Ref No. Ex/Int./Ch./I/PR/SUB/20/2018 INTER B. Sc. (CHEMISTRY) Examination,

(2nd Year, 2nd Semester)

CHEMISTRY (SUBSIDIARY)

INORGANIC CHEMISTRY

[PRACTICAL]

Time: Six hours Full Marks: 30

1. Make systematic analysis of the mixture of Inorganic salts marked 'S' and give the most probable composition. The sample is supposed to contain not more than three radicals.

15

Standardize the supplied Na₂S₂O₃ solution with the help of standard K₂Cr₂O₇ solution. Quantitatively transfer the supplied solution marked 'V' to 250 ml volumetric flask and make up the volume upto the mark with de-ionized water. Pipette out 25 ml of the solution and titrate with standard Na₂S₂O₃ solution. Calculate the total amount of copper (in g/L) present in the supplied solution.

3. Viva-voce. 5

Ref No. Ex/Int./Ch./I/PR/SUB/20/2018

INTER B. Sc. (CHEMISTRY) EXAMINATION,

(2nd Year, 2nd Semester)

CHEMISTRY (SUBSIDIARY)

INORGANIC CHEMISTRY

[PRACTICAL]

Time: Six hours Full Marks: 30

 Make systematic analysis of the mixture of Inorganic salts marked 'S' and give the most probable composition. The sample is supposed to contain not more than three radicals.

15

Standardize the supplied Na₂S₂O₃ solution with the help of standard K₂Cr₂O₇ solution. Quantitatively transfer the supplied solution marked 'V' to 250 ml volumetric flask and make up the volume upto the mark with de-ionized water. Pipette out 25 ml of the solution and titrate with standard Na₂S₂O₃ solution. Calculate the total amount of copper (in g/L) present in the supplied solution.

3. Viva-voce. 5