1] Induction motor is the most cost effective among all conventional 

machines therefore the usage of machine is shifting towards induction machine. Apart from cost 

it is mechanically robust, brush less, smooth speed control, simple & rugged in construction, high 

starting torque etc. Now if we consider induction motor there are many fault occurrences due to 

thermal, electrical, mechanical and environmental reasons. Early detection of fault may lead to 

overcome the costly machinery repair, down time and safety operations. [2] Among many of faults 

stator failure is more dominant which is approximately 36% of induction motor failure. Stator 

winding fault may occur as inter-turn short circuit, coil to coil, phase to phase and phase to ground. 

Early detection of these faults are more important to ignore severe damage of the induction motor. 

             There are no such reliable methods of detection of induction motor faults because of two 

main issues. [3] Firstly, the modeling of the induction motor under fault conditions, in the lack of 

comprehensive field fault database. Secondly the algorithm which address the difficulty in 

distinguishing between degree of faults. 

           In this century field computation method of modeling is developing rapidly as computer 

usage in real life. Finite element method of computation is becoming more popular as it’s more 
convergent to solution. Here we tried to characterize the behavior of harmonics of stator current 

(Induction motor) with inter-turn fault condition. [4] We used COMSOL Multiphysics (which is 

FEM tool) to simulate this fault. We modeled induction motor in 2-D solid system with externally 

coupled circuit. 
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1.2 Objectives:  
It is known that induction motors are becoming more popular in industries and in our everyday life 

for some specific advantages. Induction motor is the most cost effective among all conventional 

machines therefore the usage of machine is shifting towards induction machine. Apart from cost 

it is mechanically robust, brush less, smooth speed control, simple & rugged in construction, high 

starting torque etc. Now if we consider induction motor there are many fault occurrences due to 

thermal, electrical, mechanical and environmental reasons. Early detection of fault may lead to 

overcome the costly machinery repair, down time and safety operations. Among many of faults 

stator failure is more frequent which is approximately 36% of induction motor failure. Stator 

winding fault may occur as inter-turn short circuit, coil to coil, phase to phase and phase to ground. 

Early detection of these faults are more important to ignore severe damage of the induction motor. 

This fault can be analysed by many tools. But modeling of the fault condition is more difficult or 

complicated. That is more generalized to model these conditions if we modeled by FEM.  

Here we focused on Finite Element Method of computation. The value of time dependent variable 

in different point of geometry can be solve by FEM. Usually Time dependent problems are 

expressed in terms of Partial Differential Equations (PDEs). There are many methods to solve 

PDEs but FEM is more conversed to solution then other method. Therefore, we have chosen a 

FEM base Tool (COMSOL Multiphysics) to simulate the induction motor for particular analysis. 

Although these tools are not developed so well to reliable enough. More have to develop (i.e. large 

time consuming and result might not be conversed to solution). Here we discuss the computation 

process of PDEs by FEM. Then we model an induction motor in COMSOL Multiphysics. [5] The 

specification of induction motor model is taken from basic design of induction motor. This model 

may not be implemented correctly. So we verified some characteristics and standard values. Then 

we reduced the turn of induction motor of one phase and observe the stator current harmonics. The 

harmonics in induction motor is generated by mainly stator and rotor slot if there is no manufacture 

defect. Other harmonics might be eccentricity harmonics, bearing fault harmonics, stator short 

circuit fault harmonics. In this thesis we analysis the harmonics of short circuit fault of turn. We 

reduced the turns for six verities and observed the results.  

         [4] Simulation by these tools need more determinant, proper planed, good computer system 

and more time consuming. Because of these reasons we have done single fault with 2-D modeling. 

[5] The induction motor specifications are taken from a machine design book by A.K. Sawhney 

and model is verified satisfactory. 

We got interesting results of induction motor stator current with faulted condition. We have 

analysed this faulted current in frequency spectrum. 

In short our motive is to go through turn to turn fault and analysis with FEM modeling and the 

efficient detection process implementation 
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1.3 Literature Review: 
Life of the induction motor can be extended by repairing before permanent damage. Most of the 

failure come from faults. [2] This faults occur due to some stresses namely thermal stresses, 

electrical stresses, mechanical stresses and environmental stresses. These stresses can be analysed 

in terms of different parts of the IM (i.e. stator stresses and rotor stresses). Similarly, the failures 

of the motor can be divided in terms of motor parts (i.e. stator failure, rotor failure). The failures 

of stators are mainly stator winding failure. i.e.  turn to turn, coil to coil, open circuit, phase to 

phase, coil to ground and any combination of this. And the rotors failures are shafting, bearing, 

lamination, squirrel cage, ventilation system and any combination of the above. 

[6] A review of Induction motor signature analysis as a medium for fault detection work is done. 

Where it’s discussed the four faults, faults effect on stator current spectrum and fault detection 

techniques. The four faults are 

1. Air Gap Eccentricity 

2. Brocken rotor bars 

3. Bearing Damage 

4. Load effects 

The detection Techniques are 

1. Classical Fast Fourier Transform (FFT)  

2. Instantaneous power FFT 

3. Bi-spectrum 

4. High resolution spectral analysis 

5. Wavelet analysis 

6. Techniques to be Associated to Motor Current Signature Analysis (MCSA) 

A. Park’s Vector Approach 

B. Finite Element Method 

[7] The Current Signature Analysis of Induction Motor Mechanical Faults by Wavelet Packet 

Decomposition (WPD) is the next step of progression of fault analysis. Here two mechanical fault 

are presented and experimental verification is done. 

1. Bar breakage 

2. Air Gap eccentricity 

[3] Its presented the Modeling and Characterization of Induction Motor Internal Faults Using 

Finite-Element and Discrete Wavelet Transforms. Here presented two types of fault with 

sinusoidal and non-sinusoidal voltage source. They did not mention the user interface software of 

FEM. And experimental application is not done. Inter turn short circuit model is not well explained. 

1. Inter turn short circuit 

2. Bar breakage 
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[8] Electrical Fault Diagnosis for an Induction Motor Using an Electromechanical FE Model is the 

paper where it focused on vibration pattern for different fault conditions to diagnose the fault. 

Their FEM modeling is done with COMSOL Multiphisics software in 3D system. Also in this 

paper they did not done with experimental verification. They compared faulty conditions with 

healthy conditions. The faults presented. 

1. Brocken Rotor Bar 

2. Turn to turn 

Now we are investigating the stator current for turn to turn fault with FEM implementation which 

are continued with next chapter. 

1.4 Outline of the Thesis:  
There is seven chapters in this thesis. The chapter name of ‘introduction’ which is studied already. 

Then we read the chapter of ‘Finite Element Method’ where we study the background of FEM, 

basic concept of FEM and solution of different equation by FEM. In chapter of Faults in IM we 

see the possibility of faults. Next chapter is ‘FEM Modeling of SQIM with fault’ where we read 

the model specifications, modeling of geometry, assignment of materials, and assignment of 

physics or equations and FEM mesh generation. Then we come to the chapter of ‘Result and 
Discussion’ where we see the validation of model, Individual result of each sample, method of 
stator current analysis and observations. Finally, we come to ‘conclusion and future work’ and 

‘reference’. 
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2. Chapter II 

Finite Element Method 
2.1 Background of Finite Element Method: 
There are many theories with partial differential equations (PDE) in physics, mathematics and 

engineering. Solutions of these equations are more difficult by analytical method in large 

geometry. So there are some numerical methods are developed to solve these equations. 

1. Finite Difference Method (FDM) 

2. the finite volume method (FVM) 

3. Boundary Element Method (BEM) 

4. Finite Element method (FEM) or Finite Method Analysis (FEA) 

Among these methods Finite Element Method (FEM) is more popular or well developed and 

simpler. The concept of this method is to consider a trial function alternative to main function and 

approximates the solution near to exact value. Many companies are working in this method to 

develop computer based codes to solve the geometry based problems. Here I have chosen the 

COMSOL software to solve the geometry base problems of machines like field (flux) distribution, 

eddy current distribution, temperature and torque distribution and so on. 

2.2 The Finite Difference Method (FDM): 
In the field of structural analysis [9], one in every of the earliest procedures for the numerical 

solutions of the governing differential equations of stressed continuous solid bodies was the finite 

difference technique. Within the finite difference approximation of differential equations, the 

derivatives within the equations are replaced by difference quotients of the values of the dependent 

variables at separate mesh points of the domain. Once the equations are replaced by difference 

quotients of the values of the dependent variables at separate mesh points of the domain, once 

imposing the suitable boundary conditions on the structure, the separate equations are solved 

getting the values of the variables at mesh points. The technique has several disadvantages, as well 

as inaccuracies of the derivatives of the approximated solution, difficulties in imposing boundary 

conditions on incarnate boundaries, difficulties in accurately representing complicated geometric 

domains, and also the inability to utilize non-uniform and non-rectangular meshes. 

2.3 The Finite Volume Method (FVM): 
The finite volume method [10] is a numerical method for solving partial differential equations that 

calculates the values of the conserved variables averaged across a volume. One advantage of the 

finite volume methodology over the finite difference method is that it doesn't need a structured 

mesh, though a structured mesh may be used. The finite volume methodology will solve problems 

on irregular geometries too. Moreover, yet one more advantage of the finite volume methodology 

over the finite element method is that it will conserve the variables on a rough mesh simply. This 

is an important characteristic e.g. for fluid problems. 

However, the influence of finite differential method and finite volume method in solid physics is 

rather limited today, so that boundary element method mainly competes with finite element 

method in a common field, where both of these numerical methods have specific advantages. 
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2.4 The Boundary Element method (BEM): 
 

The boundary element methodology [11] developed additional recently than FEM, transforms the 

governing differential equations and boundary conditions into integral equations that are born-

again to contain surface integrals. As a result of solely surface integrals remain, surface parts are 

wont to perform the desired integrations. This can be the most advantage of BEM over FEM that 

need three-dimensional element throughout the volumetric domain. Boundary elements for a 

general 3 dimensional solid are quadrilateral or triangular surface elements covering the area of 

the element. For two-dimensional and axisymmetric issues, solely line parts tracing the define of  

The element is necessary. 

