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ABSTRACT 

In the past few decades, technology has evolved in leaps and bounds. From wired 

pcs and basic electronic circuits to wireless interconnectivity among devices over a 

local network, that can solve real time problems. The fields of mathematics, 

networking, circuit design and artificial intelligence are evolving the most. 

Due to its numerous advantages, VLSI electronic circuit design is the most 

important and pursued technology for developing efficient and dependable digital 

systems. Modern VLSI designs necessitate a diverse set of capabilities, including 

simple hardware size, high reliability, high speed, and power efficiency. Rapid 

advances in nanometre IC fabrication technology have enabled the manufacture of 

hundreds of thousands of transistors on a single chip. This provides a significant 

physical design issue for VLSI, particularly in the realm of VLSI routing. It used to be 

enough to regulate gate latency to improve the performance of VLSI circuits. However 

interconnecting latency is now becoming more important among researchers working 

on the deep sub-micron technological node, in addition to the goal of wire-length 

minimization. 

A grid graph can be used to depict the interconnects of a circuit, with the graph 

terminals denoting the positioning of the individual circuit blocks. The link length is 

optimised using a graph's minimal spanning tree (MST) by adding Steiner points to 

the MST and building a Rectilinear Minimum Steiner Tree allows for even more 

optimization (RMST). However, finding the number and placement of Steiner points 

is an NP-hard task, making constructing the RMST for real-world circuits unfeasible 

by brute force and improbable to be efficient when employing simple Steiner point 

allocation criteria. The solution space, also known as the search space, is made up of 

all conceivable combinations of valid Steiner point placements. The quantity of Steiner 

points to be inserted raises the computational intricacy rapidly, which is dependent in 

part on the circuit parameters. In a search space with such a large parameter, some 

logic or intelligence is required to guide the search in the right path. In conjunction 



with swarm intelligence technology, population-based metaheuristics have showed 

great promise in this direction. 

Heuristic methods are a greater optimization approach for finding best solution in 

a search space. Because of its non-deterministic iterations, it is able to escape local 

optima and remains relatively independent of the individual problem to optimise. 

Swarm intelligence is a type of group activity in which a number of decentralised 

agents share information with one another according to a set of simple rules, resulting 

in the establishment of a swarm knowledge or global knowledge that no single agent 

is aware of over time. Particle swarm optimization (PSO), firefly algorithm (FA), 

invasive weed optimization (IWO), and Physarum Bio Network are only a few of the 

swarm intelligence-based metaheuristic algorithms being investigated to overcome 

the RMST problem, hence reducing wirelength and delay in VLSI routing. There are 

several modifications of the algorithms that solve some of the flaws and lead to better 

outcomes than the initial formulation, rather than the usual variant, of the method. 

Placing control conditions has been proved to be efficiently yielding outcomes for 

some of the specific problems because the meta heuristic algorithm employs non 

deterministic identities. These trial-and-error algorithms leads to better efficient 

optimising algorithms  

Given the inputs of various research communities, modern Wireless Sensor 

Networks (WSNs) are extremely robust, cheap, and easy to monitor, given the 

constant development of more efficient protocols, techniques for better resource 

usage, and improved quality over large variations in topologies, and so on. WSNs 

eventually laid the groundwork for the Internet of Things (IoT), a framework in which 

important and common objects are connected via a network system, making it easier 

for us to collect data, interact with the devices themselves, and simplify our duties. 

WSNs are essentially deployed in large numbers, and clusters are created in 

agreement with other nodes, with substantial information about topologies being 

communicated back, usually to an access point. It's difficult to build a robust network 

in WSN systems to simplify data transfers because of the various topologies. Various 

conventional protocols and Ad hoc communication protocols are employed to 



overcome design and operation challenges. AODV overcomes the majority of the 

problems, resulting in a stable protocol that may be used in the system. Although the 

conventional AODV protocol employs blind flooding of cluster members with RREQ 

requests in the route discovery phase, which allows for hopping to the best adjacent 

nodes, WSNs with limited resources may incur large loads for the nodes to work 

correctly, and can even cause system delays. When the full set of nodes shifts, the 

AODV protocol may reject better routes due to non-use of the routing table and a high 

path drop rate. Ant-Colony Optimization and Particle Swarm Optimizations are 

perfect meta-heuristics that have been published in the context of implementing 

Swarm Intelligence and denouncing the clustering phenomena and WSN routing 

optimization. While meta-heuristics such as the Directed Artificial Bat Algorithm 

(DABA), ACO can be used for routing in WSN, ACO and Constricted PSO, versions 

of PSO, can be used for clustering. With the use of meta-heuristics and correct swarm 

intelligence-based routing algorithms, these address some of the challenges that the 

IoT paradigm has been dealing with, such as real-time delay and network congestion. 

The bandwidth utilisation and workload distribution are controlled by Fog 

computing. This helps in maintaining an effective line of intercommunication between 

the IoE clusters. When different algorithms are tried upon WSNs to create a hybrid 

algorithm they are tested in the emulators. 
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CHAPTER 1 

 
INTRODUCTION AND ORGANIZATION OF 

THE THESIS 
 

 

1.1. Introduction and motivation 

1.2. Organization of the thesis 

References 

 

 

1.1.     Introduction and motivation 

In the past decades technology has evolved along an exponential graph. It is a 

long way from simple chips to complicated smart systems communicating over a 

network making real time decisions to achieve a goal. Today everyone is connected 

globally and as its effect technological advances are taking place in leaps and 

bounds. The fields of circuit design, mathematical optimization, networking, and 

artificial intelligence have had a great positive impact due to this advancement. 

This revolution is predicated on a convergence of computing and 

communication technologies, both of which are fuelled by advancements in 

Integrated Circuit (IC) technology. In computers, integrated circuits are used for 

processing units’ memory components, and interface chips, among other things. 

Computer networking, network switching systems, communication systems, 

vehicles, aero planes, and even household appliances nowadays have integrated 

circuits embedded in them. 

The existence of ICs is traced to early 1949. Werner Jacobi (de) (Siemens AG) 

[1.1] filed a patent for an IC-like design for a semiconductor amplifier [1.2]. Kilby 
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recorded an initial idea regarding the IC in July 1958 [1.3]. Kilby described the new 

device as “a body of semiconductor material wherein all the components of the 

electronic circuit are completely integrated” in the patent application. The initial ICs 

had very basic functionalities with transistors numbered in a few tens and with one 

or two logic gates. These came to known as Small Scale Integration (SSI) chips [1.4]. 

The Plessey SL201 or the Philips TAA320 had only two transistors. The phrase Large 

Scale Integration was coined by IBM scientist Rolf Landauer who described the 

concepts for SSI, MSI, VLSI, and ULSI. The advent of VLSI began in 1980s and even 

today its various functionalities are implemented. The transformation of these chips 

began when the number of transistors increased from hundreds of thousands to 

billions over from 1980 to 2009. The International Technology Roadmap for 

Semiconductors [1.5] is discussed on the efficient path designs. To bring down 

power consumption to an agreeable limit the research has moved along from 

Negative Channel Metal-Oxide Semiconductor to Positive Channel Metal-Oxide 

Semiconductor and now to Complementary Metal Oxide Semiconductor. In 1986 the 

first on-megabit Random Access Memory chips were introduced which had more 

than a hundred thousand transistors embedded in them. Microprocessor chips 

moved beyond the million-transistor mark in 1989 and the billion-transistor mark in 

2005 [1.6]. The trend is still going strong, with devices having trillions of memory 

transistors [1.7] being announced in 2007. Wafer-scale integration is a massive 

system of VLSI circuits combined onto a single ‘super-chip’ using reduced 

packaging. For some systems, like parallel supercomputers [1.8], it is an effective 

circuit. A system-on-a-chip is a type of integrated circuit that has all of the 

components required for a computer or other system on a single chip. It is quite 

popular [1.9] due to decreased manufacturing and assembly costs, as well as a 

significantly reduced power budget. Circuits with more than 1 million transistors on 

a chip are known as ULSI [1.10]. A three-dimensional integrated circuit (or 3𝐷-IC) is 

made up of two or more layers of activated electronic components that are stacked 

vertically and horizontally to form a single circuit. On-die signalling is used to 

connect the layers, resulting in lower power consumption than isolated circuits. 

Total wirelength can be lowered in such ICs by carefully employing tiny vertical 
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wires, resulting in faster operation [1.11]. Several works in modified MOSFET [1.12] - 

[1.14] and TFT [1.15] - [1.17] in semiconductor technology have been reported as 

technology improves. Finally, these novel ideas will lead to further scaling in 

semiconductor technology, increasing the number of gates per chip and the density 

of cells. [1.18]  

Due to its numerous advantages, VLSI electronic circuit design is the most 

important and requested technology for developing efficient and dependable digital 

systems. Modern VLSI designs necessitate a diverse set of capabilities, including 

small device size, high efficiency, high speed, and low power consumption. The 

production of billions of transistors on a single chip has been made possible by rapid 

advances in IC manufacturing technology in the nanometre range [1.19]. VLSI 

physical design is now faced with a significant difficulty. Before production, the 

stage of physical design [1.20] - [1.22] converts Register-Transistor Level code to 

Graphical Data System II. Partitioning, Floor layout, Placement, Clock Tree 

Synthesis, Routing, and other physical design elements are included in VLSI routing. 

It is used to be enough to regulate gate delay to improve the performance of 

VLSI circuits; however, interconnect delay is now becoming more important among 

researchers working on the deep sub-micron technological node. 

In the physical design flow, interconnection optimization is crucial. Topologies 

for all of the nets in cutting-edge VLSI design will be created and optimised with 

performance and power consumption in mind. Interconnection efficiency is 

becoming more difficult as technology advances for two reasons: 

1. Since RC connectivity latency is growing while gate delay is decreasing with 

CMOS scaling, the percentage of overall delay attributable to RC interconnections is 

rapidly growing. [1.23] 

2. Optimizing connectivity gets increasingly challenging as overall wirelength and 

cell density rise, raising concerns about congestion and routability. 

After installation, the logical blocks and gates remain in place, but the wiring 

between them does not. It has already been explained that optimising 
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interconnections entails arranging all cables in a way that maximises performance. 

The fundamental aspect of the interconnection planning process is routing, 

particularly global routing. Routing is divided into two components, global routing 

and detail routing. This division divides the problem into two sub-problems, each of 

which is reasonably simple. A coarse-grained grid depicting an approximation of 

each net's shape is used to do the global routing. It provides a smaller solution space 

with a coarse-grain grid, resulting in a shorter runtime [1.24]. 

The sequential and concurrent ways in solving the global routing issues are the 

two most common. As a result, a practical router, in conjunction to the sequencing 

phase, includes an improvement phase to remove bottlenecks when more routing is 

not practicable.  However, it's possible that none of these workarounds will be able 

to eliminate the issue with sequential routing. Examples of these stages of 

development include the ‘rip-and-reroute’ and ‘shove-aside’ approaches [1.25]. 

Another strategy [1.26] is to route the simple nets (two or three terminals) first and 

then Steiner Tree Algorithm is deployed to sort out the intermediary nodes. The 

output of the global routing is fed into a very fine sieve-like grid, this is known as 

Detail Routing. Therefore, the final routes’ feasibility is tied to the global routing 

solution, since they are found based on it. 

Therefore, the global routing must yield a workable result in terms of 

wirelength, routing, and time for the approach to be considered successful. There are 

two types of global routing techniques in today's world. [1.27] In the preceding 

ways, Fairly Good Router uses the former method, in which routing is done in a 3 𝐷 

grid and the routing problem is solved in an easy manner by employing full 3 𝐷 

labyrinth routing. Direct 3 𝐷 method, it is hypothesised, should produce better 

outcomes. In reality, however, 2 𝐷 routing using layer assignment algorithms 

outperforms 3 𝐷 routing in terms of performance and runtime [1.38]. Because of the 

complexity of modern layouts, full 3 𝐷 routing takes longer. The routing issue is 

extended onto a 3 𝐷 plane where routing can be accomplished with less effort in 2 𝐷 

routing. The solution is then projected from the 2 𝐷 plane to the initial many layers 

using layer assignment. Box Router 2.0 [1.29], Archer [1.30], Maize Router [1.31], and 

NTHU-Route [1.32] are some of the routers that use this technology. Box Router 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 5 

[1.33] is a computer software that employs the concept of box expansion and an 

advanced Integer linear programming technique. 

A grid graph can be used to depict the interconnects of a circuit, with the graph 

terminals denoting the positioning of the individual circuit blocks. The link length is 

optimised using a graph's Minimum Spanning Tree (MST). Adding steiner points to 

the MST and building a Rectilinear Steiner Minimum Tree (RSMT) allows for even 

more optimization. The refining of RSMT [1.34] - [1.38] has been done in several 

ways. However, finding the number and placement of steiner points is an NP-hard 

[1.39] problem, making constructing the RSMT for real-world circuits unfeasible by 

overwhelming force and unlikely to be optimal when employing simple steiner 

point allocation criteria. The solution space, also known as the search space, is made 

up of all conceivable variations of legitimate steiner point placements. Since high-

performance VLSI design necessitates more than just a reduction in wire length, and 

RSMT just addresses that aspect. When it comes to the timing-wire-length trade-off, 

timing-driven RSMT [TD RSMT] is the clear winner. As a result of scaling, 

interconnection delay now accounts for between 50 and 70 percent of the clock cycle 

in high-performance circuits [1.40]. At the current RST design process, crucial path 

information is typically available because Static timing analysis is performed during 

the installation and routing stages. Using this criticality data, TD-RSMT will make 

wire length trades to reduce delay on critical lines. After the RSMT is created, 

buffering will be performed over each tree to protect branch capacitance and 

linearize the interconnection latency over long linkages. Buffers can be used to 

restore the power of weak signals and to shorten delay times. Due to the dominance 

of connectivity latency, the critical length is decreasing, meaning that more and more 

buffers must be included in a chip to get the same interconnect delay reduction. 

Reports indicate that with 32-nm technology, 70% of cells are buffers [1.41]. What's 

more, empirical evidence suggests that slew mode buffering is more widely used in 

practise than timing mode buffering [1.42] - [1.45]. 

The number of steiner points to be inserted raises the combinatorial complexity 

rapidly, which is dependent in part on the circuit dimensions. To identify nearly 

optimum solutions in such a high-dimensional search space, some logic or heuristics 
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[1.46] must be used to drive the search in the appropriate direction. To reduce the 

complexity of VLSI circuits, the neural network and genetic algorithm concepts are 

used. [1.47], [1.48] In conjunction with swarm intelligence technology, population-

based metaheuristics have shown a lot of promise in this area. Metaheuristics is a 

greater optimization approach for finding optimal solutions in a search space. Even 

with its non-deterministic iterations, it is able to escape local optima and remains 

relatively independent of the individual problem to optimise. Swarm intelligence 

[1.49] - [1.52] is a type of group action in which a number of decentralised agents 

share information with one another according to a set of simple rules, resulting in 

the establishment of an information sharing or global knowledge that no single 

agent is aware of over time. Ant colony optimization (ACO) is a pervasive 

metaheuristics calculation that has been used to address higher complexity problems 

such as RSMT in VLSI circuits [1.53] - [1.55]. Using the ACO [1.56] as their 

foundation, Arora and Moses developed both a Manhattan and a non-Manhattan 

routing scheme. Particle Swarm Optimization (PSO) [1.57] - [1.58], which researchers 

have extensively utilised in optimising RSMT and in several domains [1.59] - [1.62], 

is another robust swarm approach. Dong et al. [1.63] employed an ingenious 

programming and updating strategy for a distinct version of PSO to address the 

routing problem in VLSI, which was the first time PSO was used in routing. In order 

to solve the RSMT problem, Sarkar et al. [1.64], [1.65] worked on wirelength 

minimization of VLSI circuits. Ayob et al. [1.66] suggested a PSO-based routing 

strategy combined with delay insertion to reduce connection delay overall. An 

improved PSO technique for significantly lowering bends while routing was 

introduced by Liu et al. [1.67]. Shen et al. [1.68] reported another obstacle-avoidance 

routing system based on a modified PSO algorithm. Another unique strategy for 

design space exploration was reported [1.69] - [1.70], which used a two-step PSO-

based scheme to optimise the number of virtual channel buffers. In IC layout design, 

a modified PSO-based method was employed for grid-less net routing [1.71]. The 

mating behaviour of fireflies, which is facilitated by their bio-luminescence property 

[1.72], also encourages the optimization method. Researchers have used the Firefly 

Algorithm (FA) to optimise benchmark functions in the past [1.73] - [1.74]. Falcon et 
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al. [1.75] developed another application of the binary FA that encoded potential 

solutions into binary form utilising an adjustable light absorption coefficient to 

speed up the search and problem-specific data to deal with unworkable solutions. 

For unconstrained optimization problems, Subotic et al. [1.76] created the 

parallelized FA. Based on firefly optimization, Ayob et al. suggested an obstacle-

avoiding VLSI routing algorithm [1.77]. 

To address the issue of routing, the swarm algorithm, also known as the 

Artificial Bee Colony (ABC) algorithm, has been implemented. This work was done 

by Zhang and Ye in [1.78] and Sarkar et al. [1.79], [1.80] Researchers have improved 

the efficiency of these heuristic algorithms by incorporating the fundamentals of 

other common approaches like as Genetic Algorithm (GA) and Differential 

Evolution (DE) selection, mutation, and crossover. This hybrid approaches were 

implemented because these algorithms provide a viable solution to the population 

explosion and premature convergence conflicts. PSO-GA [1.81], [1.82], PSO-DE 

[1.83], ACO-PSO [1.84], [1.85], ACO-ABC [1.86], PSO-ABC [1.87], FA-DE [1.88], FA-

Cuckoo [1.89] are hybrid algorithms depends on the application, but in every case, 

hybridization algorithm outperforms its forerunners. 

Recently developed wireless technology allows access from everywhere on 

Earth. Wireless communication technologies such as pagers, cellphones, laptop 

computers, and personal digital assistants are used by individuals all over the world 

to communicate information. The widespread usage of mobile phone voice and text 

messaging has opened the door for the integration of wireless networking into other 

domains, such as consumer and enterprise computing and security monitoring. 

Information may now be accessed and shared anywhere in the world, even in 

previously infeasible circumstances, thanks to the elimination of many of the 

drawbacks of traditional wired networks. These kinds of developments have made it 

possible to set up ad hoc networks in places and circumstances where it would have 

been extremely challenging, if not downright impossible, to set up a wired network. 

In conjunction with more recent developments in miniaturization, simple, cost-

effective, low-power circuit design, and the development of smaller-sized batteries, 
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these improvements have made it possible for a new technological vision to emerge: 

Wireless Sensor Network (WSN). [1.90] – [1.94] 

WSN networks use wireless communication and low-power computation to 

monitor environmental conditions and provide with real-time feedback on things 

like temperature, pressure, and vibration. [1.94] 

In layman's terms, a WSN is a circuit board with a variety of sensors (depending 

on the application), relaying capabilities, and, most crucially, usability due to its 

wireless nature. WSNs are essentially deployed in large numbers, and clusters are 

created in agreement with other nodes, with substantial information about 

topologies being communicated back, usually to a base station. Constant researches 

are being conducted in the fields of WSNs pertaining to 4 main aspects:  

i.   Network Capabilities,  

ii. Power Consumption,  

iii. Better Data Congregation, and  

iv. Security  

As a result of recent improvements in algorithms and simulations, it is now 

possible to simply imitate and deploy modifications in essential aspects of WSNs, 

allowing for a wider range of experimentation. To meet the asset limits of tiny sensor 

hubs, Sarkar et al. developed a lightweight trust component and upward 

investigation for grouped WSN. [1.95] - [1.102].  

Clustering is another possible solution suggested by the researchers to reduce 

energy consumption. Each cluster has a cluster head (CH) who collects data from its 

nodes and communicates with other CHs in order to report data to a centralized 

base station (BS). So far, several clustering protocols have been reported [1.103] - 

[1.106]. The determination of the best number of clusters for a provided wireless 

sensor network is one issue highlighted in the clustering algorithm. It is generally 

accepted that a smaller number of clusters is preferable when the cluster size is 

constrained by k-hop communication. Depending on how large the cluster is, this 

could be the case. Overhead from too many intra-cluster communications can result 
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in inefficiency if the cluster sizes are too large. However, no research has been 

conducted to determine the optimal cluster size. [1.107] 

Currently, industry-wide research is being conducted with a particular emphasis 

on power consumption, network topology maintenance, and finding a more efficient 

route for data transmission in order to optimize network life time. Energy-efficient 

routing [1.108] - [1.110], query optimization [1.111], [1.112] and security 

advancement [1.113], [1.114] have made significant contributions to WSN energy 

efficiency through green computing. The authors suggested a low-energy Industrial 

Internet of Things (IIoT) architecture. [1.114] 

Wireless Sensor Network established the groundwork for the Internet of Things 

(IoT), a platform in which important and common items are connected via a shared 

network, enabling to acquire data, communicate with the devices themselves, and 

simplify the duties. It laid the groundwork for crucial technologies such as IoT 

[1.115], [ 1.116], and it doesn't stop there. Mobile Ad-Hoc Networks, Flying Ad-Hoc 

Networks [1.117] - [1.118], Vehicular Ad-Hoc Networks, and other types of ad-hoc 

networks are all deployed using WSNs. Because of its platform, there are a lot of IoT 

applications [1.119] - [1.120] and a lot of different ways to use it. 

Metaheuristics are used often and fine-tuned to reduce packet loss in a variety of 

contexts. To save power and acquire data, meta-heuristics and peculiar physics are 

employed. WSNs are becoming more affordable and portable thanks to 

advancements in VLSI. Swarm intelligence is an important component of modern-

day WSN success. ACO [1.21] - [1.25] and PSO [1.126] - [1.130] are be-fitting 

metaheuristics to be employed in implementing Swarm Intelligence and 

condemning the clustering issue in WSNs. When applied to WSNs, metaheuristics 

can produce successful results and can help to optimise their workings to a large 

extent. Different emulators, or simulators, are used to simulate the behavioural 

tendencies of WSNs as they are worked on by various algorithms. 

 

The above descriptions are summarized below as the key aspects.  
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• Miniaturization of devices is a primary factor in the development of VLSI 

design technology, where "scaling" goals include increasing packaging density, 

operating speed, power consumption, and cost per function. 

• Researchers at the deep sub-micron technological node have prioritized the 

reduction of interconnecting latency in VLSI systems with the reduction of wire 

length. 

• The previous two decades of WSN research have focused on improving data 

collection, routing, network longevity, and sensor node communication. In addition 

to scalability and power efficiency, routing optimization is one of the main concerns. 

This involves determining the most effective path from origin to destination. 

• Combining population-based metaheuristics with swarm intelligence 

technologies has demonstrated promising results in this area recently. 

Thus, it can be deduced from the above illustration that there are vast scopes and 

opportunities for researchers to investigate the scope of optimization techniques in 

VLSI circuits and Wireless Sensor Networks and created primarily metaheuristics 

algorithms that can efficiently optimize wirelength and reduce delay in VLSI circuits 

and optimize route discovery in WSN without degrading performance with the 

ever-increasing technological demand of modern society. 

 

1.2.     Organization of the thesis 

The present thesis has been organized as different chapters demonstrating 

metaheuristic, swarm intelligence and its hybrid employed in optimization of VSLI 

routing and optimization of Route discovery and clustering in Wireless Sensor 

Network. 

Chapter 1 provides an overview the growing development in VLSI domain and 

subsequent challenges in VLSI routing followed by contemporary research trend and 

outcomes in optimizing VLSI routing problem. The chapter also gives an overview 

of the rapid expansion of WSN over the last decade with significant need for 
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efficient, scalable routing protocols and existing research in this domain. The Outline 

of the thesis is given at the end of this chapter. 

 Chapter 2 covers deeply the fundamental concepts related to VLSI physical 

design automation emphasizing the routing phase and the basic challenges 

pertaining to VLSI routing is elaborated. A general overview of the WSN which 

helps to obtain a clear understanding of the basic concepts of WSN and various 

issues in WSN and its applications in different areas are discussed. Furthermore, the 

chapter also focusses on the basic concepts of metaheuristics and swarm intelligence 

algorithms which leads to use of such algorithms in optimizing the problems in VLSI 

and WSN domain.  

Chapter 3 discusses minimization of wirelength in VLSI global routing using a 

self-adaptive system based on PSO by monitoring the acceleration coefficient 

parameters and analyses its characteristics to those of the present acceleration 

coefficient-controlled PSO and also enhanced with genetic algorithm in a variety of 

terminal node allocation topologies inside a definite VLSI layout. This new 

metaheuristic algorithm is tested with a limiting factor over a wide range of input 

data to test its least VLSI route output. Furthermore, multiple studies have shown 

that using state-of-the-art approaches, it is possible to address the routing and time 

optimization problems in VLSI. Constricted PSO is employed in the RLC delay 

model to find the global optimum. Using an iterative RLC delay model, this work 

proposes a two-stage technique for lowering interconnect latency, with the first stage 

achieving wire minimization and appropriate buffer inclusion with concurrent wire-

sizing in the last stages. This method compared to the current Binary PSO technique 

and is observed that it provides a superior option for optimizing VLSI interconnect 

latency. 

Chapter 4 uses a new metaheuristic approach to wirelength optimization in 

VLSI that is inspired by the Invasive Weed Optimization (IWO) and resembles the 

colonization behavior of weeds. This suggests that superior solutions will eventually 

replace inferior ones during the optimization of the steiner issue for global routing in 

circuits during the VLSI design process. For the presented method with PSO, a new 
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hybridization strategy is investigated, in which the effectiveness of both approaches 

is combined in a novel way to improve global optimization. For performance 

assessment, both of the aforesaid methods were compared to test problems as well 

as conventional PSO. When compared to previous metaheuristics algorithms and 

benchmarks, the presented approach delivers a far more viable output and generates 

results in less time.  

Chapter 5 present an alternate solution to VLSI wirelength minimization with 

routing algorithms based on bio-inspired metaheuristics. In this section, the behavior 

of the single celled, amoeboid organism Physarum polycephalum slime mould has 

been used to inspire a new method that uses BioNetwork to solve the VLSI global 

routing issue more successfully. In addition, a unique hybridization technique for 

the suggested algorithm with PSO is used, in which the benefits of both algorithms 

are combined in a novel way to improve global optimization. The hybrid algorithm 

proves effective when compared to available benchmarks. 

Chapter 6 encompasses use of PSO and ACO in large scale cluster-based WSNs 

to improve node cluster connection while lowering power consumption. In the 

study, a unique method employs hybridization of Constricted PSO and ACO with 

Levy Flight to optimize cluster forms and node-clustering connectivity, allowing for 

better clustering use in WSN. The second section aims to address some of the issues 

raised by the IoT paradigm by using a new metaheuristics-based data routing hybrid 

optimization technique on Directed Artificial Bat Algorithm (DABA) and PSO to 

improve connection issues like real-time delay and network congestion. Using the 

Dynamic Graph Partitioning Algorithm, this solution also incorporates the clustering 

notion in conjunction with Fog Computing to spread network stress and improve 

bandwidth utilization.  

Chapter 7 provides the final outcome of research work as well as the possible future 

research directions. 

 

 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 13 

References  

1.1 A. N. Saxena, “Invention of Integrated Circuits,” Rensselaer, USA, World 

Scientific, 2009. 

1.2 W. Jacobi, Halbleiterverstärker, DE patent 833366 priority filing on April 14, 

1949, published on May 15, 1952. 

1.3 J. S. Kilby, “Turning Potential into Realities: The Invention of the Integrated 

Circuit,” http://nobelprize.org/nobel_prizes/physics/laureates/2000/kilby-

lecture.pdf, 2000. Mindell, David A (2008). Digital Apollo: Human and 

Machine in Spaceflight. MIT Press. 

1.4 K. Shirriff, ‘’The surprising story of the first microprocessors,’’ IEEE Spectrum, 

vol. 53, no. 9, pp. 48-54, September 2016.  

1.5 R. Schaller, ‘’Technological innovation in the semiconductor industry: a case 

study of the International Technology Roadmap for Semiconductors (ITRS),” 

in Proceeding of IEEE Portland International Conference (PICMET), Portland, OR, 

USA, 2001, pp. 195. 

1.6 P. Clarke, “Intel enters billion-transistor processor era,” EE Times: November 

2005. 

1.7 A. Gonsalves, “Samsung begins production of 16-Gb flash,” EE Times, April 

2007. 

1.8 B. LaMacchia, and G. Redinbo, “RNS Digital Filtering Structures for Wafer-

Scale Integration,” IEEE Journal on Selected Areas in Communications, vol. 4, no. 

1, pp. 67-80, January 1986.  

1.9 J. Plummer, “Foreword integrated systems on a chip,” in Proceedings of IEEE 

International Solid-State Circuits Conference. Digest of Technical Papers, San 

Francisco, CA, USA, 1980, pp. 3-3. 

1.10 J. Meindl, K. Ratnakumar, L. Gerzberg, and K. Saraswat, “Invited: Circuit 

scaling limits for ultra-large-scale integration,” in Proceedings of IEEE 

International Solid-State Circuits Conference. Digest of Technical Papers, New 

York, NY, USA ,1981, pp. 36-37.  



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 14 

1.11 Y. Akasaka, and T. Nishimura, “Concept and basic technologies for 3-D IC 

structure,” in Proceedings of International Electron Devices Meeting, Los Angeles, 

CA, USA ,1986, pp. 488-491.  

1.12 S. Naskar, and S. K. Sarkar, “A quantum analytical model for inversion charge 

& threshold voltage of Short channel DMDG SON MOSFET,” IEEE 

Transactions on Electron Devices, vol.60, no.9, pp. 2734-2740, Sept. 2013. 

1.13 K. K. Young, “Short-channel effects in fully depleted SOI MOSFET's,” IEEE 

Trans. Electron Devices, vol. 36, no. 2, pp. 399-402, February 1989. 

1.14 S. Sarkhel, B. Manna, and S. K.  Sarkar, “A Compact Two Dimensional 

Analytical Modeling of Nanoscale Fully Depleted Dual Material Gate strained 

SOI/SON MOSFETs for subdued SCEs,” Journal of Low Power Electronics, ASP 

,vol. 10, no. 3, pp. 383-391, Sept. 2014. 

1.15 Upasana, R. Narang, M. Saxena, and M. Gupta, “Modeling and TCAD 

Assessment for Gate Material and Gate Dielectric Engineered TFET 

Architectures: Circuit-Level Investigation for Digital Applications,” in IEEE 

Transactions on Electron Devices, vol. 62, no. 10, pp. 3348-3356, Oct. 2015. 

1.16 P. Saha, S. K. Sarkar, “Drain current modeling of dual material elliptical Gate-

All Around heterojunction TFET for enhanced device performance,” 

Superlattices and Microstructures, vol. 130, pp. 194-207, Jun. 2019.  

