Ex/M.Sc./CH./4/A-4151/109/2018

M. Sc. CHEMISTRY EXAMINATION, 2018

(4th Semester)

ANALYTICAL CHEMISTRY SPECIAL

PAPER - XV-A

Time : Two hours

Full Marks : 50

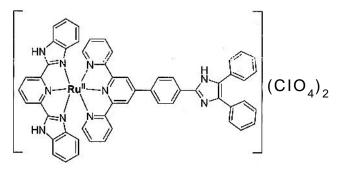
(25 Marks for each Unit)

Use a separate answer script for each unit.

UNIT – A- 4151

Attempt any five qusetions.

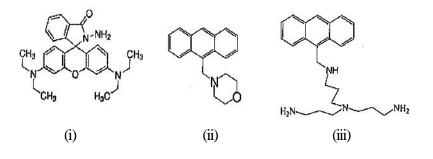
1. Explain the following :


- i) Pyridine is weakly emissive and become nonfluorescent on acidfication.
- ii) Very dilute solution of Phenol is emissive while concentrated solution of phenol is nonemissive.
- iii) Phenolphthalein is a nonfluorophore but Fluorescein in Fluorescence active although the functional groups are the same.
- iv) Eu $(acac)_3$ (acac = acetylacetonato) is emissive although Eu (III) is 4f⁶ and paramagnetic.
- v) Emmissivity of Coumarin > Napthalene > Vitamin A although all have five conjugated doubles bonds.

[Turn over

- a) What are the possible ways of non radiative decay of an optically excited molecule? Briefly describe the machanism of radiative and nonradiative processes. 5
- a) Why does pyrene solution show longer wavelength emission at higher concetration ? Design some pyrene appended molecules to accomplish this property for analytical applications.
 - b) Write a short note on delayed Fluorescence. 3+2
- 4. a) In a metal complex, the metal dominated excited state (M_1) lies in between S_1 and T_1 energy levels and also a metal dominated orbital (M_0) appears closer to S_0 state. Dram the state diagram and comment on the emission spectral feature.
 - b) Describe the mechanism of quenching. 3+2
- 5. What happens when (give chemical reaction) 1×5
 - a) Aqueous solution of [Cr (NH₃)₆]Cl₃ is irradiated with UV light.
 - b) Acidified $(0.1 \text{N H}_2 \text{SO}_4)$ solution of $[\text{K}_3 [\text{Fe}(\text{C}_2 \text{O}_4)_3]$ is exposed in day light,
 - c) Mixture of K_4 [Fe (CN)₆] and 2,2'-bipyridine in aqueous medium is exposed to UV light;

m/e = 31 peak. Predict the appropriate mode of fragmentation with chemical reasoning. 2


- c) How do gaseous and desorption sources differ in the mass spectrometric measurement? What are the advantages of each?2
- d) How many peaks would you expect in the mass spectrum of CH₃Cl ? Predict their m/e values.
- e) The electrospray ionization mass spectrum (ESI-MS) of the following complex exhibits two peaks, at m/z =470.06 and m/z = 938.08 in acetonitrile. Identify the ions responsible for the peaks. (Given atomic mass of Ru : 101.07 and Cl = 35.5) 4

UNIT – A- 4152

- 8. Discuss the working of an organic scintillator explaining the principle involved. $4\frac{1}{2}$
- 9. Answer *any two* questions :
 - a) Describe the principle behind the functioning of "Gas ionization detectors".
 - b) Discuss radiolysis of water following interaction of an ionizing radiation with it. What are the major products formed as a consequence ?
 - c) With suitable graphical representation discuss "Ceric Sulphate dosimetry".
 - d) With a suitable example of your choice explain radiometric titrations.
 4
- 10. a) Write an equation for the appearance potential of the fragment (R⁺) derived from the molecule, R-X, in terms of ionization potential and dissociation energy. How the appearance potential can be obtained from ionization efficiency curve ? $2\frac{1}{2}$
 - b) Fragmentation of $OHCH_2CH_2NH_2^+$ can occur to produce $\dot{C}H_2OH$ and $\dot{C}H_2NH_2^+$ or $\dot{C}H_2NH_2$ and CH_2OH^+ . Experimental results show that the peak at m/e = 30 is about ten times more intense than the peak at

- d) $[Ru(bpy)_3](PF_6)_2$ in dry MeCN solution is electrochemically reduced (at-1.5V) and ammonium perdisufate is added. A strong emission is observed.
- e) Why do phosphorescence emission appears at longer wavelength and life time is higher than fluorescence ?
- a) "Ethidium bromide is nonfluorescent while in DNA environment emission is enhanced." Explain
 - b) Upon irradiation of light to acidfied (0.1N H₂SO₄) solution of Mohr's salt and Methylene blue (MB), colour bleaches while colour reappears when it is placed in dark. Explain with MO approach. 3+2
- 7. Explain the followings properties (a) the molecule (i) is a chemosensor to H₂O₂ catalysed by Fe (III); (b) the molecule (ii) is a H⁺ sensor; (c) the molecule (iii) is a sensor for HPO₄²⁻.

[Turn over