Although BEM offers some modeling blessings over FEM, the latter will analyse additional forms 

of engineering applications and is way more firmly entrenched in today’s computer-aided-design 

(CAD) surroundings. Development of engineering applications of BEM is continuing but, and 

additional are seen of the tactic within the future. 

 

2.5 Finite Element Method (FEM): 

2.5.1 General: 
The work on Finite Element Method is started 80 years back. The work is mainly started in Russia 

by Boris Galerkin. He was a Soviet mathematician and an engineer. He took a trial function to 

approximate the solution of differential equation near exact solution. Idea is chosen some function 

whose combination would be chose to the wright answer. He has taken two or three trial functions. 

Latter on the German American Mathematician Richard Courant introduced to choose the 

simplest functions to approximate the solutions. 

Same idea is developed in china by mathematician Feng Kang. 

Latter on many engineers and mathematicians works together to generate the codes to solve the 

differential equations by using FEM and it came to success.  

2.5.2 Basic Concept: 
In the finite element method of analysis, a complex region defining a continuum is discretized into 

simple geometric shapes called finite elements. The material properties and the governing 

relationships are considered over these elements and expressed in terms of unknown values at 

elements corners. An assembly process duly considering the loading and constraints results in a 

set of equations. Solution of these equations gives the approximate behavior of the continuum. 

Let’s try to find out the area of a circle of radius R by dividing its geometry in N number of triangle 

elements as Fig 2.1. 
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Fig.2.1: Circle with elements 

Here, 

 𝜃 = 2𝜋𝑁  
2.1 

Considering any one triangle from Figure above 

Base of Triangle 

 𝑏 = 2𝑅 sin 𝜃2 
2.2 

And height of the triangle 

 ℎ = 𝑅 cos 𝜃2 
2.3 

Therefore, area of this triangle  𝐴𝑒 = 12𝑏ℎ 

By putting the value of b and h from equation (2.2) and (2.3) 𝐴𝑒 = 𝑅 sin 𝜃2  𝑅 cos 𝜃2 

= 𝑅2 sin 𝜃2 cos 𝜃2 

= 12𝑅2 sin 𝜃  
Now putting the value of 𝜃 from equation (2.1) 

 𝐴𝑒 = 0.5𝑅2 sin 2𝜋𝑁  
2.4 

 

Now, 
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Total Area of all the triangles  𝐴 = ∑ 𝐴𝑒𝑁𝑒=1   𝐴 = 𝑁𝐴𝑒  

Putting value of Ae from equation (2.4) we get, 

 𝐴 = 0.5𝑁𝑅2 sin 2𝜋𝑁  
2.5 

Let 2𝑁 = 𝑥  

Therefore, we can rewrite the Eq. (2.5) as 

 𝐴 = 𝑅2 sin 𝜋𝑥𝑥  
2.6 

If we take infinite numbers of elements, then N→∞ 

So x→0 as x = 
2𝑁 

For x→0 𝐴 = lim𝑥→0 𝑅2 sin𝜋𝑥𝑥   

By applying L’hospital’s rule we get, 𝐴 = lim𝑥→0 𝜋𝑅2 cos 𝜋𝑥  

 𝐴 = 𝜋𝑅2 2.7 

 

 

From above we can conclude that: 

1. We can divide the geometry with finite number of known elements to solve the problem. 

In Fig. 2.2 one arbitrary geometry is presented with triangle elements. 
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Fig. 2.2: Arbitrary geometry with elements 

 

 

2. If we increase the number of elements then we get the more accurate the result or other 

way we can say the error will be less. 

 

 

 

 

 

Note: Element is not bounded as triangle. There are different types of element which is 

shown in Fig 2.3. i.e. 

a. 1D element 

b. 2D elements 

c. 3D elements 

 

Fig.2.3: Elements in 1D, 2D and 3D 
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And The FEM is not about to find the area; it more about solves the problems related to 

i. Mechanical stress 

ii. Mechanical vibration 

iii. Fatigue 

iv. Motion 

v. Heat transfer 

vi. Fluid flow 

vii. Electrostatics 

viii. Electromagnetics 

ix. Plastic injection moldings 

From these, we are interested in electro mechanical effects which is belongs to Electromagnetics. 

 

2.5.3 Computation process of FEM: 

As an application of FEM to electrostatic problems, let us apply to solve Laplace’s equation, ∇2V 

= 0. Here four steps of FEM are there for solving an equation [2]. 

1. Finite Element Discretization 

2. Element Governing Equation 

3. Assembling of All Elements 

4. Solving the resulting Equation 

As mentioned above four steps to solve an equation, we apply these four steps to solve these 

Laplace’s equation ∇2V = 0. 

1. Finite element Discretization: 

To find the potential distribution V (x, y) for the two dimensional solution region Fig. 2.4(a), we 

divide the region into a number of finite elements as illustrated in Fig. 2.4(b). In Fig. 2.4(b), the 

solution region is subdivided into nine non-overlapping finite elements; elements 6, 8, and 9 are 

four-node quadrilaterals, while other elements are three node triangles. In practical situation, 

however, it is preferred, for ease of computation, to have elements of the same type throughout the 

region. That is, in Fig. 2.4(b), we could have split each quadrilateral into two triangles so that we 

have 12 triangular elements altogether. [9] The subdivision of the solution region into elements is 

usually done by hand, but in situation where a large number of elements is required, automatic 

schemes are used. 
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(a) 

 

(b) 

Fig. 2.4: (a) The solution region; (b) its finite element discretization 

We seek an approximation for the potential Ve within an element e and then interrelate the potential 

distribution in various elements such that the potential is continuous across inter-element 

boundaries [9]. The approximation solution for the whole region is  

 V(x, y) ≅ ∑ 𝑉𝑒(𝑥, 𝑦)𝑁
𝑒=1  

 

2.8 

Where N is the number of triangular elements into which the solution region is divided. The most 

common form of approximation for 𝑉𝑒  within an element is polynomial approximation, namely, 

 𝑉𝑒(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 2.9 

 

For a triangular element and  

 𝑉𝑒(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 2.10 
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For a quadrilateral element. The constants a, b, c and d are to be determined [9]. The potential 𝑉𝑒 

in general is nonzero within element e but zero outside e. In view of the fact that quadrilateral 

elements do not comfort to curved boundary as easily as triangular elements, we prefer to use 

triangular elements. Notice that our assumption of linear variation of potential within the triangular 

element as in Eq. (2.9) is the same as assuming that the electric field is uniform within the element 

[2], i.e., 

 𝐸𝑒 = −∇𝑉𝑒 = −(𝑏𝑎𝑥 + 𝑐𝑎𝑦) 2.11 

2. Element Governing Equations: 

Considering a typical triangular element shown in Fig. 2.3. The potential𝑉𝑒1, 𝑉𝑒2 and 𝑉𝑒3 and 

nodes 1, 2 and 3, respectively, are obtained using Eq. (2.9), [2], i.e., 

 [𝑉𝑒1𝑉𝑒2𝑉𝑒3]=[1 𝑥1 𝑦11 𝑥2 𝑦21 𝑥3 𝑦3] [𝑎𝑏𝑐]  

2.12 

 

The coefficients a, b and c are determined from Eq. (2.12), as 

 [𝑎𝑏𝑐]=[1 𝑥1 𝑦11 𝑥2 𝑦21 𝑥3 𝑦3]−1 [𝑉𝑒1𝑉𝑒2𝑉𝑒3]  

2.13 

 

Substituting this into Eq. (2.9) gives 

 𝑉𝑒 = [1 x y]  12𝐴 [(𝑥2𝑦3 − 𝑥3𝑦2) (𝑥3𝑦1 − 𝑥1𝑦3) (𝑥1𝑦2 − 𝑥2𝑦1)(𝑦2 − 𝑦3) (𝑦3 − 𝑦1) (𝑦1 − 𝑦2)(𝑥3 − 𝑥2) (𝑥1 − 𝑥3) (𝑥2 − 𝑥1) ] [𝑉𝑒1𝑉𝑒2𝑉𝑒3] 

 

2.14 

 

Or 

 𝑉𝑒 = ∑𝛼𝑖(𝑥, 𝑦)𝑉𝑒𝑖3
𝑖=1  

2.15 

Where 

 𝛼1 = 12𝐴 [(𝑥2𝑦3 − 𝑥3𝑦2) + (𝑦2 − 𝑦3)𝑥 + (𝑥3 − 𝑥2)𝑦] 2.16 

 

 𝛼1 = 12𝐴 [(𝑥3𝑦1 − 𝑥1𝑦3) + (𝑦3 − 𝑦1)𝑥 + (𝑥1 − 𝑥3)𝑦] 2.17 
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 𝛼1 = 12𝐴 [(𝑥1𝑦2 − 𝑥2𝑦1) + (𝑦1 − 𝑦2)𝑥 + (𝑥2 − 𝑥1)𝑦] 2.18 

 

And A is the area of the element e, i.e., 

2A=|1 𝑥1 𝑦11 𝑥2 𝑦21 𝑥3 𝑦3| 
=(𝑥1𝑦2 − 𝑥2𝑦1)+(𝑥3𝑦1 − 𝑥1𝑦3)+(𝑥2𝑦3 − 𝑥3𝑦2) 
Or 

 A=
12[(𝑥2 − 𝑥1) (𝑦3 − 𝑦1)-(𝑥3 − 𝑥1) (𝑦2 − 𝑦1)] 2.19 

The value of A is positive if the nodes are numbered counterclockwise (starting from any node) as 

shown by the arrow in Fig. 2.5. Note that Eq. (2.15) gives the potential 

Fig. 2.5: Typical triangular element; local node numbering 1-2-3 must proceed counter-clockwise 

as indicated by the arrow 

 

At any point (x, y) within the element provided that the potentials at the vertices are known. [9] 

This is unlike finite difference analysis, where the potential is known at the grid points only. Also 

note that 𝛼𝑖  are linear interpolation functions. They are called the element shape functions and 

they have the following properties: 

 𝛼𝑖 =  {1,           𝑖 = 𝑗0,         𝑖 ≠ 𝑗    

2.20 
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 ∑ 𝛼𝑖3𝑖=1 (𝑥, 𝑦)=1 2.21 

 

The shape functions𝛼1, 𝛼2 and 𝛼3 are illustrated in Fig. 2.6. 