1.17 R. Dutta, and S. K. Sarkar, “Analytical Modeling and Simulation based 

Optimization of Broken Gate TFET Structure for Low Power Applications,” 

IEEE Transactions ON Electron Devices, vol. 66, no. 8, pp. 3513 - 3520, August 

2019. 

1.18 Jack Y.-C. Sun., “System Scaling and Collaborative Open Innovation,” in 

Proceedings of Symposium on VLSI Technology (VLSIT), Kyoto, Japan, 2013, pp. 2-

7. 

1.19 J. Wu, Y. L, Shen, K. Reinhardt, H. Szu, and B. Dong, “A Nanotechnology 

Enhancement to Moores Law,” Applied Computational Intelligence and Soft 

Computing, vol. 2013(2), Jan. 2013.  



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 15 

1.20 W. R. Heller, “Contrasts in Physical Design between LSI and VLSI,” in 

Proceedings of 18th Design Automation Conference, Nashville, TN, USA, 1981, pp. 

676-683. 

1.21 M. E. Daniel, and C. W. Gwyn, “CAD Systems for IC Design,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 1, 

no. 1, pp. 2-12, January 1982. 

1.22 S. June Hong, and R. Nair, “Wire-routing machines—New tools for VLSI 

physical design,” Proceedings of the IEEE, vol. 71, no. 1, pp. 57-65, Jan. 1983. 

1.23 G. Yeap, “Smart Mobile SoCs Driving the Semiconductor Industry: 

Technology Trend, Challenges and Opportunities,” in Proceedings of IEEE 

International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013,pp. 

1.3.1 – 1.3.8. 

1.24 R. M. Karp, Reducibility among Combinatorial Problems. In Complexity of 

Computer Computations, Berkeley, USA: Springer, Boston, MA ,1972. 

1.25 W. A. Dees, and P. G. Karger, “Automated rip-up and reroute techniques,” in 

Proceedings of Design Automation Conference, Las Vegas, NV, USA,1982, pp. 

432–439. 

1.26 L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels, “The self-organizing 

exploratory pattern of the Argentine ant,” Journal of Insect Behaviour, pp. 159-

168, March 1990. 

1.27 Yen-Jung Chang; Yu-Ting Lee; Jhih-Rong Gao; Pei-Ci Wu; Ting-Chi Wang, 

“NTHU-route 2.0: a robust global router for modern designs,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 29, 

no.12, pp. 1931-1944, Dec. 2010. 

1.28 Min Pan, Yue Xu, Yanheng Zhang, and Chris Chu, “FastRoute: an efficient 

and high-quality global router,” VLSI Design, Volume 2012, pp 14, January 

2012. 

1.29 M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “Boxrouter 2.0: architecture and 

implementation of a hybrid and robust global router,” in Proceedings of 

IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, 

2007, pp. 503–508. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 16 

1.30 M. M. Ozdal, and M. D. F. Wong, “Archer: a history-driven global routing 

algorithm,” in Proceedings of IEEE/ACM International Conference on Computer-

Aided Design, San Jose, CA, 2007, pp. 488–495. 

1.31 M. D. Moffitt, “Maizerouter: engineering an effective global router,” in 

Proceedings of Asia and South Pacific Design Automation Conference, Seoul, Korea, 

2008, pp. 226–231. 

1.32 J.-R. Gao, P.-C. Wu, and T.-C. Wang, “A new global router for modern 

designs,” in Proceedings of Asia and South Pacific Design Automation Conference, 

Seoul, Korea, 2008, pp. 232–237. 

1.33 M. Cho, L. Katrina, Y. Kun, and P. David, “BoxRouter 2.0: A hybrid and 

robust global router with layer assignment for routability,” ACM Transactions 

on Design Automation of Electronic Systems, Volume 14, Issue 2, Article 32 , pp 

1-21, April 2009.  

1.34 K. Sakai, K. Tsuji, and T. Matsumoto, “An efficient approximation algorithm 

for the Steiner tree problem in rectilinear graphs,” 1989 IEEE International 

Symposium on Circuits and Systems (ISCAS), Portland, OR, USA, 1989, pp. 

339-342. 

1.35 C. Chiang, M. Sarrafzadeh, and C. K. Wong, “A powerful global router: based 

on Steiner min-max trees,” in Proceedings of IEEE International Conference on 

Computer-Aided Design. Digest of Technical Papers, Santa Clara, CA, USA, 1989, 

pp. 2-5. 

1.36 J. Ho, G. Vijayan, and C. K. Wong, “New algorithms for the rectilinear Steiner 

tree problem,” IEEE Transactions on Computer-Aided Design of Integrated 

Circuits and Systems, vol. 9, no. 2, pp. 185-193, Feb. 1990. 

1.37 D. Du, Y. Zhang, and Q. Feng, “On better heuristic for Euclidean Steiner 

minimum trees,” in Proceedings of 32nd Annual Symposium of Foundations of 

Computer Science, San Juan, PR, USA, 1991, pp. 431-439. 

1.38 J. L. Ganley, and J. P. Cohoon, “Routing a multi-terminal critical net: Steiner 

tree construction in the presence of obstacles,” in Proceedings of IEEE 

International Symposium on Circuits and Systems - ISCAS '94, London, UK, 1994, 

pp. 113-116. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 17 

1.39 M.R.Garey, and D.S.Johnson, “The Rectilinear Steiner Tree Problem is NP-

Complete” SIAM Journal on Applied Mathematics, vol. 32, no. 4, pp. 826–834, 

Jun. 1977. 

1.40 J. Cong, L. He, K. Khoo, C. K. Koh, and D. Z. Pan, “Interconnect Design for 

Deep Submicron ICs,” in Proceedings of ICCAD, San Jose, CA, USA, 1997, pp. 

478–485. 

1.41 P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater Scaling 

and Its Impact on CAD.” IEEE TCAD, vol. 23, no. 4, pp. 451–463, April 2004. 

1.42 S. Hu, C.J. Alpert, J. Hu, S.K. Karandikar, Z. Li, W. Shi, and C.N. Sze, “Fast 

algorithms for slew-constrained minimum cost buffering,” in Proceedings of 

IEEE TCAD, San Francisco, CA, 2007, pp. 2009–2022. 

1.43 P. J. Osler, “Placement driven synthesis case studies on two sets of two chips:   

hierarchical and flat,” in Proceedings of ISPD, Phoenix, Arizona, USA, 2004, pp. 

190–197. 

1.44 Z. Md-Yusof, M. Khalil-Hani, N. Shaikh-Husin, and M. N. Marsono, “Iterative 

RLC Models for Interconnect Delay Optimization in VLSI Routing 

Algorithm,” in Proceedings of 2008 Student Conference on Research and 

Development (SCOReD 2008), Johor, Malaysia, Nov. 2008, pp. 270.1-4. 

1.45 N. Shaikh-Husin, and M. K. Hani, “Optimal routing algorithm for minimizing 

interconnect delay in VLSI layout design,” in Proceedings of International 

Conference on Robotics, Vision, Information and Signal Processing (ROVISP), 

Penang, Malaysia, 2007, pp. 345–349. 

1.46 A. Kahng, and G. Robins, “A new class of Steiner tree heuristics with good 

performance: the iterated 1-Steiner approach,” in Proceedings of IEEE 

International Conference on Computer-Aided Design. Digest of Technical Papers, 

Santa Clara, CA, USA, 1990, pp. 428-431. 

1.47 S. K. Sarkar, A. Ghosh, G. M. A., S. Rani A, and D. Samanta, “An efficient 

technique of integrating parallel neural networks for faster and power 

efficient nanodevices for ultra-dense VLSI circuits,” in Proceedings of 14th 

International Workshop on the Physics of Semiconductor Devices (IWPSD), 

Mumbai, India, 2007, pp 232-235. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 18 

1.48 S. Ding, and N. Ishii, “An online genetic algorithm for dynamic Steiner tree 

problem,” in Proceedings of 26th Annual Conference of the IEEE Industrial 

Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial 

Electronics, Control and Instrumentation. 21st Century Technologies, Nagoya, 

Japan, 2000, pp. 812-817. 

1.49 P. Tarasewich, and P. R. McMullen, “Swarm intelligence: power in numbers,” 

Communications of the ACM, vol. 45, no. 8, pp. 62-67, August 2002. 

1.50 N. B. Singh, S. Deb, and S. K. Sarkar, “Swarm Approach towards Better 

Quantum Well Nanostructure Modelling,” in Proceedings of International 

Conference & Workshop on Emerging Trends in Technology (ICWET 2010), Thakur 

College of Engineering, Mumbai, India, 2010, pp. 667-669. 

1.51 C. Jacob, J. Litorco, and L. Lee. “Immunity through swarms: Agent-based 

simulations of the human immune system,” in Proceedings of Artificial Immune 

Systems, Springer Berlin Heidelberg, 2004, pp. 400-412. 

1.52 T. Chakrabarti, S. Manna, U. Sharma, T. Chakrabarti, and S. K. Sarkar, 

“Design of Intelligent Maximum Power Point Tracking (MPPT) technique 

based on Swarm Intelligence based Algorithms,” in Proceedings of International 

Conference on Power and Advanced Control Engineering (ICPACE), Bengaluru, 

India, 2015, pp. 173-177. 

1.53 Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An efficient rectilinear 

Steiner minimum tree algorithm based on ant colony optimization,” in 

Proceedings of International Conference on Communications, Circuits and Systems, 

Chengdu, China, 2004, pp. 1276-1280. 

1.54 Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An efficient rectilinear 

Steiner minimum tree algorithm based on ant colony optimization,” in 

Proceedings of Int. Conf. Communication, Circuits and Systems, Chengdu, China, 

Oct. 2004, pp. 1276-1280. 

1.55 Y. Hu, T. Jing, Z. Feng, X.-L. Hong, X.-D. Hu, and G.-Y. Yan, ‘‘ACO-Steiner: 

Ant colony optimization based rectilinear Steiner minimal tree algorithm,’’ J. 

Computer Science and Technology, vol. 21, no. 1, pp. 147 152, Jan. 2006. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 19 

1.56 T. Arora, M.E. Moses, “Ant Colony Optimization for power efficient routing 

in Manhattan and non-Manhattan VLSI architectures,” In Proceedings of Swarm 

Intelligence Symposium, 2009. SIS '09. IEEE, Nashville, TN, USA, April 2009, 

pp. 137-144. 

1.57 R. Eberhart, J. Kennedy, ”A new optimizer using particle swarm theory,” in 

Proceedings of Sixth International Symposium on Micro Machine and Human 

Science, Nagoya, Japan, Oct. 1995, pp. 39-43. 

1.58 M. Clerc, J. Kennedy, “The particle swarm explosion, stability, and 

convergence in a multidimensional complex space,” IEEE Transactions on 

Evolutionary Computation. 2002, vol. 6, no.1, pp. 58 - 73.  

1.59 J. Liang, A. Qin, P. Suganthan, and S. Baskar, “Comprehensive learning 

particle swarm optimizer for global optimization of multimodal functions,’’ 

IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281 295, Jun. 2006. 

1.60 N. B. Singh, S. Deb, G.P. Mishra, S. K. Sarkar, and S. K. Sarkar, “Application of 

Particle Swarm Optimization Algorithm for better Nano-devices,” in 

Proceedings of 2nd Int. Conf. on Contemporary Computing (IC3), Noida, India, 

2009, pp. 349–357. 

1.61 S. Deb, N. B. Singh, D. Das, and S. K. Sarkar, “Particle swarm approach for 

parameter optimization of quantum well nano structure,” Expert Systems with 

Applications, Elsevier, vol. 38, no. 10, pp. 12999-13004, Sept. 2011. 

1.62 S. Laha, J. Chowdhury, A. Khan, and S. K. Sarkar, “A watermarking Scheme 

based on singular value decomposition and particle swarm optimization,” in 

Proceedings of IEEE International Advance Computing Conference, Ghaziabad, 

India, 2013, pp. 888-892. 

1.63 C. Dong, G. Wang, Z. Chen, S. Sun, & D. Wang, “A VLSI routing algorithm 

based on improved DPSO,” in Proceedings of ICIS 2009 IEEE International 

Conference, Shanghai, China, 2009, pp. 802-805. 

1.64 A. Khan, S. Laha, and S. K. Sarkar, “A Novel Particle Swarm Optimization 

approach for VLSI Routing,” in Proceedings of IEEE International Advance 

Computing Conference, Dr. A.K Garg Institute, Ghaziabad, India, 2013, pp. 258-

262.  



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 20 

1.65 A. Khan, P. Bhattacharya, and S. K. Sarkar, “A Swarm Based Global Routing 

Optimization Scheme”, in Proceedings of International Conference on Advances in 

Electrical Engineering (ICAEE’2014), Vellore, India, 2014, pp 1-4. 

1.66 M. N. Ayob, Z. M. Yusof, A. Adam, A. F. Z. Abidin, I. Ibrahim, Z. Ibrahim, & 

M. K. Hani, “A particle swarm optimization approach for routing in VLSI,” in 

Proceedings of CICSyN, Liverpool, UK, 2010, pp. 49-53. 

1.67 G. Liu, G. Chen, W. Guo, & Z. Chen, “DPSO-based Rectilinear Steiner 

Minimal Tree construction considering bend reduction,” in Proceedings of 

ICNC, Shanghai, China, 2011, pp. 1161-1165. 

1.68 Y. Shen, Q. Liu, & W. Guo, “Obstacle-avoiding rectilinear Steiner minimum 

tree construction based on Discrete Particle Swarm Optimization,” in 

Proceedings of ICNC, Shanghai, China, 2011, pp. 2179-2183. 

1.69 A. Faruque, M. Abdullah, and J. Henkel. “Minimizing virtual channel buffer 

for routers in on-chip communication architectures,” in Proceedings of Design, 

Automation and Test in Europe, Munich, Germany, 2008, pp. 1238-1243. 

1.70 Z. Md. Yusof, et al, “A two-step binary particle swarm optimization approach 

for routing in VLSI,” in Proceedings of ICIC Express Letters, Langkawi, 

Malaysia, 2012, pp. 771-776. 

1.71 X.-c. Huang; Z.-j. Liu, “Gridless net routing of integrate circuit with Particle 

Swarm optimization algorithm,” in Proceedings of Electricity Distribution 

(CICED), Nanjing, China, Sept.  2010, pp. 1-6. 

1.72 X. S. Yang, “Firefly algorithms for multimodal optimization,” in Proceedings of 

Stochastic algorithms: foundations and applications, Springer, Germany, 2009, pp. 

169-178. 

1.73 Chai-Ead, P. Aungkulanon, and P. Luangpaiboon, “Bees and firefly 

algorithms for noisy non-linear optimization problems,” in Proceedings of 

IMECS 2011, Hong Kong, China, 2011, pp. 1449-1454. 

1.74 C. Liu, Z. Gao, and W. Zhao, “A New Path Planning Method Based on Firefly 

Algorithm,” in Proceedings of CSO, Harbin, China, 2012, pp. 575-578. 

1.75 R. Falcon, M. Almeida, A. Nayak, “Fault identification with binary adaptive 

fireflies in parallel and distributed systems,” in Proceedings of Evolutionary 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 21 

Computation (CEC), 2011 IEEE Congress on, IEEE, New Orleans, LA, USA, 2011, 

pp. 1359-1366. 

1.76 M. Subotic, M. Tuba, N. Stanarevic, “Parallelization of the firefly algorithm for 

unconstrained optimization problems,” in Proceedings of Latest Advances in 

Information Science and Applications, 2012, pp. 264-269. 

1.77 Ayob, M. N., Hassan, F., Ismail, A. H., Basri, H. H., Azmi, M. S., Abidin, “A 

Firefly Algorithm approach for routing in VLSI,” in Proceedings of Computer 

Applications and Industrial Electronics (ISCAIE), Kota Kinabalu, Malaysia, 3-4 

Dec. 2012, pp. 43-47. 

1.78 H. Zhang, and D. Ye, “An artificial bee colony algorithm approach for routing 

in VLSI,” in Proceedings of Advances in Swarm Intelligence, Springer, Berlin 

Heidelberg, 2012, pp. 334-341. 

1.79 P. Bhattacharya, A. Khan, S. Sarkar, and S. K. Sarkar, “An Artificial Bee 

Colony Optimization Based Global Routing Technique,” in Proceedings of 

International Conference On Control, Instrumentation, Energy, Communication 

(CIEC 14), Calcutta, India, 2014, pp. 621-625. 

1.80 A. Khan, P. Bhattacharya, and S. K. Sarkar, “A Swarm Based Global Routing 

Optimization Scheme,” in Proceedings of International Conference On Advances In 

Electrical Engineering (ICAEE’2014), Vellore, India, 2014, pp 1-4. 

1.81 B. Kantha, and S. K. Sarkar, “Comparative Study Analysis of Particle Swarm 

Optimization and Genetic Algorithm for the Optimization of Parameter of 

MEMS based Micro-heater,” Journal of Computational and Theoretical 

Nanoscience, ASP, vol. 12, no. 8, pp. 1-6, 2015. 

1.82 J. Robinson, S. Sinton, and Y.R. Samii, “Particle swarm, genetic algorithm, and 

their hybrids: optimization of a profiled corrugated horn antenna,” in 

Proceedings of the IEEE International Symposium in Antennas and Propagation 

Society, San Antonio, TX, USA, 2002, pp. 314–317. 

1.83 T. Hendtlass, “A Combined Swarm differential evolution algorithm for 

optimization problems,” in Proceedings of 14th International Conference on 

Industrial and Engineering Applications of Artificial Intelligence and Expert 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 22 

Systems, Lecture Notes in Computer Science, Springer Verlag, German, 2001, pp. 

11–18. 

1.84 P. S. Shelokar, P. Siarry, V. K. Jayaraman, B. D. Kulkarni, “Particle swarm and 

ant colony algorithms hybridized for improved continuous optimization,” 

Applied Mathematics and Computation, vol. 188, no.1, pp.129–142. 

1.85 A. M. Aaref, S. Mohammed, A. B. Noori, and A. M. Humada, “A hybrid 

(ACO-PSO) algorithm based on maximum power point tracking and its 

performance improvement within shadow conditions,” Int. J. Eng. Technol., 

vol. 7, no. 4.37, pp. 43-47, 2018. 

1.86 M. Kefayat, A. L. Ara, and S. N. Niaki, ‘‘A hybrid of ant colony optimization 

and artificial bee colony algorithm for probabilistic optimal placement and 

sizing of distributed energy resources,’’ Energy Convers. Manage., vol. 92, pp. 

149-161, Mar. 2015. 

1.87 M. Li, H. Duan, and D. Shi. “Hybrid Artificial Bee Colony and Particle Swarm 

Optimization Approach to Protein Secondary Structure Prediction,” in 

Proceedings of Intelligent Control and Automation (WCICA), 2012 10th World 

Congress on. IEEE, Beijing, China, 2012, pp 5040-5044. 

1.88 L. Zhang, L. Liu, X.-S. Yang, and Y. Dai, ‘‘A novel hybrid algorithm for global 

optimization,’’ PLoS ONE, vol. 11, no. 9, Sep. 2016. 

1.89 T. Chakrabarti, T. Chakrabarti, U. Sharma, and S. K. Sarkar, “Extraction of 

Efficient Electrical Parameters of Solar Cell using Firefly and Cuckoo Search 

Algorithm,” in Proceedings of IEEE-7th India International Conference on Power 

Electronics (IICPE) 2016, Punjab, India, Nov. 2016, pp 1-5. 

1.90 S. K. Sarkar, Wireless Sensor and Ad-Hoc Networks under Diversified Network 

Scenarios, St. Norwood, MA, USA: Artech House, 2012. 

1.91 K. Romer, and F. Mattern, “The design space of wireless sensor networks,” 

Wirel.Commun. IEEE, vol. 11, no. 6, pp. 54-61, 2004. 

1.92 S. Gowrishankar, T. G. Basavaraju, and S. K. Sarkar, “Performance Analysis of 

Routing Protocols in Wireless Sensor and Actor Networks from an Actor-to-

Actor Perspective,” in Proceedings of the International Conference on Computer 

Networks and Security ICCNS 08, VIT, Pune, MS, India,2008. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 23 

1.93 S. Gowrishankar, T. G. Basavaraju, and S. K. Sarkar, “Effect of IEEE 

802.15.4/Zigbee on the Performance of Wireless Sensor Networks,” in 

Proceedings of IEEE International Conference on future Networks (ICFN 2009), 

Bangkok, Thailand, 2009. 

1.94 P. Calhoun, M. Montemurro, D. Stanley, and D. Stanley, “Control and 

Provisioning of Wireless Access Points (CAPWAP) Protocol Binding for IEEE 

802.11, ” RFC 5416, March 2009. 

1.95  S. Gowrishankar, S. K. Sarkar, and T. G. Basavaraju, “Scenario Based 

Simulation Study of Ad Hoc Routing Protocol's Behavior in Wireless Sensor 

Networks,” 2009 International Conference on Future Computer and 

Communication, Kuala Lumpar, Malaysia, 2009, pp. 527-532. 

1.96 Basilis Mamalis, Damianos Gavalas, Charalampos Konstantopoulos, and 

Grammati Pantziou, “Clustering in Wireless Sensor Networks,” Taylor & Francis 

Group, 2009. 

1.97 J.Bag, R. R. Sahoo, P.K. Dutta, and S. K. Sarkar, “Design and VLSI 

Implementation of Power Efficient Processor for object localization in Large 

WSN,” Int. J. High Performance Systems Architecture, Inderscience Journal, vol. 4, 

no. 4, pp. 204-217, 2013. 

1.98 R. R. Sahoo, M. Singh, B. M. Sahoo, K. Majumder, S. Ray, and S. K. Sarkar, “A 

Light Weight Trust based Secure and Energy Efficient Clustering in Wireless 

Sensor Network: Honey Bee Mating Intelligence Approach,” Elsevier, Procedia 

Technology, vol. 10, pp. 515-523, 2013. 

1.99 K.S. Arathy, and C.N. Sminesh,” A novel approach for detection of single and 

collaborative black hole attack in MANET,” Global Colloquium in Recent 

Advancement and Effectual Researches in Engineering, Science and Technology, vol. 

25, pp. 264–271, 2016.  

1.100 R. R. Sahoo, A. R. Sardar, M. Singh, S. Ray, and S. K. Sarkar, “Trust Based 

Secure and Energy Efficient Clustering in Wireless Sensor Network: A Bee 

Mating Approach” in Proceedings of Pattern Recognitions and Machine 

Intelligence International Conference, PreMI 2013, LNCS 8251, Springer, Berlin, 

Heidelberg, 2013, pp. 100–107. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 24 

1.101 M. Singh, A. R. Sardar, R. R. Sahoo, K. Majumder, S. Ray, and S. K. Sarkar, 

“Lightweight Trust Model for Clustered WSN,” in Proceedings of the 3rd 

International Conference on Frontiers of Intelligent Computing: Theory and 

Applications (FICTA) 2014, Advances in Intelligent Systems and Computing, 

Springer, 2015, pp. 765-773. 

1.102 M. Singh, A. R. Sardar, K. Majumder, and S. K. Sarkar, “A Lightweight Trust 

Mechanism and Overhead Analysis for Clustered WSN,” IETE Journal of 

Research, vol. 63, no. 3, pp. 297-308, Feb. 2017. 

1.103  L. Qing, Q. Zhu, and M. Wang, “Design of a distributed energy-efficient 

clustering algorithm for heterogeneous wireless sensor networks,” In: 

Computer Communications, vol. 29, no. 12, pp. 2230 –2237, 2006.  

1.104 W. Xu, G. Chen, T. Liu, J. Peng, and J. Yang, “Avoidance of energy hole 

problem based on feedback mechanism for heterogeneous sensor networks,” 

In: International Journal of Distributed Sensor Networks, vol. 13, no. 6, 2017.  

1.105 M. Pinotti, A. Papadopoulos, A. Navarra, and J. A. McCann, “VIBE: An 

energy efficient routing protocol for dense and mobile sensor networks,” In: J. 

Network and Computer Applications, vol. 35, no. 4, pp. 1177–1190, July 2012. 

1.106 M. Pinotti, A. Formisano, and A. Navarra, “Distributed colorings for collision-

free routing in sink-centric sensor networks,” In: J. Discrete Algorithms, vol. 14, 

pp. 232–247, July 2012. 

1.107 R. K. Yadav, D. Gupta, and D. K. Lobiyal, “Energy Efficient Probabilistic 

Clustering Technique for Data Aggregation in Wireless Sensor Network,” 

Wireless Personal Communications, vol. 96, no.3, pp. 4099-4113, Oct. 2017. 

1.108 K. Guleria, and A. K. Verma,” Comprehensive review for energy efficient 

hierarchical routing protocols on wireless sensor networks,” Wireless 

Networks, vol. 25, no. 3, pp. 1159-1183, Apr. 2019. 

1.109 M. Khabiri, and A. Ghaffari,“Energy-Aware Clustering-Based Routing in 

Wireless Sensor Networks Using Cuckoo Optimization Algorithm,” Wireless 

Personal Communications, vol.  98, no. 3, pp. 2473-2495, 2018. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 25 

1.110 B. Chen, W. Liang, and J. X. Yu, “Energy-efficient skyline query optimization 

in wireless sensor networks,” Wireless Networks, vol. 18, no. 8, pp. 985-1004, 

Nov.  2012. 

1.111 V. Jindal, A.K. Verma, and S. Bawa, “Quantitative Reduction in 

Communication Load for Energy Efficiency in WSN,” Wireless Personal 

Communications, vol. 85, no.4, pp. 2795-2810, Dec. 2015. 

1.112 S. Prasanna, and S. Rao,” An overview of wireless sensor networks 

applications and security,” International Journal of Soft Computing and 

Engineering (IJSCE), vol. 2, no. 2, May, 2012. 

1.113 M. K. Garg, D. Vir, and S. K. Agarwal, “Simulation analysis of AODV, DSR 

and ZRP routing protocols in manet using qualnet 5.0 simulator,” International 

Journal of Scientific and Research Publications, vol. 3, no. 3, pp. 1-6, March 2013. 

1.114  A. Wang, D. Yang, and D. Sun, “A clustering algorithm based on energy 

information and cluster heads expectation for wireless sensor networks,” 

Computers & Electrical Engineering, vol. 38, no. 3, pp. 662-671, 2012. 

1.115 S. Savazzi, V. Rampa, and U. Spagnolini,” Wireless Cloud Networks for the 

Factory of Things: Connectivity Modeling and Layout Design,” IEEE Internet 

of Things Journal, vol. 1, no. 2, pp.180–195, 2014.  

1.116 Jeffrey Pawlick, and Quanyan Zhu, “Strategic Trust in Cloud-Enabled Cyber-

Physical Systems with an Application to Glucose Control,” IEEE Transactions 

on Information Forensics and Security, vol. 12, no. 12, pp. 2906-2919, Dec. 2017. 

1.117 H. Ghazzai, A. Feidi, H. Menouar, and M. L. Ammari, “An exploratory search 

strategy for data routing in flying ad hoc networks,” in Proceedings of IEEE 

2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile 

Radio Communications (PIMRC), Montreal, QC, Canada, 2017, 1–7.  

1.118    H. Yang, and Z. Liu, “An optimization routing protocol for FANETs,” 

EURASIP Journal on Wireless Communications and Networking, Article 120, May, 

2019.   

1.119 B. Biswas, S. Bhowmick, M. Biswas, S. Roy, A. Dey, and S. K. Sarkar, “IoT-

Based Smart Heart-Health Monitoring System,” in Proceedings of IEEE-



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 26 

International Conference on New Trends in Engineering & Technology (ICNTET), 

Chennai, India, September 2018. 

1.120 S. Mukherjee, A. Ghosh, and S.K Sarkar, “Arduino based Wireless Heart-rate 

Monitoring system with Automatic SOS Message and/or Call facility using 

SIM900A GSM Module,” in Proceedings of 2019International Conference on 

Vision Towards Emerging Trends in Communication and Networking (ViTECoN), 

Vellore, India, March 2019, pp. 1-5. 

1.121 S. Okdem, and D. Karaboga, “Routing in Wireless Sensor Networks Using 

Ant Colony Optimization,” in Proceedings of First NASA/ESA Conference on 

Adaptive Hardware and Systems (AHS'06), Istanbul, Turkey, 2006, pp. 401-404. 

1.122 Z. Zhong, Z. Tian, Z. Li, and P. Xu, “An Ant Colony Optimization 

Competition Routing Algorithm for WSN,” in Proceedings of 2008 4th 

International Conference on Wireless Communications, Networking and Mobile 

Computing, Dalian, China, 2008, pp. 1-4. 

1.123 C. Li, and Z. Deng, “Feedback-enhanced ant colony routing algorithm for 

wireless sensor networks,” in Proceedings of 2010 5th International ICST 

Conference on Communications and Networking in China, Beijing, China, 2010, pp. 

1-5. 

1.124 M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a 

colony of cooperating agents,” in IEEE Transactions on Systems, Man, and 

Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29-41, Feb. 1996.  

1.125 J. Du, and L. Wang, “Uneven clustering routing algorithm for Wireless Sensor 

Networks based on ant colony optimization,” in Proceedings of 2011 3rd 

International Conference on Computer Research and Development, Shanghai, 2011, 

pp. 67-71. 

1.126 R. V. Kulkarni, and G. K. Venayagamoorthy, “Particle Swarm Optimization in 

Wireless-Sensor Networks: A Brief Survey,” in IEEE Transactions on Systems, 

Man, and Cybernetics, Part C (Applications and Reviews), vol. 41, no. 2, pp. 262-

267, March 2011. 



Chapter 1: Introduction and Organization of the Thesis.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 

by Subhrapratim Nath.  Page | 27 

1.127 M. N. Rahman, and M. A. Matin, “Efficient algorithm for prolonging network 

lifetime of wireless sensor networks,” in Tsinghua Science and Technology, vol. 

16, no. 6, pp. 561-568, Dec. 2011. 

1.128 Y. Zhou, N. Wang, and W. Xiang, “Clustering Hierarchy Protocol in Wireless 

Sensor Networks Using an Improved PSO Algorithm,” in IEEE Access, vol. 5, 

pp. 2241-2253, Dec, 2016. 

1.129 Z. Han, Y. Li, and J. Liang, “Numerical Improvement for the Mechanical 

Performance of Bikes Based on an Intelligent PSO-ABC Algorithm and WSN 

Technology,” in IEEE Access, vol. 6, pp. 32890-32898, June 2018. 

1.130 A. Mukherjee, P. Goswami, Z. Yan, L. Yang, and J. J. P. C. Rodrigues, “ADAI 

and Adaptive PSO-Based Resource Allocation for Wireless Sensor Networks,” 

in IEEE Access, vol. 7, pp. 131163-131171, Sept 2019. 



