Ex/MCH/I/XI/34/2018(S)

FINAL B. Sc. EXAMINATION, 2018

(1st Semester, Special Supplementary)

CHEMISTRY (HONOURS)

PAPER - XI

PHYSICAL CHEMISTRY

Time: Two hours

Full Marks: 50

Use a separate answerscript for each group.

GROUP-A

- Why ordinary voltmeter is not used for determination of reversible cell *emf*? Explain briefly a principle for determining the *emf* for a revrsible electrocyhemical cell? 1+3
- 2. Derive an expression for the *emf* of a cell where the reaction, $\gamma_1 A + \gamma_2 B \rightarrow \gamma_3 C + \gamma_4 D$ takes place and hence relate the equilibrium constant for this reaction with standard cell potential. 3+1

3. Given that
$$E^{0}_{MnO_{4}^{-}/Mn^{2+}} = 1.51 \text{ V}$$
 and $E^{0}_{MnO_{2}^{-}/Mn^{2+}} = 1.23 \text{ V}$
in acid solution. Calculate $E^{0}_{MnO_{4}^{-}/MnO_{2}}$ in acid solution.

3

4. Set up a cell where the following reaction takes place :

$$P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_4 + PH_3$$

[Turn over

5. Determina the *emf* at the electrolyte junction of the following cell:

 $Ag/AgCl/(HCl(a_1):HCl(a_2)/AgCl/Ag$ 4

GROUP - B

- Derive the expression for Langmuir adsorption isotherm.
 Show under what condition it can be truncated to the Freundlich isotherm.
- How can a hydrophobic sol be stabilized ? What does 'Gold number' reflect and how ?
 3+2
- What happens when an electric field is applied on a lyophobic sol ?
 3
- 9. Describe a method of determination of viscosity average molar mass $(\overline{M_y})$ of a polymer sample. 4

GROUP - C

Answer any four questions

10. Write down 'Wien displacement law' with symbolic significances. At what wave length does the maximum in the radiant energy density distribution function for a black body occur at T = 300 K? 2+2

- 11. When lithium is irradiated with light, the kinetic energy of the ejected electrons is 2.935×10^{-19} J for $\lambda = 300.0$ nm and 1.280×10^{-19} J for $\lambda = 400$. nm. Calculate the *Planck constant (h)*.
- 12. a) Find the operator \hat{A}^2 , if $\hat{A} = \frac{d}{dx} + x$.
 - b) If ψ₁ and ψ₂ are two *eigen functions* with same *eigen value*E, prove that any linear combination of two is also an *eigen function* with same *eigen value*. 2+2

13. a) Solve the equation :
$$\frac{d^2\psi}{dx^2} - 3\frac{d\psi}{dx} + 2\psi = 0$$

- b) Calculate the *de-Broglie* wavelength of an electron ($m_e = 9 \cdot 1 \times 10^{-31}$ kg) having KE equal to 1000 eV (protonic charge = $1 \cdot 6 \times 10^{-19}$ C). 2+2
- 14. A free particle in one-dimensional box of length 'a' is in its ground state. What is the probability of finding the particle within the range 'a/3' and '2a/3'? 4