The functional corresponding to Laplace’s equation, ∇2𝑉=0, is given by 

 𝑊𝑒=
12 ∫ 𝜖|𝐸𝑒|2𝑑𝑆 =

12 ∫ 𝜖|∇𝑉|2𝑑𝑆 
2.22 

 

 

Fig. 2.6: The shape functions𝛼1, 𝛼2 and 𝛼3 for triangular element. 

(Physically, the functional We is the energy per unit length associated with the element e.) From 

Eq. (2.15) 

 ∇𝑉𝑒= ∑ 𝑉𝑒𝑖∇α𝑖3𝑖=1  2.23 

 

Substituting Equation (2.22) into Equation (2.23) gives 

 We = 
12 ∑ ∑ 𝜖3𝑗=13𝑖=1 𝑉𝑒𝑖[∫ ∇𝛼𝑖∇𝛼𝑗𝑑𝑆]𝑉𝑒𝑗 2.24 

If we define the term in brackets as  

 𝐶𝑖𝑗(𝑒) = ∫∇𝛼𝑖∇𝛼𝑗𝑑𝑆 2.25 

We may write Equation 2.20 in matrix form as 

 
We = 

12ϵ[𝑉𝑒]𝑡[𝐶(𝑒)][𝑉𝑒] 2.26 
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Where superscript t means transpose of the matrix 

 [𝑉𝑒] = [𝑉𝑒1𝑉𝑒2𝑉𝑒3]   2.27 

 

And  

 [𝐶(𝑒)] = [𝐶11(𝑒) 𝐶12(𝑒) 𝐶13(𝑒)𝐶21(𝑒) 𝐶22(𝑒) 𝐶23(𝑒)𝐶31(𝑒) 𝐶32(𝑒) 𝐶33(𝑒)] 

 

 

2.28 

 

The matrix [𝐶(𝑒)] is called the element coefficient matrix or stiffness matrix in structural analysis. 

The element 𝐶𝑖𝑗(𝑒) of the coefficient matrix may be regarded as the coupling between nodes I and j; 

its value is obtained from equation (2.16), (2.17), (2.18) and (2.25) [9] 

For example, 𝐶12(𝑒)
 = ∫∇𝛼1∇𝛼2𝑑𝑆 

= 
14𝐴2[(y2 – y3) (y3 - y1) +(x3 – x2) (x1 – x3)]∫𝑑𝑆 

 = 
14𝐴[(y2 – y3)(y3 - y1)+(x3 – x2)(x1 – x3)] 2.29 

Similarly, 

 𝐶13(𝑒)
  = 

14𝐴[(y2 – y3)(y1 – y2)+(x3 – x2)(x2 – x1)] 2.30 

 

 𝐶23(𝑒)
  = 

14𝐴[(y3 – y1)(y1 – y2)+(x1 – x3)(x2 – x1)] 2.31 

 

 𝐶11(𝑒)
 = 

14𝐴[(𝑦2 − 𝑦3)2 + (𝑥3 – 𝑥2)2] 2.32 

 

 𝐶22(𝑒)
 = 

14𝐴[(𝑦3 − 𝑦1)2 + (𝑥1 − 𝑥3)2] 2.33 
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 𝐶33(𝑒)
 = 

14𝐴[(𝑦1 − 𝑦2)2 + (𝑥2 – 𝑥1)2] 2.34 

   

 Also 

 𝐶13(𝑒)
 = 𝐶31(𝑒)

 , 𝐶12(𝑒)
 = 𝐶21(𝑒)

 , 𝐶23(𝑒)
 = 𝐶32(𝑒)

 2.35 

 

3. Assembling of All Elements  : 

Having considered a typical element, the next step is to assemble all such elements in the solution 

region. The energy associated with the assemblage of elements is [9] 

 W = ∑ 𝑊𝑒𝑁𝑒=1  = 
12 𝜖[𝑉]𝑡[𝐶][𝑉] 2.36 

Where  

 

[V] = [  
  𝑉1𝑉2𝑉3⋮𝑉𝑛]  

  
 

2.37 

 

Where, n is the number of nodes, Nis the number of elements, and [c] is called the overall or global 

coefficient matrix, which is the assemblage of individual element coefficient matrices. Notice that 

to obtain equation (2.36), we have assumed that the whole solution region is homogeneous. So that 

ϵ is constant. For an inhomogeneous solution region such as shown in Fig. 2.7, for example, the 

region is discretized such that each finite element is homogeneous. In this case, equation (2.22) 

still holds, but equation (2.36) does not apply since ϵ (=𝜖0𝜖𝑟) or simply 𝜖𝑟 varies from element to 

element [9]. To apply equation (2.26), we may replace ϵ by 𝜖0  and multiply the integrand in 

equation (2.25) by𝜖𝑟. 

 

Fig. 2.7: Discretization of an in homogeneous solution region. 
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The process by which individual element coefficient matrices are assembled to obtain the global 

coefficient matrix is best illustrated with an example [9]. Consider the finite element mesh 

consisting of three finite elements as shown in Fig. 2.8. Observe  

 

Fig. 2.8: Assembly of three elements; i-j-k corresponds to local numbering (1-2-3) of the element 

in Fig. 2.5. 

The numbering of the mesh. The numbering of nodes 1, 2, 3, 4 and 5 is called global numbering. 

The numbering i-j-k is called local numbering, and it corresponds with 1-2-3 of the element in Fig. 

2.5. For example, for element 3 in Fig. 2.8, the global numbering 3-5-4 corresponds with local 

numbering 1-2-3 of the element in Fig.2.5. (Note that the local numbering must be in 

counterclockwise sequence starting from any node of the element.) For element 3, we could choose 

4-3-5 instead of 3-5-4 to correspond with 1-2-3 of the element in Fig. 2.5. Thus the numbering in 

Fig. 2.8 is not unique [2]. But whichever numbering is used, the global coefficient matrix is 

expected to have the form 

 

[C] = [  
  𝐶11 𝐶12 𝐶13 𝐶14 𝐶15𝐶21 𝐶22 𝐶23 𝐶24 𝐶25𝐶31𝐶41𝐶51

𝐶32𝐶42𝐶52
𝐶33 𝐶34 𝐶35𝐶43 𝐶44 𝐶45𝐶53 𝐶54 𝐶55]  

  
 

 

2.38 

 

Which is 5×5 matrix since five nodes (n=5) are involved. Again, Cij is the coupling between nodes 

I and j. we obtain Cij by using the fact that the potential distribution must be continuous across 

inter-element boundaries. The contribution to the I, j position in [C] comes from all elements 

containing nodes I and j. for example, in Fig. 2.8, element 1 and 2 have node 1 in common [9]; 

hence 

 𝐶11 = 𝐶11(1) + 𝐶11(2)
 2.39 

Node 2 belong to element 1 only; hence 

 𝐶22=𝐶33(1)
 2.40 
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Node 4 belongs to elements 1, 2 and 3; consequently 

 𝐶44=𝐶22(1) + 𝐶33(2) + 𝐶33(3)
 2.41 

Nodes 1 and 4 belongs simultaneously to element 1 and 2; hence 

 𝐶14=𝐶41= 𝐶12(1) + 𝐶13(2)
 2.42 

 

Since there is no coupling (or direct link) between nodes 2 and 3, 

 𝐶23=𝐶32= 0 2.43 

 

Continuing in this manner, we obtain all the terms in the global coefficient matrix by inspection 

of Fig. 2.8 as 

 

[C]=

[  
   
 𝐶11(1) + 𝐶11(2) 𝐶13(1) 𝐶12(2) 𝐶12(1) + 𝐶13(2) 0𝐶31(1) 𝐶33(1) 0 𝐶32(1) 0𝐶21(2)𝐶21(1) + 𝐶31(2)0

0𝐶23(1)0
𝐶22(2) + 𝐶11(3) 𝐶23(2) + 𝐶13(3) 𝐶12(3)𝐶32(2) + 𝐶31(3) 𝐶22(1) + 𝐶33(2) + 𝐶33(3) 𝐶32(3)𝐶21(3) 𝐶23(3) 𝐶22(3) ]  

   
 
 

 

 

2.44 

 

Note that element coefficient matrices overlap at nodes shared by elements and that there are 27 

term (9 for each of the 3 element) in the global coefficient matrix [C] [9]. Also note the following 

properties of the matrix [C]: 

(1) It is symmetric (Cij = Cji) just as the element coefficient matrix [9]. 

(2) Since Cij = 0 if no coupling exists between nodes I and j, it is expected that for a large 

number of elements [C] becomes sparse. Matrix [C] is also banded if the nodes are carefully 

numbered [9]. It can be shown using Eq. (2.29 to 2.34) that ∑ 𝐶𝑖𝑗(𝑒)3𝑖=1  = 0 = ∑ 𝐶𝑖𝑗(𝑒)3𝑖=1  

(3) It is singular. Although this is not so obvious, it can be shown using the element coefficient 

matrix of Eq. (2.28) [2]. 

