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Numerical methods for incompressible 
fluid flow 
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Three classes of flow problems  are:  

(i) Creeping flow (the limiting case of very large viscosity, that is, very small 

Reynolds number) 

(ii)  Boundary layer flow (the limiting case of very small viscous forces, that is, 

very large Reynolds number) 

(iii) Inviscid flow or frictionless flow [ideal fluid, (μ = 0)]. In all three cases, the 

flow geometry is taken as rectangular. 

  Flow is assumed as laminar and isothermal, and viscosity is not a function 

of temperature. It may also be noted that gases may be treated as 

incompressible fluids when Mach Number < 0.3. 

Types of flow problems 
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Governing equations are the Navier-Stokes equations and can be written for a two-
dimensional case as 
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Continuity:  

x-Momentum:  

y-Momentum:  
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Nonlinearity:  The convection part of the momentum equations involves nonlinear terms. 

Starting with a guessed velocity field, one could iteratively solve the momentum 

equation to arrive at the converged solution for the velocity components. 

 Therefore, nonlinearity poses no problems as such. It only makes the computations 

more involved. 

Pressure gradient: The main hurdle to overcome in the calculation of velocity field is the 

unknown pressure field.  

The pressure gradient behaves like a source term for a momentum equation. But, there 

is no equation for obtaining pressure. The challenging task is to determine the correct 

pressure distribution.  

The pressure field is indirectly linked with the continuity equation. When the correct 

pressure field is plugged into the momentum equations, the resulting velocity field 

satisfies the continuity equation. 
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In this method, the difficulty associated with the computation of pressure is circumvented 

by eliminating the pressure gradient terms from the momentum equations by cross-

differentiation, which leads to a vorticity−transport equation. This, when coupled with the 

definition of stream function for steady two-dimensional situations, is the basis of the well-

known stream function−vorticity method.  

Advantages 

 1. The pressure makes no appearance. 

 2. Instead of having to deal with the continuity and two momentum equations, we need to 

solve only two equations to obtain stream function and vorticity. 

 Disadvantages 

 1. Calculation of pressure. 

 2. Difficulty in specification of vorticity at a wall. 

3. The method is valid for two-dimensional problems as the definition of stream function 

applies to two-dimensional flow field.  

Stream function–Vorticity method  
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In this method, the vorticity is eliminated by differentiating the N-S equation consecutively 

with respect to x and y and thereby subtracting it. 

x-Momentum:  
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Differentiating x-momentum equation with respect to y, we obtain,  
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y-Momentum:  
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Differentiating y-momentum equation with respect to x, we obtain,  
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Let us define vorticity field,  

Substituting Eq.(4) in Eq. (3), we obtain,  

(5) 
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(3) 

Vorticity-transport equation 

(4) 
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The stream function automatically satisfies continuity equation 

Now, the vorticity field,  u v
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On substituting the definition of stream function in the vorticity field we obtain, 
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For inviscid flow,  

Therefore, for  a steady inviscid flow, ξ is constant along a streamline. 
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For irrotational flow,  2 0 

For rotational flow,  2   

The vorticity transport equation becomes,  
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For obtaining pressure field, differentiating x-momentum equation with respect to x, we 

obtain  
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(6) 

Differentiating y-momentum equation with respect to y, we obtain,  
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Adding (6)+(7) we have,  
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Now, from continuity equation, 

Therefore, from (8) we obtain,  
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In very slow motions or in motions with very large viscosity, the viscous forces are 
much greater than the inertia forces. Therefore, it is reasonable to neglect the inertia 
terms with respect to the viscous terms. We obtain for steady flow 
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Eq. (10) is called biharmonic equation for stream function and is also a linear PDE. 

Applications of creeping flow 

 (i) Hydrodynamic theory of lubrication 

 (ii) Polymer and food extrusion 

 (iii) Flow in porous media 
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 Stream function boundary conditions are obtained from the velocity 

distribution. 

 Vorticity boundary conditions are also obtained from velocity distributions 

except at the walls where a special treatment is required. 

a) Vorticity boundary condition at a stationary non-sloping wall 
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To determine       at the wall, a Taylor series expansion of      about the wall point (i, 1) reads, 

Since, no-slip wall satisfies, 
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Now, 

Therefore, and, 

Since, for non-porous wall, 

Hence, 

First-order accurate expression. 
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Here, Δn is the normal distance between the grid points s at the wall and one grid point  

(s+1) away from the wall. 

Here, y is positive away from the wall, and (i, j) represents the point at the wall. 

b) Vorticity boundary condition for moving wall 

If the wall is moving with a velocity u=U and non-porous, v=0, one can adopt similar 

procedure of Taylor series expansion to obtain vorticity boundary condition for a moving 

wall as, 

c) Vorticity boundary condition at corners of a block  
At corners, the velocity derivatives are not continuous at corners and vorticity becomes 

singular. The remedy is to exclude corners during computations and local refinement of 

the mesh at corners. 
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