9. Assign Mulliken symbols for the following irreducible representations 2

Е	2C ₃	3C ₂ ′	σ_{h}	2S ₃	3 σ _v
1	1	1	-1	-1	-1
1	1	-1	-1	-1	1

Use following character tables, if required to answer the above questions.

(i) Character table for C_{3v}

C _{3v}	E	2C ₃	3σ _v	
A ₁	1	1	1	Z
A ₂	1	1	-1	R _z
Е	2	-1	0	$(x,y), (R_x, R_y)$

(ii) Character table for C_3 , $\varepsilon = \exp(2\pi i/3)$

	E	C ₃ ¹	C ₃ ²
Α	1	1	1
_ ∫	1	3	8 *
⊏ โ	1	* 3	3

____X ____

Ex./M.Sc/CH/I/U-1011/9/2018

M.Sc. CHEMISTRY EXAMINATION, 2018

(1st Semester)

THEORITICAL CHEMISTRY

Paper - I

Time : Two hours

Full Marks : 50

(25 marks for each unit) Use a separate answerscript for each unit.

UNIT - 1011

Answer any two questions.

1. (a) If two state functions, ψ_1 and ψ_2 are the nondegenerate eigen functions of a hermitian operator.

 \hat{A} then prove that $\langle \psi_1 | \hat{B} | \psi_2 \rangle = 0$, where \hat{B} is a hermitian operator which commutes with \hat{A} . $2^{1/2}$

- (b) Find out the commutator of the following : $21/_2 + 21/_2$
 - (i) $\left[\hat{L}^2, \hat{L}_y\right]$

(ii) $\left[\hat{P}_{x}^{\,n}\,,\,\hat{X}\right]$, the terms have their usual meanings.

- (c) Deduce an expression for the time variation of the average value of a dynamical observable in Heisenberg picture. $2^{1}/_{2}$
- (d) Show that the average kinetic energy of a harmonic oscillator is exactly half of the total energy in any stationary state. $2^{1/2}$

(Turn over)

- 2. (a) Show that the energy of a rotating quantum particle in a ring is quantized. Comment on the level of degeneracy of its eigenstates. $41/_2+2$
 - (b) Derive the recursion formula for the Hermile polynomials. Using the formula establish the selection rule for the dipole induced transition in one-dimensional harmonic oscillator.
- 3. (a) Considering benzene ring to be a circular ring and assuming that the C-C bond length is 1.4Å, find out the wave length of the first electronic band in benzene.
 3
 - (b) Construct the ground state wave functions for the Li-atom (1s²2s¹) in the form of Slater determinant satisfying Pauli exclusion principle.
 - (c) Find out the following quantities : 3

 $\hat{S}_{\star} \big| \, \alpha \big\rangle, \, \hat{S}_{_{-}} \big| \, \alpha \big\rangle, \hat{S}_{_{X}} \big| \, \alpha \big\rangle, \, \hat{S}_{_{X}} \big| \, \beta \big\rangle, \, \hat{S}_{_{y}} \big| \, \alpha \big\rangle, \hat{S}_{_{y}} \big| \, \beta \big\rangle$

(d) Construct Pauli spin matrices and show that they anti commute. $31/_{2}$

UNIT - 1012

4. Construct the complete character table for $\rm C_{_{2v}}$ point group. $\rm 6$

- What do you mean by a class of elements in a group ? Give example. How many classes are there in D₂ point group ?
 3
- 6. Answer any **one**: 4
 - (a) Find out the $\sigma\text{-SALCs}$ for fluorine $\sigma\text{-orbitals}$ in $\mathsf{BF}_3.$
 - (b) Write a reducible representation for the motional degrees of freedom of $POCl_3$ (point group C_{3v}). Decompose the representation into the irreducible representations contained in it.
- Identify the point groups of the following molecules (any *five*): 5

(i) trans-[PtCl₂(NH₃)₂] (ii) cis-[Co(NH₃)₄F₂]⁺ (iii) ICl₃ (iv) PCl₃F₂ (v) IF₇ (vi) 1,2-dichlorobenzene.

- 8. Answer any *two* of the following : $2^{1/2}x^{2}$
 - (a) Under what condition, the elements E, A and B form a group (E = Identity).
 - (b) Gather all the symmetry elements present in an octahedron.
 - (c) Find out the matrix representation for $C_n(z)$ symmetry element, n = 360/ θ , θ = angle of rotation around z axis.

(Turn over)