4. Solving the resulting Equations: 

Using the concepts developed in chapter 4, it can be shown that Laplace’s equation is satisfied 
when the total energy in the solution region is minimum. Thus we require that the partial 

derivatives of W with respect to each nodal value of the potential be Zero, [9] i.e., 
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𝜕𝑊𝜕𝑉1 = 
𝜕𝑊𝜕𝑉2= ⋯ = 

𝜕𝑊𝜕𝑉𝑛 = 0 

Or 

 𝜕𝑊𝜕𝑉1 = 0, k = 1, 2, ….., n 
2.45 

For example, to get  
𝜕𝑊𝜕𝑉1 = 0 for the finite element mesh of Fig. 2.7, we substitute Equation (2.38) 

into equation (2.36) and take the partial derivative of W with respect to V1. We obtain 

0 = 
𝜕𝑊𝜕𝑉1 = 2𝑉1𝐶11+𝑉2𝐶12+𝑉3𝐶13+𝑉4𝐶14+𝑉5𝐶15+𝑉2𝐶21+𝑉3𝐶31+𝑉4𝐶41+𝑉5𝐶51 

Or 

 0 = 𝑉1𝐶11+𝑉2𝐶12+𝑉3𝐶13+ 𝑉4𝐶14+𝑉5𝐶15 2.46 

 

In general, 
𝜕𝑊𝜕𝑉𝑘 = 0 leads to 

 0 = ∑ 𝑉𝑖𝐶𝑖𝑘𝑛𝑖=1  2.47 

 

Where n is the number of nodes in the mesh. By writing equation (2.47) for all nodes k = 1, 2, …., 
n, we obtain a set of simultaneous equations from which the solution of [V]t= [V1, V2,….., Vn] can 

be found. This can be done in two ways similar to those uses in solving finite difference equation 

[9, 12]. 

(a) Iteration Method: suppose node 1 in Fig. 2.7, for example, is a free node. From Eq. (2.46), 

 𝑉1 = − 1𝐶11 ∑𝑉𝑖𝐶1𝑖5
𝑖=2  

2.48 

 

Thus, in general, at node k in a mesh with n nodes 

 𝑉𝑘 = − 1𝐶𝑘𝑘 ∑ 𝑉𝑖𝐶𝑘𝑖𝑛
𝑖=1,𝑖≠𝑘  

2.49 

Where node k is a free node. Since Cik=0 if node k is not directly connected to node i, only nodes 

that are directly linked to node k contribute to Vk in Eq. (2.49). Equation (2.49) can be applied 

iteratively to all the free nodes. The iteration process begins by setting the potentials of fixed nodes 

(where the potentials are prescribed or known) to their prescribed value and the potential at the 

free nodes (where the potential are unknown) equal to zero or to the average potential 
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 𝑉𝑎𝑣𝑔 = 12 (𝑉𝑚𝑖𝑛 + 𝑉𝑚𝑎𝑥) 
2.50 

Where Vmin and Vmax are the minimum and maximum values of V at the fixed nodes. With these 

initial values, the potentials at b the free nodes are calculated using equation (2.49). At the end of 

the first iteration, when the new values have been calculated for all the free nodes, they become 

the old values for the second iteration. The procedure is repeated until the change between 

subsequent iterations is negligible enough. 

(b) Band Matrix Method: 

If all free nodes are numbered first and the fixed nodes last, equation (2.36) can be written such 

that 

 𝑊 = 12 ∈ [𝑉𝑓 𝑉𝑝] [𝐶𝑓𝑓 𝐶𝑓𝑝𝐶𝑝𝑓 𝐶𝑝𝑝] [𝑉𝑓𝑉𝑝] 2.51 

 

Where subscripts f and p, respectively, refer to nodes with free and fixed (or prescribed) potentials. 

Since Vp is constant (it consist of known, fixed values), we only differentiate with respect to Vf so 

that applying equation (2.45) to (2.51) yields 

 [𝐶𝑓𝑓 𝐶𝑓𝑝] [𝑉𝑓𝑉𝑝] = 0 

 

2.52 

 

Or 

 [𝐶𝑓𝑓][𝑉𝑓] = −[𝐶𝑓𝑝][𝑉𝑓] 2.53 

 

This equation can be written as 

 [A][V] = [B] 2.54 

 

Or 

 [𝑉] = [𝐴]−1[𝐵] 2.55 

 

                                    (2.39b) 

Where [𝑉] = [𝑉𝑓] , [𝐴] = [𝐶𝑓𝑓] , [𝐵] = −[𝐶𝑓𝑝][𝑉𝑝] . Since [A] is, in general, nonsingular, the 

potential at the free nodes can be found using equation (2.54, 2.55). We can solve for [V] in 
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equation (2.54) using Gaussian elimination technique. We can also solve for [V] in equation (6.55) 

using matrix inversion if the size of the matrix to be inverted is not large. 

It is sometimes necessary to impose Neumann condition (
𝜕𝑉𝜕𝑛 = 0) as a boundary condition or at 

the line of symmetry when we take advantage of the symmetry of the problem. Suppose, for 

concreteness, that a solution region is symmetric along the y-axis as in Fig. 2.9. We impose 

condition ( 
𝜕𝑉𝜕𝑥 = 0) along the y-axis by making 

 𝑉1 = 𝑉2,  𝑉4 = 𝑉5, 𝑉7 = 𝑉8 2.56 

Figure 2.9: A solution region that is symmetric along the y-axis 

Notice that as from equation (2.22) onward, the solution has been restricted to a two- dimensional 

problem involving Laplace’s equation, ∇2
V = 0. 

2.6 Software introduction to implement the FEM: 

Many Companies develops software to implement the FEM in different geometry. ANSYS, 

COMSOL Multiphysiscs, BAQUS and ALGOR are the example of software tool which can use 

to study the electromagnetics.  As per suggestion from teachers and seniors the COMSOL is the 

most useful and simpler software tool with more nodes/elements.   So I have started to learn the 

COMSOL and I am able to modeling and result analysis. I have done with modeling of Rotating 

Machinery and induction motor which are given following chapters. One more basic software tool 

is there name as FEMM. 
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3. Chapter III 

Faults in Induction Motor 

 

3.1 Induction Motor:  
Alternating current, or AC motors provide much of the motive force for industry. AC motors are 

available a spread of designs and power ratings. AC motors are sometimes designed to be used 

with fixed input voltage signals. These motors are also classed as low, medium and high voltage. 

Low voltage motors sometimes consume between regarding 240V and 600V. Medium voltage 

motors consume voltages from regarding 400V up to about 15kV. [1, 5, 12] High voltage motors 

consume voltage over 15kV. AC motors employed in industrial applications are sometimes 

synchronous motors having a beginning winding and a running winding. [1, 5, 12] The beginning 

winding includes a starting condenser or different electrical phenomenon part nonparallel with the 

winding to shift the part of the voltage and therefore the current applied to the starting winding 

with relevance the voltage and the current applied to the running winding. AC motors are employed 

in a spread of applications, together with vehicle applications like traction management. Traction 

motors are giant electrical motors having the standard motor housing, mechanical device and rotor 

assembly. Shaft is connected to the rotor that extends through the housing. Fixed connected to a 

pinion finish of the shaft may be a motor pinion that successively engages a bull or shaft gear for 

rotating the axle. The motors employed in vehicle applications are sometimes controlled specified 

the motor section currents are curving. These motors are usually static magnet motors designed to 

possess a sinusoidal-shaped back magnetism field wave form. Associate induction motor is 

employed as a motor. [1, 5, 12] The terminal voltage of the induction motor includes a transient 

voltage drawn by the merchandise of the differentiation term of a primary current and therefore 

the discharge inductance of the induction motor. A good style of induction motors is obtainable 

and are presently in use throughout a variety of business applications. Induction motors sometimes 

embody a rotor that rotates in response to a rotating magnetic flux generated by the electrical 

energy in a very stator coil related to the rotor. A motion speed differential between the rotor and 

therefore the rotating flux induces a current through a rotor cage. A rotor cage consists of one 

aluminum casting having many semi conductive bars that run axially through the rotor and are 

joined at every finish by 2 conductive end rings. Current iatrogenic within the bars generates a 

magnetic flux that opposes that of the mechanical device, therefore providing the rotor with 

movement torsion. [1, 5, 12] The mechanical device and also the rotor could also be automatically 

and electrically organized in a very type of manners relying upon variety of things, including: the 

applying, the ability obtainable to drive the motor, then forth. 

The induction motors are divided once more into an inner rotor sort induction motor and an outer 

rotor type induction motor in accordance with relative positions of rotors and stators. The inner 

rotor sort induction motor is mostly applied to a washer or one thing like that, and includes the 

rotor within the stator coil. The flexibility to accurately verify the speed of a rotating rotor with 
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relation to a stationary stator coil inside an induction motor is vitally vital to the everyday 

operations of induction motors. 

A flat induction motor could be a motor that includes a disk-shaped mechanical device and rotor 

placed coaxially around a rod with their surfaces opposing one another. Normally, each the stator 

core and the rotor core have a spiral winding structure made of a magnetic steel strip. A plurality 

of open slots is shaped within the winding structures from the border toward the rod at equal 

intervals, departure a part of the magnetic steel strips.  

[1,5,12] Single part induction motors are commonly given a cage kind rotor and a spiraling stator 

coil having 2 windings, one being for the running coil and therefore the different for the beginning 

coil.  Single phase induction motors are wide used, for their simplicity, strength and high 

performance. [1,5,12] They’re employed in social unit appliances, like refrigerators, freezers, air 
conditioners, tight compressors, laundry machines, pumps, fans, moreover as in some industrial 

applications  

[1, 5, 12] Linear induction motors are wide employed in variety of industries and gift bound 

benefits over rotary motors, notably wherever propulsion on a preset path or guide or guide way 

is required. 

3.2 Type of faults: 
[2] We have already seen in literature review that the fault may occur in induction motor due to 

thermal, electrical, mechanical and environmental stresses. There are four major faults which may 

occur are below. 

