INTER B.Sc. Examination, 2018

(2nd Semester)

CHEMISTRY (SUBSIDIARY)

PAPER - VIIS

Time: Two hours Full Marks: 50

Use a separate answer script for each group

GROUP-A

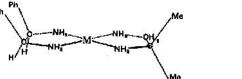
- a) What is meant by the molar conductance of an electrolyte solution? Express its relation with the specific conductance?
 - b) Show pictorially and explain how the conductance varies during conductometric titration of a mixed solution of HCL and CH₃COOH (in 1:1 molar ratio) with a solution of NaOH added from a burette. 3
 - c) The resistance of a conductivity cell is 702 Ω when filled with 0.1N KCl solution (specific conductance = 0.14807 Sm⁻¹) and 6920 Ω when filled with 0.01N acetic acid solution. Calculate the cell constant and Λ_m (molar conductance) for the acid solution.

OR

The resistance of a 0.02 mol dm⁻³ solution of acetic acid in a cell (cell constant, $k=0.2063~cm^{-1}$) is found to be 888 Ω at 298K. What is the degree of ionization of the acid at this concentration ? (Given Λ_m^0 of acetic acid = 390.7 × $10^{-4}~\Omega^{-1}m^2mol^{-1}$ at 298K).

- a) Explain how you can determine the pH of an unknown solution by EMF measurement using standard hydrogen electrode.
 - b) Represent the cell for the overall cell reaction,
 - $2Al(s) + 3Br_2 + 3Br_2(p = latm) \rightarrow 2Al^{3+}(a = 1) + 6Br^{-}(a = 1)$ and indicate whether it will operate spontaneously or not (Given, $E^0_{Al^{3+}|Al} = -1.76V$ and

$$E_{Br^{-}|Br_{2}|Pt}^{0} = +1.09V$$
 at 298 K).


c) The standard electrode potential for $Hg_2^{2+} | Hg$ and $Hg^{2+} | Hg$ are 0.799 V and 0.855V, respectively. Calculate the equilibrium contant for the reaction $Hg^{2+} + Hg \Longrightarrow Hg_2^{2+}$ at 298K.

- e) Applying Valence Bond theory, predict the geometry of diamagnetic [PtCl₄]²⁻ complex.
- f) Draw all possible stereoisomers of (i) [MABCD] and (ii) $[M(A \land A)_2B_2]$, where A, B, C and D represent monodentate, and $A \land A$ stands for symmetrical bidentate ligand.

- 5. a) What is Ziegler-Natta catalyst and how does it function?
 - b) What is Bakelite?

GROUP-C

6. Comment on the optical activity of Mills Quibell complex:

- 7. Answer *any five* questions :
 - a) How did Alfred Werner establish the geometry of sixcoordinated complexes ?
 - b) Assign the possible and most stable oxidation states
 (OS) of scandium, vanadium and chromium with justification.
 - c) What do you mean by ambidentate and bridging ligands? Give examples.
 - d) Write the IUPAC nomenclature of the following complexes (any three):

3x5

 $Li[AlH_4], [Co(py)_6][CoCl_6],$

 $K_2[Ni(CN)_4], H[[AuCl_4],$

GROUP-B

- 3. a) In vapor phase or non polar solvent enol content of $\begin{matrix} O \\ CF_3CH_2 C CH_3 \end{matrix} \quad \text{is more than that of } \\ O \\ CH_3CH_2 C CH_3 \end{aligned} explain.$
 - b) How will you carry out the following transformations?

i)
$$H_2C$$
 $COOEt$
 $OOEt$
 OOT
 OOT

- 4. a) Isoelectric point of glycine is 6.0 whereas that of lysine is 9.8 explain.
 - b) Ninhydrin reacts with L-alanine to produce a purple compound. Write down the structure of the product with mechanism.

 3
 [Turn over]