 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D Thesis 
by Subhrapratim Nath. Page | 28 

CHAPTER 2 
 

FUNDAMENTALS OF VLSI PHYSICAL 
DESIGN, WSN AND METAHEURISTICS 

 
  

2.1.    VLSI Physical Design: Overview 

2.1.1. VLSI Design Cycle and Physical Design 

2.1.2. VLSI Routing 

2.1.3. VLSI Global Routing 

2.1.3.1. Global Router 

  2.1.3.2. Grid Graph Model 

  2.1.3.3. Global Routing Problem 

  2.1.3.4. Minimum Spanning Tree 

              2.1.3.5. Rectilinear Steiner Minimum Tree 

2.2.    Wireless Sensor Network: Overview 

 2.2.1. Components of WSN 

2.2.2. WSN Routing Protocols 

2.2.2.1. Classification of WSN Routing Protocols 

2.2.2.2. Categories of WSN Routing Protocols 

2.2.2.3. Routing protocols focused on route discovery 

2.2.2.4. Protocols for operation-based routing 

2.2.2.5. Challenges in Routing protocol 

           2.2.3.   Design Challenges in WSNs 

 2.2.3.1. Energy Efficiency 

2.2.3.2. Complexity 

 2.2.3.3. Scalability 

2.2.3.4. Delay 

2.2.3.5. Robustness 

2.2.3.6. Data Transmission  

2.2.3.7. Sensor Location 

 2.2.4.   Clustering in WSNs 



Chapter 2: Fundamentals of VLSI Physical Design, WSN and Metaheuristics 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D Thesis 
by Subhrapratim Nath.  Page | 29 

2.2.5.   WSN and IoT 

2.2.6.   WSN Application 

2.3.    Metaheuristics and Swarm Intelligence  

2.3.1.   Metaheuristics 

2.3.2.   Swarm Intelligence 

2.3.3.   Particle Swarm Optimization 

2.3.4.   Ant Colony Optimization 

2.3.5.   Invasive Weed Optimization 

2.3.6.   Physarum BioNetwork 

2.3.7.   Directed Artificial Bat Algorithm 

References 

 

 

2.1.     VLSI Physical Design: Overview 

Advancement of tools and technology enables VLSI technology to give the rights 

to create systems on a chip with millions and even billions of transistors. The Intel 

80286 microprocessor has over 10 transistors, the RISC processor from National 

Semiconductor NS32SF641 has over 10 transistors [2.1], The Pentium processor has 

over 310 transistors. Computer programs that perform design work to reduce the 

complexity of the design cycle are known as CAD. The design process can be 

completely computerized so that there is no or very little human intervention and that 

is called Design Automation. 

 

2.1.1. VLSI Design Cycle and Physical Design 

The main objective of VLSI design cycle is to manufacture a packaged chip. As 

given in the Figure 2.1., typical design cycle is may be represented by a flow chart 

incorporating a number of steps [2.2] 

VLSI physical design the geometric representation, also called layout of chip, 

should be developed from the netlist representation of the chip. It is created by 
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converting part of each logic into a geometric body of different layers. Design rules 

are very important to consider in this section. In most cases, the visual design is fully 

or partially automatic when the structure is generated directly from the net list using 

Layout Synthesis tools. Structural integration tools have certain limitations such as 

location and performance penalty. Thus, a hand-made geometric modification, 

although deliberate and abundant, produces a better area and function than the 

composite structure. 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2.1. VLSI design cycle 

Many factors need to be considered in this phase of the design cycle. Integrated 

circuits have two areas, a functional area and a wiring area. Functional modules such 

as registers, multiplexers, flip-flops etc. they take the circuit work and the wire used 

to connect these functional modules to use the wiring area. In a group of 

manufacturing chips, the number of defect-free chips produced is called yield. If the 

chip area is larger, the yield is poorer which results in higher production cost and 

increased selling cost of the chip. The physical design process is divided into steps to 

turn the problem into manageable minor issues. The steps are given below and shown 

in Figure 2.2. 
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Figure 2.2. VLSI physical design cycle 

A. Partitioning: Every design in the RTL design phase is subdivided into smaller 

blocks and each module is designed. These modules are linked to one of the main 

modules called the Top-level Module. This separation is mainly done to make the next 

steps easier. This is a crucial stage in creating a physical prototype. 

B. Floor planning: At this stage IP cores, macros used in construction, routing 

possibilities, area of the whole design are considered and a suitable floorplan is 

identified. There is a trade-off between area and design speed due to the routing 

resources used in the system. Many routing resources slow down the design process. 

Area configuration allows the design to use fewer resources. This brings the design 

phases closer to each other and reduces the contact distances that provide faster signal 

routes from end to end. At the end of this section, the entire route circuit is divided 

into channels and switch boxes. 

C. Placement: At this point the actual position of the circuit components is 

confirmed. Four stages of preparation are: 

 i.   Pre-placement optimisation - Improves netlist before placement and lowers cells. 

ii.  In-placement optimisation - This sub-section makes cell size, cell movement,                      

cell pass, net separation, gate duplication, buffer installation, area acquisition etc. 
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iii.  Post-placement Optimization before clock tree synthesis - This section uses netlist 

setting with appropriate clocks and can fix set, capture, major trans or cap 

violations. Make ground-based placement arrangements 

iv.  Post-placement Optimization before clock tree synthesis - This section tries to 

keep the skew of the clock. 

D. Clock tree synthesis: This section seeks to reduce skew delays and 

installations. 

E. Routing: The routing is made up of two small steps that are a global routing 

and detailed routing. Global Routing creates a flexible route for the entire chip by 

providing router resources that are used for communication. A detailed routing lists 

routes to a certain metal layer and global routing resource routes. The Global Routing 

finds a complex route system through the channels through which the nets will be 

delivered. Then it is important to determine the order of the routing paths using the 

channels and switch boxes. After this the actual wire assignment on the routing tracks 

is done in detail routing. 

F. Physical Verification: Virtual authentication confirms the following features. 

i.  Design Rule Checking - That the design complies with all technical 
requirements. 

ii.  Layout vs Schematic - Is it similar to a real netlist. 

iii.  Antenna Rule Checking - If it has any antenna effects. 

iv.  Electricity Rule Checking – that if its compliance with all electrical requirements. 

 

2.1.2. VLSI Routing 

In a VLSI chip the number of cells to be connected is very large and thus routing 

is accomplished using computer programs called routers. The pins which are 

electrically equivalent are connected by means of conductors that carry electrical 

signals. These conductors or wiring segments are assigned a fixed path during 

routing. Routing takes up almost 30 percent of design time and a large portion of 

layout area [2.3]. 
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Routing is a NP-hard problem [2.3] which is factorized in a stepwise manner as a 

hierarchy of smaller problems which are solvable in polynomial time. But this 

decomposition however depreciates the global optimality. VLSI routing incorporates 

two-step approach as given in Figure 2.3. 

i. global routing 

ii.   detailed routing 

The purpose of the global route is to specify a route plan so that each net is placed in 

a specific route. Global routing algorithms generally improve the function of a specific 

purpose (average total length of wire or total power consumption or the number of 

vias used in multi-layer connections.). 

During detail routing wires are used for communication and wire resistance, 

capacitance is measured. A detailed routing path is used between router regions, such 

as channels, switch boxes, and global route cells. Chip time requirement and chip 

production rules are examined in this section. The purpose of the detailed routing is 

to allocate signal segments of signal networks to specific track tracks and to determine 

vias, and metal layers in a manner consistent with the given global route effect. Thus, 

detailed routing does a fine-grain assignment of routes [2.4] of each net. 

  

  

  

 

  

(a)                                                (b)                                                   (c) 

Figure 2.3. (a) A VLSI layout with blocks and pins. (b) Global routing. (c) Detailed routing. 

 

2.1.3. VLSI Global Routing 

The international router forms a loose line, connecting the components to the chip. 

The circuit on the chip is usually modelled as a 2𝐷 grid graph and the global path of 

each net is found on the graph [2.5]. On a global route, communication is terminated 

between appropriate (established or flexible) blocks in a circuit, regardless of the exact 

geometrical features of each wire. Global route quality impacts other important 
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characteristics of the chip such as critical system delays, consumption of power etc. 

[2.6]. For each wire the international router regulates the list of mediums and switch 

boxes to be used as a transit point for that wire. [2.7].  So, the global router makes a 

complex navigation system for each network. 

Rules which are followed during the global routing are: 

i. Nets with significant distribution delays are delivered very carefully at the 

beginning. Their total length of connection is set to a minimum. These nets first 

get to use channels with shorter routes. 

ii. Wires should be delivered in an orderly fashion. If the decisions are not good, the 

wires in the path are withdrawn, and new wires are moved. After that, the torn 

wires are re-inserted into the track. 

There are four different ways to use the global route which are given below 

i. Sequential approach 

ii. Mathematical programming approach 

iii. Hierarchical approach 

iv. Stochastic iterative approach 

In sequential technique the nets are chosen in a particular order and distributed 

one at a time. If the functional routing capacity is not updated it is called the order-

independent approach or else it is called the order-dependent approach. 

With a mathematical programming technique, the global route is designed as a 

complete 0 − 1 integration system. In this way 0 or 1 is assigned to each net as well as 

to other potential trees for that net. 

Hierarchical methods can be performed in a downward or upward manner. In a 

downward spiral, the grid cells are grouped together into a super cell. In each stage 

of ranking, a global path is achieved between individual cells grouped together. In the 

top-down procedure, the sequence of stages starting from a super cell to a different 

one can be either a separate grid cell or a small group of unified cells. This approach 

is usually guided by the configuration of the floorplan design. 

The stochastic repetitive method steadily updates the contemporary solution by 

tearing and rearranging each net, until an adequate net bond is obtained. Simulated 

annealing is one such method [2.8].  
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2.1.3.1. Global Routers 

Today Global Routing has some major obstacles to overcome such as delays, 

congestion. Designing on a nanometre scale has become a clever practice in the 

construction of the modern VLSI. The International Symposium on Physical Design 

(ISPD) arranged the Global Routing competition in 2007 and 2008 [2.9] where a few 

academic global routers were inaugurated. New international routers have appeared 

that have pushed the boundaries of finding a better solution quality and lowered 

operating time. To advance the investigation and development of new global routes 

many routers have contributed to the air race. The arisen-up routers in this contest are 

Box Router [2.10], Maize Router [2.11], Archer [2.12], and NTHU-Route [2.5]. Earlier 

the routers such as the Labyrinth Router, the Chi dispersion Router used a rip-off and 

redirect method to combat congestion which is a conventional complication on 

international routes. [2.13]. But these new routers have used the chat-based routing 

method presented in Path Finder [2.14]. 

The current route strategies can now be divided into two classes [2.15]: 

i. Full  3𝐷 routing 

ii. 2𝐷 routing followed by layer assignment. 

Fuzz Route [2.16] uses the previous method in the above techniques where the 

route is performed on a 3𝐷 grid and resolves the route problem in a simple way 

employing a full 3𝐷 maze route. [2.13]. It is thought that a straightforward 3𝐷 

approach should produce better result. However practically, a 2𝐷 routing with layer 

allocation approach is better in solution quality and performance time. Due to the 

complexity of modern designs, a full 3𝐷 line usually takes longer.  

In the 2𝐷 route the routing problem is shown in the 2𝐷 plane where the routing 

can be done with minimal attempt. After that layer allocation method is used to 

forecast a solution from a 2𝐷 plane to the actual different layers. Some routers which 

use this process are Box Router 2.0, Archer, Maize Router, NTHU-Route. 

Box Router, uses the idea of a box extension and an improved ILP (Integer Linear 

Programming) method. It uses a simple pre-route policy to target multiple congested 

regions with maximum accuracy. Formed on this box expansion process, Box Routing 
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is later done with a flexible maze track. Eventually the post-routing procedure 

succeeds without ripping to achieve an effortless transition between the total length 

of the wires and the rout ability. 

Maize Router [2.13] begins by greedily creating fully connected routes of all nets 

independently of each other. FLUTE is used to determine the topology of each net 

RSMT. Next this router makes an extreme transition, a process aimed at effectively 

reducing route congestion. It also uses a curbing mechanism associated with excessive 

edge displacement which helps to reduce unnecessary wire length. Another efficient 

and high-quality international router is Fast Route [2.17].  Modern algorithms attempt 

to reduce wire lengths, vias and capacity to reduce power consumption.  

 

2.1.3.2. Grid Graph Model  

During global routing the chip area is modelled as a 2𝐷 grid graph  𝐺(𝑣𝑔, 𝑒𝑔)  

[2.18]. Each cell is represented by a vertex (𝑣𝑔) in the graph. Two neighbouring cells 

(𝑣𝑔1)  and (𝑣𝑔2)  are joined by an edge (𝑒𝑔).  Available Channel resources are 

represented by these edges. The demand (𝑑𝑔).  or utilisation of an edge (𝑒𝑔) is the total 

number of nets that use that edge. The capacity (𝑐𝑔) of an edge is the maximum 

number of nets that can travel through it. Whenever demand of an edge exceeds its 

capacity congestion occurs (cg / 𝑑𝑔). Overflow is measured as the difference between 

demand and capacity. Figure 2.4. (a) shows an integrated system on chip and Figure 

2.4. (b) shows the corresponding grid graph model. 

 

 

Figure 2.4 (a). An integrated system on chip. (b) Grid graph model. 
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Given a netlist 𝑁 = {𝑁1, 𝑁2, … . , 𝑁𝑛},  a routing graph  𝐺 = (𝑣𝑔 , 𝑒𝑔) , and a Steiner 

tree 𝑇𝑖  for each net 𝑁𝑖   where 𝑖 = {1,2, … , 𝑛}   ,  the objective of a global router [2.18] are: 

i. 𝑑𝑔 −  𝑐𝑔   for all   𝑒𝑔  ∈  𝐸  , where 𝐸  comprises of all edges. i.e., demand should 

not exceed capacity of an edge so that sum of the total overflow among all the 

edges is minimized. 

ii. ∑ 𝑒’𝑔 , where 𝑒’ ∈  𝐸 and 𝑒’ are edges in the 𝑇𝑖   are should be minimized, total 

wirelength of Steiner tree 𝑇𝑖, i.e., the total interconnecting wirelength of the chip 

should be minimized 

 

2.1.3.3. Global Routing Problem  

Global Routing Optimization Problem, which tries to improve worldwide steering 

cost inside a predefined search space, followed by a curve decrease issue if non-

Euclidean space occurs. Non-Euclidean rectilinear search space drives this work in 

which the cost between two terminal points is intended as the Manhattan distance 

between the two points [2.19], as shown in (2.1). 

𝑑𝑖𝑠𝑡 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|                                                          (2.1) 

Here,  (𝑥1 , 𝑦1) and (𝑥2 , 𝑦2)  are corresponding (𝑥 , 𝑦) coordinates of the two 

vertices or terminal points   (𝑣𝑔1)  and (𝑣𝑔2) respectively. The foremost optimization 

objective is to diminish routing costs for creating a link between networks for a given 

set of terminal points. Netlist is the simplest form of such connection. It comprises the 

set of connected nodes designating both active and passive components of the 

electronic circuit and the edges connecting these nodes. The routing path amid the 

terminal points is represented by the edge. The optimization in a netlist is found by 

first founding an MST from connection, followed by RSMT or MRST. 

Engineering geometry achieves reflective sub-micron levels, circuit proficiency, 

and dependability, which have become massively dependent on interconnect length 

impacting the device delay in the circuit. As routing delay or interconnect length 

depends upon aspects, algorithms often assist in bringing out enhancement. 

Historically, minimising wire length was the best strategy for reducing routing latency 

and increasing circuit throughput. Nevertheless, it is certain that the routing way in 
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addition to buffer insertion fundamentally upgrades this methodology. Delay 

enhancement is rudimentary to achieve the timing conclusion of a top-notch VLSI 

format. 

Elmore wire model offers the accuracy for estimating delay in the global 

interconnect routing methods [2.20]. In nanometre VLSI innovation [2.21], this has 

been shown to produce a 35% postpone misjudgement, but it avoids the inductance 

implications. Two-way RLC-based punishment, such as in S-RABILA [2.22], projects 

a progressive high-order RLC delay model now that VLSI configuration has achieved 

reflective submicron technology. 

Fabrication technology enlists profound submicron levels of accuracy heightens 

its resistance and diminishes the wire size. Wire resistance is a non-trivial contributor 

to the connection time and must be accounted for. As a result, the lumped delay model 

has become irrelevant [2.22]. 

The RLC interconnect model of [2.22] is enhanced by the BPSO method developed 

by Md. Yusof et al. [2.23], which has shown its utility in the concurrent routing and 

buffer placement algorithm in S-RABILA. The RLC delay model is computed for a 

certain node i, using the formula (2.2). 

𝑡𝐷𝑖 =
(1.047𝑒

−(
ζ𝑖

0.85
)

+1.39ζ𝑖

𝜔𝑖
                       (2.2)  

 where, 

𝜔𝑖 =
1

√𝑇𝐿𝐶𝑖
                                                                                        (2.3) 

 𝜁𝑖 =
𝑇𝑅𝐶𝑖

2√𝑇𝐿𝐶𝑖
                                                (2.4) 

 𝑇𝑅𝐶𝑖 = ∑ 𝐶𝑘𝑅𝑖𝑘𝑘                                                                              (2.5) 

𝑇𝐿𝐶𝑖 = ∑ 𝐶𝑘𝐿𝑖𝑘                                                     𝑘                                               (2.6)    

Capacitance components at any given section k are indicated by  𝐶𝑘   (2.5) and (2.6). 

𝑅𝑖𝑘 and 𝐿𝑖𝑘 represent the input nodes' shared resistance and inductance respectively. 

Source-to-sink delay  𝑇𝑅𝐶𝑖 is the sum of 𝑅𝑖𝑘 times 𝐶𝑘, and sink-to-source delay  𝑇𝐿𝐶𝑖  is 

the same, but in the other direction. It is possible to reconsider (2.5) and (2.6) in the 

following way: 

 𝑇𝑅𝐶𝑖 = ∑ 𝐶𝑇𝑘𝑅𝑘𝑘                                                                             (2.7) 
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𝑇𝐿𝐶𝑖 = ∑ 𝐶𝑇𝑘𝐿𝑘𝑘                                                                                  (2.8) 

where 𝐿𝑘 is the inductance of a specific section k and 𝑅𝑘 is the resistance. For each 

given value of 𝑅𝑘 and 𝐿𝑘, the resulting capacitance is denoted by 𝐶𝑇𝑘. When planning 

the time lag between the sink and the source, 𝑅𝑘 (resistance of a segment) times  𝐶𝑇𝑘 

and 𝐿𝑘 (inductance of a segment) times 𝐶𝑇𝑘 are both taken into account to yield  𝑇𝑅𝐶𝑖 

and  𝑇𝐿𝐶𝑖  respectively. The delay at a node can be measured by subtracting  𝑇𝑅𝐶𝑖 and 

𝐶𝑇𝑘. Two types have been decided upon for the link between wires, with or without a 

buffer. Below is a list of them: 

(i) Source-to-sink wire-only connection latency estimation: 

Component values in the tuples for the previous vertex (𝑟, 𝑙, 𝑇𝑅𝐶𝑖 ,  𝑇𝐿𝐶𝑖) and the 

current fragment wire parameters (𝑐𝜔 ,  𝑟𝜔 ,  𝑙𝜔) are used to determine the components 

in the tuples for the subsequent vertex (𝑟’, 𝑙’, 𝑇𝑅𝐶𝑖′,  𝑇𝐿𝐶𝑖′),  as shown in Figure 2.5., 

where, 𝑟’ =  𝑟𝑤  +  𝑟   and    𝑙’ =  𝑙𝑤 + 𝑙  and corresponding delay generated as in (2.9) 

and (2.10). 

𝑇′
𝑅𝐶𝑖 = (𝑟 + 𝑟𝑤/2)𝑐𝑤 + 𝑇𝑅𝐶𝑖                                                           (2.9) 

 𝑇′
𝐿𝐶𝑖 = (𝑙 + 𝑙𝑤/2)𝑐𝑤 + 𝑇𝐿𝐶𝑖                        ( 2.10) 

 

 

 

 

 

 

Figure 2.5.  Wire only model 

(ii)  Estimating the delay from source to sink with a buffer: 

It's remarkably close to the original prototype. In Figure 2.6, it is seen that the tuple 

for the next vertex (𝑟’, 𝑙’, 𝑇𝑅𝐶𝑖
′ ,  𝑇𝐿𝐶𝑖

′ ) depends on the tuple for the previous vertex (𝑟, 𝑙,

𝑇𝑅𝐶𝑖,  𝑇𝐿𝐶𝑖),  the buffer parameter (𝑐𝑏 , 𝑑𝑏)  and the current segment wire parameters 

(𝑐𝜔 ,  𝑟𝜔 ,  𝑙𝜔), where 𝑟’ =  𝑟𝑏 ,   𝑙′ =  0. And the corresponding delay are formulated as in 

(2.11) and (2.12). 
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𝑇′
𝑅𝐶𝑖 = 𝑟(𝑐𝑤+𝑐𝑏) + 𝑟𝑤(

𝑐𝑤

2
+𝑐𝑏) + 𝑑𝑏 + 𝑇𝑅𝐶𝑖            (2.11) 

𝑇′𝐿𝐶𝑖 = 𝑙(𝑐𝑤+𝑐𝑏) + 𝑙𝑤(𝑐𝑤/2+𝑐𝑏) + 𝑇𝐿𝐶𝑖                      (2.12) 

 

  

 

 

 

 

Figure 2.6. Buffer-terminated model 

2.1.3.4. Minimum Spanning Tree 

A spanning tree is a set of edges in a graph that avoids creating any cycles while 

still linking all of the vertices. There can be many spanning trees for the same graph. 

The minimum spanning tree (MST) or minimum weight spanning tree is the spanning 

tree with a weight that is smaller than the weight of every other spanning tree in the 

graph, where the weight may be the distance between two neighbouring points that 

are united by the edge. A multi-super-tidal structure is depicted in Figure 2.7. 

  

 

 

 

 

Figure 2.7. Weighted graph of MST. Thick edges represent edges of the tree 

A Czech physicist named Otakar Boruvka developed the first technique in 1926 

[2.24] to find the shortest path between two nodes in a graph. Prim's algorithm and 

Kruskal's algorithm are now the most popular methods for calculating MST. The 

associated decision problems, such as checking if an edge is in the MST or if the 

minimum total weight exceeds a threshold, can be solved in polynomial time using 

these greedy algorithms. Reverse-delete algorithm is another greedy algorithm; it is 

the inverse of Kruskal's algorithm but is not commonly utilised. Due to the linear 
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relationship between wirelength and wiring area produced by VLSI minimum-

spacing design guidelines, it is necessary to optimise the total interconnect length of 

the circuit interconnections in order to lower the overall area of the chip [2.25]. A set, 

𝑆, of 𝑛 pins that serve as signal network terminals for interconnection. The optimal 

solution is a MST over 𝑆 is (𝑀𝑆𝑇 (𝑆)) [2.25] if all the wires point-to-point without any 

intermediary junctions other than the points specified are linked, as shown in Figure 

2.8. Here, the branches of the tree are joined in a straight line. In this case, the 

endpoints of the net are represented by hollow circles. 

 

 

 

 

Figure 2.8.  A MST structure connected in rectilinear manner 

 

2.1.3.5. Rectilinear Steiner Minimum Tree 

Rectilinear distance is used in place of Euclidean distance in the RSMT, also 

known as the Minimum Rectilinear Steiner Tree (MRST). It can be characterized as 

follows: For given a set 𝑆 of 𝑛 points, it is required to find a set 𝑆𝑇 of Steiner points 

that minimises the MST cost over all possible connections.  

The MST cost is calculated by (2.1). This is because in VLSI circuits during physical 

design automation, the nets are connected by means of wires which run only in 

rectilinear direction i.e., normal to each other. Hence, the total length of the wire is the 

sum of the lengths of the vertical and horizontal segments [2.2]. A global router's job 

is to determine the steiner tree (a tree with the original set of points 𝑆 and the steiner 

point set 𝑆𝑇) of the cheapest chip that connects the necessary nodes on [2.26]. The 

MRST for these four sites is shown in Figure 2.9. Hollow circles indicate the original 

or terminal point set 𝑃, and solid dots indicate steiner points. 

As per Hwang’s theorem [2.27] for a set 𝑆  of 𝑛 points, the cost of an MST will be 

greater than that of an MRST. So, it is clear that for a set of points, MRST will give 

shorter wirelength than MST as shown in Figure 2.10. Thus, the total wirelength is 
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determined from the RSMT or MRST structure which is formulated with the addition 

of some steiner points. Determination of this steiner points is done by routing 

optimization   algorithms  during  physical design  automation. Wire length  cost   is  

generated using (2.1) as wirelength MST or RSMT as in (2.13). 

  

 

  

  

Figure 2.9. An RSMT for a set of four points 

𝐶𝑜𝑠𝑡 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|                                                       (2.13) 

The relationship between MST and MRST can be stated by Hwang’s theorem as 

follows: 

 
Wirelength (MST) 

Wirelength (MRST) 
=

3

2
                                                                    (2.14) 

A strong motivation is given by (2.14) for constructing an MRST by an MST-based 

approximation algorithm. 

 

 

 

 

 

 

 

 

Figure 2.10. Comparison of wirelength between MRST and MST 

 

2.2.  Wireless Sensor Network: Overview 

The sensor nodes in a wireless sensor network (WSN) are extremely many and 

dispersed over the network; these nodes are autonomous and very small. Motes is the 
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common name for them. With its limited processing and handling capacities, a WSN 

typically consists of a large number of geographically dispersed, unobtrusive, battery-

powered, embedded devices that are arranged to steadily gather, process, and pass 

information on to the clients. Motes are the network's tiny personal computers. [2.28]- 

[2.29]. Sensing, processing, communication, and power units are all included in 

wireless sensor nodes. Each node may independently collect data, sense its 

surroundings, process that data, and communicate with other nodes. The 

neighbouring sensor nodes collect and share data based on input from the sensing 

unit, there after the processing unit's computation of the restricted permutations of 

the detected data, and followed by the communication unit's transmission of the 

processed data is the primary work of a WSN structure. 

 

2.2.1.   Components of WSN 

The sensor node, relay node, actor node, cluster head, gateway, and base station 

are the WSN system's components as shown in Figure 2.11. 

Sensor node: Node that serves as a sensor and is capable of collecting, processing, 

and transmitting data. 

Rely node: This node in the middle is a relay that links to the node to its left. In 

order to make networks more reliable, it is implemented. Unlike most other field 

devices, a depend node does not have any sensors or controls for the 7 processes; 

therefore, it is unable to exchange data with it. A unique single node CPU can run at 

speeds of up to 8 MHz with 8 KB of RAM, 128 KB of flash memory, and preferably 

916 MHz of radio frequency. An actor is a specialised node that makes a choice 

according to the application's requirements. These nodes often include greater 

computing power, faster data transfer rates, and longer battery life than their lower-

end counterparts. With 16 KB of RAM, 128 KB of flash memory, and ideally 916 MHz 

of radio frequency, a unique actor node has a throughput of about 8 MHz. 

High-bandwidth sensing nodes perform the data aggregation and clustering 

duties of WSN cluster heads. Several applications and infrastructure needs will 

necessitate a variety of cluster heads. A separate cluster head processor operates at 2.4 
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GHz if possible and features 512 KB of RAM, 4 MB of flash memory, and a clock speed 

of 4-8 MHz. Each of the other nodes in the sensor network relies on this one as though 

it were rock solid, risk-free, and reliable. 

Gateway: The role of a gateway is to facilitate communication between sensor 

networks and other networks. In comparison to the sensor node and the cluster head, 

the gateway node has superior programme and data memory, CPU power, transceiver 

range, and memory expansion options thanks to external storage. Typical 

specifications for a gateway processor include 16 MHz of processing speed, 512 KB of 

random-access memory (RAM), 32 MB of flash memory, and a radio frequency of 2.4 

GHz. 

Base station: This exceptional class of nodes has strong processing power and 

computational energy. 

 

Figure 2.11. Components of WSN [2.36] 

 

2.2.2.   WSN Routing Protocols 

The routing protocol is a method that determines the best route for sending data 

from its origin to its destination. While the route must be selected based on factors 

such as network type, channel conditions, and performance metrics, the process is 

fraught with potential pitfalls [2.30]. Data collected by sensor nodes in a WSN is 

typically transmitted to the base station that connects the WSN to other networks (like 

the internet), where it is processed and action is taken based on the results. Due to the 
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proximity of the base station and the motes (sensor nodes), single-hop communication 

is achievable in very small sensor networks. Several sensor nodes are positioned too 

far from the sink node for single-hop communication to be practical in most WSN 

applications, where the coverage area is substantially bigger and thousands of nodes 

must be put (gateway). Hence, they are unable to establish a direct connection with 

the base station. In contrast to indirect communication, which involves relaying 

messages between multiple nodes, direct communication involves only one relay 

node. The sensor nodes in a multi-hop communication network not only generate and 

disseminate content, but also provide a connection for other sensor nodes to reach the 

base station. The primary responsibility of the network layer is routing, or the 

selection of a path between two nodes [2.31]. 

 

2.2.2.1.  WSN routing protocol classification 

The routing protocols define the channels through which data will be transmitted 

from one node to another. The WSN routing protocols can be categorized in a variety 

of ways [2.32] - [2.33]. Figure 2.12. depicts the fundamental classification of routing 

protocols. 

 

Figure 2.12. Classification of WSN Routing protocols 

Some classification of routing protocols: 

Node centric: Since wireless sensor networks are not designed for this type of 

communication, node centric protocols require the target node to be identified by a 

set of numeric identifiers. Low Energy Adaptive Clustering Hierarchy (LEACH), for 

instance. 

Low energy adaptive clustering hierarchy: The LEACH [2.34] routing protocol is 

used to build up the cluster so that all of the sensor nodes in the network receive the 

WSN Routing protocols

Node Centric Data Centric
Source 

Initiated
Destination 

Initiated
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same amount of power. The LEACH protocol organises a network of sensors into 

various clusters. A cluster's routing information is stored on a single node, which also 

acts as the cluster's head. The LEACH protocol employs a random selection process 

to determine the cluster leader from among the participating nodes. Because the 

battery of any one node is not overworked by being made the cluster head 

permanently, this protocol allows for greater longevity. 

Data-centric: In most wireless sensor networks, the information or data detected 

is far more crucial than the node itself. Hence, the primary focus of data centric routing 

techniques is not data collection from specific nodes, but rather the transmission of 

information as indicated by specific qualities. Since the sink node in data-centric 

routing issues queries to certain locations in order to collect data of specific quality, it 

is necessary to utilise an attribute-based naming scheme in order to identify these 

characteristics in the data. 

