[4]

UNIT - A- 4162

Answer any five questions

- 6. Discuss the advantages of measuring initial rates rather than following the entire reaction for the purpose of analysis of substrates.
- 7. A given solution contains traces of I⁻ and IO₄, How could you determine the total I⁻ content in that solution using any appropriate kinetic method?
- 8. Discuss any single point method for the determination of components in a closely related mixture?
- For the enzymatic scheme E+S ⇒ ES → E+P where E, S, ES and P have their common definitions, how could you determine Michaelis constant without giving any restrictions on the rate constants of the three different steps shown in this scheme? Explain in detail.
- 10. Why is Mn^{2+} is a good catalyst for the redox reaction $2Ce^{4+} + TI^{+} \rightarrow 2Ce^{3+} + TI^{3+}$?
- 11. Is the oxidation of Fe²⁺ by Ce⁴⁺ in acidic media slow or fast ? Discuss with plausible reasoning. Expain how could you chemically prove that the reaction is slow or fast ? 5

Ex/M.Sc./CHEM/AC/4/XVI/A-4161/2018

M. Sc. Chemistry Examination, 2018

(4th Semester)

ANALYTICAL CHEMISTRY SPECIAL

PAPER - XVI-A

Time: Two hours Full Marks: 50

(25 Marks for each Unit)

Use a separate answerscript for each unit.

UNIT - A- 4161

- 1. Answer any three questions of the following:
 - a) What do you mean by elastic scattering and inelastic scattering of electrons during electro micrograph studies?

2

- b) Explain AFM technique and the choice of AFM tips for material characterization.
- c) What do you mean by primary, secondary, backscattered electrons in relation with SEM?
- d) Write the full form of common analytical tools used for characterization of materials.
 - (i) PL (ii) EDX (iii) XRD and (iv) DLS; Mention the utility of these tools in the field of material characterization.

[Turn over

2. a) How can "electron-beam" damage the sample

		surface or lattice packing during SEM and TEM studies	3?
			1
	b)	What are the different patterns of TEM studies and how	
		does it helps to understand the crystallinity of th samples?	1
	c)	Why is Au or Pt coating necessary for biological sample	es/
		soft samples during FESEM studies?	1
	d)	Write the Scherrer's equation and how it relates t	to
		dislocation density of a particular sample.	1
	e)	"One nanometer is a magical point on the dimensio	n
		scale." – Explain.	1
	f)	What is ball-milling process for the synthesis of	of
		nanoparticles/nanopowders? Wrie the advantage an	ıd
		disadvantage of this process.	1
3.	a)	Why is electrochemical technique called "green method	ď"
		for the synthesis of nano-films or materials?	1
	b)	What are the functionalized metal nanopartucles? Explain	in
		the sensing behaviour of Au-nanoparticles for alkali meta	tal
		ions?	2
	c)	What are electrochemical sensors? How these types of	of
		sensors are useful for the detection of different biological	al
		fluids.	2

4.	a)	How can you tailor the bulk materials to nanomaterials?	
		How is it influence the properties of materials?	
	b)	Define MEMs. 1	
	c)	What are opto-electronic materials and where are they used?	
5.	a)	What are core-shell nanoparticles? What are the advantages of core-shell nanoparticles in comparison to ordinary nanoparticles?	
	b)	Define Janus particle. List any four day to day live commercial applications of nanotechnology. 2	
	c)	Give two examples of each: (any two) 1 (i) Met-Cars.	
		(ii) Metal-Chalcogenides materials.	
		(iii) Molecular- Clusters	