Ex/M.Sc/CHEM/4/I-4141/2018

M. Sc. Chemistry Examination, 2018

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XIV - I

Time : Two hours

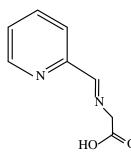
Full Marks : 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - I - 4141

Answer any five of the following questions :


1. a) Given are the Pascal's constant and constitutive corrections for :

Atom	λ
С	-6.0
Н	-2.93
O ₂ (carboxylate)	-7.95
O(alcohol)	-4.61

Constitutive corrections for atoms	$\lambda \times 10^6$ (cgs)
C (ring)	-0.24
C=N	+0.80

[Turn over

Calculate the diamagnetic correction for

- b) With suitable example, explain how the magnetic behaviour of a species may change on coordination of solvent molecule(s). 3+2
- 2. Derive the relation :

 $\chi_{\rm M}({\rm dia}) = -[{\rm Ne}^2/(6{\rm mc}^2)]\Sigma \overline{r}^2$; What are the significances of $\chi_{\rm M}({\rm dia})$? 5

- What are first-order and second-order Zeeman effects ?
 Derive an expression for Van Vleck equation.
- 4. a) State and explain Lande Interval Rule.
 - b) What is spin-orbit coupling constant (ξ)? For d³ system show that $\lambda = \pm \xi/2S = \pm \xi/n$.

What are the factors that affect λ values ? 2+3

5. a) A Ni(II) complex gives $\mu_{exp} = 2.65$ BM. Assuming spin

- c) "Upon excitation at 450 nm, $[Ru(bpy)_3]^{2+}$ (bpy = 2,2'bipyridine) exhibits a strong luminescence band at ~610 nm in ethanol-methanol (4 : 1, v/v) at room temperature while at 77K the luminescence maximum is blue-shifted to ~580 nm with significant enhancement of luminescence quantum yield and lifetime". Predict the nature of the emitting excited state(s) in the complex and also provide a reasonable explanation for the blue-shift of emission maximum as well as enhanement of quantam yield and lifetime. 3
- d) What do you mean by zero-zero spectroscopic energy (E_{0-0}) ? Howcan the E_{0-0} value of chemical species be estimated? 2
- e) What do you mean by photosensitizer ? Discuss the role of $[Ru(bpy)_3]^{2+}$ as sensitizer in photodecomposition of water. 2+2

[Turn over

UNIT - I - 4142

Answer all the questions.

- 7. Someone predicts the reaction : $A+B \rightarrow A^+ + B^-$ occurs through outer sphere mechanism. The observed rate constant of this reaction is -0.5 V. It is known that $E_{OX}^0 (A/A^+) = -0.5 \text{ V}, E_{red}^0 (B/B^+) = 0.9 \text{ V}$, self-exchange rate constant for $A/A^+ = 2.0 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$ and selfexchange rate constant for $B/B^- = 2.0 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$. Is the prediction correct ? Comment.
- 8. Explain with reasoning why $[Co(H_2O)_6]^{2+/3+}$ system has unusually high exchange rate. $4\frac{1}{2}$
- Cite one example of inner sphere electron transfer reaction where bridging ligand is retained with the oxidizing centre. Explain why the bridging ligand is retained.
- 10. a) "Chemiluminescence processes can be considered as the reverse of a photochemical processes." Evaluate the correctness of the statement.
 - b) Explain the different radiative and non-radiative processes in the light of Jablonski diagram when a molecule is excited by a photon. $1\frac{1}{2}$

state equilibrium and using $\mu_{Oh} = 3 \cdot 20$ BM and $\mu_{sp} = 0$, calculate the spin-state equilibrium (K).

- b) What do you understand by super exchange interactions in magnetic materials ? Explain different modes of orbital overlaps involved in such interactions. How would you explain the preference of super-exchange interactions over direct metal-metal bonding in $[Cu_2(HCOO)_4(SCN)_2]^{2-}$? 2+3
- Derive Bleany-Bower's equation for an isotropic dimeric Cu(II) complex. Get the energies of different levels.