Sensor Protocol for Information via Negotiation: Sensor Protocol for 

Information via Negotiation (SPIN) protocol is intended to be used in place of existing 

protocols to address deficiencies like gossiping and overflow [2.35]. The fundamental 

tenet is that sharing data that a node senses may need more resources than sharing 

meta-data, which is merely a description of the perceived data. Each node's resource 

management keeps an eye on its resources and modifies their functionality as 

necessary. Three different types of messages (ADV, REQ, and DATA) are used in 

SPIN. This node sent out an ADV packet to notify all the other nodes in the network 

that it was now able to share information. This ADV message from an advertising 

node contains information about the data it conveys. Individual nodes that are 

interested in the information that the advertising node is looking for can send it a REQ 

message. After receiving the REQ message, the advertising node will transfer data to 

the requested node. This process happens when the node generates and sends an ADV 

message after receiving data. 

Destination initiated: Nodes who have a stake in the information that the 

advertising node is looking for can send it a REQ message. The REQ message is 
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received, and the advertising node then relays its message to the requested recipient. 

As a node receives information, it generates and sends an ADV message. 

Directed diffusion: Nodes who have a stake in the information that the 

advertising node is looking for can send it a REQ message. The REQ message is 

received, and the advertising node then relays its message to the requested recipient. 

Following the receipt of data, the node produces and transmits an ADV message. 

Source initiated: In these protocols, the route is built from the generator side to 

the endpoint when a source node announces that it has data to share. SPIN is one of 

these methods. 

 

2.2.2.2.  Categories of WSN routing protocols  

There are two methods that are utilized to transfer data in sensor networks. The 

first is known as flooding, while the second is gossiping protocol. It is not necessary 

to maintain the topology or utilize any routing algorithms. When a sensor node 

receives a packet of information, the flooding protocol causes that information to be 

sent to all of the nodes in the immediate vicinity. The broadcasting activity will 

continue until the packet has successfully reached its destination and the packet must 

have travelled more than hops [2.36].  

 

 

 

 

 

 

 

 

 

Figure 2.13. Categories of WSN Routing protocols 
 

Flooding has several benefits, but its main benefits are simplicity and convenience 

of use. The negatives include implosion, redundancy, and resource myopia. The 

Categories of Routing Protocols 

Network Organization Protocol Operation 

Flat 

Based Hierarchical 

Based 

Location 

Based 

Negotiation 

Based 

Multi-path-

Based 

Query 

Based 

QoS 

Base

d 

Coherent 

Based 

Route 

Discovery 

Reactive Proactive Hybrid 



Chapter 2: Fundamentals of VLSI Physical Design, WSN and Metaheuristics 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D Thesis 
by Subhrapratim Nath.  Page | 48 

gossiping protocol is a slightly more sophisticated variation of the flooding technique. 

The receiving sensor node in a gossiping protocol will forward the data packet to an 

arbitrary neighbour. The sensing nodes pick another node at random and relay data 

to it on the following turn. This procedure is repeated repeatedly. In contrast to floods, 

the gossiping protocol does not use broadcasting. Implosion problems can be readily 

averted in this method. However, this increases delay. Figure 2.13 shows the major 

categories of routing protocols. 

 

2.2.2.3.  Routing protocols focused on route discovery 

2.2.2.3.1.  Reactive protocols 

Reactive routing protocols are only activated when a node needs to communicate 

data to another node; they do not preserve the entire network topology. Thus, when 

queries are launched, routes are generated as needed. The following are the reactive 

routing protocols that are most frequently used: 

On-Demand Ad-hoc Distance Vector: After receiving a request, the Ad-hoc On-

demand Distance Vector (AODV) protocol will calculate the best route to take. AODV 

is designed  for mobile networks without infrastructure. For the construction of 

routes among network nodes, it uses the on-demand routing mechanism. When a 

source node wants to direct data packets, a path is built by itself, and the path is 

maintained for however long the source node requires. This is why the term "on 

demand" is used to describe it. AODV routing supports Unicast, Multicast, and 

Broadcast communication. The wireless ad-hoc network's AODV routing technology 

distributes packets among mobile nodes. When a mobile node needs to send a packet 

to a node that doesn't have an open connection, AODV can help it do so by using a 

neighbouring node. Routing table content is periodically exchanged between 

neighbouring nodes and set up for unforeseen modifications [2.37]. In order to send 

data, AODV finds the shortest route that avoids loops in the network's routing table. 

If the planned route has inaccuracies or deviations, the AODV knows how to calculate 

a new one so that all messages can be sent without interruption. 
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Dynamic Source Routing: Wireless sensor networks employ the Dynamic Source 

Routing (DSR) protocol, which was created in 1996. Reactive or on-demand dynamic 

source routing are also possible. It uses source routing rather than routing tables, as 

its name implies. Route maintenance and route discovery are the two components of 

routing in DSR. The initiating node will initiate a phase of route discovery by 

exchanging route request and Route Reply (RREP) messages. With DSR, only the final 

destination node sends an RREP message to the sending host, but in AODV, all 

intermediate nodes participate in the RREP exchange. The goal of the next stage route 

maintenance is to prevent RREP message flooding and is used to shorten the distance 

between nodes [2.38] - [2.39]. 

2.2.2.3.2.  Proactive Protocols 

Table-driven routing protocols are also commonly used because they are 

responsible for keeping track of the network's overall routing tables as packets are 

forwarded from node to node. Even when there is no traffic, the predetermined paths 

must be followed. The most popular algorithm is as follows: 

Optimized Link State Routing: Proactive routing technology called as Optimal 

Link State Routing (OLSR) employs a table-focused approach. The excessive overhead 

in OLSR is its primary drawback. To make up for this lag, multipoint relays (MPRs) 

are employed to deal with the massive overhead they cause. Each node uses three 

adjutant nodes called MPRs to transmit data. Since each node delivers control 

information alternately, persistent control information is not necessary [2.38] - [2.39]. 

2.2.2.3.3.  Hybrid Routing Protocols 

By ignoring their shortcomings, hybrid routing methods combine the advantages 

of proactive and reactive routing strategies. 

 

2.2.2.4.  Protocols for operation-based routing 

In order to improve network speed, load balancing, and delay, multi-path routing  

systems provide many paths. The multiple routing system provides a backup route in 

case the primary one fails. There is greater value in a network with multiple paths 

than in a dense one. As periodic messages must be delivered to maintain the paths at 
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regular intervals, using multiple path routing is not more energy efficient. These are 

the multipath routing protocols: [2.38] 

•   Multiple paths and speeds (MMSPEED) 

•   Sensor protocols that exchange information (SPIN) 

2.2.2.4.1.  Query-based routing protocol 

Receiver-initiated routing protocols predominate. Sensor nodes will only respond to  

destination node questions. As the destination node requests information via the 

network, the target node recognises it and sends it back to the initial requester: [2.38] 

• Directed diffusion (DD)  

• SPIN 

• COUGAR  

2.2.2.4.2.  Protocols for routing based on negotiations 

To reduce unnecessary data duplication, these protocols have sensor nodes 

communicate with one another and share data about their local resources with their 

neighbours. Thereafter, decisions are made about what data should be transmitted 

based on the outcomes of negotiations, which include: [2 .38] 

•  Sequential assignment routing (SAR) 

•  Sensor protocols for information via negotiation (SPAN)  

•  Directed Diffusion (DD) 

2.2.2.4.3.  QoS based routing protocols 

Better service quality can be achieved by employing these protocols. QoS-aware 

protocols seek to optimise throughput, data delivery, energy consumption, and 

latency while maintaining the quality metrics often associated with high-quality QoS 

from source to destination. To cite a few examples: [2.40.] 

•  Sequential assignment routing (SAR) 

•  Multi path and Multi SPEED (MMSPEED) 

•  Speed 

2.2.2.4.4.  Coherent data processing routing protocol 
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The nodes in the coherent data processing routing protocol do minimal processing 

on the data before sending it on to other sensor nodes or aggregators (time stamping, 

data compression, etc.). The aggregator receives data from multiple source nodes, 

combines it, and then sends the resultant data to the sink node. 

 

2.2.2.5.  Routing challenges in WSNs 

Designing routing protocols for  WSNs is challenging  because they are different  

from wireless infrastructure-less networks in a number of important aspects. There 

are various kinds of routing difficulties in wireless sensor networks. The following are 

a few significant difficulties: 

• Allocating a universal IDs scheme for a large number of sensor nodes is almost 

impossible. Therefore, wireless sensor motes are not capable of utilising 

traditional IP-based protocols. It is necessary for detected data to flow from a 

variety of sources to a particular base station. However, conventional 

communication networks do not experience this. 

• The majority of the time, the created data traffic has a lot of redundancy. Because 

several sensing nodes can produce identical data at the same time. Therefore, it is 

crucial to take advantage of this redundancy using the routing protocols and to 

make the best use of the bandwidth and energy that are available. 

• In addition, wireless motes are severely constrained in terms of transmission 

power, bandwidth, storage capacity, and on-board power. A variety of new 

routing techniques have been proposed as a result of these differences in order to 

address the routing issues in wireless sensor networks. 

 

2.2.3.   Design challenges in WSNs 

The lack of available resources, such as power, data transfer capacity, and storage 

space, presents substantial challenges to the design of wireless sensor networks. A 

network engineer should satisfy the following requirements while creating new 

routing protocols. 
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2.2.3.1.    Energy efficiency 

Most wireless sensor networks run on batteries. In these sensor networks, energy 

constraint is a significant problem, particularly in hostile conditions like a battlefield. 

When battery levels drop below a certain battery threshold level, sensor node 

performance suffers. When creating sensor networks, energy is a major challenge for 

designers. In wireless sensor networks, the number of motes is practically infinite. The 

network's unreliable power source means that node batteries must be carefully 

managed. Because of this, the routing protocol must minimise power consumption. 

[2.41]. 

2.2.3.2.    Complexity 

The intricacy of a routing protocol can have an effect on the efficiency of the whole 

wireless network. This is because there is a lack of personnel with hardware 

competence, and because there are strict energy constraints on wireless sensor 

networks. 

2.2.3.3.    Scalability 

These days, hundreds or even thousands of sensors can be supported by a single 

wireless sensor network due to the steadily decreasing cost of sensors. Because of this, 

it is essential that the routing protocol supports growth in the network. Routing 

protocol shouldn’t interfere with this if additional nodes are ever added to the 

network. 

2.2.3.4.    Delay 

Some applications, like temperature sensors or alarm monitoring, demand an 

immediate response or one without a significant delay. Therefore, the routing protocol 

ought to have a low delay. In the aforementioned WSN applications, it is necessary to 

communicate the sensed data in the shortest amount of time possible. 

2.2.3.5.    Robustness 

Wi-fi enabled sensor networks are commonly employed in critical and potentially 

dangerous settings. Occasionally, a sensor node in a wireless sensor network will die 

or disconnect. This means that the routing protocol must be resilient in a wide range 



Chapter 2: Fundamentals of VLSI Physical Design, WSN and Metaheuristics 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D Thesis 
by Subhrapratim Nath.  Page | 53 

of conditions, including those that are challenging and lossy. The operation of the 

routing protocol should also be perfect [2.42]. 

2.2.3.6.    Data transmission  

Depending on the use case, wireless sensor networks may send data in one of four 

ways: query-driven, event-driven, continuous type, or hybrid type. Until the sink 

initiates a query or an event occurs, nodes in the query-driven paradigm and the 

event-driven model do not begin sending data. The information is broadcast in a 

continuous stream at regular intervals. The efficiency of the routing protocol is 

affected by both the scope of the network and the nature of the transmission medium. 

Thus, a high-quality transmission medium immediately enhances the performance of 

a network [2.37]. 

2.2.3.7.    Sensor location 

Correctly locating the sensor nodes is a significant difficulty for designers of 

wireless sensor networks. The majority of routing systems use a localization approach 

to learn about their locations. There are some situations where GPS receivers are 

employed. 

 

2.2.4.   Clustering in WSNs  

In WSN, routing is a crucial operation to take into account. It may be essential for 

one sensor node to use another sensor node in order to forward a packet to its 

destination, which is often the base station, due to each node’s restricted transmission 

range (BS). Due to energy and transmission range constraints, determining and 

maintaining routes in WSNs is a challenging issue. Routing protocols suggested in the 

literature for WSNs use well-known routing principles, including clustering, to reduce 

energy usage. The goal of WSN clustering protocols is to organise sensor nodes into 

clusters and select a Cluster Head (CH) for each cluster. The CHs can combine the 

data sent from the cluster members and deliver them straight to the BS in order to 

create an energy-efficient WSN. A clustering protocol primarily consists of two layers. 

While the second layer is in charge of sending the data to the BS, the first layer is 
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utilised to choose the best possible set of CHs. The generalised perspective of WSNs 

is seen in Figure 2.14 and includes a BS, CHs, and sensor nodes (devices) placed 

throughout a region. 

In a WSN, the clustering protocol should take into account the restrictions of the 

sensor nodes in addition to facilitating data transfer. Additionally, it should adhere to 

WSN standards for scalability, data delivery dependability, and energy efficiency. 

 

 

Figure 2.14.  Structure of a Clustered WSN [2.43] 

 

2.2.5.   WSN & IoT  

A physical quantity (such as ambient temperature, fan speed, etc.) can be remotely 

controlled through the internet depending on how many devices are connected to the 

internet. IoT is all that this is. The architecture of WSNs consists of a sink node and 

sensor nodes. Sensing the physical amount and transmitting the perceived data are 

the two tasks that the sensor node must complete. It must therefore do two tasks: data 

generation and data transmission. IoT operates at a more advanced level, integrating 

cloud computing, WSNs, the internet, and any physical thing that is connected to it. It 

is possible to treat WSNs as a subset of the WSNs depicted in Figure 2.15.  
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Different methods and tactics can be used to connect WSN applications and low-

power sensing nodes to the Internet [2.45]. The most widely used integration 

techniques are cloud-based integration approaches [2.46] - [2.47], front-end proxy 

integration approaches [2.48] architecture frameworks [2.49] and integration using 

established Internet communication protocols [2.50] - [2.51]. 

 

 

Figure 2.15. WSN and IoT inter relation [2.44] 

 

2.2.6.   WSN Application 

WSNs are presently being used in a wide range of applications [2.52] including 

the military, home, and industrial. The following possible WSNs usage are briefly 

introduced. 

System for Monitoring the Environment: Applications for WSN have usually 

included environmental monitoring heavily [2.53]. Systems for monitoring and 

controlling the environment include those that regulate temperature, humidity, light, 

and pressure. Applications for environmental monitoring in agriculture, habitats, 

indoor spaces, greenhouses, climate change, and forests have expanded quickly. 

Applications for environment monitoring are the subject of various studies [2.54]. 

Scalability, coverage, and energy efficiency are the three major criteria for 

environmental monitoring applications. The size of monitored locations might range 

from hundreds to thousands of hectares, hence the number of nodes distributed 

varies. Scalability is a crucial consideration when creating protocols to sustain a high 
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number of nodes and provide complete coverage of the regulated region [2.55]. The 

procedures suggested in this work are appropriate for applications involving 

environment monitoring. 

Human Body Tracking: The field of wireless healthcare systems has seen an 

increase in research attention in recent years. The concept of new wireless technology-

driven human body monitoring was inspired by the ageing population, people who 

need ongoing health monitoring, and rising health care expenditures. A wide range 

of assisted living applications, including human physical and biological control and 

performance monitoring for health care, e-fitness, urgent detection, emotional 

recognition for social media, safety, and highly interactive games, have the potential 

to be made possible by Wireless Body Sensor Networks (WBSNs) [2.56]. Researchers 

have made several attempts to employ WBSNs for monitoring the human body. Using 

a network of wireless sensors that can be implanted into the bodily tissue or attached 

to the surface of the body, the human body is monitored. Small and clever medical 

sensors that can be carried or installed in the human body have been made possible 

by recent technological advancements. The data is collected by the sensors and sent to 

the centre for aggregation and analysis. Applications for health monitoring must be 

highly reliable because they deal with human lives. Another crucial need to guarantee 

the system's long-term operation is the network's energy efficiency [2.57]. 

Intelligent Structures: Building automation has lately modified WSNs to address 

the escalating cost of energy and the expanding green movement. Using smart sensor 

nodes, buildings may optimise their energy usage, enhance security and safety, and 

lower operating costs. In the literature, a number of WSN-based smart building 

management systems have been presented [2.58]. Different kinds of sensor nodes 

sensing variables including temperature, humidity, light, and suffocating smoke 

make up the WSNs utilised in smart building management systems. Actuators, 

gateways, servers, communication and application software on various levels, as well 

as other home appliances, may also be included in the systems [2.59]. To communicate 

across entire buildings, smart building management systems need to leverage multi-

hop technology. To fulfil this requirement, specific data or hierarchical protocols can 
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be utilised. Another crucial prerequisite for such systems is the energy efficiency of 

the network [2.60]. 

 

2.3.     Metaheuristics and Swarm Intelligence  

The fields of operations research and computer science have been working to find 

solutions to difficult, significant problems in the real world. Finding a workable 

solution and refining it to converge on the ideal global answer are both important for 

tackling a large-scale problem. Unfortunately, due to limited resources and the 

complexity of the majority of optimization issues, finding precise solutions is 

challenging. To fully profit from metaheuristic, it is essential to comprehend 

computational complexity. There are only a few algorithms that are known to 

converge to optimality in a reasonable amount of time according to computational 

complexity theory (polynomial time-algorithms). But many issues in the actual world 

are NP-hard (non-deterministic). In other words, if there is a solution to the issue it 

can be quickly proved. Is P ≠ NP? The search for polynomial-time solutions to NP-

complete issues is still ongoing. The most challenging NP issues are NP-complete 

ones. All NP-complete issues are p-time solvable if any NP-complete problem is P-

time solvable. 

 

2.3.1.   Metaheuristics  

A metaheuristic algorithm is a search method created to locate a suitable answer 

to an optimization issue that is complex and challenging to solve. In this real-world of 

scarce resources, it is crucial to develop a close to ideal solution based on faulty or 

insufficient knowledge (e.g., computational power and time) [2.61]. One of the most 

significant developments in operations research over the past 20 years has been the 

development of metaheuristics for resolving these optimization issues. 

There are issues that demand consideration to create superior solutions to the 

already used conventional methods. In order to handle non-linear non-convex 

optimization problems, different metaheuristic methods are detailed by writers in 

very considerable detail. It is difficult to tackle specific NP-hard issues in 
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combinatorial optimization (i.e., in reasonable run time). So, compared to 

optimization algorithms, iterative techniques, and straightforward greedy heuristics, 

metaheuristics can frequently produce effective solutions with less computational 

work. Using an optimization technique to achieve global optimality is impractical for 

a variety of problems. When stochastic random variables are incorporated in the 

objective or constraints, for instance, an optimization issue might get complicated. 

Thus, it is challenging to implement a comprehensive probabilistic programme 

utilising robust optimization methods or stochastic programming. Many fields can 

benefit greatly from the use of metaheuristics. Multi-objective functions with non-

linear restrictions are the fundamental building blocks of many optimization 

problems. For instance, the majority of engineering optimization issues require 

solutions to multi-objective issues since they are highly non-linear. Metaheuristics are 

generally more effective than optimization algorithms, repetitive techniques, or basic 

heuristics at finding good solutions in combinatorial optimization because they search 

across a much larger range of feasible alternatives. [2.62] Metaheuristics are crucial in 

addressing real-world issues that are challenging to resolve with traditional 

optimization techniques. The majority of metaheuristics share the following 

characteristics: [2.62] 

• Strategies that direct the search process are known as metaheuristics. 

• Finding solutions that are close to ideal requires effective search space 

exploration. 

• Metaheuristic algorithms use a variety of methods, from straightforward local 

search techniques to intricate learning procedures. 

• Metaheuristic algorithms are typically non-deterministic and approximate. 

• Metaheuristics are general solutions to problems. 

Based on how they operate in the search space, metaheuristic algorithms are 

categorised [2.62] into categories including nature-inspired versus non-nature-

inspired, population-based versus single point search, dynamic versus static objective 

methods, one versus different neighbourhood structures, and memory consumption 

against memory-less approaches. This essay does not intend to contrast search and 

optimization methods. Therefore, it is crucial to consider if traditional search 
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techniques satisfy robustness criteria. In order to utilise and explore the solution 

space, metaheuristics are appropriate. 

 

2.3.2.   Swarm Intelligence  

Swarm intelligence (SI) is simply the aggregate conduct of distributed, self-

organized structures, natural or simulated. The idea of Swarm Intelligence 

fundamentally functions on artificial intelligence. Swarm Intelligence was first 

presented with regards to cellular robotic systems [2.63]. 

Swarm intelligence is the developing collaborative intellect of bunch of simple 

independent agents. Here, an autonomous agent is a subsystem that associates with 

its current circumstance, which likely comprises of many different agents, yet it acts 

somewhat freely from any remaining agents. The autonomous agent doesn't obey 

orders from a pioneer, or some worldwide arrangement. 

Swarm Intelligence structures are generally comprised of a population of 

collaborating locally with each other and with their atmosphere. The basic specialists 

keep extremely basic guidelines, and in spite of the fact that there is no centralized 

control structure directing how individual specialists ought to act, neighbourhood, 

and to some extent arbitrary, connections between such specialists lead to the 

development of "intelligent" worldwide conduct, obscure to the singular specialists.  

Swarm conduct should be visible in bird flocks, fish schools, microbial 

intelligence, just as in bugs like ant and bees [2.64]. Several optimization algorithms 

are based on swarm intelligence are observed and formed by researchers and are 

employed in several domains.  Some of the robust metaheuristics and swarm-based 

optimization concept and techniques used in this literature are given below.  

 

2.3.3.   Particle Swarm Optimization 

The first widespread theory of particle swarm optimization was by Eberhart and 

Kennedy in 1995 [2.65]. They devised a way to organize the movement of particles in 

a search area that investigated potential solutions. Their perspective was built on the 

ideas of ‘colony’ and ‘evolution’ as well as fundamental ways stimulated by the 
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duplication of hunting birds. The idea of this procedure was that when a bird school 

seeks food in an unfamiliar area, each bird's moving path is inspired by both the global 

optimist knowledge of a place and the knowledge of the place of the individual [2.66] 

- [2.67]. 

PSO is a multi-specialist comparable pursuit strategy that connects with joins an 

iterative technique to acquire the best arrangement in a complex search space. The 

PSO model is built on a swarm of n particles, each of which searches for a better 

solution to a problem in D dimensions by updating its position in light of its own and 

the group's past explorations. 

 

 

Figure 2.16. Concept of modification of a searching point by PSO 

Where  𝑆𝑘, 𝑆𝑘+1 are the current searching point and modified searching point. 𝑉𝑘,

𝑉𝑘+1   are the current velocity and modified velocity. 𝑉𝑝𝑏𝑒𝑠𝑡 is velocity based on 

particle’s best and  Vgbest is velocity based on global best. A set of location or searching 

point and velocity vectors, 𝑋𝑖 =  {𝑋1, 𝑋2,  𝑋3, … … , 𝑋𝑛}  and 𝑉𝑖 = 𝑉1,  𝑉2,  𝑉3, … , 𝑉𝑛}  are 

provided to each agent beforehand. Every so often, the criteria in (2.15) and (2.16), 

which are typical of PSO [2.68], are updated to produce new vectors. 

 𝑉𝑖,𝑡+1 = 𝑉𝑖,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)         (2.15) 

 𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑉𝑖,𝑡+𝑖                                                                     (2.16) 

Thus, the effects of individual and group information for a typical particle are 

controlled by the constants 𝑐1  and 𝑐2 respectively. Random integers with uniform 

distributions [2.69] are used for the 𝑟1 and 𝑟2 variables. Every particle is assigned a 
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new position at random, and the fitness value is continually boosted by the 𝑝𝑏𝑒𝑠𝑡 

value (the best position value of the individual) and the 𝑔𝑏𝑒𝑠𝑡 value (the best position 

value of the entire swarm) in the hopes of achieving the best possible outcome. At 

[2.69] - [2.71], 𝑐1 and 𝑐2 begin to affect the data of each individual particle and the data 

of the group as a whole. The ranges of 𝑟1 and 𝑟2 are arbitrarily set to [0, 1]. [2.72 - 2.73] 

Particle momentum was ranked using the inertia weight (𝑤), which was adapted 

[2.74] through the development of PSO-W as a replacement for 𝑉𝑚𝑎𝑥. In order for the 

algorithm to assemble more effectively, it is proposed to establish some sort of 

hierarchy in the swarm's exploratory and exploitation abilities. For this reason, we 

must rewrite (2.15) as (2.17). 

 𝑉𝑖,𝑡+1 = 𝑤𝑉𝑖,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)         (2.17) 

Traditionally, the size of the search space is attributed to the inertia weight 𝑤. It is 

essential to have a large value of 𝑤 for composite high dimensional issue spaces, but 

a small value of 𝑤 is sufficient for low dimensions search spaces [2.75], [2.76]. If s is 

the population size,  𝐷  is the Dimension size, and 𝑅  is the relative worth of consistent 

results consistent with [0,1], (2.18) allows for a wide range of inertia weights to be 

achieved. 

 𝑤 = [3 − 𝑒𝑥𝑝 (−
𝑠

200
) + (

𝑅

8
𝐷)

2

]
−1

                        (2.18) 

In order to improve its performance, the PSO algorithm is justified to use a new 

parameter, known as the constriction factor given in (2.20). This was first introduced 

by Clerc [2.77] and has shown to be quite useful in accommodating the exploration 

and exploitation trade-off, guaranteeing a fruitful algorithmic coincidence. With this 

new form of the equation, (2.15) is more accurately written as (2.19). 

 𝑉𝑖,𝑡+1 = 𝜒[𝑉𝑖,𝑡 + 𝛷1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) +  𝛷2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡 )                   (2.19) 

 𝜒 =  
2

[2−ɸ−√ɸ2−4ɸ]
                         (2.20) 

Here, ɸ =  ɸ1 +  ɸ2, ɸ1 = 𝑐1𝑟1 and ɸ2 = 𝑐2𝑟2. Typically smearing the value of ɸ as 

4.1 [2.78] 
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2.3.4.   Ant Colony Optimization 

The primary illustration of a fruitful swarm intelligence model is Ant Colony 

Optimization (ACO) [2.79]. ACO draws motivation from the social conduct of ant 

colonies. It is a characteristic observation that a gathering of 'practically blind' insects 

can mutually work out to find the shortest course between their food and their home 

with no visual data. The ACO heuristic is influenced by the rummaging conduct of a 

genuine ant colony in tracking down the shortcut between their home and the food. 

This is accomplished by a stored and aggregated chemical substance called 

'pheromone' by the proceeding ant which advances towards the food. In it looking 

through the ant, it utilizes its own insight into where the smell of the food comes from 

(as heuristic data) and the other ants' choice of the way toward the food (as pheromone 

data). 

Ants typically forage randomly in the wild, then return home while leaving 

pheromone trails indicating where they've been after spotting potential sources of 

food. If several ants discover such a way (pheromone trail), it's likely that they won't 

just keep wandering aimlessly but instead will stick to the trail, coming back to add to 

it in the hopes that they will eventually find food by taking the quickest route. In any 

case, the pheromone starts to evaporate after a while. The longer it takes for an ant to 

travel down the trail and back, the longer the pheromone requires to evaporate (and 

the track to turn out to be less notable). As compared more ants will go to the smaller 

track (can be depicted as a constructive response loop) and accordingly the 

pheromone concentration stays high for a more extended time frame [2.80] - [2.81]. 

 

 

 

 

Figure 2.17. Ants finding the shortest path around an obstacle  
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ACO was first presented utilizing the Traveling Salesman Problem (TSP) [2.82]. 

Beginning from its start node, an ant repetitively proceeds starting with one node then 

onto the next. While being at a node, an ant decides to move to a node not visited at 

time t with a probability stated by (2.21). 

𝑝𝑖,𝑗
𝑘 (𝑡) =

[τ𝑖,𝑗 (𝑡)]𝛼[𝜂𝑖,𝑗 (𝑡)]𝛽

∑ [τ𝑖,𝑗 (𝑡)]𝛼[𝜂𝑖,𝑗 (𝑡)]𝛽
𝐼∊𝑁𝐾𝑖

  𝑗 ∊  𝑁𝐾𝑖                                                      (2.21) 

Where, 𝑁𝑘𝑖  is a practical neighbourhood of the antk , i.e., a collection of cities that 

have never been visited by antk ; τi,j (t) the amount of pheromone in the edge (i, j) at 

that time t, the weight of the pheromone is α ; 𝜂𝑖,𝑗 (𝑡) is the first obtainable heuristic 

data on the edge (i, j) at that time t, 𝛽 is the weight of heuristic data. Two parameters 

also decide the related effect of the pheromone trail and heuristic data. τi,j (t) 

controlled by 

τ𝑖,𝑗(𝑡) = 𝜌τ𝑖,𝑗(𝑡 − 1) +  ∑ 𝛥τ𝐾𝑖,𝑗(𝑡)   ∀𝑛
𝑘=1  (𝑖, 𝑗)                                     (2.22) 

where, 𝜌 is the evaporation rate of the pheromone trail with  < 0 < 𝜌 < 1 and n is 

the no. of ant. 𝛥τ𝐾𝑖,𝑗(𝑡) is the amount of pheromone emitted by kth ant also given by 

𝛥τ𝐾𝑖,𝑗(𝑡) = {
𝑄

𝐿𝑘(𝑡)
                  𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑎𝑛𝑡𝑘         

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               
                     (2.23) 

        where, 𝑄 is the pheromone updating constant and 𝐿𝑘(𝑡) is the kth ant tour cost of 

TSP. 

 

2.3.5.   Invasive Weed Optimization 

The aggressiveness of weeds motivated the development of the numerical 

stochastic technique known as Invasive Weed Optimization (IWO) [2.83] - [2.87]. 

Because of its tenacious and annoying characteristics, weed spreads unintentionally 

and poses a serious threat to more desirable, cultivated flora. As a result, many people 

believe that "the weed always wins" when it comes to weeds [2.83]. The features imply 

that weeds adapt to their surroundings, changing their behaviour and becoming fitter. 

Seeding, development, and the competition within the weed colony are three key 

features of weed colonization. Like most of the algorithms, the IWO algorithm has 
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been inspired from the colonization phenomenon of the weeds.  It is comprised of the 

following stages: 

Initialization: At the first stage, designated as 𝑁0, a constant number of weeds are 

cultivated. Serving as the initial growth of the weed population, 𝑑 being the problem 

dimension, the maximum seed usage is indicated by 𝑠𝑚𝑎𝑥 , 𝑛 is the index of nonlinear 

modulation. 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations that can happen. 𝜎𝑓𝑖𝑛𝑎𝑙  is 

the final standard deviation and 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the amount of space needed for the first 

solution. 