1. Short circuit fault in stator 

2. Rotor bar and ring fault 

3. Bearing fault 

4. Air-gap eccentricity fault 

3.3 Short circuit fault: 
[19] In normal operation of industrial motors, there is usually 10 to 100V (AC) between the 

adjacent turns in a coil. The insulation is about 0.5mm thick as the voltage across the turn insulation 

is relatively low. However, substantial transient voltages across the turn insulation are possible 

during switching operations. Majority of motor stator winding failure happens due to the 

destruction of the turn insulation caused by the short circuit in stator windings. The type of shorts 

could be of the following types: 

i. Inter-turn shorts of same phase 

ii. Short between coils of same phase 

iii. Short between two phases 

iv. Short between phases to earth 

v. Open circuit fault 

Fig. 3.1 shows the schematic diagram of the different types of stator winding problems. Several 

studies [17-24] report that depending on the type of shorts, and condition of motor (age, working 

condition, etc.), the motor may continue to operate initially, even though short-circuit current will 

flow, causing more and more overheating, ultimately leading to complete failure if not accounted 
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for. The studies [17-24] also point that with the inter-turn and coil short of same phase, the motor 

might still continue to run. The detrimental ones are the short between the phases and phase-to-

earth, causing instantaneous motor shutdown. About the failure mode trend, it is generally argued 

that the shorts in a particular phase, if undetected, would grow onto phase to- phase faults. 

Although there are no exclusive data to indicate the transition time between inter-turn (in same 

phase) and ground wall (between phase-to-phase) insulation failure [20], however, detection of 

inter-turn shorts during motor operation would reduce the damage to adjacent coils and the stator 

core, reducing repair cost and motor outage time. 

 

Fig. 3.1: Possible failure Modes of Y-connected Stator 

 

3.4 Rotor bar and ring Fault: 
If the rotor cage is healthy, the magnetic stress around the rotor is symmetric, and as a result, the 

resultant magnetic force is zero. [25] However, in the case of broken rotor bars or broken ring, 

magnetic asymmetry produces an unbalanced magnetic force, which is rotating at the rotational 

frequency and modulated with a frequency equal to the slip frequency times the number of poles. 

This causes the vibration in the motor. Which may cause the failure of bearing or shaft. 

3.5 Bearing Fault: 

The typical geometric structure of a rolling-element bearing is shown in Fig. 3.2 Rolling-element 

bearings are mainly composed of the outer and inner raceway, the ball elements, and the cage, 

which ensures the distances between the ball elements uniformly. [26] On ordinary conditions, 
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bearing faults can be separated into two types, that is, single-point (also called localized or cyclic) 

and generalized-roughness (also called distributed or noncyclic) faults. [27, 26] Localized faults 

could be imagined as a small hole, a pit, or a missing piece of material and they affect a localized 

region. [27] When a localized defective bearing runs at a constant speed, a periodic impact between 

rolling elements and the raceway is produced. The existence of such impulsive forces gives rise to 

an increase in the vibration level. The characteristic frequencies of these vibrations rely on fault 

location, bearing geometry, and operating speed. Not alike localized faults, generalized-roughness 

faults greatly worsen the entire area of a bearing element because of the absence of lubrication, 

erosion, or bearing pollution and are hard to represent by specific frequencies. 

 

Fig. 3.2: Typical structure of a rolling-element bearing with main parameters 

Localized faults can be usually divided into four categories depending on the affected element, 

namely, 

1. outer raceway fault 

2.  inner raceway fault  

3. ball fault, and  

4. cage fault 

 

3.6 Air gap eccentricity fault: 
This fault may present due to manufacture defect, bearing fault, bar and ring fault, etc. Radial air 

gap of the motor will be differed due to eccentricity fault. This fault is two type namely, static and 

dynamic eccentricity. 

1. Static eccentricity fault 

Normally, the rotor that is centered at the stator bore of healthy motor results in identical air-gap 

among the stator and rotor. [28] Accordingly, the magnetic forces are balanced in the opposite 

directions, but when the eccentricity emerges, this air-gap lessens on one side whereas it increases 
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on the other side at any gyration angle which causes higher absorption force through the shorter 

gap  

[28] Static eccentricity in electrical motors occurs when the rotor symmetrical axis is concentric 

with the rotor rotational axis; however, they are dislocated with respect to the stator symmetrical 

axis; hence, the position of minimum radial air-gap length is fixed. In this situation the mutual 

inductances across the stator and rotor as well as the self- and mutual inductances between the 

rotor phases are a function of rotor angular position. [28] The self- and mutual inductances among 

the stator phases are invariant and independent of the rotor angular position, same as healthy 

condition of motor. 

2. Dynamic eccentricity fault 

In the SE, the rotor is displaced from the stator center, but the rotor rotates around its own center. 

In the DE, the rotor is also displaced from the stator center, but the rotor rotates around the center 

of the stator center. 
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4. Chapter IV 

FEM Modeling of Squirrel Cage Induction Motor 
4.1 The work definition: 

To work with FEM Modeling we have designed the following motor using conventional design 

process: 

Specifications: Design 2.2 kW, 400V, 3-phase, 50 Hz, 1500 synchronous r.p.m. squirrel cage 

induction motor. The machine is to be started by a started by a star delta starter. The efficiency is 

0.8 and power factor is 0.825 at full load. 

The design summary is as follows, 

Rating:  

1. Full load output = 2.2 kW 

2. Line voltage = 400 V 

3. Frequency = 50 Hz 

4. Phases = 3 

5. Efficiency = 0.8 

6. Power factor = 0.825 

7. Number of poles = 4 

8. Synchronous r.p.s. = 25 

9. kVA input = 3.33 

10. Full load line current = 4.8  

Loading: 

1. Specific magnetic loading = 0.44 Wb/m2 

2. Specific electric loading = 21000 A/m 

3.  Output co-efficient = 97 

4. D2L = 1.375 * 10-3 m3 

Main Dimensions: 

1. Stator bore = 105 mm 

2. Gross iron length = 125 mm 

3. Ducts = Nil 

4. Net iron length =112.5 mm 

5. Pole pitch = 82.9 mm 

Stator: 

1. Type of laminations = 0.5 thick lohys 

2. Type of winding = single layer mush 
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3. Connection = Delta 

4. Phase voltage = 400 V 

5. Flux per pole 4.54 * 10-3Wb 

6. Turns/phase = 416 

7. Number of slots = 24 

8. Slots per pole = 6 

9. Slots per pole per phase = 2 

10. Coil span = 5 slots 

11. Distribution factor = 0.966 

12. Pitch factor = 0.9659 

13. Winding factor = 0.934 

14. Slot pitch = 13.75 mm 

15. Conductor/slot = 104 

16. Conductor bare diameter = 0.95 mm 

17. Conductor insulated diameter = 1.041 mm 

18. Conductor area = 0.709 mm2 

19. Current density = 3.91 A/mm2 

20. Length of mean turn = 0.68 mm 

21. Phase resistance at 75 0C = 8.37 Ohm 

22. Copper loss at full load = 193 W 

23. Depth of stator core = 17 mm 

24. Outer diameter stator laminations = 181mm 

Stator slot Dimension: 

Fig. 4.1: stator slot dimensions (in mm) 

1. Area of each slot = 184 mm2 

2. The maximum allowable flux density of teeth = 1.7 wb/m2 
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3. Flux d4ensity in stator teeth = 1.12 Wb/m2 

4. Take lip = 1 mm 

5. Wedge = 3 mm  

6. Slot width at AA = 8.8 mm 

7. Height of slot (h) = 17 mm 

8. Depth of the slot = 21 mm 

Rotor: 

1. Length of air gap = 0.3 mm 

2. Diameter of rotor =104.4 mm 

3. Type of winding = squirrel cage 

4. Number of slot = 22 

5. Slot/pole/phase = 1.835 

6. Conductor per slot = 1 

7. Winding factor = 1 

8. Slot pitch = 14.9 mm 

9. Rotor bar current = 244 A 

10. Rotor bar cross section = 7 * 6.5 mm 

11. Rotor bar area = 44.6 mm2 

12. Rotor bar length = 165 mm 

13. Rotor bar current density = 5.47 A/mm2 

14. Resistance of each bar = 77.7 * 10-6 Ohm 

15. Copper loss in bar = 101 W 

16. End ring current = 428 

17. End ring cross section = 10 * 8 mm 

18. End ring area = 80 mm2 

19. End ring main diameter = 75.8 mm 

20. End ring current density = 5.35 A/mm2 

21. Resistance of each ring = 62.8 * 10-6 Ohm 

22. Copper loss in end ring = 23 W 

23. Total rotor copper loss = 124 

24. Resistance of rotor (referred to stator) = 7.83 Ohm 

25. Depth of rotor core = 17 mm 

Rotor slot: 
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Fig. 4.2: rotor slot dimensions (in mm) 

No load current: 

1. Magnetizing mmf/pole = 231 A 

2. Phase magnetizing current = 1.0 A 

3. Magnetizing reactance = 400 Ohm 

4. Core loss = 134 W 

5. Friction and wind age loss = 33 W 

6. No load loss = 167 W 

7. Loss component = 0.139 A 

8. No load current (phase) = 1 A 

9. No load current (Line) = 1.73 A 

10. No load power factor = 0.139 

Short circuit (blocked rotor) current: 

1. Slot leakage reactance 11.8 Ohm 

2. Overhang leakage reactance = 4.7 Ohm 

3. Zigzag leakage reactance = 20.3 Ohm 

4. Total leakage reactance = 36.8 Ohm 

5. Total resistance = 16.2 Ohm 

6. Short circuit impedance = 40.2 Ohm 

7. Phase short circuit current = 9.95 A 

8. Line short circuit current = 17.5 A 

9. Short circuit p.f. = 0.043 
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Performance: 

At full load 

1. Losses = 484 W 

2. Output = 2200W 

3. Input = 2684 W 

4. Efficiency = 81.3% 

5. Power factor = 0.829 

6. Slip = 5.3% 

7. Maximum power output/rated output = 1.67 

8. Maximum torque/rated torque = 2 

9. Starting torque/rated torque = 1 

10. Temperature rise = 45.6 0C 
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4.2 FEM Modeling: 
We modeled the motor by COMSOL Multiphysics in 2D system. This model simulates the electro-

mechanical effects in a three phase squirrel cage induction motor. The assembly consists of stator 

and rotor. Induction motor simulated is constructed as 24 stator slots, 22 rotor slots, and four pole 

machine. The mechanical dimensions which is mentioned in starting of this chapter are used to 

model the geometry of the squirrel cage induction motor. We defined the physics, mesh generation 

and solved in time domain. The simulation process is shown in flow chart in below and important 

parts are discussed. 
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4.3 Model specification: 
Firstly, in the model specification phase, the model of the problem, which simulation require 

electromagnetic field calculations must be set up, i.e. we have to design induction motor or collect 

the required design dimensions and find out the partial differential equations, which must be solved 

with prescribed boundary and continuity conditions. 

