Ex/M.Sc/CH/3/U-P-3121/14/2018

M. SC. CHEMISTRY EXAMINATION, 2018

(3rd Semester)

PHYSICAL CHEMISTRY SPECIAL

PAPER - XII-P

Time : Two hours Full Marks : 50

(25 marks for each unit)

Use a separate answerscript for each unit.

UNIT - P - 3121

- 1. Describe the basic features associated with the fermion particles and derive the distribution function associated with a thermodynamic system of fermions. 6
- 2. Derive an expression for the chemical potential of a thermodynamic system of monatomic fluid in terms of the radial distribution function. 6
- 3. Answer *any three* of the following : $3 \times 3 = 9$
	- a) Write a short note on Potential of Mean Force and comment on its usefulness.
	- b) Define direct correlation function and describe the HCN approximation with its use.
- c) For the Bose-Einstein condensation, comment very briefly on the ground state population near the critical point. The corresponding critical point being associated [2]

For the Bose-Einstein condensation, comment very

briefly on the ground state population near the critical

point. The corresponding critical point being associated

with $\rho \lambda^3 = 2.612$, estimate the critical temper the ⁸⁷Rb vapor with number density (ρ), $10^{11}/\text{cm}^3$. (\wedge is thermal de Broglie wave length).
- d) Define the Square-Well potential as a model intermolecular interaction potential and estimate the second virial coefficient of a gaseous system following this potential.
- 4. For a system of photon gas in thermal equilibrium with temperature, T, confined in volume, V, and having canonical For the Bose-Einstein condensation, comment very

briefly on the ground state population near the critical

point. The corresponding critical point being associated

point of the reaction by T-jump relax

point of the rea Evaluate the internal energy, pressure, entropy, Gibbs free energy of the system and comment on the chemical potential of the photon particles of such a system. ($c =$ velocity of light, h = Planck's constant and $\beta = 1/kT$. intermolecular interaction potential and estimate the
second virial coefficient of a gaseous system following this
potential.

For a system of photon gas in thermal equilibrium with

thermperature, T, confined in volume,

OR

The expression for pressure, P of a fluid at temperature, T and number density, ρ with two - particle interaction potential, u(r) and radial distribution function, $g(r) = g_0(r) + \rho g_1(r) + \rho^2 g_2(r) + \cdots$, is given by,

where the rate constants $k_1 \& k_1$ can be determined by following the reaction by T-jump relaxation method. Find out an expression for the relaxation time (τ) in terms of the rate constants.

g) Discuss briefly about competitive and irreversible inhibitions with examples.

UNIT - P-3122

- 5. Answer *any five* questions : 5✕5
	- a) Discuss the principles involved in the determination of rate constants using flow technique. What are the advantages and disadvantages of using flow technique ?
	- b) Write a brief note on the Shock-tube method in the study of fast reactions.
	- c) What is meant by ionic polymerization ? How many types are there ? Discuss the steps involved in the 'polar bond mechanism' for cationic polymerization and deduce the rate law. ionic polymerization ? How many types
s the steps involved in the 'polar bond
ationic polymerization and deduce the
opic diffusion controlled reaction ?
11 microscopic diffusion controlled
of temperature on an enzyme cata
	- d) What is microscopic diffusion controlled reaction ? Discuss about full microscopic diffusion controlled reaction.
	- e) Discuss the effect of temperature on an enzyme catalyzed reaction and deduce an expression for the rate of reaction involving a single substrate and an enzyme following the Michaelis-Menten type of mechanism.
	- f) A fast reversible reaction occurs

$$
A \frac{k_1}{k_{-1}} Y + Z
$$

$$
[3]
$$

$$
\frac{P}{kT} = \frac{\rho^2}{6kT} \int_0^\infty r u'(r) g(r) 4\pi r^2 dr.
$$

[3]
 $\frac{P}{kT} = \frac{\rho^2}{6kT} \int_0^\infty r u'(r) g(r) 4\pi r^2 dr.$

that g_o(r) may be approximated as, $e^{-u(r)/kT}$.

nt on its utility. 4 [3]
= $\frac{\rho^2}{6kT} \int_0^{\infty} r u'(r) g(r) 4\pi r^2 dr.$
t g_o(r) may be approximated as, $e^{-u(r)/kT}.$
n its utility. 4 [3]
 $\frac{P}{kT} = \frac{\rho^2}{6kT} \int_0^{\infty} r u'(r) g(r) 4\pi r^2 dr.$

Justify that $g_0(r)$ may be approximated as, $e^{-u(r)/kT}$.

Comment on its utility. 4 Comment on its utility. 4

[Turn over