Reproduction: Weeds can reproduce either sexually or asexually, depending on 

the type of plant. When the pollen fertilizes a seed made by the plant, it turns into an 

egg. This is called sexual reproduction. A member of the population can make seeds 

based on its own fitness and the colony's lowest and highest fitness. As shown in 

Figure 2.18, the number of seeds a plant can make increases linearly from the 

minimum to the maximum as the plant's fitness goes up. 

 

Figure 2.18. Seed production in weed colonization [2.83] 

Individuals who are more physically fit are more likely to colonize than those who 

are less fit [2.83]. Even the less fit individuals often reproduce and add to their 

optimization.  The approach mentioned below allows even the most inaccessible 

persons to contribute their useful share as given by (2.24) 

𝑆𝑝𝑙𝑎𝑛𝑡  =  𝑆𝑚𝑖𝑛 + 𝑐𝑒𝑖𝑙 [𝑓𝑝𝑙𝑎𝑛𝑡 ×  
𝑆𝑚𝑎𝑥− 𝑆𝑚𝑖𝑛

𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛
]                                            (2.24)    

Minimum and maximum values for the objective function during a given iteration 

are denoted by 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 , whereas 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥  correspond to the minimum 
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and maximum seed yields achievable during that iteration. The objective function 

value 𝑓𝑝𝑙𝑎𝑛𝑡  indicates how many seeds should be produced by a plant with a specific 

genotype 𝑆𝑝𝑙𝑎𝑛𝑡 . 

Spatial dispersal: Spatial dispersion is the driving force behind the IWO 

algorithm's unpredictable and adaptable behaviour. Using a normal random 

distribution, as illustrated in (2.25), the generated seeds are scattered across the search 

space, with the parent weed's position as the mean and a fluctuating standard 

deviation (2.26). This procedure ensures that the seeds will not wander far from the 

mother plant. 

 𝑌 = 𝑓 (
𝑥

µ,𝜎
) =

𝑒
−

(𝑥−µ)2

2𝜎2

𝜎√2𝜋
                                                          (2.25) 

However, according to (2.26) with every iteration the value of the standard 

deviation changes from 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 𝜎𝑓𝑖𝑛𝑎𝑙. 

𝜎𝑖𝑡𝑒𝑟 = (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

𝑛

(𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙                                (2.26) 

A decrease in from its beginning to its end value is shown in Figure. 2.19 for a 

range of values of n for non-linear modulation. As n grows larger, the rate of decline 

quickens. 

Competitive Exclusion: After the weed population has reached its peak number 

of plants which includes seeds and unfit plants as well, a competitive exclusion is 

applied which allows all the weeds to create and spread the seeds in their specific 

search region.  In order to reach the maximum permitted population in a colony, 

weeds with poorer fitness are eradicated. Eventually, only the most well-suited plants 

will survive once the procedure has been iterated as many times as possible. 

 

Figure 2.19. Standard deviation vs no. of iterations [2.83] 
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Termination Condition: The algorithm stops when iterating variable  has reached 

its ceiling value. 

2.3.6.    Physarum Optimization 

Physarum is composed of a series of protoplasmic veins that act as the transport 

system for the various nutrients as well as the chemical signals, during the vegetative 

state [2.88]. The study of this unicelled ameboid for 50 long years has paved the way 

for discovery that this flow is driven by protoplasmic flow. This flow is a derivative 

of the hydraulic pressure caused due to the synchronous beating of the actin-myosin 

fibers. The vein network has evolved to the following specifications [2.89]:  

• When the food source is absent this network has a tendency to disappear 

• The longer veins die out when multiple veins are connected to food sources. 

 

Figure 2.20. Physarum BioNetwork [2.90] 

The cells in the ameboid physarum communicate through each other with the help 

of the protoplasmic vein network. This is the Physarum BioNetwork as shown in the 

above Figure 2.20. This network helps the bio interface to respond artificially to the 

changing levels of nutrients, food and stimuli. This reply is the rhythmic change of the 

actin-myosin fibre length. This changing in the fibre length is mapped and studied by 

sending impulses through the vein network. The nuclei in the physarum cells are 

connected to each other virtually via the vein network link. These connections form 

the bio interface. Each cell after receiving the stimuli transmits it to the other cell after 

conducting it through its internal vein network. This stimuli reception and 

transmission generate shortest path between the food source [2.91] thereby create an 
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MST. The procedure for this is shown in Figure 2.21. It is an example of a 4-node 

system with 3 external or steiner node. 

To check the change in size of the actin-myocin fibre, feedback is artificially fed to the 

nodes. It is shown in Figure 2.21(a).  

 

Figure 2.21. (a)  Four node Physarum BioNetwork  (b) MST in Physarum BioNetwork 

To study how the cells revise their physical nature when encountered with the 

protoplasmic flow, a flow is generated by forcefully through the vein network [2.92]. 

The viens are closely monitored as to which ones receive and transmit this flow 

resulting in the formation of the minimum steiner tree as shown in Figure 2.21(b). For 

a set of nodes 𝑣 a pair of nodes 𝑣𝑖 and 𝑣𝑗 , is selected. Their connecting edge is 𝑒𝑖𝑗 and 

𝑙𝑖𝑗 = 𝐿(𝑒𝑖𝑗) is the length of the edge. Let 𝑝𝑖 and 𝑝𝑗 be the pressure at 𝑣𝑖 and 

𝑣𝑗 respectively. The protoplasmic flux is given by (2.27). 

𝑞𝑖𝑗 =
𝑑𝑖𝑗

𝑙𝑖𝑗
(𝑝𝑖(𝑡) − 𝑝𝑗(𝑡) ).                                                                      (2.27) 

where, 𝑑𝑖𝑗 =
𝜋𝑟𝑖𝑗

4

8𝜉
 is a value of the conductivity of the tube, ξ is the fluid viscosity. A 

source of food  𝑣𝑠 is chosen randomly along with another food source appointed as 

sink 𝑣𝑒, at each iteration. The presence of the gradient between the source and sink 

enables the protoplasmic flow, such that ∑𝑗𝑞𝑖𝑗 = 𝐼0 where 𝐼0 is the positive flux 

entering the source node along with the sink 𝑣𝑒, whose respective flux is ∑𝑗𝑞𝑖𝑗 = −𝐼0. 

The discussed theory is denoted as in (2.28). 
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∑ 𝑞𝑖𝑗 = ∑
𝑑𝑖𝑗

𝑙𝑖𝑗
(𝑝𝑖 − 𝑝𝑗  )  = {

𝐼0, 𝑖𝑓 𝑣𝑖 =  𝑣𝑠

−𝐼0, 𝑖𝑓 𝑣𝑖 =  𝑣𝑒

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑗𝑗                                       (2.28) 

where, 𝑞𝑖𝑗 is protoplasmic flux,  𝑑𝑖𝑗  is conductivity of the tube. 𝑣𝑖  &  𝑣𝑗  are random 

nodes and 𝑣𝑠  &  𝑣𝑒  are source and sink. 

The values of  𝑝𝑖 and every 𝑞𝑖𝑗  can be obtained from the above equation on the 

basic control parameter of 𝑝𝑎 = 0. The vein network spread over the physarum 

constricts to enable the protoplasmic flow. Synonymously in the chip the 𝑑𝑖𝑗  is being 

changed after every iteration. When this value reaches a certain threshold that is lower 

than a minimum it gets eliminated from the solution space along with the nodes that 

it connects. The associated points or the food sources from the remaining edges whose 

𝑑𝑖𝑗 is more or equal to the given threshold form the minimum path. 

 

2.3.7.   Directed Artificial Bat Algorithm 

The Directed Artificial Bat Algorithm (DABA) emphasizes on creating artificial 

agents that have the characteristics of bats. These bats are a part of swarms so they 

have to traverse the topography to find out and locate targets that are feasible [2.93] - 

[2.94]. And they do so by producing high-frequency ultrasonic sound waves. 

Evidently, the initial position of a bat represents the direction of waves and a solution. 

These initial amounts of every bat are set in the first iteration of the initiation step. 

Each bat thus looks for a better solution within a specific directional breadth. The 

present iterative bat searches locally for neighbourhood solutions. However, wave 

that is transmitted has a directed search scope, and it also has a better fitness value. 

The DABA is a metaheuristic algorithm that is swarm intelligence-based. It makes 

use of ultrasonic waves for the purpose of echolocation, that is, for sensing distance 

and for flying randomly to search for a prey. The wave which is emitted have a wave 

speed given by the relation  𝑉 =  𝑓 𝜆, where frequency is 𝑓 and wavelength is 𝜆. Both 

the wavelength and frequency of the bat are dynamic in nature as according to the 

behaviour when a prey is in vicinity as given below.    
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• Wavelength value is increased and frequency is declined when no prey is in 

vicinity.  

• Wavelength is declined and the frequency is increased to attack the prey 

accurately. 

The search space consists of n bats, and their positions 𝑥𝑖 and velocities 𝑣𝑖 are 

being updated. Now, each bat’s position 𝑥𝑖 =  [𝑥1  , 𝑥2  , … . . 𝑥𝑖𝑑,] is determined and 

evaluated by a fitness function 𝑓(𝑥𝑖) . Here the fitness of each particle is calculated 

with the help of frequency 𝑓𝑖 which is multiplied with the directed bat’s wavelength 

𝜆. The pulse increase factor 𝑟 and the loudness 𝐴0  manipulates the pulse frequency.  

The loudness is varied in the range of positive 𝐴0  to  𝐴𝑚𝑖𝑛  constant value. The right 

updating of the amplitude 𝐴𝑖 and the pulse rate 𝑟𝑖 balances the tendencies of 

exploration and exploitation of each. Once a bat finds a solution, the pulse emission 

rate rises with the decrease of amplitude level, in order to attain more accuracy. The 

updated velocities 𝑣𝑖 and locations 𝑥𝑖 are as follows:  

𝐹𝑖 =  𝑓𝑚𝑖𝑛 + ( 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛) 𝛽                                                                                  (2.29) 

𝑉𝑖𝑡 =  𝑣𝑖𝑡 − 1 + (𝑥𝑖𝑡 − 1 − 𝑥∗)𝑓𝑖                                                          ( 2.30) 

𝑋𝑖𝑡 =  𝑥𝑖𝑡 − 1 +  𝑣𝑖𝑡                                                                                                  (2.31) 

Here 𝛽 = random vector that is drawn from uniform distribution [0, 1]. During the 

iteration, the pulse emission rates and the amplitude undergoes particular changes, 

and among 𝑛 bats within the population, the current best solution 𝑥∗ can be attained. 

The frequency range of 𝑓𝑚𝑖𝑛  and 𝑓𝑚𝑎𝑥 is 20kHz to 500kHz and wavelength range of  

𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥  is from 0.7mm to 17mm. When the best solutions are achieved, a new 

solution for each bat is generated among them using random walk by the following 

in (2.32)  

𝑥𝑛𝑒𝑤 =  𝑥𝑜𝑙𝑑 +  𝑄𝐴𝑡                                                                                                         (2.32) 

where, 𝐴𝑡 is the average loudness of the bats at time 𝑡 and  ǫ ∈  [−1, 1] is a random 

number. Also,   

𝐴𝑡+1 𝑖 = α 𝐴𝑡 𝑖               (2.33) 

𝑟𝑡+1 𝑖 = 𝑟0 𝑖 [1 − 𝑒𝑥𝑝(−𝛾𝑡)]             (2.34) 

where 𝛼 and 𝛾 are constants and 𝛼 =  𝛾 =  0.9,  𝐴0 𝑖  to 𝐴𝑚𝑎𝑥  is [1, 2] and 𝑟 ∈  [0,1]. 
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3.1.     Introduction 

Expressing advancement as a standard peculiarity is a touch of embellishment, 

which incorporates monetary improvement to designing technique just as occupation 

booking to asset assignment. The objective of any improvement is to achieve the same 
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or similar outcomes under constrained settings while either reducing or amplifying 

certain parameters. In the context of a VLSI physical design, there are a number of 

parameters that must be refined. 

Every 18 months, the number of transistors in a device doubles, according to 

Moore's Law [3.1]. Meanwhile, transistor sizes are basically shrinking by the current 

ages as a result of massive growth in technologies, and more transistors are attaining 

adapted in that one chip location than before employing cutting-edge assembly 

processes. Interconnect length has so been greatly increased. Previously, updating the 

gate delay was sufficient, but since the establishment of the 130nm technological node, 

the connection delay has become even more apparent. 

The goal of the VLSI physical strategy is to improve the device preparations and 

interconnection architectures among these devices prior to their expected 

presentation. The routing phase of VLSI physical design is primarily characterised by 

Global Routing and Detailed Routing, and it is at this phase that the wire length 

estimation of interconnects is measured. Circuit interconnections with the shortest 

possible wavelength and the lowest possible interconnect time are mandatory in the 

global routing phase. A sequential approach where VLSI nets are sequenced according 

on their criticality and the practical router's hire improvement point helps alleviate 

some of the world's routing concerns. Rerouting after severing obstructive wires [3.2] 

and the "shove-aside" operation [3.3], as well as offering a concurrent approach where 

the parallel integer programming concept is tested to improve global routing within 

constraints. 

The Routing problem in VLSI physical design can also be planned in classical 

Graph Theory, where the wirelength minimization of connected VLSI circuit block 

depends on solving the RSMT [3.4], a prominent NP-Complete problem in Graph 

Theory. Such NP-complete problems are well suited for a branch of AI called Swarm 

Intelligence. Swarms share information and resources to keep going no matter what. 

Individually, these social experts have been shown to have restricted capabilities; 

together, however, they are well-suited for accomplishing a goal, and do it rather 

insightfully, given their reality. Scientists and experts felt compelled to replicate the 

successes of these natural multi-systems in their own work. 
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As the length of the interconnects has a significant effect on the delay of the 

circuit's devices, engineering geometry has become crucial to achieving sub-micron 

levels of reflection, circuit proficiency, and dependability. Algorithms are often 

helpful in bringing out improvement, as routing delay or interconnect length depends 

on aspects. In the past, reducing wire length was the best strategy for reducing routing 

latency and increasing circuit throughput. Nevertheless, it is certain that the routing 

way in addition to buffer insertion fundamentally upgrades this methodology. Delay 

enhancement is rudimentary to achieve the timing conclusion of a top-notch VLSI 

format. 

Zhou et al. [3.4] projected the methodology of coordinated buffer incorporation 

while searching for the ideal routing path. Although it does find the shortest path from 

source to sink, this method is more involved than the rudimentary method of 

embedding buffers. Because of its early detection of and ability to avoid cushion 

obstructions, it outperforms more traditional approaches. 

The Elmore wire model [3.5] provides precision for estimating delay in worldwide 

interconnect routing strategies. However, this eliminates the effects of inductance, 

which have been shown to cause a 35% time-delay miscalculation in nanometre VLSI 

innovation [3.6]. Reflective submicron technology has allowed the VLSI configuration 

to advance to the point where Friedman et al. [3.7] can predict a high-order RLC delay 

model. Patches are made to the RLC model in [3.8] to facilitate the sink-to-source and 

source-to-sink iterative defer figuring by Md. Yusof et al. [3.9], which are implemented 

in the two-way RLC based retribution as in the S-RABILA calculation [3.10]. 

In 1989, G Beni and J Wang [3.11] first used the term "swarm insight" to describe 

a new way of looking at problems in international development. The methods used 

there are heuristics or meta-heuristics. For the purpose of "discovery by 

experimentation," heuristics bring people together. If one trying to solve a difficult 

development problem (such as an NP-complete problem) in a reasonable amount of 

time, these methods will be very helpful. Particle Swarm Optimization is one widely 

used meta-heuristics calculation [3.12]. 
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In this chapter, it is learned how to use algorithms based on PSO variants and 

hybrids to optimize wirelength and decrease interconnection delay in VLSI circuits. 

In the first section, two modification is done in weighted (PSO-W) algorithms [3.13]. 

The Self-Adaptive Acceleration Coefficient (PSO-SAAC) is a method for improving 

the properties of a searching procedure designed with a high rate of effective merging 

by readjusting the acceleration coefficients through a flexible system of local inquiry 

and global search. By incorporating a component related to a mutation factor into the 

position update trademark condition of PSO-W, an additional new strategy is 

implemented that brings together the intuition of the hereditary calculation with PSO-

W generating PSO-Mutation (PSO-MU). In addition to the previously mentioned PSO 

alternatives, PSO with constriction factor (PSO-C) [3.14] is evaluated with these 

calculations, on a common ground for boosting VLSI global steering. The chapter also 

details the modified PSO-C algorithm in the second section for minimizing routing 

delays. CPSO-MU determines the minimally invasive placement of the wire, and 

followed by it examines the optimal region along the wire in which to embed the 

buffer. 

 

3.2.     Literature Review 

VLSI Routing is well-thought-out to be the most critical step in the complete 

course of physical designing. The standard method for managing directing arranges 

the routing into two unique stages, the first being the phase of global routing followed 

by the second detailed routing. The ultimate objective of global routing is to shorten 

the complete flood and the general wire length other than lessening the execution 

time. The issue of global routing is regularly inspected as a diagram issue. The routing 

segments and their affiliations, limits, and interconnections are demonstrated as 

diagrams and in any case, the arrangement style solidly impacts the chart models 

used. To discover an ideal relationship among the given terminal nodes, different 

spanning tree algorithms are used yet the resulting cost of these RSMT acquired 

because of these algorithms are awful and thus, to diminish the general way cost of 

the routing ways, other than the terminal nodes, a bunch of additional places, called 
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the steiner nodes are likewise considered which at last aides in additional decreasing 

the general expense of the MST and bring about the RSMT [3.15]. In order to reduce 

the cost of the routing path acquired with least spreading over algorithms, steiner 

nodes were suggested [3.16] for use in VLSI routing. Steiner nodes are not a piece of 

the first arrangement of vertices; however, they essentially limit the general way 

length producing Minimum Steiner Tree. 

J. P. Cohoon et al. [3.17] reported the issue of observing the Rectilinear Steiner Tree 

(RST) with minimum length that interfaces a bunch of focuses on the limit of a 

rectangle. An algorithm shown for linear time problem.  

Jan-ming Ho et al. [3.18] examined another way to deal with developing the RST 

of a given arrangement of focuses in the plane, beginning from a base traversing tree. 

The principle thought in methodology is to decide L-molded designs for the edges of 

the MST, to amplify the covers between the formats, subsequently limiting the 

expense (i.e., wire length) of the subsequent RST. A straight time calculation portrayed 

for building a RST from a MST, to such an extent that the RST is ideal under the 

limitation that the format of each edge of the MST is a L-shape. The RST's delivered 

by this calculation have 8-33% lower cost than the MST, with the normal expense 

improvement, over countless arbitrary point sets, being around 9%. The running 

season of the calculation on an IBM 3090 processor is under 0.01 seconds for point sets 

with cardinality 10.  

An RST for a given arrangement of focuses is developed by Chao Ting-Hai et al. 

[3.19]. The suggested calculation outflanks most different calculations of its group by 

the way that the normal expense improvement over the rectilinear least traversing tree 

is 10.4%, and its time intricacy is 𝑂 (𝑛2 log 𝑛).  

Xianlong Hong et al. in 1993 [3.20] reported two execution driven steiner tree 

calculations for worldwide directing which consider the minimization of planning 

delay during the tree development as the objective. One calculation depends on 

nonlinear advancement technique, one more uses heuristic way to deal with guide the 

development of steiner tree. Another planning model is set up which incorporates 

both length and basic way among source and sink in defer definition, and an upper 

destined for timing postpone is deducted and used to direct the two calculations.  
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K. D. Boese et al. [3.21] gave another hypothetical system to developing steiner 

directing trees with least Elmore delay. Vitally hypothetical outcome is a speculation 

of Hanan's hypothesis which restricted the quantity of potential areas of steiner hubs 

in an ideal defer RST. Another hypothetical outcome builds up another decay 

hypothesis for developing ideal defer Steiner trees. A branch-and-bound strategy is 

fostered, called BB-SORT-C, which precisely limits any direct mix of Elmore sink 

delays; BB-SORT-C is down to earth for steering little nets and for delimiting the space 

of attainable steering arrangements concerning Elmore delay.  

A calculation for the development of deferral limited multicast trees depends on 

the "least expensive addition" heuristic, a notable answer for the ordinary steiner tree 

issue in charts as reported by R. Novak et al. [3.22]. A least expensive inclusion 

heuristic adjusted for the requirement rendition of the Steiner tree issue by presenting 

a strategy for imperfect compelled briefest way calculation. The suggested steiner tree 

calculation utilizes the table passing instrument, rather than the much of the time 

utilized "waving" strategy.  

S. Areibi et al. in 2007 [3.23] focused on global routing problem. The fundamental 

point is to foster a productive K Rectilinear Steiner Trees (K-RST) calculation. A K-

RST routine is created to produce a bunch of RST for each net. The K-RST utilizes 

nearby tree fragment changes to guarantee that there is no duplication of steiner trees 

for a net. The most limited tree for a net is overall 11% more limited than that of the 

negligible crossing tree, which prompts region reserve funds.  

Yu Hu et al. [3.24] presented a functional heuristic for RSMT development 

dependent on subterranean insect province streamlining ACO. This calculation was 

executed on a Sun workstation with Unix working framework and the outcomes have 

been contrasted and the GeoSteiner 3.1 and a new work utilizing grouped covetous 

triple development. Test results show that the calculation, named ACO-Steiner, can 

get an exceptionally short run time and keep the elite exhibition.  

A two-stage calculation is insinuated by G. Grewal et al [3.25] for rapidly 

developing an assorted pool of Steiner trees for directing multi-terminal nets. In the 

principal stage, an original productive calculation, called Shrubbery, is utilized to 

develop excellent steiner trees to enter the pool. To guarantee assortment among pool 



Chapter 3:  VLSI Routing Optimization based on Particle Swarm Optimization 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 
by Subhrapratim Nath. Page | 86 
 

individuals, a drawn-out memory and edge-weight irritation system is utilized to 

differentiate the hunt when looking for new arrangements. Nearby inquiry is utilized 

in the subsequent stage, to additionally work on the nature of trees in the pool. 

Computational analyses performed on north of 800 regularly utilized benchmarks 

show that the suggested calculation can create pools of ideal (or close ideal) trees in a 

tiny measure of time.  

C. Chu et al. presented [3.26] an extremely quick and precise RSMT calculation 

called quick query table assessment (FLUTE). Woodwind depends on a precomputed 

query table to make RSMT development exceptionally quick and extremely exact for 

low-degree1 nets. For serious level nets, a net-breaking strategy is suggested to lessen 

the net size until the table can be utilized. A plan is likewise introduced to permit 

clients to control the tradeoff among exactness and runtime. Woodwind is ideal for 

low-degree nets (up to degree 9 in the present execution) is still extremely precise for 

nets up to degree 100. In this manner, it is especially appropriate for extremely 

enormous scope joining applications in which most nets have a level of 30 or less. A 

north of 18 modern circuits in the ISPD98 benchmark suite showed, FLUTE with 

default exactness is more precise than the Batched 1-Steiner heuristic and is nearly 

pretty much as quick as an exceptionally productive execution of Prim's rectilinear 

least crossing tree calculation.  

Hiroshi Totsukawa et al. reported [3.27] a genetic algorithm where the three-

dimensional rectilinear Steiner tree with limited number of twists is acquired by 

supplanting each edge of the given Euclidean traversing tree by the sections which 

are corresponding to the X-hub, the Y-hub, or the Z-pivot. In the suggested strategy, 

the calculation can stay away from hindrances deftly by utilizing, probably, three 

curves to supplant one edge of the Euclidean crossing tree. For the wellness esteem, a 

straight amount of the wire length and breadth of the RST is utilized. In the trial 

results, it is shown that suggested equal hereditary calculation can stay away from 

snags, and get the three-dimensional rectilinear Steiner tree with limited number of 

curves.  

X. Ma et al. [3.28] suggested a molecule swarm streamlining for taking care of 

steiner tree issue. In the calculation a tree structure portrayal is utilized to encode a 
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molecule. To understand the transmission of tree structure data a clever strategy for 

particles flying in search space is suggested. X. Ma et al. additionally present the r-

neighborhood ring geography of particles to improve the capacity of nearby and 

worldwide pursuit of PSO calculation, and a molecule change strategy to keep the 

variety of molecule populace. Thorough recreation tests are done on various issues 

and diverse organization geographies. The outcomes show that the suggested 

calculation has great scanning execution for observing ideal steiner tree.  

Lie Genggeng et al. [3.29] presented a RSMT calculation dependent on discrete 

PSO (DPSO), to be specific BRRA_DPSO, to limit the wiring length and diminish the 

quantity of curves, which is useful for through decrease and dependability increase in 

the steering stage. Genetic Algorithm (GA) suggested to tackle the issue of the 

sluggish assembly pace of PSO utilized for a high-layered space improvement, a self-

adjusting procedure that can change the learning variables, and consolidate with the 

hybrid and transformation administrators. The outcomes show that the suggested 

calculation can proficiently furnish the arrangement of RSMT issue with great quality 

and meet more quickly than GA. Additionally, the calculation can likewise lessen the 

quantity of twists.  

There is a BOB-RSMT-based algorithm that was developed by Y. Zhang et al. 

[3.30]. Using buffering-attention, the suggested calculation moves starting tree 

structures steadily and efficiently to meet slew constraints while keeping wire length 

to a minimum. It can deal with complex squares including rectilinear shapes. The 

investigations on different benchmarks exhibit extremely encouraging outcomes. 

When compared to the conventional Obstacle Avoiding RSMT (OA-RSMT) 

calculations, the outside block wire length and the absolute wire length are reduced 

by making strategic use of over-the-block steering assets. RSMT likewise decreases the 

repeater count or region expected to fulfil slew limitations, which is vital for present 

day configuration conclusion.  

N. Maharjan et al. [3.31] elaborated another technique for addressing the MST in 

an undirected diagram. This strategy depends on the conduct of genuine subterranean 

insects and takes care of the issue in lesser opportunity to create the Minimal Steiner 

tree. The overall idea of observing a base way creates from the deviation of the 
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subterranean insects' way which is impacted by other subterranean insect settlements 

or the ways made by subterranean insects of different provinces when they move 

starting with one state then onto the next and consequently subsequently framing the 

Steiner tree. The way so shaped is viewed as the base distance way between every one 

of the provinces in question.  

N. R Latha et al. [3.32] worked-on Woodwind (Fast Look-Up table) based 

methodology. Woodwind (Fast Look-Up table) based methodology introduced a 

quick and precise RSMT development for both more modest and more significant 

level nets. The model lessens the time intricacy for RSMT development for more 

modest nets, but for bigger nets there exists memory overhead. Since woodwind-

based model did not consider the memory necessity in developing RSMT, the 

suggested work presents a Memory-Enhanced RSMT (MORSMT) development to 

address the memory overhead for bigger nets. Tests are led to assess the presentation 

of the suggested approach over a current model for differed benchmarks as far as 

calculation time, memory overhead, and wire length.  

Gengjie Chen et al. [3.33] reported a steiner SLT development technique called 

Steiner SLT (SALT), which is productive and has the most impenetrable bound over 

all the cutting-edge general-diagram SLT calculations. Applying SALT to Manhattan 

space offers a smooth tradeoff between rectilinear steiner least tree and rectilinear 

steiner least arborescence for VLSI directing. The adaption additionally decreases the 

time intricacy from  𝑂 (𝑛2) to  𝑂 (𝑛 𝑙𝑜𝑔𝑛). 

The above reported works on RMST problem is solved using different approaches 

in different domain.  

The routing problem in VLSI chip is mapped as RSMT problem where researcher 

suggested efficient method with the usage of heuristic and meta heuristics method. 

Swarm based method [3.34] - [3.36] became prominence in VLSI problems as found in 

literature.  

T. Arora et al. applies [3.37] ACO to the NP-hard issue of tracking down ideal 

courses with least capacitance for interconnect directing on VLSI chips. The limitations 

on interconnect steering are utilized by insects as heuristics which guide their pursuit 

cycle ACO calculations executed on both Manhattan and non-Manhattan directing 
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models. The outcomes are contrasted and a few best-in-class scholarly switches. The 

ACO steering calculation had the option to acquire a general improvement of 8% as 

far as wire-length, 7% as far as vias and capacitance. Running occasions were longer 

than those switches, however basically the same as the other switch which can course 

all wires on all benchmark chips.  

T. Arora et al. [3.38] applies ACO to the NP‐hard issue of tracking down ideal 

courses for interconnect directing on VLSI chips. The imperatives on interconnect 

directing are utilized by subterranean insects as heuristics which guide their pursuit 

interaction. It is observed that ACO calculations had the option to effectively fuse 

numerous requirements and course interconnects on set-up of benchmark chips. On a 

normal, the calculation steered with absolute wire length 5.5% not exactly other set up 

directing calculations.  

S. Manna et al. [3.39] portrays the worldwide routing in VLSI utilizing Differential 

Evolution (DE) based enhancement method to discover the base directing wire length. 

This paper proposes an original way to deal with apply of Differential Evolution 

calculation for taking care of the streamlining issues in discrete spaces.  

The DE calculation [3.40] has shown great application impact in taking care of 

different NP-hard issues. Hence, in light of the possibility of DE calculation, H. Wu et 

al. [3.41] proposes a RSMT development calculation for tackling this issue.  

P. Bhattacharya et al. [3.42] works on algorithm in light of Artificial Bee Colony 

(ABC) for working out the wire length in worldwide steering and the upgraded 

outcomes are thought about against the standard switch NTHU 2.0. NTHU-Route 2.0 

is a fast and vigorous worldwide switch which addresses all ISPD benchmarks 

keeping up with excellent quality.  

H. Zhang et al. [3.43] presents a methodology that applies the ABC calculation to 

the Two-Terminals-Net-Routing (TTNR) issue in VLSI actual plan and contrasts its 

exhibition and the labyrinth calculation variation known as the best in class 

worldwide directing calculation. 

A. Khan et al. [3.44] suggested a plan for global routing in view of contemporary 

ST calculations: Firefly Algorithm (FA), and ABC calculation and have thought about 
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the presentation of the two. FA produces better improvement brings about correlation 

than ABC despite it ends up very costly, computationally.  

M. N. Ayob et al. [3.45] investigates the utilization of FA in routing of VLSI. The 

area of doglegs is utilized to display the firefly that addresses the directing 

arrangement. The suggested approach is then contrasted and past writing for 

benchmarking. The outcome shows that it has a decent potential in VLSI and can be 

additionally stretched out in future.  

Researchers also suggested the use of Honey Bee algorithm [3.46] - [3.48] for 

routing optimization in wireless network which can be efficiently used in VLSI 

routing optimization.  

G. Chen et al. [3.49] reported a decision algorithm in light of Particle Swarm 

Optimization (PSO) to get a possible floor arranging in VLSI circuit actual situation. 

