Ex/M.Sc/CHEM/4/XIV/P-4141/2018

M. Sc. CHEMISTRY EXAMINATION, 2018

(4th Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XIV-P

Time : Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 4141

Answer any five of the following questions :

- 1. a) What is *chemical affinity* (*A*)? Establish the relationship between '*A*' & *internally generated heat* $(\bar{d}q_i)$ for a spontaneous chemical reaction.
 - b) Obtain the expression of *Onsager coordinate* of a spontaneous chemical reaction. 3+2
- 2. Using *Gibbs equation* for open system, derive : $\sigma = \sum_{j=1}^{n} J_j X_j$

5

3. Show that for a 'two fluxes' system, direct phenomenological coefficients are positive and $4L_{11}L_{22} > (L_{12} + L_{21})^2$. Mention the nature of the fluxes. 5

[4]

state and 5/2 in excited state. Into how many lines will the γ – ray spectrum split if the nucleus is under the influence of an internal electric field gradient ? Draw the enegry levels and transitions for the same.

d) Why are NQR spectra obtained only for solids ? The spins of ⁵⁹Co nucleus is 7/2. Assuming an axial field gradient, how many quadrupolar transitions will be obtained ? $2+3+5+2\frac{1}{2}$

[Turn over

- 4. State and explain the *'Principle of minimum entropy* production' at nonequilibrium stationary state. Show the ' σ 'vs. *'force'* plot of 1st order *nonequilibrium stationary* state of two fluxes system. 3+2
- 5. Using the 'Theory of fluctuation', show that

 $\langle a_j X_k \rangle = -k_B^{\delta}{}_{jk}$; Where a_j is Onsager coordinate of j^{th} rate process, X_k is Onsager force of k^{th} rate process and k_B is Boltzmann constant.

- 6. What are the conditions of a system to reach the 'non-equilibrium stationary statex' ? 'Glacier, maintaining constant mass on Mountain top' is an example of non-equilibrium stationary state.–Justify.
 5
- 7. Define 'thermoelectric power (ε)' and 'Peltier heat (π)'in connection to the thermoelectric effect. Establish the relationship between them using the principle of 1st order thermodynamics.
 5

UNIT - P- 4142

Answer question no.10 and one from question nos. 8 and 9

8 a) From Einstein's treatment of absorption and emission, show that the relative extent of spontaneous and induced emissions depend on excitation wavelength. b) Fluorescence anisotropy is a sensitive parameter to study the binding of fluorescent drugs with protein–Justify or criticize.

[3]

- c) Establish that in the presence of both static and dynamic quenching of fluorescence, the Stern Volmer plot shows a positive deviation. How can we extract the two components? $5+3+3+1\frac{1}{2}$
- 9 a) What are the different types of binding of a drug with DNA ? Using photophysical techniques how would you assess the nature of binding of a fluorescent drug with DNA ?
 - b) How can you determine the $pK_a *$ of an acid using Förster's cycle technique ? Derive the relevant equation. $(2+3)+(4+3\frac{1}{2})$
- 10. a) What will be the nature of photoelectron spectrum of hydrogen atom when it is excited by photon of energy 21.2eV ?
 - b) Show that Raman shift is equal to the frequency of vibration of a diatomic molecule.
 - c) Explain isomer shift in Mössbauer spectra with an example for tin compounds in different states of oxidation.
 A particular Mössbauer nucleus has spin 7/2 in ground