M.Sc. CHEMISTRY EXAMINATION, 2018

(1st Semester)

INORGANIC CHEMISTRY

Paper - III

Time : Two hours

Full Marks : 50

(25 marks for each unit) Use a separate answerscript for each unit.

UNIT - 1031

- 1. Answer the following questions :
 - (a) The [CrF₆]³⁻ shows three absorption bands at 14,900, 22,700, and 34,400 cm⁻¹, respectively. Assign the bands. Calculate 10 Dq and B values. What is the expected color of the complex ?
 - (b) Construct the Ligand Group Orbitals (LGO) and hence the Symmetry Adopted Linear Combination (SALC) to from the bonding and antibonding orbitals in an octahedral complex of the type ML_6 including π -interactions and draw the appropriate MO diagram of the complex. 5
 - (c) Taking suitable example how you will demonostrate the overlap between metal and ligand orbitals in an octahedral complex ?

- (c) In your own words explain "Neutron Activation Analysis".
 Why do you think "Proton Activation Analysis" is not so well established technique ?
 2+1/2
- (d) 235 U can undergo fission with slow neutrons whereas 238 U require high energy neutrons to cause fission. Explain the fact. $2^{1/2}$
- (e) Write down and explain Fermi's four factor formula. $1/_{2}+2$
- (f) From the concept of nuclear fission, derive the condition for the fission parameter Z^2/A . What is the significance of such a parameter? $2+1/_2$
- (g) What is a "fast breeder reactor"? Explain with the help of appropriate equations. $11/_{2}+1$

____ X ____

- (d) Addition of a Fe³⁺ salt into an aqueous solution of $K_4[Fe(CN)_6]$ leads to the formation of a deep blue color of the resulting solution. Explain the origin of the color. 2
- 2. Answer the following questions :
 - (a) With the help of molecular orbital diagram, explain why the octahedral transition metal carbonyls obey the 18 electron rule.
 - (b) Discuss the probable modes of addition reaction in square planar complexes. 2
 - (c) Discuss any one of the mechanisms of cyclometalation reaction. Mention the importance of transition metal cyclometalated complexes. 2+1
 - (d) Define oxidative addition and reductive elimination reactions. Discuss the concerted mechanism of oxidative addition reaction. 1+2
 - (e) Describe 1,1 and 1,2-insertion reactions with examples. 2

UNIT - 1032A

- 3. (a) Discuss with one example of a chemical system which is thermodynamically unstable but inert. $2^{1/2}$
 - (b) [Co(NH₃)₅(CO₃)]⁺ rapidly aquates although low-spin Co(III) is inert to substitution. Explain with proper reasoning.

(c) Consider the acid catalyzed aquation of $[M(NH_3)_5X]^{2+}$. When X = F, then the aquation rate is higher than that for X = CI, Br or I. What conclusions we can draw from this obsrvation? $2^{1/2}$

(d) For the reaction

$$\begin{array}{ll} \mathsf{A} + \mathsf{B} \rightleftharpoons \mathsf{C} & \mathsf{k}_1, \, \mathsf{k}_{-1} \\ \\ \mathsf{C} \to \mathsf{P} & \mathsf{k}_2 \end{array}$$

where A and B are reactants to form an intermediate C in equilibrium (Equilibrium constant K = k_1/k_{-1}) and then C gives rise to products in the rate step k_2 . Given the initial condition $[A]_0 << [B]_0$, how could you determine K and k_2 ? $3^{1}/_2$

UNIT - 1032B

Answer any *five* questions.

- 4. (a) Derive the equation to calculate recoil energy of daughter nucleus based on energy of γ -photon and mass number related with Szilard-Chalmer reaction. $2^{1/2}$
 - (b) In a ⁷⁹Br (n, γ) ⁸⁰Br reaction the energy of γ -photon is 5 MeV and C-Br bond energy is 2.16 eV. Comment on the formation of ⁸⁰Br from C₂H₅⁷⁹Br. How one can isolate Ag³⁸Cl(s) from an aqueous solution of Na³⁷ClO₃? 1¹/₂+1

(Turn over)