The PSO was applied with whole number coding in view of module number and 

another suggested worth of speed increase coefficients for ideal arrangement. The 

calculation can stay away from nearby least and performs well in union.  

H. Zhou et al. [3.50] think about limitations on buffer location and address the 

synchronous maze routing and support inclusion issue. Given a square situation 

characterizing support area limitations and a couple of pins (a source and a sink), a 

polynomial time accurate calculation used to observe a cradled course from the source 

to the sink with least Elmore delay. 

B Kantha et al. [3.51] suggested usage of PSO in VLSI sensor device and N B Singh 

et al. [3.52] - [3.54] reported employ of PSO in VLSI nano device.  A. Khan [3.55], [3.56] 

insinuated PSO in solving VLSI global optimization.  

G. Liu et al. [3.57] works on issues of RSMT. It limits the wiring length and number 

of bends. For taking care of slow slow convergence rate of PSO Genetic Algorithm 

suggested. The results proved that suggested calculation can effectively give the 

arrangement of the RSMT issue with great quality and combine more quickly than 

GA. Besides, the calculation can likewise decrease the quantity of twists. An algorithm 

[3.58] based on parallel neural network is likewise reported.  

H. Wang et al. [3.59] reported an algorithm on PSO that is surrogate-assisted.  In 

the reported calculation, a worldwide model administration system is created, which 
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looks for something good and most unsure arrangements as indicated by a substitute 

troupe utilizing a PSO calculation and assesses these arrangements utilizing the costly 

genuine capacity.  

L. Zhao et al. [3.60] suggested another PSO with dynamic processing of 

constraints. In the first place, requirements partitioned into three cases and plan 

another PSO based hybrid administrator to progressively manage limitations; second, 

a typical dissemination is added into PSO to function as change administrator, which 

will upgrade the variety of the multitude and explore the pursuit course. 

 

3.3.   Wirelength minimization of VLSI circuits using 
variants and hybrid of Particle Swarm Optimization 

PSO is an iterative method that uses a group of specialists to find the optimal 

solution to a problem in a complex search space. An 𝑛-agent team is given the option 

of dividing up the search space into 𝑑 dimensions. Each agent has its own unique set 

of position and velocity vectors, 𝑋𝑖 = {𝑋1 , 𝑋2, …… , 𝑋𝑛} and 𝑉𝑖 =

{𝑉1 , 𝑉2, …… , 𝑉𝑛}   respectively. These vectors are periodically updated so that they 

continue to satisfy the PSO criterion conditions as given in (2.15) and (2.16), re written 

as given in (3.1) and (3.2). 

𝑉𝑖,𝑡+1 = 𝑉𝑖,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)                       (3.1) 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝑉𝑖,𝑡+𝑖                                                                       (3.2) 

Here, the effects of individual information on a typical particle and, similarly, the 

effects of group information on a particle population are controlled by the constants 

𝑐1 and 𝑐2. Random numbers with uniform distributions are used for 𝑟1 and 𝑟2 [3.61]. 

Particles are assigned positions arbitrarily and kept on being encouraged by the fitness 

value biased by the 𝑝𝑏𝑒𝑠𝑡 value (best position value of the individual) and the 

𝑔𝑏𝑒𝑠𝑡 value (best position value of the entire swarm) in the hopes of achieving the best 

possible outcome. 
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3.3.1.   Modification PSO algorithm parameters and variants 

The velocity of the particles is an important parameter of the PSO algorithm 

because it determines the swarm's step size at each iteration. Particles change their 

speed and direction in the problem space in every direction at every time step. If the 

particle is moving at a very high rate, its assessment attribute will be quite high, and 

it may swerve and empty the search space's fringes very quickly. In contrast, when 

velocities are low, particle crusades are limited to a narrow front and take place within 

the bounds of a local maximum. As a result, a parameter 𝑉𝑚𝑎𝑥,  assumed  to be  𝑉𝑚𝑎𝑥 =

 
(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)

𝑘
, must be placed to preserve a balance between exploration and 

exploitation. Value 2 [3.62] is chosen as the empirical value of 𝑘. 

Particle Momentum was ranked using the inertia weight (𝑤), which is adapted in 

[3.63] developing PSO-W as a substitute for  𝑉𝑚𝑎𝑥. In order for the algorithm to 

assemble more effectively, it is implemented that the swarm's exploration and 

exploitation skills be ordered. Therefore, it is rewritten (3.1) as (3.3). 

𝑉𝑖,𝑡+1 = 𝑤𝑉𝑖,𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡)                        (3.3) 

According to conventional wisdom, the size of the search space is determined by 

the inertia weight 𝑤. For composite high-dimensional problem spaces, a large value 

of 𝑤 is crucial, while a small value is sufficient for low-dimensional search spaces. 

The inertia weight can be changed by a factor of (3.4), where 𝑠 represents the 

population size, 𝐷 the size of the dimension, and 𝑅 the comparative worth of 

consistent results that are consistent with [0,1]. 

𝑤 = [3 − 𝑒𝑥𝑝 (−
𝑠

200
) + (

𝑅

8
× 𝐷)

2

]
−1

                                                          (3.4) 

A new parameter 𝜒, known as the constriction factor described in, is rationalised 

to replace the inertia weight 𝑤 and the maximum velocity 𝑉𝑚𝑎𝑥 within the PSO 

algorithm (3.6). This was pioneered by Clerc [3.64] and has shown to be of great 

importance in adjusting the exploration and exploitation trade-off and ensuring a 

productive coincidence of algorithm. The equation (3.1) is adjusted as (3.5). 
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𝑉𝑖,𝑡+1 = 𝜒[𝑉𝑖,𝑡 + 𝛷1(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) + 𝛷2(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡 )]                       (3.5) 

𝜒 =  
2

[2−ɸ−√ɸ2−4ɸ]
                                                                                   (3.6) 

For this situation, it is denoted as ɸ = ɸ1 + ɸ2, ɸ1 = 𝑐1𝑟1 and ɸ2 = 𝑐2𝑟2. Typically 

smearing the value of ɸ as 4.1 the control of χ outcomes to 0.729. It follows that the 

particles promptly adjust their trajectory manipulated by 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡  with 

guaranteed union, as indicated by the formula  𝜒𝑤 =  0.729  𝑤 <  𝑤. To get to 

(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) and (𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖,𝑡) , it is multiplied by 2 ∗ 0.729 = 1.458 [3.65]. These 

standards are typically favoured because they improve equilibrium and cohesion. The 

acceleration coefficient as a PSO parameter is defined where both 𝑐1 and 𝑐2 can 

typically take the value 2 [3.66]. To achieve a superior result in the belvedere of track 

minimization of VLSI global routing, there are two distinct methods by which to 

examine the evenness relating to these parameters. 

 

3.3.1.1.  Self-Tuned 

The weighted PSO (PSO-W) in (2.17) is modified where acceleration coefficients 

are given by (3.7). 

𝑐1  =  𝑐2 =  𝑐𝑚𝑎𝑥  − [(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)  ∗  𝑖𝑡𝑒𝑟 ]/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟                     (3.7) 

 where, 𝑐𝑚𝑎𝑥 and  𝑐𝑚𝑖𝑛 are initial and initial and final coefficient respectively. ′𝑖𝑡𝑒𝑟′ 

is the current iteration number and 1.49 < (𝑐1  =  𝑐2) < 2 .  This Self-Tuned PSO (PSO-

ST) [3.67] algorithm linearly reduces the acceleration coefficients 𝑐1 and 𝑐2 over the 

range of time steps 2 to 1.49. The algorithm is initialised with accurate data, 

specifically 𝑐1= 𝑐2 = 2. This modification of linear decline can preserve the swarm's 

exploration and exploitation capacity efficiently for speeds increase, and it can also 

provide a fast junction to the algorithm. It turns out that this method can provide the 

best possible results with a very high conjunction rate. 

3.3.1.2.  Self-Adaptation 

 Further Acceleration constant of PSO-W is modified with new mechanism where 

the algorithm modifies the trade-off between global exploration and local exploitation 
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by mixing the two acceleration relentless factors 𝑐1 and 𝑐2 in a way that maximises the 

former's influence. Starting out with the swarm's highest exploration and lowest 

exploitation abilities, the algorithm gradually refines these characteristics over time. 

Thus, the swarm's particles are capable of consistently dispersing across the search 

space, as envisioned by the social module of the velocity vector in the initial 

experimentation phase. In the next step of the experiment, the swarm's perceptual 

component surpasses its social component, and they arrive at the local search course 

based on the evaluated results of the global search process with the goal of finding the 

unique local optima. This self-adaptive mechanism is given by (3.8) and (3.9). 

𝑐1  =  𝑐2 =  𝑐𝑚𝑎𝑥  − [(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)  ×  𝑖𝑡𝑒𝑟 ]/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟                     (3.8) 

𝑐1  =  𝑐2 =  𝑐𝑚𝑎𝑥 + [(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)  ×  𝑖𝑡𝑒𝑟 ]/𝑚𝑎𝑥_𝑖𝑡𝑒𝑟                     (3.9) 

where 1.35 < (𝑐1  =  𝑐2) < 2.45 . The algorithm named as Self-adaptive PSO (PSO-

SAAC) can effectively generate the most notable 𝑔𝑏𝑒𝑠𝑡 value throughout the entire 

searching process, hence increasing the optimisation rate. 

3.3.1.3.  PSO-Mutation 

In the section of PSO [3.86] devoted to presenting the opinion of the Genetic 

Algorithm, a new algorithm is provided. After a predetermined amount of time has 

passed, the algorithm makes good on its initial promise by picking swarms from the 

currently active generation. The swarms with the highest fitness probability are 

chosen, with a probability of selection factor equal to   
𝑓𝑗

∑ 𝑓𝑗
𝑁
𝑗=1

 ,where N is the total 

population size. Later, a mutant is created by isolating the high fitness component 

from the selected pool. As a result of this mutation in PSO [3.67], a new generation of 

swarms is evolved, each with a greater understanding of the high fitness attribute 

produced in the position vector (3.2). In (3.10), the following is the recommended 

position vector and is named as PSO-Mutation (PSO-MU). 

𝑋𝑖,𝑡+1  =  (𝜓 × 𝑋𝑖,𝑡 + 𝜉 )  +  𝑉𝑖,𝑡+1                                             (3.10) 

where, 𝜓 is the randomization factor and 𝜉 is the mutant fitness factor. 
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3.3.2.    Grid graph model and Encoding 

A VLSI Physical plan's global routing issue test has two aims. First in restricting 

power distribution and speeding up motion among segments or squares in VLSI 

architecture by reducing the total wire length of connecting terminals or squares. The 

Global routing issue can be officially described where 𝑁 = {𝑁1, 𝑁2, 𝑁3 …𝑁𝑚} is the 

arrangement of nets representing interconnections between blocks in the VLSI design 

and 𝐷𝑖 is the assessed wirelength of net 𝑁𝐼 , 1 <  𝐼 <  𝑚. The general entire wirelength 

∑ 𝐷𝑖
𝑚
𝑖=1  can be limited by communicating issue capacity. Global routing plan is 

completed by planning VLSI design in Grid Graph model. The network diagram 

model is used to calculate the above. Figure 3.1 shows a matrix diagram of a directing 

area design, 𝐺 = (𝑉, 𝐸). Vertex  𝑣𝑖 and the edge  𝑒𝑖𝑗 linking the two adjacent vertices 𝑣𝑖 

and 𝑣𝑗 are suggested by every phone addressing directing region between blocks as 

unfilled regions. The nodes and edges resemble VLSI routing techniques, and the 

vertices appear like VLSI blocks. 

The VLSI routing challenge for a multi-terminal net must be expressed as the 

problem of acquiring an RSMT from a graph. The minimum spanning tree of 

interconnected terminal nodes is calculated using graph computations to estimate the 

base cost of interconnected length. With the presentation of arbitrary steiner nodes 

with terminal nodes of multi-terminal VLSI format, the expenditure or general wire 

length is further reduced, generating the graph's basic steiner tree cost (length). The 

cost or length can be reduced by the position and number of steiner nodes. With 

several terminal hubs, selecting the number of steiner nodes and their desired 

placement becomes computationally difficult, so the PSO calculation is used to choose 

the possible number and create this arbitrary situation to increase the steiner cost. 

The method generated various swarm sizes of 𝑧 particles and put them in a 𝑛 × 𝑛 

diagram. Each swarm has (𝑝 − 2) arbitrarily produced Steiner focuses drawn from 

Steiner set S with   (𝑛 ||2– 𝑝) points, where 𝑝 is the number of terminal nodes with 

assigned vertex 𝑉𝑖𝑗 =  {1,2,3, . . . 𝑟} and Steiner subset 𝑄𝑗 ⊆  𝑆, where 𝑗 =

 {1, 2, 3. . . . . . , 𝑧}. 100 × 100 pursue space is used. The issue matrix addresses 1 the 

characterised destination nodes or terminal nodes. To reduce computational 
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complexity, rows and columns lacking destination nodes are removed, creating the 

decreased network Steiner focuses are provided randomly in the issue space, meaning 

1. Figure 3.2 shows the reduced network and steiner lattice. 

 

Figure 3.1.  Grid Graph showing routing regions 

 

 

Figure 3.2.  Reduced Graph Matrix and Steiner Matrix 

 

3.3.3.    Flowchart and algorithm of PSO variants 

PSO planning uses steiner networks as particles. Figure 3.2 shows a particle with 

destination nodes. Wellness Fi for each particle seed is calculated by calculating RSMT 

or MRST cost using objective capacity 𝑀𝑆𝑇 (𝐺𝑖) and the least 𝑀𝑆𝑇 (𝐺𝑖). PSO 

parameters and most iterations are static. PSO velocity conditions with acceleration 

coefficient tuned in straight declining or self-versatile mode and the relating position 

condition in conventional mode or with transformation factor are used to assess 𝑝𝑏𝑒𝑠𝑡 
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and 𝑔𝑏𝑒𝑠𝑡 values. The advanced MRST cost is the best value created or best multitude 

particle. The advanced MRST cost at the end of the PSO computation is the base length 

of the interconnected terminal nodes in the VLSI framework, allowing the least wire 

length routing method. Figure. 3.3 shows the PSO stream outline and variations. 

Algorithm: 

Step 1. Search space, terminal nodes, swarm size and no. of iterations are   

            initialized. 

Step 2. Generate an initial population of particles  𝑋𝑖 = {𝑋1, 𝑋3, …… , 𝑋𝑛} 

Step 3. Fitness is calculated as 𝑓(𝑋𝑖) and 𝑀𝐼𝑁(𝑓(𝑋𝑖)) 

Step 4. Acceleration constant, 𝑐1 and  𝑐2 are evaluate according to any of the  

            variants mentioned in this chapter. 

Step 5. Evaluate Inertia Weight 𝑤 as in (3.4) or evaluate constriction   

            factor 𝜒 as in (3.6) 

Step 6. Set 𝑝𝑏𝑒𝑠𝑡= 𝑓(𝑋𝑖)  and  𝑔𝑏𝑒𝑠𝑡= 𝑀𝐼𝑁(𝑓(𝑋𝑖)) 

Step 7. for 𝑖 = 1: 𝑛 (for particles)   

Step 8. Calculate particle velocity 𝑉𝑖,𝑡+1 according to the velocity equation  

             as in (3.3) or (3.5) 

Step 9. Update the particle position 𝑋𝑖,𝑡+1 in accordance to position      

             equation as in (3.2) 

Step 10. Or update the particle position as in (3.10) 

Step 11. Evaluate 𝑓(𝑋𝑖)   and 𝑀𝐼𝑁(𝑓(𝑋𝑖)) 

Step 12. Update   𝑝𝑏𝑒𝑠𝑡 and   𝑔𝑏𝑒𝑠𝑡  

Step 13. end for 𝑛 

Step 14. 𝑡 = 𝑡 + 1 

Step 15. end while 

Step 16. Post processing the results and visualization 
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Flowchart: 

 

Figure 3.3.  Flow chart of Variants of PSO 

 

3.3.4.   Experimental Procedure 

A fixed two-dimensional 100 × 100 search space as height × width is used to 

randomly generate two coordinate sets of 15 terminal nodes based on the various 

distribution topologies of terminal nodes in a VLSI system of micro-metre or nano-

metre. Figure 3.4 and Figure 3.5 graphically represent the coordinate sets for a nearly 

Uniform distribution and a Bivariate distribution, respectively. 
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Figure 3.4.  Uniform distribution of terminal nodes 

 

 

Figure 3.5.  Bivariate distribution of terminal nodes 
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3.3.5.   Experimental Results and Discussions: 

For the two aforementioned coordinate sets, separate research is conducted on not 

only PSO-W but also on the modified algorithms PSO-ST [3.67] and PSO-SAAC to 

relate the terminal point for each set and to refund the base expense of interconnection 

equitably. Recorded are the initial VLSI global interconnection cost, the average cost 

in micro metre (µm) of VLSI worldwide interconnection across all 25 iterations of the 

algorithms, and the typical irregularities that arise due to these factors. Table 3.1 

summarises the results of comparative investigations of PSO-SAAC, including the 

repercussions of both normal 𝑔𝑏𝑒𝑠𝑡 and least 𝑔𝑏𝑒𝑠𝑡. 

Table 3.1. Performance Comparison PSO-ST and PSO-SAAC 

Test case gbest value PSO-W PSO-ST PSO-SAAC 

SET 1 Average 354.5 348.4 341.7 

 Minimum 350 343 338 

SET 2 Average 256.7 254.9 257.3 

 Minimum 253 253 255 

 

PSO-SAAC outperforms the other two methods when it comes to maintaining a 

nearly uniform distribution of terminal hubs across the VLSI design. As shown in 

Figure 3.6, SET 1's global base interconnection cost of ‘338’ provides an incentive for 

PSO-SAAC. As can be shown in Table 3.1, PSO-self-tuned ST's acceleration 

consistently controlling component is superior to the other two algorithms when it 

comes to bivariate appropriation of terminal nodes in VLSI design. As shown in Figure 

3.7, PSO-ST generates the lowest interconnection cost of 253 under the assumption of 

uniform allocation. It is also seen that the typical interconnection cost of the VLSI 

worldwide best parameter grows further thanks to the speed increase consistent 

tuning component of PSO. Consequently, it can be safely specified that the RSMT, 

made by connecting the terminal nodes, is reduced in cost by PSO-SAAC for nearly 

uniform distribution and by PSO-ST for enhanced random bivariate distributions. As 
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a result, the VLSI connection length can be reduced to an infinitely small value, and 

the RSMT problem of graphs can be solved effectively. From Table 3.2, it is also seen 

that the standard deviation of PSO-SAAC is lowest for SET 2, whereas the standard 

deviation of PSO-ST is lowest for SET 1. This implies that the self-tuned mechanism 

of PSO is more trustworthy in the case of extremely random distribution of terminal 

nodes in the prescribed search space, while the self-adaptive mechanism of PSO 

safeguards more steadiness for relatively uniform and less arbitrary distribution. 

Table 3.2. Comparative studies of PSO-SAAC over SD 

Test case PSO-W PSO-ST PSO-SAAC 

SET 1 7.77 0.71 5.41 

SET 2 1.94 1.88 4.12 

 

 

Figure 3.6. SET 1: wirelength ‘cost’ obtained for PSO-SACC 
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Figure 3.7.  SET 2: wirelength ‘cost’ obtained for PSO-ST 

Weighted PSO (PSO-W), PSO with a constriction factor (PSO-C), and PSO with a 

mutation algorithm (PSO-MU) are all used in the trials, in that order, for all pairs of 

measured coordinates. Table 3.3 summarises the results of all algorithms in terms of 

least interconnect cost, typical cost, and average implementation time. 

Table 3.3. Comparative studies of PSO-MU 

Test case gbest value 
 

PSO-W PSO-C PSO-MU 

SET 1 

Average 
(in unit) 

354.5 350.4 336.8 

Minimum 
(in unit) 

350 345 329 

System time 
(in Sec) 

52.825 101.51 85.48 

SET 2 

Average 
(in unit) 

256.7 256 250.4 

Minimum 
(in unit) 

253 254 248 

System time 
(in Sec) 

49.05 86.01 66.96 
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Figure 3.8.  SET 1: wirelength ‘cost’ obtained for PSO-W 

 

Figure 3.9.   SET 1: wirelength ‘cost’ obtained for PSO-C 



Chapter 3:  VLSI Routing Optimization based on Particle Swarm Optimization 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 
by Subhrapratim Nath. Page | 104 
 

 

Figure 3.10.  SET 1: wirelength ‘cost’ obtained for PSO-MU 

In Figure 3.8, Figure 3.9, and Figure 3.10, it is seen that for generating RSMT, all 

of the aforementioned methods generated for the aforementioned VLSI topologies 

with the lowest possible interconnect costs. It reveals that PSO-MU can generate the 

minimal mean value and the lowest possible global best value in both sets of 

coordinates. In comparison to PSO-W and PSO-C, the presented algorithm, PSO-MU, 

ensures efficient VLSI global routing cost minimization and better convergence. 

According to Table 3.3, the PSO-MU algorithm takes significantly longer to run 

than PSO-W, with its 𝑔𝑏𝑒𝑠𝑡 value initially being determined to be ‘329’ for Coordinate 

Set 1. It is estimated that the PSO-C algorithm will take 101.51 more milliseconds to 

complete its initial run than the PSO-MU algorithm will take. From this, it is inferred 

that the PSO-MU algorithm is superior than the standard PSO-W and PSO-C 

presentations in the context of VLSI global routing, while being slower and using a 

larger Timing budget than the PSO-C approach. 

 



Chapter 3:  VLSI Routing Optimization based on Particle Swarm Optimization 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. Thesis 
by Subhrapratim Nath. Page | 105 
 

 

Table 3.4. Comparative studies of PSO variants over SD 

Test case PSO-W PSO-C PSO-MU 

SET 1 7.77 0.71 5.65 

SET 2 1.94 1.88 3.83 

 

Standard deviation (SD) values are computed for all methods on both coordinate 

sets and published in Table 3.4 so that the consistency of these algorithms may be 

examined. The PSO-C SD value is calculated to be ‘0.71’ and ‘2.25’ for the two different 

coordinate systems, respectively. Despite the trade-off in system execution time, the 

technique is resistant against distribution difficulties of the search space in VLSI 

layout because these values are substantially lower than any other SD values of PSO-

W and PSO-MU. Inferring from this, PSO-C demonstrates algorithm stability over all 

different distribution topologies of the terminal nodes in the aforementioned VLSI 

layout, while producing greater value of global routing interconnection cost and 

system execution time compared to PSO-W and PSO-MU. 

 

3.4.  Modified Constricted PSO Algorithm based 
Interconnect delay minimization of VLSI circuits using 
iterative RLC delay model 

Submicron precision in the manufacturing process allows for greater resistance 

and a smaller wire diameter. Wire resistance must be accounted for since it 

significantly increases the connection latency. As a result, the lumped delay model has 

become defunct [3.7]. The RLC interconnect model of [3.8] is enhanced by the BPSO 

method suggested by Md. Yusof et al [3.9], which is shown to have practical 

applicability in S-concurrent RABILA's routing and buffer placement algorithm. The 

path in VLSI design represents the many connections between the source and the 

destination nodes. Although the whole-time lag from the origin to the destination is 
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what is being dealt with here. The equation for path 𝑝 is derived from all the segments 

or nodes as in (3.11) 

  𝑝 = (∑ |𝑒𝑛 − 𝑒𝑛+2|
𝑚
𝑛=1 ) + |𝑥2 − 𝑒𝑚−1| + |𝑥1 − 𝑒1|                                 (3.11) 

where, 𝑚 = maximal dog-leg, 𝑒𝑛= the node’s position in the grid graph, 𝑥1,  𝑥2 = 

abscissa of the source and the sink respectively (co-ordinates of the x-axis on the 

graph).    

The work's anticipated algorithm, mutation-based constricted PSO (CPSO-MU), is 

used. The projection CPSO-MU position vector as defined by (3.10) is characterised by 

(3.5). The first stage entails locating the shortest augmented path. Buffer and wire 

obstacles serve as inputs, and the resulting enhanced path serves as an output. The 

second stage of the algorithm aims to locate the wires and buffers with the least 

amount of delay possible. The output is the augmented path with the wires and 

buffers in their proper locations, whereas the inputs are the augmented path, wire 

types, and buffer types. 

 

3.4.1.  Generation of shortest path modelling by CPSO-MU 
algorithm and combination of wire and buffer placement: 

Each particle in a VLSI routing map has seven position vectors, labelled 𝑒1 

through 𝑒7  in Figure 3.11. Where even represents a location in a network diagram 

evaluated along the 𝑥 − 𝑝𝑖𝑣𝑜𝑡, at the beginning, and odd addresses a district in a 

matrix diagram evaluated along the 𝑦 − ℎ𝑢𝑏, beginning at the beginning, the 𝑒𝑛  in the 

lattice chart is referred to as the hub's area. If these consecutive nodes are connected, 

they will form a complete route from origin to destination. For the purposes of the 

PSO calculation, a route in this Grid graph can be thought of as a particle, 𝑠, and its 

state will be reset to its initial state after a certain number of cycles, as shown in the 

algorithm part. 

Using the 8 dogleg,  shown in Figure 3.11, the source-to-sink position vector 

(𝑒4 , 𝑒3) will be arranged to handle the situation at point A, and the absolute steering 

region will look like this as in (3.12). 

𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑒1 → 𝑒2 → 𝑒3 → 𝑒4 → 𝑒5 → 𝑒6 → 𝑒7 → 𝑠𝑖𝑛𝑘                             (3.12) 
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Besides, if planned in a row-column coordinate form, the spot of an entire path is: 

(𝑦1, 𝑥1) → (𝑦1, 𝑒1) → (𝑒2, 𝑒1) → (𝑒2, 𝑒3) → (𝑒4, 𝑒3) → (𝑒4, 𝑒5) →

(𝑒6, 𝑒5) → (𝑒6, 𝑒7) → (𝑦2, 𝑒7) → (𝑦2, 𝑥2)                  (3.13) 

 

 

Figure 3.11. VLSI routing Map 

Where ((𝑦1, 𝑥1) and ((𝑦2, 𝑥2) represent the source and sink facilities, respectively. 

It is plain to see that the VLSI lattice diagram's vector situation corresponds to the 

location of a particle, and that this vector is then applied to each of the particles' 

velocities. As a result, a particle I is presented with the given position and velocity 

(3.14). 

 

𝑠𝑖 =

[
 
 
 
 
 
 
𝑒1

𝑒2
𝑒3

𝑒4
𝑒5

𝑒6

𝑒7

 

]
 
 
 
 
 
 

           𝑣𝑖 =

[
 
 
 
 
 
 
𝑣𝑒1

𝑣𝑒2
𝑣𝑒3

𝑣𝑒4
𝑣𝑒5

𝑣𝑒6

𝑣𝑒7

 

]
 
 
 
 
 
 

                           (3.14) 
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Particle fitness can be calculated under the following conditions generating path 

value as in (3.11). Next objective, on the generated path, is to find the most optimal 

spot along the wire to embed the buffer. 

 

 

 

 

 

 

Figure 3.12.  Representation for buffer placement in binary 

In the next stage, CPSO-MU keeps looking for the best place along the wire to 

embed the buffer in order to acquire a negligible lag in VLSI guiding. In accordance 

with the framework, 

𝑠 = [𝑤1 𝑤2𝑤3 …𝑤𝑛]𝑇                                                                                                  (3.15) 

where, 𝑤𝑛 conveys the wiring type (whether a buffer is present) at a given location 

(𝑚) along the length. For the case study, seven pieces were used for each 𝑤, three of 

which were used to buffer the different types of wire used, from the blend 000 as Type-

0 to the blend 111 as Type-7. The fourth bit indicates buffer use, and the remaining 

three bits designate the specific buffer types in play. A hindered graph in Figure 3.12 

is used to illustrate this point. A buffer presence or absence can be indicated by the 

values 1 and 0, respectively. Consequently, it is important to note that the last three 

bits of the buffer flag (4th piece) are disregarded regardless of their value if the buffer 

flag itself is 0. This value indicates the types of buffers being used. 

 

3.4.2.    Algorithm of CPSO-MU:  

Step 1. Grid size and Terminal nodes source, destination is distinct. Swarm size and 

Max-iterations are defined 
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Step 2. Generate an initial population of particles 𝑋𝑖 = {𝑋1, 𝑋2, … . , 𝑋𝑛} 

Step 3. Calculation of 𝑓(𝑋𝑖) and 𝑀𝐼𝑁(𝑓(𝑋𝑖)) 

                 Until max iteration is reached step 4 to step 11 is continued 

Step 4. Evaluate 𝜑1 and 𝜑2. 

Step 5. Evaluate Constriction Factor (𝜒) according to (3.6) 

Step 6. Set 𝑝𝑏𝑒𝑠𝑡=  𝑓(𝑋𝑖) and  𝑔𝑏𝑒𝑠𝑡= 𝑀𝐼𝑁( 𝑓(𝑋𝑖)) 

For all 𝑛 particles   

Step 7. Calculate 𝑉𝑖+1 , particle velocity according to the velocity equation (3.5)  

Step 8. Update the particle position as presented in (3.10) 

Step 9. Evaluate 𝑓(𝑋𝑖) and 𝑀𝐼𝑁( 𝑓(𝑋𝑖)) 

Step 10. Update 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 

Step 11. Till 𝑛 particles are taken into account start with step 8 

Step 12. Increase the iteration counter 

Step 13. Post processing the results and visualization 

Step 14. Optimized result of 𝑀𝐼𝑁( 𝑓(𝑋𝑖))  or optimal VLSI   routing path. 

 

3.4.3.   Experimental Procedure: 

The direction of the presented algorithms is distinguished on a 32-by-32-square 

benchmark test graph [3.69]. As shown in Figure 3.13, the test diagram depicts a VLSI 

circuit with a grid-graph, the location of the source and the sink, the area covered by 

wire deterrent, and the area covered by buffer hindrance. Table 3.5 depicts the 

boundaries related to the contextual investigation. The six different types of wires and 

cushions used in this case study are shown in Table 3.6 and Table 3.7, respectively. 