 

4.4 Modeling of Geometry: 
Here we taken some dimensions of the squirrel cage induction motor from theoretical design. Some 

important dimensions are mentioned below which is applied here and The Modeled geometry 

corresponds to these dimensions (in Fig. 4.3) 

 

 

 

Serial Number 

 

Induction Motor Parameter 

 

Parameters 

 

Value 

 

Units 

1 Length of the motor 112.5 mm 

2 Outer diameter of the stator 181 mm 

3 Inner diameter  of the Stator 105 mm 

4 Number of stator slot 24  

5 Number of Turns 1248  

6 Outer diameter of rotor 104.4 mm 

7 Number of Bars 22  

8 Air Gap 0.3 mm 

9 Number of pole 4  

Table 4.1: Some dimensions of SCIM 
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Fig. 4.3: Geometry of squirrel cage IM in 2D 

 

4.5 Assignment of Materials: 
[5] Defining of material is an important thing to be done. And every property of the material 

should be provided correctly i.e. conductivity, relative permeability, relative permittivity etc. 

Materials assigned to various sectors of motor under consideration are air gap as air, rotor core 

sector and shaft are defined as steel, bar as copper. Here we used bar material as copper instead 

of aluminium as designed. 

4.6 Assignment of physics or Equations: 
This is the most complex to understand the equations and implement in right way in COMSOL 

Multiphysics. It is relatively modest to employ the magnetic vector potential in the numerical 

solution of the field the induction motor since its simplicity to represent the magnetic fields as a 

two-dimensional model. Due to complex structure of induction motor, fields of the machine are 

clearly three dimensional, that’s why a two-dimensional solution is always close approximation. 

The equations are given below which are applied to the FEM model. 
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A. Maxwell Equations:  

Let us start with the application of full three-dimensional vector equations. 

The magnetic vector potential A is given by 

 B =  ∇  × A 4.1 

Coulomb’s condition, required to define explicitly the vector potential, is written as 

 ∇ ・ A =  0 4.2 

The substitution of the definition for the magnetic vector potential in the induction law yields 

 ∇ ×  E = −∇ × ∂A/ ∂t 4.3 

Electric field strength can be expressed by the vector potential A and the scalar electric potential 

φ as 

 E = − ∂A/ ∂t − ∇φ 4.4 

‘φ’ is the reduced electric scalar potential.  

Since ∇ × ∇φ ≡ 0, adding a scalar potential causes no problems with the induction law. Above 
equation gives that the electric field strength vector comprises of two parts, they are a rotational 

part induced by the time dependence of the magnetic field, and a non-rotational part produced by 

electric charges and the polarization of dielectric materials. 

Current density depends on the electric field strength. 

 J =  σE =  − σ ∂A/ ∂t − σ∇φ 4.5 

Ampere’s law and the definition for vector potential gives 

 ∇ x (1/μ ∇ x A)  +  σ ∂A/ ∂t +  σ∇φ =  0 4.6 

By substituting equation (5) into (6) gives 

 ∇ x (1/μ ∇ x A)  =  J 4.7 

 

Equation (4.7) is valid in zones where eddy currents may be induced, while the equation (4.6) is 

valid in zones with source currents J = Js, such as stator or rotor winding currents, and in zones 

without any current densities usually J = 0. 

In electrical machines of any type, a 2D solution is often the apparent one as in [1]; in these cases, 

the numerical solution can be deduced based on a single component of the vector potential A. The 

solution for fields B, H are found in an x-y plane, whereas J, A and E involve only the z-component. 

The gradient ∇φ has a z-component, since J and A are parallel to z, and equation (4.5) is effective. 

The summarized scalar potential is thus independent of x- and y-components. 'φ' could be a linear 
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function of the z-coordinate, since a 2D field solution is independent of z. The assumption of two-

dimensionality is not valid for potential differences caused by electric charges or by the 

polarization of insulators. For two-dimensional cases with eddy currents, the scalar potential has 

to be set as φ = 0. 

In a 2D case, the equation (4.6) is rewritten as 

 ∇ . (1/μ ∇Az)  +  σ ∂Az/ ∂t =  0 4.8 

 

Exterior of the eddy current zones, below equation is more valid: 

 − ∇ . (1/μ ∇Az)  =  Jz 4.9 

 

The definition of vector potential provides below components for flux density: 

 Bx = ∂Az/ ∂y;  By =  − (∂Az)/ ∂x 4.10 

 

Therefore, the vector potential remains constant in the direction of the flux density vector. 

In the 2D case, the below equation can be obtained from the partial differential equation (PDE) of 

the vector potential: 

 −k[ ∂∂x (v ∂Az∂x ) + ∂∂y (v ∂Az∂x )] = kJ 4.11 

Where ‘ν’ is the reluctivity of the material above equation is exactly similar to the equation of a 

static electric field. 

 ∇・ (ν ∇A)  =  −J  4.12 

 

B. Boundary conditions: 

Definition of two types of boundary conditions for this type of 2D problems is valid. First, 

Dirichlet’s boundary condition indicates that a known potential, so that vector potential 

 A =  constant  4.13 

This can be attained for a vector potential for example on the outer surface of an electrical 

induction machine. Since the field is parallel to the contour of the surface. Same as the outer 

surface of an electrical induction machine, the center line of the machine’s pole can develop a 

symmetry plane. Neumann's homogeneous boundary condition determined with the vector 

potential 



37 

 

 ∂A/ ∂n = 0 4.14 

is a second boundary condition accomplished at an instance the field meets a contour 

perpendicularly. In equation (4.14) 'n' is the normal unit vector of a plane. A contour of this kind 

is part of a field confined to infinite permeability iron as shown in figure.4.4. The magnetic flux 

piercing a surface is easy to determine with the vector potential. Stake’s theorem develops the flux 

equation. 

 ∅ = ∫[𝐵. 𝑑𝑆]𝑠 = ∫[(∇ × A). 𝑑𝑆]𝑠 = ∫[𝐴. 𝑑𝑙]𝑙  
4.15 

 

 

 

Fig. 4.4: Definition of boundary condition 

Flux 'Φ' is an integral around the contour 'l' of the surface S as illustrated in the fig.4.4. In the 2D 

case of the illustration [5], the end faces’ part of the integral is zero and the vector potential along 

the axis is constant.  

Consequently, for an induction machine of the length 'l' we obtain a flux 

 Φ12 =  l (A1 −  A2) 4.16 



38 

 

This represents that the flux Φ12 is the flux between vector equipotential lines A1 and A2. 

C. Arkkio’s Torque: 

Applying finite element assumptions, torque can be determined by differentiating the magnetic co 

energy W1 with respect to movement, and by maintaining the winding current constant: 

 𝑇 = 𝑙 𝑑𝑊1𝑑𝛼 = 𝑑𝑑𝛼 ∫ ∫ [(𝐵. 𝑑𝐻)𝑑𝑉]𝐻
0𝑣  

4.17 

In numerical modeling, this air-gap magnetic field energy and torque produced due to it is 

approximated by the difference between two successive fields. 

 T = [𝑙 (W’(α +  Δα) − Wˈ(α))]/Δα 4.18 

Where 'l' is the machine length and Δα represents the displacement between successive field 
solutions. 

There are four different methods to calculate torque of rotating electrical machines using FE 

modeling; they are Coulomb's method, Maxwell Tensor method, Magnetic co energy derivation 

and Arkkio's method. Among them Arkkio's method [13] is used in this work to determine torque 

of IM using FEM. It is a variant of Maxwell's stress tensor method and is based on integrating the 

torque over the whole volume of the air gap constituted by the zones of radii rr and rS. Torque 

expression of same is as shown below (4.19). 

 𝑇 = 𝑙𝜇0(𝑟𝑠 − 𝑟𝑟)∫𝑟 𝐵𝑛𝐵𝑡𝑎𝑛 𝑑𝑆𝑠  
4.19 

Where l is the length, Bn and Btan represents the radial and tangential flux densities in the elements 

of surface S and formed between radii rr and rs, dS is the surface of single element. 

D. Simplified Electrical Circuit: 

Into motor model, an electrical circuit is implemented which includes sinusoidal voltage source to 

feed the motor, end winding impedance and an external coupling to provide a connection to the 

Rotating Machinery. For one stator phase, the electrical circuit is shown in Fig. 4.5 for which 

Kirchhoff’s voltage law is defined: 

 𝑉 = 𝑅𝑆𝑒𝑛𝑑𝑖 + 𝐿𝑆𝑒𝑛𝑑 𝑑𝑖𝑑𝑡 + 𝑉𝑒𝑚𝑓 
4.20 
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Figure.4.5 External stator electrical circuit for one phase. 

Where V is the phase voltage in (V), i is the current in the loop in (A),  

RSend is the resistance of the stator winding overhang in (Ohm) [1, 5] 

 𝑅𝑆𝑒𝑛𝑑 = 𝜌 2𝑙0𝑁𝑆𝐴    4.21 

 

Where 𝜌 is the resistivity in (Ohm. m), l0 is the mean length of the stator winding overhang in (m), 

Ns is the number of turns per one stator phase, [1,5] A is the cross-section area of the stator winding 

conductor in (m2). 

LSend is the leakage inductance of the stator winding overhang in (H) 

 𝐿𝑆𝑒𝑛𝑑 = 2𝑙0𝜇0𝜆0𝑁𝑆2𝑝   
4.22 

Where  

 𝜆0 = 𝑘𝑜(1 − 0.64 𝑦𝑙0)𝑞  4.23 

[1,5] Where k0 is the factor depending on the type of the stator winding, y is the coil span in (m), 

q is the number of slots per pole and per phase, p is the number of pole pair and 𝜇0 is the absolute 

permeability [1,5]. 

