Ex/M.Sc/CH/3/U-P-03111/13/2018

M. Sc. Chemistry Examination, 2018

(3rd Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER XI-P

Time: Two hours

Full Marks: 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 3111

Answer any two of the following questions

- 1. a) State the variation theorem and show how it can be extended to the mth excited state. $3\frac{1}{2}$
 - b) Using the trial function $e^{-\alpha r}$ for the ground-state H atom, find out the optimum value of α and the minimum energy.
 - c) Consider a trial function $(\tilde{\phi})$ consisting of n variational parameters $\{a_i\}, i = 1, n$ such for a set of that known functions $\{f_i\}, i=1, n,$

$$\tilde{\phi} = \sum_{i=1}^{n} a_i f_i.$$

Show that the optimization of variational parameters requires the solutions of secular equations. 5

- 2. a) Apply time-independent Rayleigh Schrödinger perturbation theory to find out the second order energy correction for the nth nondegenerate state using intermediate normalization condition. For the ground state, such energy correction always stabilizes the state Comment.
 - b) An electric field of strength **F** is applied on H atom along the z-axis as a perturbation.
 - i) Show the effect of first and second order perturbation on the energy of the ground state of H atom.
 - ii) What happens to the first excited states of the H atom due to first order perturbation ? $6\frac{1}{2}$
- 3. a) A Hamiltonian matrix (H) of a system is given by

$$\mathbf{H} = \begin{pmatrix} 2 & -2\mathbf{i} \\ 2\mathbf{i} & 2 \end{pmatrix}$$

Find its eigenvalues and normalized eigenvectors by solving algebraic equations. Verify that the results of C^+HC transformation gives the eigenvalue matrix, where C represents the eigenvector matrix. $7\frac{1}{2}$

b) Establish the relation between the Einstein's spontaneous emission coefficient and stimulated absorption coefficient.

- ii) Indicate the change of corrosion potential and corrosion current using Evans diagram for additional bacterial corrosion. Can you recognize the type of bacteria on that basis?
- b) i) Prove that direct current cnnnot pass through a capacitor placed in series with a resistor. 3
 - ii) How many times the peak current would change, when both the concentration of the electroactive species and scan rate of potential are trebled in reversible cyclic voltammetric experiment with a simple system?

- ii) How would you modify simple Butler Volmer equation on the basis of consideration of the existence of double layer at the electode solution interface ? How would you verify the result ?
- c) i) 'Efficiency of an ideally operating fuel cell can be even greater than one' Elucidate or justify. $2\frac{1}{2}$
 - ii) Explain why i_0 of hydrogen evolution reaction increases with increase of work function for some metals but decreases for other metals. $2\frac{1}{2}$
 - iii) Electrochemical oxidation of Pb to Pb^{2+} provides current density of 50 and 250 mAcm⁻² at 200 and 400 mV of potential respectively at 25°C. Calculate the transmission co-efficient of the reaction. $2\frac{1}{2}$
 - iv) Estimate limiting current density at 27°C for an electrode immersed in a 0.2M aqueous Cu^{2+} unstirred solution in which the thickness of the diffusion layer is about 0.6 mm. Given $\lambda = 107$ S cm² mol⁻¹. $2\frac{1}{2}$
- 5. Answer *any one* question :
 - a) i) "A corroding metal is analogous to a short-circuited energy producing cell" – explain. 2

UNIT - P-3112

- 4. Answer any two questions :
 - a) i) Show that the symmetry factor of simple Butler
 Volmer equation can be equated to a trigonometric
 function which is a proper fraction.
 - ii) For an electrode reaction of the type :

 $M(e) + H^+ - OH_2 \rightarrow M - H + H_2O,$

state and explain the condition under which electrons tunnel between the electode and the ions in a solution.

4

- iii) Distinguish between polarizable and non polarizable interface.
- b) i) The reaction path of $I_3^- + 2e^- \rightleftharpoons 3I^-$ consists of the following steps :
 - I) $I_3^- \rightleftharpoons I_2 + I^-$
 - II) $I_2 \rightleftharpoons I + I$
 - III) $2(I + e^- \rightleftharpoons I^-)$

It is found experimentally that the transfer coefficients, $\vec{\alpha} = \frac{1}{2} = \vec{\alpha}$. Find out the rate determining step. Also find out anodic and cathodic reaction orders with respect to both I⁻ and I₃⁻. 5

[Turn over