The simulation was tested on a desktop computer with 2 GB of RAM and an Intel 

Core 2 Duo processor running at 1.8 GHz, and the code was written using MATLAB. 
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Figure 3.13. 𝟑𝟐 ×  𝟑𝟐 Grid test graph with buffer hindrance and obstacles [3.69] 

Table 3.5. Parameters in the case study 

Parameter Value 

Source Location  (3,3) 

Sink Location (29,26) 

Number of buffer  4 

Number of obstacle 4 

Maximum dog-leg used  8 

Resistance at source 140 Ω 

Load Capacitance 0.002 pF 

 

Table 3.6. Wire Library Parameters 

Category Wire (z = w) 

Type W0 W1 W2 W3 W4 W5 

rz (Ω) 58 2.037 1.358 44.9 22.45 11.22 

cz ( pF ) 42 28.69 36.67 16.67 21.87 31.84 

lb (nH ) 0.106 0.106 0.106 0.106 0.106 0.106 
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Table 3.7. Parameters in Buffer Library 

Category Buffer (b = w) 

Type B0 B1 B2 B3 B4 B5 

rz (Ω) 140 180 162 145.8 131.2 118.1 

cz ( pF ) 2 22 24.2 26.6 29.3 32.3 

db (ps ) 40 15 22.5 33.8 50.6 75.9 

 

In contrast to the traditional method dependent on BPSO to limit the total wire-

length of the VLSI circuit in the first step and VLSI interconnect delay in the 

subsequent improvement, the projected algorithm taking CPSO-MU into 

consideration expects to outfit ideal routing game plans with buffer expansion. In 

Table 3.8, the similarities and differences between the control boundaries of the 

traditional approach and the CPSO-MU are observed. 

Table 3.8. Control Parameters for Algorithms Initialization 

Parameters BPSO CPSO-MU 

No. of Agents 50 50 

Max Iterations 500 500 

No. of Computations 10 10 

Inertia weight ‘w’ 0.9 → 0.4 – 

Cognitive component ‘ϕ1’ 2 1.49 → 2.61 

Social component ‘ϕ2’ 2 2.61 → 1.49 

Randomization factor ‘ψ’ – 2 → 1.49 

‘r1’, ‘r2’ [0,1] [0,1] 

‘r3’ – [0,1] 

 

3.4.4.   Experimental Results and Discussions: 

Table 3.9 records the final results of the re-accreditation of the algorithms, 

showing that the predicted calculation successfully delivers the interconnect delay of 

‘371.44’ ps for the test graph, similar to the previous BPSO, while attaining global 

combination with the smallest amount of emphasis at ‘343,’ which is endlessly 
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improved when diverged from the earlier methodology. It also demonstrates that the 

presented CPSO-MU is consistent with the earlier BPSO in producing the best 

response for a general wire-length of ‘49’ components, as shown in Figure 3.14, while 

using a relatively low number of cycles.     

Table 3.9. Comparative studies on CPSO-MU with BPSO 

Parameters BPSO [3.69] CPSO-MU 

Overall wirelength/ Shortest path  (in unit) 49 49 

Least no. of iterations for Global Convergence 351 343 

Average no. of iterations for Global Convergence  439.1 391.5 

VLSI Interconnect Least Delay obtained  371.44 ps 371.44 ps 

VLSI Interconnect Average Delay obtained  394.62 ps 391.73ps 

 

 

Figure 3.14. Placement of buffers with optimal path 
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Examinations of the current proving ground are carried out with the end goal in 

mind to check the consistency of these calculations to see how little they veer from 

their specific outclasses when running various occasions; this is inferred from the 

revolutionary idea of these algorithms that cause unmistakable expenses, i.e. least 

wire-length at different places and times. The average standard deviation from 30 

iterations of each algorithm is shown in Table 3.10. 

Table 3.10. SD comparison of BPSO and CPSO-MU 

Standard Deviation BPSO CPSO-MU 

VLSI Interconnect Delay 16.55 11.23 

Iterations for Global convergence 52.33 39.5 

                                                    

As can be seen in Table 3.10, the presented SD of CPSO- MU  is significantly lower 

than that of the earlier BPSO approach, guaranteeing more predictable execution, due 

to PSO's hand-tuned boundaries, which prevent it from wandering into neighbouring 

optimum solutions and thus slowing down the rate of combination. The 

transformation allows CPSO to provide formidable rival swarm particles to a state-of-

the-art CPSO-MU, which in turn fights the BPSO algorithm and provides the shortest 

possible interconnect delay by finding the best route to address the buffer expansion 

problem in the shortest possible amount of time. 
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4.1.     Introduction 

 Integrated Circuit designing and modeling involves compressing and compiling 

a few hundred thousand transistors into a singular chip with the progress of the 

nanotechnology. As a result, processing speed has grown, but circuit complexity has 

increased in the routing of signals in the design of VLSI. Interconnection routing 

latency is directly proportional to the wire length, so its optimality is critical. Due to 

the complexity of the problem, an algorithm is typically used to determine the optimal 

routing path for minimizing wire length. An indicator of better circuit performance is 

shorter wires. As the number of components in an integrated circuit grows, the 

complexity of the transmission of internal signals between them typically requires a 

global routing phase before more fine-grained routing can be performed. The 
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electronic circuits are routed globally as a result it partitions the regions of routing 

which leads to the optimization of the wire length. This wire length connects the 

various components without affecting the throughput and power processing of the IC 

and also reduces the total power leakage in the circuits. Graph theory has been 

extensively required for global routing because it graphically maps the links between 

different components and apply certain algorithms and multiple software to find the 

best wirelength from various VLSI circuits. 

The difficulties of worldwide routing can be alleviated to some extent by 

employing a sequential approach, whereby VLSI nets are sequenced according to the 

importance of their components, and wherein improvement phases are implemented 

in working routers. 'Shive-aside' techniques [4.1] and concurrent ways are introduced 

where integer programming principles are done parallel.  These principles have been 

tested with various limitations are used to improve the various rerouting methods 

which are globally routed after pulling interfering wires which [4.2]. Some of the 

efficiently globally working routers that provide great connectivity in electrical 

circuits include Box Router [4.3], Fast Route2.0 [4.4], NTHU-Route [4.5], and Maize 

Router [4.6]. 

The Steiner Tree problem is crucial in attaining the aforementioned goal because 

solving it costs less than solving the minimum spanning tree for the same graph, 

resulting in a shorter wire length of the circuit. The Problem of the Steiner Tree is a 

member of NP class because the given graph is optimized by selecting the Steiner 

nodes which are needed and the optimal placements could not result in polynomial 

time. Experts like S. Rajagopalan and Vazirani used Integer Linear Programming 

optimization to apply bi-directed cut relaxation [4.7]. An iterated 1-Steiner approach 

concluded that the graph with n points has n-2 Steiner points. From the start of 

developing and improving various algorithms the use of heuristics is very crucial to 

check for their productivity in providing the best solution for the Steiner Tree 

problem.  However, these algorithms are held back in their productivity due to time 

and space complexity and various other factors. Simulated Annealing [4.8] has been 

successfully used to solve challenging combinatorial optimization problems, but the 

approach's feasibility gets shorthanded because the new graphs require very fine-
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tuned parameters which needs to be controlled to perfection.  Genetic algorithm also 

gained importance in around 2003 [4.9]- [4.10], where researchers introduced this 

algorithm in wireless network and delay optimization in VLSI application.  

Researchers subsequently shifted their focus on a new produce of meta-heuristics 

that perform better in given paradigms of Global VLSI routing optimization that are 

inspired by natural phenomena and behavior of live beings. The initialization of the 

algorithms starts with the primarily solutions which are random and are updated 

iteratively preceding one to converge toward optimal solutions. The optimization of 

ACO [4.11] is one such method that simulates the behavior of foraging food that is 

exhibited by colonial ants, which selects a path chosen in tandem with the majority of 

the population as the best path to food. A R Sardar et al. [4.12] introduced ACO for 

better quality of service in Mobile Adhoc network. A. Khan et al. [4.13] worked on 

routing optimization using Firefly algorithm which is bio-inspired algorithm imitate 

the flashing behavior of fireflies. Another ABC algorithm simulate the foraging 

behavior of honeybees is found to an effective optimization algorithm in routing 

optimization as reported by P. Bhattacharya et al. [4.14]. R.R. Sahoo et al. reported 

Honey bee mating intelligence approach in wireless Sensor network. [4.15] 

In 2009, PSO reported by some researchers in VLSI [4.16]- [4.17].  A researcher 

named Dong et al. [4.18] put PSO in action for finding the solution of the Routing 

problem in VLSI system. PSO, a strong meta-heuristics algorithm, also uses 

approximation techniques to update the starting solution, simulating the communal 

behavior of the flocking of birds or the schooling of fish. Such algorithms have trouble 

selecting the best regulating parameters, necessitating manual tuning to obtain 

maximal optimization. A. Khan et. al. [4.19] reported use of this algorithm in VLSI 

optimization.  

Khan et al. [4.20] in 2014 works on Swarm Intelligence drawing inspiration from 

the collective behaviors of insect swarms such as Firefly Algorithm, Artificial Bee 

colony and PSO in the realm of VLSI design optimization and made comparative 

studies.  

In 2015, Liu et al. [4.21] introduces a particle swarm optimization-based algorithm 

to pioneers a novel approach for constructing obstacle-avoiding preferred direction 
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X-architecture Steiner trees, advancing chip design theory for non-Manhattan 

architectures. 

G. Chen and E.F.Y. Young [4.22] in 2020 presents a novel Steiner Shallow-Light 

Tree (SALT) construction method for weighted undirected graphs, offering an 

efficient solution that closely approximates both the shortest distances from a root to 

other vertices and the minimum tree weight.  

In 2020 Chen et al. [4.23] explores VLSI routing complexities and challenges, 

advocating for Swarm Intelligence (SI) techniques as effective solutions. It reviews five 

common SI methods applied to VLSI routing, addressing classical problems like 

Steiner tree construction and global routing  

New and more advanced optimized algorithms are required to tackle the 

downside of the above discussed algorithms. 

This chapter presents the detailed understanding of a newer Invasive Weed 

Optimization based meta-heuristic techniques which is similar to weed colonization 

behavior, the detailed study is given in the literature review section. Weeds use an 

intriguing adaptation to expand their colony: they remove weeds from their main 

population which are not fit because they have a heavy reproduce. The method 

employs spatial dispersion method for seeds across the field. Now with higher 

yielding weeds, the weeds have a better chance of surviving. This means that better 

techniques for optimizing the Steiner problem to minimize wire length in VLSI Global 

Routing circuits will eventually replace the current algorithms. A new hybridization 

method for PSO is being studied to increase global optimization by combining both 

algorithms' efficiency. 

 

4.2.      Literature Review 

Mehrabian et al. [4.24] for the first time worked-on Colonization of invasive weeds 

from agriculture sector in the year 2006.   

H.S. Rad. et al. [4.25] introduced IWO to a device an optimization algorithm for a 

recommender system domain which enhanced the quality of recommendation for 

gaining the effectiveness of the prioritized based user profile based on some 
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characteristics like sex, age, rating. Clients’ interests accomplished by considering 

these ratings in the profile matching stage.  

M. R. Ghalenoei et al. [4.26] reported technique of DIWO technique from weed 

colonization. This technique used for UAVs (unmanned aerial vehicles) task 

assignments. DIWO performance was compared with time-cost with trade-off. Results 

obtained with simulations of Monte Carlo with better performance from DIWO and 

was having less computational time.  

An algorithm of hybrid optimization that is based on IWO and PSO was reported 

by H. Hajimirsadeghi and C. Lucas [4.27]. Effectiveness of these algorithms checked 

for converging speed and getting optimal solution. Simulated results proved that the 

method is fast with optimal solution which can be used for global optimization 

method.  

C. Veenhuis in 2010 [4.28] worked on concept of binary IWO. BinIWO considers 

weeds and seeds as bitstrings. Reproduction process determines the young weeds in 

a precise normal distribution in the place of bitstrings. The normal distribution process 

is taking place at bit numbers where the reported technique works with less difference 

and bits.  

M. Ahangaran et al. [4.29] introduced a system applied with the IWO to make a 

decent harmony among broadening and escalation parts of the calculation during all 

ages. In the first IWO, the standard deviation of typical arbitrary capacity is equivalent 

for all weeds in the settlement. In the method another capacity was applied to allot 

distinctive standard deviation to each weed in the settlement in every age. Weeds with 

better wellness gain lower standard deviation to circulate their seeds in area of 

themselves as well as the other way around weeds with more regrettable wellness get 

a better-quality deviation to spread their weeds far away from their present positions.   

I.D. Falco et al. [4.30] reported on a migration model called biological invasion 

method which is executed through a multistage interaction including attacking 

subpopulations and their opposition with local people. Such an overall methodology 

is utilized inside a venturing stone model taking on differential Evolution as the 

neighbourhood calculation. The resultant algorithm is assessed on a wide 

arrangement of traditional test capacities against an enormous number of successive 
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and other disseminated forms of Differential Evolution accessible in writing. The 

discoveries show that, in a large portion of the cases, the method can accomplish better 

execution as far as both arrangement quality and combination rate.  

Another group of researchers K. Suresh et al. [4.31] worked on extended IWO. 

This extended IWO used to diminish the seed populations variance. It utilizes the idea 

of fuzzy logic for picking the best greatest number of populations individuals. The 

execution of the multi-objective IWO is differentiated over a test-suite containing 

seven unconstrained (bound obliged) and five general constrained multi-objective 

issues taken from the IEEE CEC 2009 contention and one of a kind gathering on multi-

objective smoothing out estimations. IWO can appear as a very uplifting candidate 

metaheuristic in the space of multi-objective headway. 

 A hybrid with optimal solution by joining the distinction vector-based change 

plan of DE into the fundamental construction of an environmentally motivated 

metaheuristic IWO was reported by Maity et al. [4.32] for settling a genuine boundary 

and single-objective improvement issues. The collaboration of DE and IWO is made 

in such a manner, so as not to force any computational weight on the principal 

calculation. Through insightful and observational investigations, it was represented 

that the subsequent DIWO calculation might have a higher populace change over ages 

than both of its predecessors – DE and IWO.   

C Sur et al. [4.33] in 2013 broadened the IWO utility combinatorial enhancement 

for way search and anticipating vehicle directing from a source to objective in a graph. 

The issue can be considered to be a multimodal improvement issue where 

determination of a specific arrangement of multimodal arrangements would be best 

arrangement. The traditional IWO is altered to suit the chart-based circumstance and 

rolled out fundamental improvement in suggestions to adapt up to the diagram 

boundaries. The intermingling pace of the Discrete Invasive Weed Optimization 

(DIWO) Algorithm is being contrasted on a street diagram model for course 

enhancement for vehicles regarding multi-objective of voyaging.  

A hybrid IWO-PSO algorithm for pattern synthesis of conformal phased arrays 

was reported by Y. Bai et al. [4.34]. The interaction between the dispersion method of 

the IWO algorithm and the evolution velocity of the PSO algorithm is studied. In 
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addition, the   exploitation and exploration balancing respectively in the local and 

global of the hybrid IWO-PSO algorithm is shown. As an example, a 3 × 9 cylindrical 

conformal array is manufactured to extract the patterns and investigated to confirm 

the suggested algorithm.  

Another group of researchers D. Das et al. [4.35] insinuated multi-objective 

mixture based on IWO and PSO. This is based on Soft decision fusion approach for 

streamlining the global decision and weight coefficient vector allocated to each 

cognitive users to augment the identification likelihood and large likelihood of error. 

And it also reduces the false alarm occurrence. The strategy beats the nondominated 

sorting genetic algorithm, MOPSO (multi-objective particle swarm optimization) and 

nondominated sorting IWO in the terms of location exactness and nondominated 

arrangements.  

S. K. Mahto and A. Choubey [4.36] in 2016 worked on algorithm that is executed 

to examine the array by considering the array position. Pattern synthesis have been 

used here. A Precise strategy is utilized to detail the objective of the function. Three 

instances of example combination are considered to delineate the adequacy of the 

algorithm. The simulated results show the further developed presentation of cross 

breed IWO.  

Y. R. Naidu and A. K. Ojha [4.37] reported a model of IWO that is multi-working. 

In the model, multiple populations are carried out to handle multiple objectives. IWO 

along with STS (space transformation search) are combined, where the algorithm run 

for each population to optimize the corresponding objective. In addition, an archive 

and local search are also integrated to save all the nondominated solutions, and to 

improve the archive solutions, respectively.   

X. Yue. et al. [4.38] suggested an algorithm with IWGOA (Invasive weed 

grasshopper). The IWO strategy alongside irregular walk system is implanted to the 

computation. The system is suggested to control the developments of the 

grasshoppers in a superior manner. In the IWGOA calculation, the positions 

refreshing sorts and steps are affected by the iterative numbers and objective capacity 

esteems.    
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Toso et al. [4.39] presents a synthesis method for designing large planar array 

antennas with phase-only control. It utilizes Zernike polynomials as global basis 

functions for phase, reducing optimization variables compared to the array size. 

Invasive weed optimization (IWO) optimizes polynomial coefficients to address 

nonlinearity and local trapping issues common in phase-only problems. 

Further, Pradhan et al. [4.40] introduces a hybrid MPPT algorithm, combining 

modified IWO and PSO techniques, to enhance photovoltaic(PV) power generation 

under changing conditions. It focuses on a standalone PV-based hybrid system, 

incorporating PV array, battery, electrolyser, fuel cell, and load, with a coordinated 

power management strategy.  

 

4.3.      Wirelength Minimization of VLSI Circuits using  
            Invasive Weed Optimization Algorithm 

MRST problem is solved using IWO feature. Simple IWO does not provide as 

good results as the above developed approach which is derived from IWO. This 

Enhanced IWO (EIWO) helps to disperse the seeds in a better process. This approach 

or EIWO minimizes the problems of Steiner explosion when the Steiner points are 

placed in the MRST. As we have competitive exclusion to remove fewer fit weeds from 

the population similarly EIWO sets up the tree in such a way that we only have the 

best position of the nodes or Steiner vertices so as to achieve the lowest wirelength. 

Figure 4.1 depicts the flowchart showing it.  

The weeds of the present population in every iteration are synonymous to the 

vertices of the VLSI chip. Similarly, in the Hanan grid the field the weed population 

farm is synonymous to the VLSI layout of the grid. The goal of this approach is to 

minimize ∑𝑐𝑜𝑠𝑡 (𝑒) 𝑥𝑒∀ 𝑒 ∊  𝐸. In this case, 𝑥𝑒 ∊  {0,1} ,  where 𝐸 is the edge set of 

rectilinear graphs 𝐺 (𝑉, 𝐸). At the point in the VLSI chip where the wirelength is 

shortest, costs are at their lowest. 
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Figure 4.1. Diagrammatic representation of the procedure and logic flow. 

 

4.3.1.     Algorithm based on IWO 

Step 1 𝑛(𝑅) = The algorithm begins with a set number of terminal points, denoted 

by 𝑝. The start and end value for 𝑝 is predefined. These two points demarcate 

the specific space around the plant where seeds will be distributed. The 

maximum number of weeds allowed in the colony is denoted by  𝑝𝑚𝑎𝑥 . 

Step 2 A steiner set is created due to Step 1 which is filled with (𝑁2 − 𝑝) number of 

points. The search space created with these points have  𝑁 × 𝑁 dimensions. 

This space has 𝑥 number of seeds, with every moving iteration 𝑝 − 2 steiner 



Chapter 4: Wirelength minimization of VLSI Circuits based on Invasive Weed Optimization.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,”  Ph.D Thesis 
by Subhrapratim Nath.  Page | 131 
 

points are created in this space randomly and each 𝑝 number of weeds has 

equal fitness.   

Step 3 Steiner sub-sets are generated at random and used as 𝑥 seeds, 𝑆𝑖 ⊆  𝑆, where 

𝑖 =  {1, 2, 3, … , . , 𝑥}. The terminal points synonymous to each of the seeds are 

uniformly and spatially distributed. This distribution follows the below 

probability distribution with (4.1). 

𝑓(𝑥) =  {
1

𝑏−𝑎
  ∀ 𝑎 ≤ 𝑥 ≤ 𝑏               0    ∀ 𝑥 < 𝑎 𝑎𝑛𝑑 𝑥 > 𝑏            (4.1) 

Step 4 For the 𝑥 number of seeds initially chosen for germination the fitness is wi 

for each weed is calculated using function 1/ 𝑀𝑆𝑇 (𝐺𝑖). 

Step 5 The condition for iteration is set. 

Step 6 Seed production for the chosen weeds is optimized according to their 

reproductive fitness using the IWO algorithm, with the  formula 

𝑆𝑝𝑙𝑎𝑛𝑡 = 𝑆𝑚𝑖𝑛 +  𝑐𝑒𝑖𝑙 [𝑓𝑝𝑙𝑎𝑛𝑡 ×  
𝑆𝑚𝑎𝑥− 𝑆𝑚𝑖𝑛

𝑓𝑚𝑎𝑥− 𝑓𝑚𝑖𝑛
]  as in (2.24) , where Smin and Smax 

are the ranges of possible seed yields, fmin and fmax are the minimum and 

maximum objective function values for the current iteration, and Splant is the 

target seed yield for the current plant having an objective function value of 

fplant . 

Step 7 As stated by the normal distribution function, Y = 𝑓 (
𝑥

µ,𝜎
) =

𝑒
−

(𝑥−µ)2

2𝜎2

𝜎√2𝜋
 as in 

(2.25) where the mean position is set to the location of the parent weed, these 

new seeds are dispersed along with their parent weeds. It can be calculated 

where the replicated seeds should be dispersed as follows: 

𝑆𝑥 = 𝑥(𝑤𝑖) + 𝑛𝜎                                                                                          (4.2) 

         In this case, 𝑛 ∈  𝑅, and   𝜇𝑥 = 𝑥(𝑤𝑖)  and  𝜇𝑦 = 𝑦(𝑤𝑖). It is this function that 

determines the new Steiner sub-set by modifying the coordinates of the 

Steiner components as given in (4.3). 

 𝑆𝑛𝑒𝑤 = {𝑥(𝑤𝑖) + 𝑛1𝜎, 𝑥(𝑤𝑖) + 𝑛2𝜎, … + 𝑥(𝑤𝑖) + 𝑛𝑝−2𝜎 }              (4.3) 

         where  𝑆𝑛𝑒𝑤  ⊆ 𝑆 . 



Chapter 4: Wirelength minimization of VLSI Circuits based on Invasive Weed Optimization.  

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,”  Ph.D Thesis 
by Subhrapratim Nath.  Page | 132 
 

Step 8 By dividing the mass of a weed by its mean squared temperature, or 

1/𝑀𝑆𝑇 (𝐺𝑆𝑛𝑒𝑤), where 𝐺𝑆𝑛𝑒𝑤 is the modified graph, one can determine the 

probability that a given weed will produce viable offspring. 

Step 9 The new seeds are combined with the existing 𝑊𝑠𝑜𝑙 solutions and the seeds 

are ranked according to their fitness. 

Step 10 To get rid of all of the undesirable seeds (those with a high MST), it is advised 

to use Peirce's method [4.41] in the competitive exclusion procedure (𝐺𝑆𝑛𝑒𝑤) . 

Once the population reaches or equals the colony's maximum permissible 

weeds, 𝑊𝑠𝑜𝑙  +  𝑊 ≥  𝑝𝑚𝑎𝑥 , the fitness mean (𝑊𝑚) for all weeds is 

determined. As implemented in, an weed whose viability digresses from the 

point 𝐹𝑚  by more or less than the accepted value  (𝑟𝑎) is deleted from the 

solution space (4.4). 

𝑅 =
|𝑊𝑖−𝑊𝑚|

𝑟𝑎
                                                                                   (4.4) 

The weed with fitness 𝑊𝑖 is eradicated if 𝑅 > 1. As a result, the algorithm's 

permitted range (𝑟𝑎) is a required terminating parameter. Its tweaking is 

simple in order to ensure the presented algorithm's convergence. 

Step 11 The dispersed seeds germinate close to the plant which reproduced them. 

This is mathematically proven by the value of standard deviation which 

deviates from the initial to final values w.r.t (4.5) as in (2.26). 

𝜎𝑖𝑡𝑒𝑟 = (
𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)

𝑛

(𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) + 𝜎𝑓𝑖𝑛𝑎𝑙                                             (4.5) 

With all changing iteration unfit weeds are disposed and only viable weeds 

are retained in the solution space. 

Step 12 In the event that the terminating condition is met, the Steiner set  Sfinal 

representing the nearest perfect solution is obtained, and the minimum 

length wire solution MST (𝐺𝑆𝑓𝑖𝑛𝑎𝑙)  is obtained. 
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4.3.2.     IWO-PSO Hybrid Algorithm 

 The PSO removes the nonviable assets from the starting population so PSO is 

integrated with the thought about EIWO to generate a hybrid algorithm. The goal is 

to offer a collection of better Steiner locations to the EIWO algorithm than random 

creation. PSO is run on the same set of terminals to retrieve the Steiner points. The 

candidate swarms (Steiner matrices) that make up EIWO's initial population are fine-

tuned in this step. 

VLSI layout on a two-dimensional Hanan grid  𝐺 ( 𝑉 , 𝐸)   simulates the problem space 

with  𝑝 terminal vertices. 

Step 1 At the start 𝑧 particles are assimilated randomly to form the swarm (4.1). 

This population is put in the solution space of 𝑛 × 𝑛 dimensional grid. This 

population has 𝑝 − 2 Steiner points randomly collected from the set 𝑆 with  

(𝑛2-p) points resulting in the formation of Steiner subset  𝑄𝑗  ⊆ S , where 𝑗 =

{1,2,3, … . . , 𝑧}  

Step 2 The viability of each asset or seed 𝐹𝑖  is measured with the function 

1/𝑀𝑆𝑇(𝐺𝑖 )   and also  1/𝑀𝐼𝑁(𝑀𝑆𝑇(𝐺𝑖))  is also measured.  

Step 3 The values of 𝑐1 and 𝑐2 is set to 2,  𝑝𝑏𝑒𝑠𝑡 𝑖  =  𝐹𝑖   and  𝑔𝑏𝑒𝑠𝑡  =  𝑀𝐴𝑋 (𝐹𝑖) and 

the iteration is set to  𝑘 times. 

Step 4 Using weighted PSO velocity equation (2.17) and PSO position equation 

(2.16), the inertia weight 𝑤 is measured and is incorporated to the position 

and velocity of each asset. 

Step 5 To reevaluate the  𝑝𝑏𝑒𝑠𝑡 and  𝑔𝑏𝑒𝑠𝑡 .  Afterk  iterations, swarms with high 

fitness are selected, and a new modified set 𝑋  is formed from 𝑄𝑗,   where 

 𝑋 ∊  𝑆. 

Step 6 The initial population starts with 𝑝 number of weeds. These number of 

weeds are synonymous to the terminal vertices in the EIWO algorithm. Two 

things are set in the initial iteration the viability of the weeds is set to the 

same value and number of seeds reproduced is x set with the PSO algorithm. 

Every seed has a fixed number of Steiner points associated to it which is 𝑝 −

2 . They are also associated with a randomly generated Steiner sub-set,  𝑆𝑖 
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where 𝑆𝑖  ⊆  𝑋, where 𝑖 = {1,2,3, … . , 𝑥}. The probability distribution function 

uniformly distributes the associated steiner points for every seed as 𝑌 =

𝑓 (
𝑥

µ,𝜎
) =

𝑒
−

(𝑥−µ)2

2𝜎2

𝜎√2𝜋
.   

Step 7 Starting at stage 4 of the presented EIWO method and holding the values of  

𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜎𝑓𝑖𝑛𝑎𝑙  constant, this algorithm performs a series of iterations. 

 

4.3.3.      Experimental Procedure 

The experiment's test space is generated by randomly creating value sets of 

10, 20, 50, 100 and 500 terminal nodes in a grid of  1000 by 1000 nodes. The Intel i7 

quad processor running at 2.2 GHz, along with 8 GB of RAM and a turbo boost, was 

used to run all the experiments. The optimizer algorithms listed in Table 4.1 were 

implemented after the governing conditions were established. 

Table 4.1. Algorithm initialization with control parameters 

Parameters PSO-W EIWO EIWO-PSO 

itermax 75 75 75 

c1 2  2 

c2 2  2 

w 0.05  0.05 

swarms (z) 150  150 

max_weed  150 150 

σinitial  1 1 

σfinal  0.01 0.01 

n (non-linear modulation 

index) 
 3 3 
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4.3.4.      Result and Discussions: 

In this results and discussions sub-section, a detailed insight of performance 

EIWO algorithms and EIWO-PSO hybrid algorithm is presented. According to Table 

4.2, the EIWO and EIWO-PSO methods outperform the PSO-W procedure when 

applied to the Minimum Spanning Tree metric. The results reveal that the MRST 

created by the presented algorithm EIWO outperforms the MST method when 

juxtaposed to the PSO-W algorithm. On comparison to the other algorithms, EIWO-

PSO hybrid provides the least valued MRST cost which is independent to the set of 

values in the experiment space. The output illustrates how IWO's features of 

guaranteeing the existence of the most viable assets helps in lifting the standard of 

optimization and in turn reducing the wire length of related nodes, in contrast to the 

PSO-W which relies on the probability function there is no room for. 

Table 4.2.  Comparison on Wirelength cost (MRST) vs MST 

NODES 
MST      

(in unit) 

MRST (in unit) 

PSO-W EIWO EIWO-PSO Hybrid 

10 2219 2198 2198 2198 

20 4034 3815 3765 3701 

50 5988 5716 5606 5549 

100 8766 7942 7889 7830 

 

The results of EIWO with a specific wire length of ‘3765’ are depicted in Figures 

4.2, while the results of EIWO-PSO with a specific wire length of ‘3701’ are depicted 

in Figure 4.3. Both examples use 20 terminal nodes. The minimum routing wirelength  

(MRST value) for 50 terminal nodes generated by EIWO and EIWO-PSO hybrid are 

depicted in Figures 4.4 and Figures 4.5, respectively. This exhibits that hybrid model 

of EIWO-PSO outperforms EIWO and PSO-W as individuals. 
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Figure 4.2.  20-node MRST using EIWO 

 

 

Figure 4.3.  A 20-node MRST using EIWO-PSO 
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Figure 4.4. 50-node MRST achieved with EIWO at a value of ‘5606’ 

 

Figure 4.5.  50-node MRST achieved with EIWO-PSO Hybrid at a value of ‘5549’ 
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The average system run time (in secs) of the aforementioned algorithms as 

measured through experimental iteration is displayed in Table 4.3. The results show 

that PSO-W outperforms EIWO and EIWO-PSO because it eliminates less desirable 

group members with no negative side effects, whereas EIWO and EIWO-PSO require 

more time to run due to the use of subroutines. 

Table 4.3.  Standardized CPU execution time for the algorithms 

NODES PSO-W EIWO EIWO-PSO Hybrid 

10 4.17 4.26 9.14 

20 9.27 7.94 19.03 

50 27.2 32.32 78.78 

100 93.7 91.4 201.71 

 

Although EIWO-PSO is a difficult procedure, the blended difficulties of PSO-

W and EIWO leads to a higher time complexity, as shown in Table 4.3 EIWO-PSO 

produces the least possible wire-length of the interconnected end nodes. 

