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  TDM system is a good example of sparse coefficient matrix. If Gaussian 
elimination is applied to this system, only one of the “a” is eliminated from the 
column containing the pivot element in each step, since the remaining elements 
below the diagonal are zero. Only one elimination process is employed at each 
step. 
 
 The number of operations needed for solving a tridiagonal system is of order 
N, that is, 0(N) as compared to 0(N-cube) for a system with a dense coefficient 
matrix. 
 
 Therefore, much smaller number of operations and consequently much lower 
round-off errors arise in the solution of such systems. Obviously, the computer 
time is much less for solution by TDMA. Thus, large tridiagonal systems are 
generally solved by this method. 

 
The set of equations can be readily solved by the Gaussian elimination 
method with a maximum of three variables per equation. The solution can be 
expressed very concisely. 
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The set of equations can be readily solved by the Gaussian elimination method   
    with a maximum of three variables per equation. The solution can be expressed        
     very concisely.  
The prior equation a special form of the system (using N = M – 1)  

Tridiagonal matrix algorithm  (TDMA). 

TDMA considers a recursion solution of the form: 
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Also, from the first equation, one may obtain, 
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Therefore, in a nutshell, the TDMA algorithm can be written as, 
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Where, the constant parameters are calculated as, 
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  In this method, unlike in direct methods such as Gaussian elimination, the round-off error   
does not accumulate.  
  The round-off error after each iteration simply produces a less accurate input for the next 
iteration. 
  Therefore, the resulting round-off error in the numerical solution is only what arises in the 
computation for the final iteration.  
  However, the solution is not exact but is obtained to an arbitrary, specified, convergence 
criterion. 

Jacobi Method (Predecessor of G−S Method)  

Let us consider a systems of equations as follows 
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Therefore, in general, 
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To start the iteration process, initial guess values are assigned to all unknowns. If x1
(0), x2

(0), 
….. xN

(0) are initial guess values, then, the value of x1 after the first iteration, x1
(1),  

(0) (0) (0)
(1) 1 12 2 13 3 1

1

11

.... N Nc a x a x a x
x

a

   


Therefore, in general, (0)

1,(1) 1,2,3,......

N

i ij jj j i

i

ii

c a x
x for i N

a

 


 




Created in M
aste

r P
DF EditorThe values obtained in the first iteration is to be used for the next iteration, thus 

( )

1,( 1) 1,2,3,......

N p

i ij jj j ip

i

ii

c a x
x for i N

a

 


 


Disadvantages of Jacobi method 
The main disadvantage is that the computer storage is needed for the present iteration as 
well as for the previous one.  
This is because all the values are computed using previous values before any unknown is 
updated. 

Gauss–Seidel Method (An Improvement Over Jacobi Method)  
A significant improvement in the rate of convergence and in the storage requirements can 
be obtained by replacing the values from the previous iteration by new ones as soon as they 
are computed.  
Then the values of only the latest iteration are stored, and each iterative computation of the 
unknown employs the most recent values of the other unknowns.  
This computational scheme is known as point-by-point Gauss–Seidel method.  
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Gauss–Seidel Method  
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Convergence criteria for G–S method  
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Criteria (b) if an estimate of the magnitude of  the unknowns xi is not available and none 
of the unknowns is expected to be zero 
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The convergence is guaranteed for linear systems that is, when the system is 
diagonally dominant. This is also known as Scarborough criterion.  

Why does diagonal dominance ensure convergence?  

In the simple three-equation system, we see in a particular iteration:  

Then the condition of diagonal dominance is forcing ε to become progressively 
smaller in successive iterations. 
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One of the problems with G–S method is that it is relatively slow to converge to the 

solution. The rate of convergence can often be improved by relaxation method 

 
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Successive under-relaxation (SUR) or under-relaxation is generally used for non-linear 

equations and for systems that result in a divergent G–S iteration.  

Successive over-relaxation (SOR) or over-relaxation is widely used for accelerating 

convergence in linear systems.  
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G-E TDMA G-S 

Direct solver Direct solver Iterative 

Based on foreword 
elimination and back 
substitution 

Based on recursion 
formula 

Based on initial guess 
of unknowns and 
subsequent 
improvement in each 
iteration 

High round-off error Low round-off error Low round-off error 

Number of arithmetic 
operation O(N3) 

Number of arithmetic 
operation O(N) 
 

Number of arithmetic 
operation O(N) 
 

Can be used low 
numbers of equations 

Can be used high 
numbers of equations 
 

Can be used for several 
thousands numbers of 
equations 
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The accuracy of a numerical solution is usually checked by one of the 

following three ways: 

 1. Comparison with the analytical solution. For most practical problems, 

analytical solutions do not exist. But, this is a good way of checking accuracy 

of a new numerical method.  

2. Comparison with the limiting case analytical solution. This is possible 

when the analytical solution for some limiting values of a parameter 

governing the solution is available. 

 3. Comparison with experimental results. This is most desirable for complex 

problems such as turbulence, combustion, non-Newtonian fluid flow, and 

heat transfer, which require many assumptions for the purpose of modeling.  
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Convective boundary condition  

The dimensionless boundary condition at the fin tip in the changed scenario 
would be written in the mathematical form as 
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 At i= M, the discretization equation is:   
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At x = L, i.e., at i = M, we have:  1 1 0M M MD     

Substituting the expression of ϴM+1 from (1), we have 
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