M. Sc. Chemistry Examination, 2018

(4th Semester)

INORGANIC CHEMISTRY SPECIAL

PAPER - XIII-I

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - I - 4131

- 1. Find out the splitting of ${}^{2}D$ state under D_{4th} Symmetry.
- 2. Evaluate the symmetries of IR and Raman Vibrations of NH₃.
- 3. An aqueous solution of $[Cr(NH_3)_6]^{3+}$ displays two high intensity spin allowed bands at 21550 cm⁻¹ and 28500 cm⁻¹, respectively. Deduce the values of Δ_0 and B.
- 4. Explain logically the term "double group". Construct the spin orbit coupling correlation diagram for $[T_i(H_2O)_6]^{3+}$.
- 5. Discuss the Jahn-Teller theorem using group theory and hence explain the Jahn-Teller distortion in VCl₄.

 3+2

Character table for D₄

	E	2C ₄ (z)	C ₂ (z)	2C'2	2C"2
$\mathbf{A_1}$	1	1	1	1	1
$\overline{\mathbf{A_2}}$	1	1	1	-1	-1
B ₁	1	-1	1	1	-1
B ₂	1	-1	proment	-1	1
E	2	0	-2	0	0

Character table for group T_d

Td	E	8C ₃	3C ₂	6S ₄	6σ₫
Aı	+1	+1	 +	+1	+1
A_2	+1	+1	+1	-1	-1
Е	+2	-1	+2	0	0
T,	+3	0	-ı	+1	-1
T ₂	+3	0	-1	-1	+1

Character table for C_{3v} point group

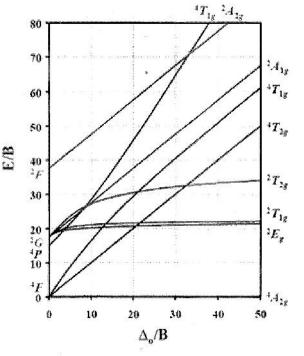
E		2C ₃ (z) 3σ _v		linear, rotations	quadratic
A ₁	1	1	1	Z	x^2+y^2 , z^2
A ₂	1	1	-1	R _z	
E	2	-1	0	$(x, y) (R_x, R_y)$	(x^2-y^2, xy) (xz, yz)

Character Table of D2d

D_{2d}	E	254	C_2	$2C_2'$	$2\sigma_d$
A 1	1	1	1	1	1
A 2	1	1	1	1	1
B_1^{\sim}	1	1	1	1	1
θ_2	1	1	1	-1	1
E"	2	0	2	O	0

4

[2]


Character Table of O'

			3RC ₂			6C ₂	R	8RC ₃	6RC ₄
-	o [']	E	3C ₂	8C ₃	6C ₄	6C ₂			
$\Gamma_{\mathtt{1}}$	A ₁	1	1	1	1	1	1	ļ	1
Γ_{2}	A, '	1	1	1	-1	-1	1	1	-1
Γ_{3}	E ₁	2	2	-1	0	0	2	-1	0
Γ_{4}	T ₁	3	-1	0	1	-1	3	0	1
$\Gamma_{_{5}}$	T ₂	3	-1	0	-1	1	3	0	-1
Γ_6	E ₂	2	0	1	√2	0	-2	-1	-√2
Γ,	E ₃	2	0	1	-√2	0	-2	-1	√2
Γ ₈	F _{3/2}	4	0	-1	0	0	-4	1	0

Characters of the matrix representatives $\emph{D}_{\rm J}$ or $\emph{D}_{\rm s}$ for half-integral \emph{J} or \emph{S}

	E	C	C ₃	C ₄
α	0	π	2π/3	π/2
D _.	2 <i>J</i> + 1	0	1 (J = ½, 7/2)	$\sqrt{2} (J = \frac{1}{2}, \frac{9}{2})$
10 ⁴ 3			-1 (<i>J</i> = 3/2, 9/2)	0 (J = 3/2, 7/2)
			0 (J = 5/2, 11/2)	-√2 (J =5/2, 13/2)
J = 1/2	2	0	1	√2
J = 3/2	4	0	-1	0
J = 5/2	6	0	0	-√2

UNIT - I - 4132

- 6. a) Condider an octahedral ML₆ molecule:
 - (i) Construct the expressions for LGOs among six ligands, L, forming σ -bonding with central metal atom, M.
 - (ii) Determine Mulliken notations of valance AOs of M.
 - (iii) Draw a qualitative moleculer orbital energy diagram of ML₆.

6+2+2

- b) Construct a correlation diagram for energy of EH₃ molecule (consider two limiting geometries e.g., planar and pyramidal) and hence determine the geometry of BH₃, CH₃, NH₃, molecules in their ground and first excited states.
- c) Rationalize the following phenomena with the aid of Relativistic Effects:
 - (i) Unlike the lighter congeners, higher valences (viz. IV) are more common for Os, Ir and Pt.
 - (ii) Compare and contrast: Argentophilicity and Aurophilicity
 - (iii) Compare the back-bonding ability in fifth and sixth row transition elements,

3**x**3

Character table of O point group

0	E	8C ₃	6C'2	6C4	$3C_2 = (C_4)^2$
$\mathbf{A_1}$	+1	+1	+1	+1	+1
A_2	+1	+1	-1	-1	+1
E	+2	-1	0	0	+2
T_1	+3	0	-1	+1	-1
T_2	+3	0	+1	-1	-1