 Vemf are the induced voltages in (V) across the sides of the all stator coils in one phase, which are 

implemented in the Rotating Machinery, Magnetic interface. 

A part of external rotor electrical circuit is in Fig. 4.6. 
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Figure 4.6: External rotor electrical circuit for one phase. 

The voltage equation for one loop of the rotor electrical circuit in Fig. 4.6 defined by Kirchhoff’s 
voltage law is as follows: 

 𝑣𝑖 − 𝑣𝑖+1 = 2𝑅𝑏𝑜𝑢𝑡𝑖𝑏𝑖+1 + 2𝑅𝑅𝑒𝑛𝑑𝑖𝑅𝑖 + 2𝐿𝑅𝑒𝑛𝑑 𝑑𝑖𝑅𝑖𝑑𝑡  
4.24 

where vi, vi+1 are the voltages of two neighboring bars in (V), which are implemented in the 

Rotating Machinery, Magnetic interface, ibi, ibi+1 are the currents in the bars in (A), iRi, iRi+1 are the 

currents in the rings in (A),  

Rbout is the resistance of the part of bar, which is outside of the rotor iron in (Ohm) 

 𝑅𝑏𝑜𝑢𝑡 = 𝜌 𝑙𝑏𝑜𝑢𝑡𝐴𝑏  
4.25 

Where lbout is the mean length of the bar outside of the iron sheets in (m), Ab is the cross section 

area of the bar in (m2). 

RRend is the resistance of the rotor end-ring segment in (Ohm) 

 𝑅𝑅𝑒𝑛𝑑 = 𝜌 𝜋𝑑𝑅𝑁𝑄𝐴𝑅  
4.26 

Where dRN is the mean diameter of the cage end ring in (m), Q is the number of rotor bars, AR is 

the cross section area of the cage end ring in (m2). 

             

 LRend is the leakage inductance of the rotor end-ring segment in (H) 
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 𝐿𝑅𝑒𝑛𝑑 = 𝜇0 𝜋𝑑𝑅𝑁𝑄 𝜆𝑅𝑜 
4.27 

 

Where 

 𝜆𝑅𝑜 = 𝑄2𝑚𝑆𝑝𝑙0 𝜏𝑝𝑔 
4.28 

Where mS is the number of stator phases, 𝜏𝑝 is the pole pich, g is the factor defined in [5]. 

 The parameters Rbout, RRend and LRend are defined in [5]. 

 

4.7 FEM Mesh Generation: 
In the pre-processing task the geometry of the problem must be discretized by a finite element 

mesh. The fundamental idea of FEM is to divide the problem region to be analysed into smaller 

finite elements with given shape. A finite element can be triangles or quadrangles in two 

dimensions. 

A triangle (Fig. 4.7(a)) has three vertices 1, 2 and 3, here numbered anticlockwise and has 3 edges. 

The quadrangle element (Fig. 4.7(b)) has 4 nodes and 4 edges. 

 

(a) Triangular Element 
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(b) Quadrangle Element 

Fig. 4.7 Typical finite elements in the two dimensional x − y plane. 

 

Fig. 4.8 Three phase induction motor is meshed by triangles 
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Fig 4.9 the enlarged region of the half of the three-phase motor 

 

FEM mesh, as illustration, generated by COMSOL Multiphysics can be seen in Fig. 4.8. The 

arrangement of three-phase squirrel cage induction motor has been discretized by a triangular mesh 

as it is shown at the Fig. 4.8. In Fig 4.9, the enlarged region of the half of the three-phase motor is 

shown. 

All the simulations have been studied using the same mesh, which consists of number of vertex 

elements: 392, number of boundary elements: 6496, number of elements: 21372,  minimum 

element quality: 0.1465 and number of degrees of freedom solved for: 12330 as it can be seen in 

Fig. 4.8. 
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Air Gap Optimization: 

Optimization of air-gap performed using parametric sweep which is shown in Fig. 4.10. 

 

 

Fig. 4.10: Air gap meshing 

Air-gap length is very important parameter which needs to be properly designed to get required 

torque and performance from the induction machine. It also helps engineers to design proper 

thickness of slot insulation since it indirectly influences the surface temperatures of the machine. 

Parametric sweep on air-gap has performed in a range of 0.00003m – 0.001m and found minimum 

element quality equal to 0.1465004mm as the optimal for better performance of the machine. 

Indeed, this parametric sweep has contributed for optimization of machine performance and torque 

by considering correct thickness of air-gap. Results obtained are close to the standard induction 

motor characteristics. This can also be used to optimize various performance characteristics of the 

machine. 
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5. Chapter V 

Result and Discussion 
 

5.1 introduction: 
Problem designed induction motor is modeled in COMSOL Multiphysics for simulation. First of 

all, this healthy model has been verified with some characteristics of IM. After successfully 

verified, we have model for other condition like faulted condition, broken condition etc. Therefore, 

inter turn fault condition is modeled and analysed the results with healthy condition. The total 

number of turns of the IM is 1248 (each phase 416 turns).  Inter turn fault is modeled by reducing 

the number turn of one phase. Inter turn fault is considered in one phase only.  We have taken six 

sample 

1. Healthy condition. 

2. Faulty condition with 2 turn short (0.48%fault of phase1) 

3. Faulty condition with 4 turn short (0.96%fault of phase1) 

4. Faulty condition with 6 turn short (1.44%fault of phase1) 

5. Faulty condition with 8 turn short (1.92%fault of phase1) 

6. Faulted condition with 116 turn short (27.8%fault of phase1) 

5.2 Validation of Model: 
The validation of the model is done with no load. The supply voltage is 400 Volt (𝑉𝑟𝑚𝑠=400 Volt; 𝑉𝑝𝑒𝑎𝑘 = 400√2 Volt) which is shown in Fig. 5.1. The validation characteristics are torque, no 

load current and speed of the motor. The values are compared in table 5.1 and the diagrams 

are given in Fig. 5.2, Fig 5.3, and Fig. 5.4 respectively. Corresponding Geometry with one phase 

coils, flux density norms, current density norms are shown in Fig. 5.5, Fig. 5.6 and Fig.5.7 

Respectively. 

SL. 

No. 

 

Parameters 

Theoretical 

value 

Simulation  

value 

1 Maximum Torque 29.58 (in N-m) 30.4 (in N-m) 

2 No load current(Peak current) 1.414 (in A) 1.46 (in A) 

3 No lad speed ≈ 157.08( in rad/s) =156.64 ( in rad/s) 

Table 5.1: Validation of parameters 
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Fig.5.1: Three phaseCoil Voltage of stator 
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Fig.5.2: Torque vs time characteristics 
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Fig. 5.3: No load 3 phase current of stator 
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Fig. 5.4: No load speed vs time characteristic 

 

Fig. 5.5: Motor 2D model with one phase coils 
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Fig. 5.6: Magnetic Flux density norm 

 

 

Fig.5.7: Current Density Norm 
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5.3 Results of Healthy and Faulty condition: 
We have modeled with six sample which is mentioned in starting of this chapter. These are 

modeled as full load with speed of 1416 rpm (Full load slip 5.3%). The results (Stator coil voltage, 

stator coil current) of these sample are shown below individually. 

1.  Healthy Condition:  The results of stator coil voltages and stator coil currents in this 

condition are shown in Fig. 5.8 and Fig. 5.9 respectively. 

 

Fig. 5.8: Stator coil voltage for healthy condition 

Fig 5.9 Stator coil current for healthy condition 

 

2. Faulty condition considering 2 turns short: The results of stator coil voltages and stator 

coil currents in this condition are shown in Fig. 5.10 and Fig. 5.11 respectively. 
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Fig. 5.10: Stator coil voltages for faulty condition considering 2 turns short. 

                     Fig. 5.11: Stator coil current for faulty condition considering 2 turns short. 

 

3. Faulty condition considering 4 turns short: The results of stator coil voltages and stator 

coil currents in this condition are shown in Fig. 5.12 and Fig. 5.13 respectively. 

 

Fig. 5.12: Stator coil voltage for faulty condition considering 4 turns short. 
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Fig. 5.13: Stator coil current for faulty condition considering 4 turns short. 

4. Faulty condition considering 6 turns short: The results of stator coil voltages and stator 

coil currents in this condition are shown in Fig. 5.14 and Fig. 5.15 respectively. 

 

                     Fig. 5.14: Stator coil voltage for faulty condition considering 6 turns short. 
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Fig. 5.15: Stator coil current for faulty condition considering 6 turns short. 

5. Faulty condition considering 8 turns short: The results of stator coil voltages and stator 

coil currents in this condition are shown in Fig. 5.16 and Fig. 5.17 respectively. 

 

 

Fig. 5.16: Stator coil voltage for faulty condition considering 8 turns short. 

Fig. 5.17: Stator coil current for faulty condition considering 8 turns short. 
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6. Faulty condition considering 116 turns short: The results of stator coil voltages and stator 

coil currents in this condition are shown in Fig. 5.18 and Fig. 5.19 respectively. 

 

4.18: Stator coil voltage for faulty condition considering 116 turns short. 

 

Fig. 5.19: Stator coil current for faulty condition considering 116 turns short. 

 

 

5.4 Method of Stator Current Analysis: 
If we supply sinusoidal power into the 3-∅ induction motor there will be harmonics because of 

slots in stator and slots in rotor. [8-10, 17-24] These harmonics magnitude could be changed or 

harmonics itself could be changed due to various fault in the induction motor. So we can analyse 

the harmonics characteristics for various faulted conditions. Some of faults have been noted below 

which is more severe for induction motor. 

1. Short circuit fault 

2. Rotor bar fault 

3. Rotor ring fault 
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4. Bearing fault 

5. Air-gap eccentricity 

In this thesis we only analyse the characteristics of current for Inter-turn fault which is belong to 

short circuit fault.   

