

Ex/M.Sc/CHEM/VI/2061/101/2018

M.Sc. CHEMISTRY Examination, 2018

(2nd Semester)

ORGANIC CHEMISTRY

PAPER - VI

Time: Two hours Full Marks: 50

(25 marks for each unit)

Use a separate Answer-script for each unit.

UNIT - 2061

1. Molecules with $(4n+2)\pi$ electrons respond in electrocyclic reactions *via* disrotation mode under thermal condition. Establish the above statement constructing an appropriate correlation diagram for a suitable example of electrocyclic reaction.

2. Answer *any three*:

a) Write the product with proper mechanism. Comment on the stereoselectivity obtained here.

$$\begin{array}{c|c} SiMe_3 & O \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} FeCl_3 \\ \end{array} \end{array} ?$$

[Turn over

2**x**3

b) Write all the probable intermediates involved in the following transformation.

- c) Give an example of cycloaddition reaction which produces exclusively the *exo*-product between two possible diastereomeric products. State the reason of *exo*-selectivity.
- d) Complete the following sequence of reactions.
 Comment on the mode of pericyclic reactions involved in each step.

$$\begin{array}{c|c} \text{Ar} & \xrightarrow{COOMe} & \xrightarrow{\Delta(Ring\, opening)} & A & \xrightarrow{MeOOC-C \equiv C-COOMe} & B \end{array}$$

3. Answer *any two*:

2**x**2

a) The values of ρ for the acid dissociation equilibria of substituted benzoic acids, phenylacetic acids and phenylpropionic acids are 1.00, 0.49 and 0.21,

$$H_2N$$
 H
 M
 NH_2
 M

d) How can you accomplish the following transformation through the temporary construction of a heterocyclic system? Highlight the stereochemical feature of this sequence.

$$\longrightarrow \bigoplus_{(\pm)}^{\mathrm{NH}_2}$$

e) Suggest a method for the synthesis of the compound $\bf N$ and delineate the scheme for the conversion of $\bf N$ to $\bf P$ with due emphasis to the mechanistic aspect of the key step. $3\frac{1}{2}$

b) With appropriate mechanism show the outcome of the following photochemical reactions (any *two*):

- c) Discuss the importance of sensitizer in photochemistry. Explain with an example what criteria should be fulfilled by the compound to become a sensitizer.
- d) How do you accomplish the following transformation? Explain with mechanism.

 $1\frac{1}{2}$

d) Carry out the following transformation. Suggest plausible mechanistic interpretation for the first step.

$$\begin{array}{c|c} & & & 1\frac{1}{2} \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- e) How can you effect the following conversions ? (Mechanism is not required) $1\frac{1}{2}+1$
 - i) Tropine \rightarrow cycloheptatriene

ii)
$$\alpha$$
-Pinene \rightarrow HOOC Me COOH

- f) i) How was the epimeric carbon of (–) ephedrine and (+) ψ ephedrine, having the same gross structure PhCH(OH) CH(Me)NHMe, determined chemically ?
 - ii) What happens when either of the two above mentioned alkaloids is heated with concentrated hydrochloric acid? Give plausible mechanistic explanation.
- 6. a) How can you synthesize the compound ${\bf I}$ starting from the racemic variety of a naturally occurring α -amino

[Turn over

UNIT - 2062

- 5. a) How can you distinguish the following pairs of compounds by ${}^{1}H$ NMR spectroscopy? Justify your answer. $1\frac{1}{2} + \frac{1}{2}$
 - i) Geranial and neral
 - ii) Coumarin and 7-hydroxycoumarin
 - b) Identify the products $\bf C$, $\bf D$ and $\bf E$ of the following reactions. Provide appropriate mechanistic and stereochemical explanations for their formation, as necessary. $1\frac{1}{2}+1$
 - i) α -Pinene $\xrightarrow{\text{HCl(g), ether}} \mathbf{C} \xrightarrow{10^{\circ} \text{C}} \mathbf{D}$
 - ii) Menthyl chloride $\xrightarrow{\text{NaOEt, EtOH}} \mathbf{E}$
 - c) Predict the products **F**, **G** and **H** of the following reactions (no mechanism is required). $1+\frac{1}{2}$
 - i) Camphor $\xrightarrow{\text{CH}_3\text{CO}_3\text{H}}$ \mathbf{F} $\xrightarrow{\text{KCN}}$ \mathbf{G}

ii)
$$\xrightarrow{\text{OH}}$$
 $\xrightarrow{\text{H}_2\text{O}_2}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{OH}}$

e) Predict the product(s) and explain with mechanism (any two): $\frac{1}{2} \times 2$

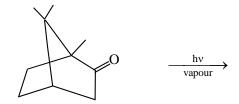
$$i) \qquad \xrightarrow{\begin{array}{c} \text{i) DIBAL-H in THFat-78}^{O}C\\ \text{ii) Sat.NH}_{4}Cl \end{array}}$$

[Turn over

[3]

acid (only suggest the steps with reagents, no mechanism is needed)?

$$0 \qquad 0 \qquad H \qquad N \qquad 0$$


$$0 \qquad I(\pm)$$

b) When the compound J reacts with the compound K and L separately, the extent of racemization in the product is more in case of K than that of L. Suggest an explanation for this observation.

c) Design a scheme for the synthesis of the following dipeptide **M** starting from appropriate α -amino acids using Staudinger Ligation in one of the steps (only suggest the steps with reagents, no mechanism is needed).

respectively in water at 25°C. Again substituted cinnamic acids show ρ value of 0.47 for the similar type of equilibrium under the identical condition. State the reason behind such type of variations of the ρ values.

- b) $-NH_2$ and $-NMe_2$ show negative σ_m values in spite of their -I effects. Explain the reason with proper justification.
- c) $-OCH_3$, $-NH_2$ and $-NMe_2$ show significant deviations in the correlation of log K vs σ for dissociation of substituted phenylacetic acids in water at $25^{\circ}C$ state the reason. Which type of σ values should be considered for the above functional groups in order to get better correlation?
- 4. a) How would you prove that Norrish Type-I cleavage reaction is a reversible process? Mechanistically predict the product(s) of the following photochemical reaction. $1+1\frac{1}{2}$

[Turn over