Ex/Int/CH/V/18/2018

INTER B.Sc. EXAMINATION, 2018

(3rd Semester)

CHEMISTRY (HONOURS)

PHYSICAL CHEMISTRY

PAPER - V

Time : Two hours

Full Marks: 50

(25 marks for each group)

Use a separate answerscript for each group.

GROUP-A

Answer any five questions.

- a) Represent Carnot cycle on U vs T diagram for an ideal gas and explain.
 - b) Chemcial potential is a measure of 'escaping tendency': Comment. 3+2
- 2. a) Derive the criteria of spontaniety and equilibrium when the temperature and volume of the system are kept constant.
 - b) Show that $C_v = -T(\delta^2 A / \delta T^2)_v$ 3+2
- 3. a) For a substance both $(\delta U/\delta V)_T$ and $(\delta H/\delta P)_T$ are zero. Find the equation of state of the substance.
 - b) The chemical potential of a substance decreases with increase in temperature at constant pressure and composition : Justify/Criticize.
 3+2
 [Turn over

- 4. a) What is fugacity and fugacity coefficient of a gas?
 - b) For NH₃ gas, considering intermolecular attraction to be negligible find effective pressure if the experimental pressure is 10 am at 300 K. Given van der Waals' constant, $b = 3.707 \times 10^{-2} \text{ Lmol}^{-1}$. 3+2
- 5. a) Derive van't Hoff equation from van't Hoff isotherm.
 - b) For the reaction $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$, $K_P = 0.0529$ at 26⁰C. 0.092 mole of NH_4HS is introduced into 2.46 L evacuated flask at 26^oC. Calculate the percentage of solid NH_4HS decomposed. 3+2
- 6. a) Show that the entropy change in a binary mixture of ideal gases under isothermal condition is maximum when $x_1 = x_2 = \frac{1}{2}$. [x represents mole reaction]
 - b) Residual entropy of CO is $5.76 \text{ JK}^{-1} \text{ mol}^{-1}$: Justify. 3+2
- a) Show that decrease in Gibbs free energy at constant temperature and pressure represents the net nonmechanical work that can be obtained from the system.
 - b) Calculate ΔG per mole for freezing of super-cooled water at -5° C. Given latent heat of fusion of ice = 80 cal mol⁻¹. 3+2

- 10. a) What is meant by an oscillatory chemical reaction ? Write the various steps of Lotka-Volterra mechanism for such a reaction. Assuming steady state approximation for the intermediates, comment if the mechanism can explain the key feature of the reaction.
 - b) When a chain reaction can have a chain length and hence define it. 2

OR

Explain the effect of solvation on the rate of a reaction.

9. a) The thermal decomposition of N_2O_5 can be explained by the following mechanism : 4

 $N_2O_5 \xrightarrow{k_1} NO_2 + NO_3$

$$NO_2 + NO_3 \xrightarrow{k_3} NO + O_2 + NO_2$$

$$NO + NO_3 \xrightarrow{k_4} 2NO_2$$

Using steady state approximation for NO and NO₃, show that the rate of formation of O_2 follows first order kinetics in N₂O₅.

OR

For the consecutive reaction : $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ (each step is first order), derive an expression for the time corresponding to maximum concentration of B.

- b) Why and what will happen to the rate of a reaction between two negatively charged ions as the ionic strength of the solution is increased ?
- c) A dimerization reaction at about 300 K in the gaseous phase follows the Arrhenius equation $k_2 = Ae^{-E_a/RT}$ where $A = 10^{5.61} \text{ L mol}^{-1} \text{ s}^{-1}$ and $E_a = 65.40 \text{ kJ mol}^{-1}$. Calculate $\Delta^{\neq}G^{\circ}$ and $\Delta^{\neq}S^{\circ}$ for the reaction. 3

GROUP - B

8. a) Define rate of a chemical reaction and hence express it for the reaction :

 $M + 3N \rightarrow 2P + R$, in terms of each of the constituents. $1\frac{1}{2}$

b) Derive an expression for the rate constant of a second order reactin when concentrations of both the reactants are different. When will it follow a first order kinetics ?

3

c) Discuss in brief the Ostwald's method to determine the order of a reaction. $2\frac{1}{2}$

OR

Explain the effect of temperature on the rate of a chemical reaction ?

d) Decomposition of gas at an initial pressure of 600 mm of Hg was studied in a closed vessel at a certain temperature. The gas was found to be 50% decomposed in 30 min and 75% decomposed in 90 min. Find the order and rate constant.

OR

A certain reaction : $A + B \rightarrow C$; is first order with respect to each reactant with $k = 1.0 \times 10^{-2} \text{ Lmol}^{-1} \text{ s}^{-1}$. Calculate the concentration of a remaining after 100 s if the initial concentration of each reactant is $0.1 \text{ mol } \text{L}^{-1}$.