If we take the consideration of stator and rotor slot, the good approximation of permeance of the 

air gap is [16] 

 𝜆(𝜃, 𝑡) = 𝜆𝑠(𝜃,𝑡)𝜆𝑅(𝜃,𝑡)𝛿(𝜃,𝑡)   5.1 

Where 𝛿(𝜃, 𝑡) is the radial air gap length, which can be taken as constant (𝛿(𝜃, 𝑡) = 𝛿0) (assuming 

air-gap is equal in all radial aspects). 𝜆𝑠(𝜃, 𝑡) is the permeance of the air-gap without effect of the rotor slot, 

 𝜆𝑠(𝜃, 𝑡) = 1𝐾𝐶𝑆 + ∑ 𝜆𝑛𝑠 cos(𝑛𝑠𝑆𝜃)∞𝑛𝑠=1   5.2 

Where 𝐾𝐶𝑆 is the Carter factor, 𝜆𝑛𝑠 is the amplitude of permeance related to the stator, 𝑛𝑠 is the 

any integer, S is the number of total stator slot, 𝜃 is the angular position referring to stator. 𝜆𝑅(𝜃, 𝑡) is the permeance of the air gap without effect of stator slots. 

 𝜆𝑅(𝜃, 𝑡) = 1𝐾𝐶𝑅 + ∑ 𝜆𝑛𝑟 cos(𝑛𝑟𝑅𝜃 − 𝑛𝑟𝑅𝑤𝑟𝑡)∞𝑛𝑟=1   5.3 

Where 𝐾𝐶𝑅 is the Cater factor,  𝜆𝑛𝑟 is the amplitude of permeance related to the rotor, 𝑛𝑟 is the any 

integer, R is the number of total rotor slots or bar, 

 𝑤𝑟 is the rotor rotating angular frequency (Mechanical rotational speed), 

 𝑤𝑟 = 𝑤𝑠(1 − 𝑠) = (1 − 𝑠)𝑝 𝑤 
5.4 

Where 𝑤𝑠 is the synchronous rotating speed of the fundamental MMF, s is the sleep, p is the pole 

pair, w is the fundamental angular frequency of supply. 

If we neglect the Carter facto part of the equation (5.2) and (5.3) we get, 

 𝜆𝑠(𝜃, 𝑡) = ∑ 𝜆𝑛𝑠 cos(𝑛𝑠𝑆𝜃)∞
𝑛𝑠=1  

5.5 

And 

 𝜆𝑅(𝜃, 𝑡) = ∑ 𝜆𝑛𝑟 cos(𝑛𝑟𝑅𝜃 − 𝑛𝑟𝑅𝑤𝑟𝑡)∞𝑛𝑟=1   5.6 

 

By putting the value of𝜆𝑠(𝜃, 𝑡),   𝜆𝑅(𝜃, 𝑡) and (𝛿(𝜃, 𝑡) in the equation (5.1) we get, 𝛿(𝜃, 𝑡) = ∑ ∑ 𝜆𝑛𝑠𝜆𝑛𝑟∞𝑛𝑠=1∞𝑛𝑟=1 cos(𝑛𝑠𝑆𝜃) cos(𝑛𝑟𝑅𝜃 − 𝑛𝑟𝑅𝑤𝑟𝑡)  
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 𝛿(𝜃, 𝑡) = ∑ ∑ 𝜆𝑛𝑠𝜆𝑛𝑟2∞
𝑛𝑠=1

∞
𝑛𝑟=1 [cos(𝑛𝑠𝑆𝜃 + 𝑛𝑟𝑅𝜃 − 𝑛𝑟𝑅𝑤𝑟𝑡)+ cos(𝑛𝑠𝑆𝜃 − 𝑛𝑟𝑅𝜃 + 𝑛𝑟𝑅𝑤𝑟𝑡)] 

5.7 

 

Now, stator MMF without effect of skew can be represented by [16] 

 𝐹𝑀(𝜃, 𝑡) = ∑ ∑ 𝐹𝑛𝜃𝑓,𝑛𝑤𝑓 cos(𝑛𝜃𝑓𝑝𝜃 − 𝑛𝑤𝑓𝑤𝑡)∞𝑛𝑤𝑓=−∞∞𝑛𝜃𝑓=1   5.8 

Flux density can be write as 𝐵(𝜃, 𝑡) = 𝐹𝑀(𝜃, 𝑡)𝜆(𝜃, 𝑡)  = ∑ ∑ ∑ ∑ 𝐵𝑛𝑟,𝑛𝑠,𝜃𝑓,𝑤𝑓 cos(𝑛𝜃𝑓𝑝𝜃 − 𝑛𝑤𝑓𝑤𝑡) {cos(𝑛𝑠𝑆𝜃 + 𝑛𝑟𝑅𝜃 −∞𝑛𝑤𝑓=−∞∞𝑛𝜃𝑓=1∞𝑛𝑠=1∞𝑛𝑟=1𝑛𝑟𝑅𝑤𝑟𝑡) + cos(𝑛𝑠𝑆𝜃 − 𝑛𝑟𝑅𝜃 + 𝑛𝑟𝑅𝑤𝑟𝑡)}      
  

 𝐵(𝜃, 𝑡) = ∑ 𝐵𝑚1,𝛺 cos(𝑚1𝜃 − 𝛺𝑡) + ∑ 𝐵𝑚2,𝛺 cos(𝑚2𝜃 − 𝛺𝑡)∞𝑚2,𝛺∞𝑚1,𝛺   5.9 

Where 𝑚1 = 𝑛𝜃𝑓𝑝 ± (𝑛𝑠𝑆 + 𝑛𝑟𝑅) 𝑚2 = 𝑛𝜃𝑓𝑝 ± (𝑛𝑠𝑆 − 𝑛𝑟𝑅) 𝛺 = 𝑛𝑟𝑅𝑤𝑟 ± 𝑛𝑤𝑓𝑤 

Then, the change in the flux density distribution results in the current having harmonics as follows 

 𝑓ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 = 𝑛𝑟𝑅𝑁𝑟 ± 𝑛𝑤𝑓𝑓  5.10 

Where 𝑁𝑟 = (1−𝑠)𝑝 𝑓 is the rotational speed of the rotor. 

We can re-write the Eq. (5.10) as below 𝑓ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐𝑠 = 𝑛𝑟𝑅 (1−𝑠)𝑝 𝑓 ± 𝑛𝑤𝑓𝑓            

If we consider harmonic less MMF of stator then, 𝑛𝑤𝑓 = 1 [3],  

Therefore           

 𝒇𝒉𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝒔 = (𝒏𝒓𝑹(𝟏 − 𝒔)𝒑 ± 𝟏)𝒇 

 

5.11 

As per our model of IM, if we put the value of characters of equation (5.11), we get 𝒇𝒉𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝒔 = 470.85, 570.85, 991.7, 1091.7, 1512.55, 1612.55 and so on. 
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Where R= 22, s= 5.3%, p=2, f=50Hz and 𝑛𝑟= 1, 2, 3, 4, up to infinite. 

 

5.5 Observations: 
1. The current of faulted phase is increasing significantly if fault is ≈ 28% of particular phase 

which is shown in Fig. 5.20. As the current is increasing proportionally, the current will be 

more high if faulted portion will be increased. 
 

 

Fig. 5.20: Overlapping of healthy and faulty phase currents 

2. Although 2nd phase’s current and 3rd phase’s currents value (which is 120 degrees and 240 

degrees electrically apart from faulted phase) are increasing but no so great. These are 

shown in Fig. 5.21 and Fig. 5.22. 
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Fig. 5.21: 2nd phase’s current waveform 

 

Fig. 5.22: 3rd phase’s current waveform 

3. For 2nd phase, current waveform is shifting left. For 3rd phase, current waveform is shifting 

right which are shown in Fig.23. This means zero crossing also shifting consequently. 
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Fig. 23: current waveform of 2nd & 3rd phase considering phase shifting 

4. Faulted phase current is plotted in frequency spectrum (Continuous FFT) and overlapped 

for all conditions which is shown in Fig.5.24. 

 

Fig.5.24: frequency spectrum (Continuous FFT) of faulted phase currents 
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5. The current density distribution is also changing significantly. The surface plot of the 

current distribution with healthy and faulty condition is shown in Fig. 5.24. Some change 

spots are highlighted. If you notice carefully, it’s clear that the all stator slot current density 

for faulty phase(phase1), is decreasing and increasing for faulty phase (phase 1) and 

healthy phase (Phase2 and phase3) respectively. 

 

Fig. 5.25: Comparison of Current density between healthy and 116 short turn condition. 
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6. Chapter VI 

Conclusion and Future Work 
 

6.1 Conclusions: 
In this thesis a 2-D FE modeling of a Squirrel Cage Induction Motor is presented. Then inter turn 

short circuit fault in the stator winding has been emulated. The modeling as well as the simulations 

carried out in COMSOL Multiphysics platform. After simulation the stator phase currents have 

been analysed. The FFT of the current shows that the slot harmonics are amplified with severity 

of the faults. That mean for experimental studies the slot harmonics are only to be considered for 

fault characterisation which will make the fault identification process much easy. 

The IM which is chosen from IM design problem is not practiced one. FEM computation is more 

time consuming and needs super computer with sufficient RAM, good graphics memory and good 

computation speed. These considerations have been fulfilled as good as possible. But more 

compromised with less elements and less sampling points which may leads to more deviation from 

accurate one. 

6.2 Scope of Future Work: 
As mentioned in chapter of introduction that there is no such reliable method of detection of 

induction motor fault. And it is necessary to implement the reliable method of detection. The step 

has been taken with analysation of the inter-turn fault by FE modeling. Later this result can be 

used to implement the method of fault detection. Same way analysation of the other faults can be 

performed as well with the help of FE modeling. i.e.  

1. Coil to coil fault 

2. Phase to phase 

3. Phase to ground 

4. Broken bar 

5. Brocken ring 

6. Bearing fault 
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