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 The stream function−vorticity or biharmonic equation approach is suitable for   

     solving two-dimensional flow problems. If the pressure distribution is also of  

     interest, the problem becomes more involved. 

 Stream function−vorticity formulation is difficult to implement in the problem  

    of fluid flow with variable properties and in complex geometries.  

 Also, ψ–ξ method is not applicable to three-dimensional problems. 

 Therefore, if the pressure distribution is of interest and/or three-dimensional  

     simulation is required, it is generally more efficient to solve the basic  

     Navier−Stokes equations in terms of the primitive variables u, v, w, and p. 
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APPROACH 

Consider a 1D steady state momentum equation: 
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The FDM representation for  the grid as shown in the figure below is: 
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The momentum equation will contain the pressure difference between two alternate 
grid points and not between the adjacent ones. 

Wavy pressure field for 1-D flow situation  
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1. The pressure is taken from a coarser grid than the one actually employed. 
This would reduce the accuracy of the solution.  

2. Even a wavy pressure (which can be realistic) field will be treated like a 
uniform pressure field by the momentum equation.  

No pressure field at all! 
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Checker board pressure field for 2D flow situation 
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1. If a certain smooth pressure field is obtained as a solution, an infinite number 
of solutions can be constructed by adding a checker board pressure field to that 
source (Patankar, 1980).  

2. The momentum equation would remain unaffected by this addition, since the 
checker board pressure field implies zero pressure force. A numerical method 
that allows such absurdities is certainly not desirable. 

Representation of continuity equation 

For 1D, steady, incompressible flow situation, the continuity equation is 
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A consequence is that a wavy velocity field, which is not at all realistic, does satisfy the 
discretized continuity equation. 

Pressure-velocity 
decoupling 
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1. The aforementioned difficulties can be circumvented by recognizing that all the 
variables need not be computed for the same grid points. 

2.  It is possible to employ a different grid for each dependent variable. In the staggered 
grid, the velocity components are calculated for the points that are located on the faces 
of the control volume (shaded), whereas the pressure is calculated for the regular grid 
points. 

3.  For uniformly spaced grid points, the control volume faces are situated exactly at the 
midway between the grid points. 

Velocities: Cell faces 
Pressure: Cell centers 
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 1. For a typical control volume shown (shaded with hatched lines), the discretized    

     continuity equation would contain the differences of the adjacent velocity   

     components; hence, a wavy velocity field would not be satisfied. 

 2. The pressure difference between the successive grid points now becomes the  

     natural driving force for the velocity component located between the grid points.   

     Hence, a non-uniform or a wavy pressure field will not be treated as a uniform  

     pressure field and cannot arise as possible solutions. 

Disadvantages 

1.  It is now obvious that a computer program based on the staggered grid must carry 

all indexing and geometric information about the location of the velocity 

components and must perform rather tedious interpolation.  
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Algorithm of Patankar and Spalding (1972) 

1. The procedure is based on a cyclic series of guess-and-correct 

operations to solve the governing equations. 

2.  The velocity components are first calculated from the momentum 

equations using a guessed pressure field.  

3. The pressure and velocities are then corrected so as to satisfy 

continuity. 

4. A staggered grid as shown is used. 

Pressure-velocity coupling 
is achieved 
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Predictor step 
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X-momentum equation 

Y-momentum equation 

2 2

2 2

1 11* * 2 2

2 2

1

1
p ppp

v v v p v v
u v

t x y y x y

v v v v p v v
u v

t x y y x y





 

 

      
      

      

         
          

         

* * *, , predicted velocities and pressureu v p guessed
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(iii) 

(iv) 

By (iii)-(i) and (iv)-(ii), we obtain 
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(vi) 
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(vii) 

' * Pressurecorrectionp p p  
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(viii) 
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(ix) 

From continuity equation we have, 
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Substituting Eq. (vi) and Eq. (viii) in Eq. (ix), we have  
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Pressure correction equation 