Table 4.4 compares the suggested approach to the Geosteiner-5.0.1 benchmark [4.42], 

which is similar to MRST algorithm with a higher space complexity. It shows that the 

suggested EIWO algorithm and the EIWO-PSO Hybrid algorithm, performs 

identically to the benchmark algorithm for 10 terminal nodes, with the lowest minimal 

wire length cost of ‘2198’. For this value sets with more terminal nodes, EIWO-PSO 

Hybrid is found to be the best, whereas PSO-W is found to be the worst, with the most 

divergence from the benchmark value. As a result, the RMST problem of graphs and, 

as a result, the wire-length of connecting terminal nodes can be efficiently handled. 

Therefore, it is reasonable to assume that the presented algorithms can efficiently 

handle the MRST problem of graphs, significantly shortening the wire-length between 

the connecting terminal nodes. 
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Table 4.4.  MRST comparison against Geosteiner-5.0.1 

NODES PSO-W  

(in unit) 
EIWO 

(in unit) 
EIWO-PSO Hybrid 

(in unit) 
Geosteiner-5.0.1 

(in unit) 

10 2198 2198 2198 2198 

20 3815 3765 3721 3642 

50 5716 5606 5549 5365 

100 7942 7899 7830 7515 

 

The standard deviations obtained as the output after performing every method 30 

times are shown in Table 4.5 to ensure consistency. This data shows that the presented 

EIWO provides more stable performance than the PSO-W and hybrid EIWO-PSO 

algorithms across all value groups in the experimental setting. 

Table 4.5. Estimates of the MRST's Standard Deviation 

SD 

NODES PSO-W EIWO EIWO-PSO Hybrid 

10 5.34 0.84 1.05 

20 25.48 14.07 16.89 

50 23.07 11.619 15.837 

100 32.59 19.35 20.27 

 

Evolutionary algorithms must converge or stabilize unstable populations. From 

Figure 4.6, it is obvious that as the population grows, the MRST costs of both 

algorithms reduce, which are initially steep but gradually become less steep over time, 

and eventually begin to get straight. It demonstrates that at a certain rise in 

population, they stabilize and achieve ideal results. The EIWO-PSO hybrid method 

has a greater efficiency but a slower convergence rate. 

As seen in Figure 4.7, the decline in EIWO is quite steep as the number of iterations 

increases, but it flattens out at a particular point. This particular point is the 

convergence point where the algorithms best case performance at a fixed time 

constrain can be found. The EIWO-PSO combined procedure starts with a steep 

descent, however there is an area of very slow and almost no descent before 
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converging and smoothing out, which is owing to the method's borderline 

inconsistency. Table 4.6 depicts that for large instance data sets, EIWO as well as 

EIWO-PSO algorithms have better efficiency than PWO-W. 

  

Figure 4.6. EIWO vs EIWO-PSO Hybrid population growth 

 

 
Figure 4.7 EIWO-PSO Hybrid vs. increment iterations 
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Figure 4.8 shows that EIWO-PSO hybrid reduces wire length cost to ‘18014’ for 

500 terminal nodes compared to ‘18405’. Figure 4.9 shows 1000 end nodes EIWO-

generated MRST value of ‘25652’. 

Table 4.6.  Comparing large VLSI cases 

NODES MST 
(in unit) 

MRST (in unit) 

PSO-W EIWO EIWO-PSO Hybrid 

500 18435 18405 18278 18014 

1000 25798 25787 25652 25395 

 

 

Figure 4.8. 500 terminal node EIWO-PSO hybrid result 
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Figure 4.9. 1000 terminal node EIWO result. 

 

Table 4.7:  EIWO-PSO  vs. ISPD'98 benchmark. 

Benchmark Wirelength in [4.44] 
(in unit) 

Wirelength in EIWO-PSO 
(in unit) 

ibm01 62815 62785 

ibm03 134511 134304 

ibm05 254512 254489 

ibm07 353078 353162 

ibm10 588269 588328 
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The discussed hybrid algorithm is juxtaposed to certain typical benchmarks for 

VLSI global routing, such as ISPD'98 [4.43], and the wirelength obtained is compared 

to [4.44], as shown in Table 4.7. The findings clearly demonstrate the presented 

method's comparable efficiency, which varies roughly 7% from the standard value, 

and in certain situations, the suggested algorithm demonstrates its superiority. 

The suggested EIWO method and the PSO algorithm have a balance between the 

time and performance. In order to maintain the exchange, the EIWO with high 

runtime complexity outperforms the PSO-W. The presented EIWO-PSO Hybrid 

algorithm outperforms PSO-W and EIWO at path minimization for VLSI circuits, but 

at the expense of computational time. 
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5.1.     Introduction 

Advent of the nanometric age development and efficiency has put an adverse 

impact on the production methods of VLSI [5.1] - [5.2]. Due to this impact the chip size 

has declined resulting into the implementation of thousands of transistors in a 

singular chip. Due to this increased number of parts in a small chip space the 

intricacies of the connection increases and this leads to increased power loss. To 

resolve this issue on one hath and to design the routing network of the chip more 

efficiently on another hand thus The Global routing [5.3] - [5.4] of VLSI chips became 

a puzzle for all the researchers. The puzzle involves the reduction of the wire length 

without disclosing the original geometric layout. To solve and project this puzzle in 
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real world has another set of issues related to it. To portray it is required mapping in 

a graph, this leads to the RSMT Problem [5.5] - [5.6]. This problem is a NP hard 

problem [5.7] and cannot be solved in polynomial time and it directs to the issue of 

great time complexity. A profound researcher named Hanan has provided a lot of 

theorems and their related lemmas to solve this polynomial time issue of RMST [5.8]. 

These solutions lead to reduced search area; however, the issue of combinatorial 

explosion could not be tackled due to the tradeoff for search space. Several algorithms 

have taken account of heuristic techniques [5.9] to check for better and efficient 

solutions to this tree problem, however even the space and time complexities still 

posse a problem. Due to these drawbacks researchers started developing new 

generation of algorithms under the branch of metaheuristics [5.10] - [5.12]. These 

algorithms were inspired from swarm intelligence i.e., the natural lifestyle of living 

beings like ants, weeds, etc. These new generation algorithms have mainly two steps, 

first it defines a random search space and secondly it iterates until the new solution is 

better than the previous solution until the optimal solution is reached. The ACO [5.13] 

– [5.16] and PSO are two popular algorithms in this field. Being an efficient and 

reliable algorithm the PSO method [5.17] – [5.21] relays the behavioral characteristics 

of swarms and follows the above-mentioned steps. The only drawback of the PSO 

algorithm is that when the population booms in the solution space it converges before 

it is supposed to and the optimal solution is not achieved. Hence to settle this 

drawback the control parameters are closely monitored. When the regular 

computational algorithms fail to provide optimal output, researchers turn to the 

behavioral patterns of the natural world in order to develop new algorithms. This field 

is known as Bio-inspired optimization [5.22] - [5.26]. Bio-inspired optimization works 

based on the interaction between the organisms, it has shown great promise and has 

a lot of application. R.R. Shaoo et al. [5.27] employed bio inspired approach in wireless 

sensor network in 2015. Bio-sensor [5.28] and application also find prominence in 

recent times.      

To deal with the Global routing issue in VLSI circuit another new computational 

method using Bio-inspired optimization is implemented. This Bio-inspired 

optimization has been taken up from the study of single celled, amoeboid organism 
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Physarum polycephalum slime mold. Physarum polycephalum is made up of a 

network of tubes via which nutrients, neural signals and body mass is transported. 

This process is conducted over the shortest path hence this method is adopted in 

solving the issue of the RSMT to efficiently design the global routing.  

Furthermore, new hybridization algorithms for PSO with Physarum are being 

investigated, in which the efficiencies of both algorithms are combined in a novel way 

to improve global optimization. 

 

5.2. Literature Review 

T. Nakagaki et al. [5.29] in 2000 took a developing tip of a suitable size from a huge 

plasmodium in a 25235 cm culture box and isolated it into little pieces.  At that point, 

a labyrinth made by cutting a plastic film and putting it on an agar surface. The 

plasmodial pieces spread and combine to frame a solitary life form that filled the 

labyrinth. Then it was staying away from the dry surface of the plastic film.  

T. Nakagaki et al. [5.30] in 2001 showed their work on the essential characters of 

the cylinder morphogenesis by applying an outer incitement through adding 

supplements to the organic entity. The important conditions under which the 

plasmodium can follow the briefest not really settled.  

T. Nakagaki et al. [5.31] provide the plasmodium with another kind of 

undertaking including enhancement conduct. Two separate functions are introduced 

to the creature, which is enlightened by an inhomogeneous light field. Since the 

plasmodium is photophobic, tubes associating the functions avert following the basic 

briefest ways, however structure as indicated by the light inhomogeneity. A report on 

the conduct of the creature under these conditions made to examine its physiological 

importance. A numerical model suggested for the cell elements what's more present 

a computational calculation for its concern addressing. 

A. Tero et al. [5.32] depicts how the organization of cylinders grows and contracts 

depending on the transition of protoplasmic streaming, and replicates test perceptions 

of the conduct of the life form. The calculation is dependent on physarum is basic and 

incredible.  
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J. Garcia et al. [5.33] gives another way to deal with issues related with 

combinatorial. It utilizes a natural similarity roused by the execution of viruses. The 

replication instrument, just as the hosts' contamination processes is utilized to 

produce a metaheuristic that permits the obtention of significant outcomes. The viral 

framework (VS) hypothetical setting is portrayed and it is applied to a library of 

medium-to-huge measured instances of the Steiner issue for which the ideal 

arrangement is known. The strategy is contrasted and the metaheuristics that have 

given the best outcomes to the Steiner issue. The VS gives preferable arrangements 

over hereditary algorithm sand certain unthinkable hunt draws near. For the most 

modern unthinkable pursuit draws near (the best metaheuristic approximations to the 

Steiner issue arrangement) VS gives arrangements of comparable quality.  

S. Takagi et al. [5.34] in 2010 took advantage of the Physarum polycephalum to 

foster an organically propelled model for versatile organization improvement. 

Physarum is a huge, single-celled amoeboid life form that scrounges for patchily 

circulated food sources. The singular plasmodium at first investigates with a generally 

adjoining scrounging edge to amplify the region looked. Nonetheless, behind the 

edge, this is settled into a rounded organization connecting the found food sources 

through direct associations, extra middle of the road intersections (Steiner focuses) 

that diminish the general length of the associating organization, furthermore the 

arrangement of infrequent cross-connects that further develop in general vehicle 

proficiency and versatility. 

Computational and numerical techniques are broadly used to investigate and 

display organic frameworks by Y. Afek et al. [5.35]. An illustration of the opposite of 

this technique, where a natural cycle is utilized to determine an answer for a long-

standing computational issue is reported. It is accepted an assortment of 

indistinguishable processors set at hubs of a subjective simultaneous correspondence 

organization. Hubs can just transmission the slightest bit messages. A message 

communicated by a hub arrives at every one of its neighbours’ that are as yet dynamic 

in the calculation. The model is proper for radio organizations with impact location.  

L. Liu et al. [5.36] utilizing bits of knowledge from natural cycles could assist with 

planning new enhancement strategies for long-standing computational issues. This 
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work takes advantage of a cell registering model in the physarum polycephalum to 

tackle the insignificant openness way issue which is a crucial issue comparing to the 

most pessimistic scenario inclusion in remote sensor organizations. It initially details 

the insignificant openness way issue, and afterward convert it into the most limited 

way issue by discretizing the observing field to a huge scope weighted matrix. 

Motivated by the way tracking down capacity of physarum. Then another 

advancement calculation fostered as the physarum improvement, for tackling the 

most limited way issue. The suggested calculation is with low-intricacy and high-

parallelism. Additionally, the center component of physarum improvement in the 

work is likewise useful for planning new chart calculations and improving directing 

conventions and geography control in self-coordinated organizations.  

K. Mehlhorn et al. [5.37] gives an idea on Physarum polycephalum. It is a slime 

form that is clearly ready to tackle most brief way issues. A numerical model has been 

suggested in year 2007   to depict the input instrument utilized by the slime form to 

adjust its cylindrical channels while rummaging two food sources s0 and s1 by Tero et 

al. It was demonstrated that, under this model, the mass of the shape will ultimately 

join to the most limited s0 to s1 way of the organization that the form lies on, freely of 

the design of the organization or of the underlying mass conveyance.  

H. Zhang, and L. Liu [5.38] in 2014 solved energy proficiency issue in remote 

multi-hop networks addressed by an Advanced Distributed physarum optimization 

calculation. An ideal energy-proficient tree issue dependent on the cell processing 

model in the ooze shape physarum polycephalum is figured. At that point, union rate 

and precision by the clever transition terminal choosing strategy improved and 

erasing edge system, and compromise iterative expense and strength by consolidating 

the focal and appropriated iterative calculation. The simulated results exhibits that the 

energy-proficient tree developed by the calculation accomplishes the preferred 

presentation over Directed Diffusion convention, and the comparable presentation to 

Loss-Contracting calculation in less building overhead.  

L. Liu et al. [5.39] takes advantage of model on cellular computing in the 

physarum polycephalum to tackle the Steiner tree issue which is a significant NP-hard 

issue in different applications, particularly in network plan. Roused by the way 
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finding and organization arrangement capacity of physarum, another advancement 

calculation fostered, named as the physarum improvement, with low-intricacy and 

high-parallelism. To approve and assess the models and calculation, physarum 

enhancement to the insignificant openness issue applied which is a principal issue 

comparing to the most pessimistic scenario inclusion in remote sensor organizations. 

Additionally, the center component of physarum advancement likewise may give a 

valuable beginning stage to foster some viable dispersed calculations for network 

plan.  

Y. Sun et al. [5.40] reported two new physarum-enlivened calculations to address 

Node Weighted Steiner Tree Problem. Since all the current benchmark cases have a 

vacant terminal set, new benchmark cases with non-void terminal sets are produced 

to cover the lack of existing benchmark examples. Both calculations are contrasted. 

Moreover, an adjusted Dijkstra's calculation is suggested to give the ideal answers for 

a piece of these benchmark examples where there are two terminals and the hub loads 

are negative. Simulated results show that previously suggested calculation can 

observe the ideal answers for NWSTP with two terminals in diagrams with negative 

hub loads, and second suggested calculation can observe close estimated answers 

with various terminals in any hub weighted chart.  

C. Gao et al. [5.41] reported the computational capacity and feedback component 

directly following scavenging interaction of physarum, which is a huge one-celled 

critter like cell comprising of a dendritic organization of cylinder like pseudopodia, 

an overall physarum-based computational system for local area discovery suggested. 

In light of the system, the in between local area edges can be recognized from the intra-

local area edges in an organization and the positive input of tackling process in a 

calculation can be additionally upgraded, which are utilized to work on the 

effectiveness of unique improvement based and heuristic-based local area discovery 

calculations, separately. Bench mark datasets have been utilized to assess the 

proficiency of the suggested computational system. Tests show that the calculations 

streamlined by physarum-roused computational structure perform better compared 

to the first ones, as far as exactness and computational expense. Besides, a 

computational intricacy examination confirms the structure of suggested system.  
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Y. Liu et al. [5.42] report vehicle organizations taken as one of the most discussed 

issues in the space of computational knowledge. Some nature-propelled calculations 

have shown amazing capacities in the versatile organization development. The work 

to plan a physarum scavenging stage for building transport organizations. In 

particular, the customary physarum scavenging model is adjusted to develop 

transport networks in China. To draw near to the genuine situation, functional 

information is gathered to construct the climate of the physarum scrounging model 

and the design of genuine vehicle organizations. A few estimations in the area of 

complicated organizations, for example, normal way length, network effectiveness, 

geography strength, and utilitarian vigour, are utilized for execution examination. The 

trial results show that physarum scrounging models dominate in building profoundly 

productive and strong organizations, which can be used for coordinating the plan of 

transport networks in reality.  

 

5.3.     Wirelength Minimization of VLSI circuits based 
            on Physarum Bio Network 

The major concern of VLSI Global routing is wirelength minimization of the 

interconnected nodes in a VLSI layout which is mapped to graph theory generating a 

RSMT problem. A grid graph is executed for the algorithm based on Physarum 

BioNetwork. 𝐺(𝑉, 𝐸) is a graph representing a solution space, where 𝑉 are the 

endpoints and 𝐸 are the global routing paths. 𝑅 is the set of terminal vertices which 

are to be connected in the VLSI layout and 𝑉 − 𝑅 is the set of steiner vertices.  

In the Physarum model for VLSI, the flux changes along with the time due to its 

time variant nature from (2.27) shown in (5.1) 

 𝑞𝑖𝑗
𝜎 =

𝑑𝑖𝑗
𝜎

𝑙𝑖𝑗
(𝑝𝑖

𝜎(𝑡) − 𝑝𝑗
𝜎(𝑡) )                (5.1) 

Here 𝑞𝑖𝑗 is the flux induced by the vertex 𝑣 ∈  𝑆  and S is the set of consisting of 

vertices other than the terminal nodes, i.e. 𝑆 =  𝑉 − 𝑅.  

For a physarum cell 𝑣𝑖  , the algebraic sum of the fluxes  (2.28) are given by (5.2)  
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∑ 𝑞𝑖𝑗
𝜎 = ∑

𝑑𝑖𝑗
𝜎

𝑙𝑖𝑗
(𝑝𝑖

𝜎(𝑡) − 𝑝𝑗
𝜎(𝑡) )  = {

𝑓0,    𝑖𝑓 𝑣𝑖 ∈  𝑆 ∧ 𝑖 = 𝜎
−𝑓0   𝑖𝑓 𝑣𝑖 ∈  𝑆 ∧ 𝑖 ≠ 𝜎

0,    𝑖𝑓 𝑣𝑖 ∈  𝑉 ∖ 𝑆 
𝑖=1,𝑗≠1𝑖=1,𝑗≠1                         (5.2)  

    To put 𝑑𝑖𝑗 value as 1 other than 0, 𝑑𝑖𝑗 is updated and thereby the the pressure value 

𝑝𝑖
𝜎 is also updated. The value of 𝑑𝑖𝑗 is constantly reduced at each time step as the value 

of 𝑑𝑖𝑗 is represented as in (5.3) 

 
𝑑(𝑑𝑖𝑗)

𝑑𝑡
= 𝑓(|𝑞𝑖𝑗|) −  𝛼𝑑𝑖𝑗                            (5.3) 

This value gets eliminated from the solution space along with its respective 

connected nodes, at the time when it touches a particular threshold or limit, lower 

than that of the minimal. The associated points or the food sources from the edges left 

with 𝑑𝑖𝑗 more or equal to the corresponding threshold are chosen to be applied in a 

separate graph along with the terminal nodes. The RSMT is calculated, obtaining the 

overall minimum wirelength of the interconnected terminal nodes such that VLSI 

global routing optimization is attained. 

     

5.3.1. RSMT Algorithm based on Physarum BioNetwork 

1: procedure Physarum (𝑔𝑟𝑎𝑝ℎ(𝑁 × 𝑁), 𝑡) 
 

2:      Put the terminals 𝑡 in the graph 
 

3:      for 𝑖𝑡𝑒𝑟 =  1 to 𝑠𝑡𝑒𝑖𝑛𝑒𝑟 do 
 

4:           Create a Steiner point 𝑠𝑡 (𝑥, 𝑦) 
 

5:           if 𝑠𝑡 ≠  𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 and 𝑠𝑡 does not lie on path then 
 

6:                    Put the Steiner point on the graph 
 

7:            else 
 

8:                     𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 +  1 
 

9:        𝑠𝑡𝑒𝑖𝑛𝑒𝑟 =  𝑠𝑡𝑒𝑖𝑛𝑒𝑟 − 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 
 

10:       for 𝑗 =  𝑛𝑜𝑑𝑒𝑠 +  1 to 𝑛𝑜𝑑𝑒𝑠 +  𝑠𝑡𝑒𝑖𝑛𝑒𝑟 do 
 

11:              Calculate the pressure and initialize all vertices 
 

12:        for ℎ =  1 to 𝑛𝑜𝑑𝑒𝑠 +  𝑠𝑡𝑒𝑖𝑛𝑒𝑟 do 
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13:               for 𝑔 =  1 to 𝑛𝑜𝑑𝑒𝑠 do 
 

14:                        𝑝𝑑𝑖𝑓 𝑓(ℎ, 𝑔) =  𝑝(ℎ) − 𝑝(𝑔) 
 

15:         for 𝑗 =  1 to 𝑛𝑜𝑑𝑒𝑠 +  𝑠𝑡𝑒𝑖𝑛𝑒𝑟 do 
 

16:                for 𝑘 =  1 to 𝑛𝑜𝑑𝑒𝑠 +  𝑠𝑡𝑒𝑖𝑛𝑒𝑟 do 
 

17:                         if 𝑗 ≠  𝑘 then 
 

18:                                   Calculate the 𝑑(𝑗, 𝑘) 

19:             if 𝑑(𝑗, 𝑘) ≥ 𝑡ℎ𝑟𝑒𝑠ℎℎ𝑜𝑙𝑑  

20:                         𝑑(𝑗, 𝑘) = 𝑞𝑗𝑘 − 𝑑𝑗𝑘 

21:             else if  𝑑(𝑗, 𝑘)  <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

22:                       Eliminate 𝑒𝑑𝑔𝑒(𝑗, 𝑘) 

                            

5.3.2.    Physarum BioNetwork-PSO Hybrid 

The amoeboid bio network is used to remove the unnecessary edges of the RSMT 

optimizing it. However, when the solution space is large iterating through all the 

edges to eliminate the unnecessary ones takes a lot of iterations hence increasing time 

complexity and reducing the convergence rate. 

The PSO algorithm is devoid of this drawback because it works by updating the 

previous velocity and position in the next iteration. This change is based on the 

swarm’s behavioral characteristics.  In this algorithm the viability of the Steiner points 

and then updates the Steiner set leading to a higher rate of convergence. However, the 

only drawback for this algorithm is that it depends on probability. This results in a lot 

of issue while designing the global and local routing and leads to premature 

convergence. 

PSO algorithm is gets more efficient when the Physarum BioNetwork is 

implemented in it. Physarum polycephalum is made up of a network of tubes via 

which nutrients, neural signals and body mass is transported. This process is 

conducted over the shortest path hence this method is adopted in solving the issue of 

the RSMT to efficiently design the global routing. This optimization is dependent on 

how the bio network is used in the discussed hybridization. This hybridization leads 
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to the production of viable population where they are used to create the initial set 

hence ensuring better output and the efficiency of the algorithm improves.  

𝐺(𝑉, 𝐸) is a graph representing a solution space, where 𝑉 are the endpoints and 𝐸 are 

the global routing paths. Pre-algorithm settings include the swarm's size and the 

maximum number of iterations. The initial population of size 𝑝 is set and the Steiner 

set where 𝑛(𝑝) = 𝑛 − 2, where 𝑛 being the terminal nodes.  

 

5.3.3.    Algorithm based on Physarum-PSO Hybrid 

Step 1 Random swarms of size z are initialized and each 𝑄𝑗 𝜖 𝑧 where 𝑛(𝑄𝑗) = 𝑡 −

2 where 𝑡 is the number if terminal points. 

Step 2 Fitness of each particle is evaluated 1/𝑀𝑆𝑇(𝑄𝑗) and the respective 𝑝𝑏𝑒𝑠𝑡 and 

𝑔𝑏𝑒𝑠𝑡 values are calculated. 

Step 3 Particle’s (p) velocity (𝑉) and position (𝑆) are computed using (2.17), 

 (2.18) and (2.16) 

Step 4 Evaluate pbest and gbest after each iteration 

Step 5 Select the particle Qj´ with minimum gbest 

Step 6 Physarum algorithm begins with Qj´ =  {p1, p2, … … . , ps}  where n(Qj´) ≤ t −

2 

Step 7 For each pi ∈ Qj calculate flux qij using (5.1) 

Step 8 Calculate ∑qij using (5.2) 

Step 9 Calculate new dij´ using (5.3) 

Step 10 When dij < threshhold 

Step 11 Eliminate the edge lij 
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5.3.4.    Mathematical Implication of the Algorithm 

A graph of 𝑅 number of terminal nodes and 𝑉 total nodes are set up. The 

generation of 𝑅 random terminals, in a graph consisting of 𝑉  nodes is considered ′𝑝𝑖’ 

at ′𝑣𝑖′. The idea of the algorithm remains same i.e.; to reduce the interconnecting length 

of the nodes, so the following rules are followed in (5.4), (5.5) and (5.6).  

𝑑(𝑎, 𝑏)  ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ≠ 𝑏                                                                     (5.4) 

𝑑(𝑎, 𝑏) =  𝑑(𝑏, 𝑎)                                                                        (5.5)         

𝑑(𝑎, 𝑏)  ≤  𝑑(𝑎, 𝑐)  +  𝑑(𝑐, 𝑏)                                                           (5.6) 

It is observed from (5.6) that the amoeboid cells which occupy the same position 

as that of the edges or Steiner points leads to an increased flux density which results 

in longer graph length. So, to avoid this scenario amoeboid cells are placed in separate 

location and hence the edge length also decreases. This scenario is looked into by 

beginning with a first order equation 𝑎𝑥 + 𝑏𝑦 + 𝑐 =  0 and with just 1 terminal. The 

nodes are placed along the line 𝑦 = 0. 

The nodes will found at 𝑃 =  (𝑥1, 𝑓(𝑥1)), 𝑄 =  (𝑥2, 𝑓(𝑥2)), 𝑅 =  (𝑥3, 𝑓(𝑥3))  along the 

equation and 𝑃 ′ =  (𝑥1, 0), 𝑄′  =  (𝑥2, 0) 𝑎𝑛𝑑  𝑅′  =  (𝑥3, 0)    along the 𝑋-axis as shown 

in Figure 5.1. 

Now, taking determinant 𝐷 = |𝑥1 𝑦11 𝑥2 𝑥3 𝑦21  𝑦31| = 0 , area connecting the three 

nodes is 0 and thus, nodes 𝑁1, 𝑁21 & 𝑁3 are in a same line. This shows that the Steiner 

points analogous to the physarum cells if placed along the 𝑋-axis the least length 

would be  𝐿𝑚𝑖𝑛 = (∑ |𝑥𝑘| + |𝑓𝑥𝑘|3
𝑘 ) − 𝑥2. Now if they are put away from the nodes the 

edge length might decrease as shown in the below graph. 

In this case, placing a cell or the Steiner point as shown in Figure 5.2. at 

X(𝑥2, 𝑓(𝑥3)): the minimum length would be   

𝐿′
𝑚𝑖𝑛 =  𝑥1 + 𝑓(𝑥1) + 𝑥2 + 𝑓(𝑥3) + (𝑥3 − 𝑥2)                                     (5.7) 

Therefore, 𝐿′
𝑚𝑖𝑛 − 𝐿𝑚𝑖𝑛 =  𝑓(𝑥2) + (𝑥3 − 𝑥2)                                                         (5.8) 

Therefore, 𝐿𝑚𝑖𝑛 > 𝐿′
𝑚𝑖𝑛                                                (5.9) 
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Radius of Curvature of  𝑦 = 𝑓(𝑥) =
(1+ (

𝑑𝑦

𝑑𝑥
)2)1.5

|
𝑑2𝑦

𝑑𝑥2|
                      (5.10) 

 

 

Figure 5.1. Graph 1 representing the placement of nodes along a linear curve 

 

 

 

Figure 5.2. Graph 2 representing the position of a single Steiner point w.r.t. the nodes of Graph 1 
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Now, 𝑎𝑥 + 𝑏𝑦 + 𝑐 =  0 

⇨ 𝑦 = −
𝑎

𝑏
𝑥 −  

𝑐

𝑏
 

⇨ 
𝑑𝑦

𝑑𝑥
=  −

𝑎

𝑏
 

⇨ 
𝑑2𝑥

𝑑𝑥2 = 0 

⇨ |
𝑑

2
𝑥

𝑑𝑥
2 | = 0         (5.11) 

Therefore, radius of curvature = ∞ 

The results are suitable even when the graphs are curved if the Steiner points are 

plotted along 𝑋-axis. If the order of the curve or the radius of curvature increases the 

number of terminals increases as well. Hence it is shown that this algorithm is viable 

for any distribution of terminal nodes. To check this work for sure a second-degree 

equation with 1 terminal node is considered. Let the equation be 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 

let the nodes be placed along the line 𝑦 = 0  and the equation   𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0.  

The coordinates of the Steiner nodes will be 𝑃 =  (𝑥1, 𝑓(𝑥1)), 𝑄 =  (𝑥2, 𝑓(𝑥2)), 𝑅 =

 (𝑥3, 𝑓(𝑥3))  along the equation and 𝑃 ′ =  (𝑥1, 0), 𝑄′  =  (𝑥2, 0) 𝑎𝑛𝑑  𝑅′  =  (𝑥3, 0) along 

the 𝑋-axis as shown in Figure 5.3. 

 

 

Figure 5.3. Graph 3 representing the placement of nodes along a curve of second degree 
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In this case as shown in Figure 5.4, placing a cell or the Steiner point at 

X(𝑥2, 𝑓(𝑥3)): the minimum length is   

𝐿′
𝑚𝑖𝑛 =  𝑥1 + 𝑓(𝑥1) + 𝑥2 + 𝑓(𝑥3) + (𝑥3 − 𝑥2)                                    (5.12) 

Therefore, 𝐿′
𝑚𝑖𝑛 − 𝐿𝑚𝑖𝑛 =  𝑓(𝑥2)                                                                            (5.13) 

Therefore, 𝐿𝑚𝑖𝑛 > 𝐿′
𝑚𝑖𝑛                                                                                                                                       (5.14) 

Thus, this algorithm stands validated with mathematical experimentation. 

 

 

Figure 5.4. Graph 4 representing the position of a single steiner point w.r.t. the nodes of graph 3 

 

5.3.5.   Experimental Procedure 

A two-dimensional search space of measurements 500 ×  500 each is set up where 

the simulations are run designed on the discussed hybridized algorithms of Physarum 

(APO) and PSO against the swarm optimization. Two different random co-ordinate 

sets are created for 15 and 30 terminal nodes based on the distribution pattern in the 

solution space. Uniform distribution and non-uniform distribution are used for Set 1 
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and Set 2 respectively. There are 5 set of parameters on which the algorithms are 

compared. 

5.3.6.    Results and Discussions 

In this results and discussions sub-section, a detailed insight of performance 

Physarum-PSO algorithms is presented. Table 5.1 shows the records of the output 

from the algorithms that were run 25 times. The output data exhibits that the 

discussed algorithms are more efficient than the PSO-W when the number of nodes is 

increased.  However, when the test data is small PSO provides better output, in 

contrary to it Advance Physarum Optimization (APO) algorithm and APO-PSO 

hybrid are more efficient in finding the least distance path among nodes. Irrespective 

of altering the parameters of distribution of nodes, deviation among the minimum 

and mean length of wire both the presented algorithms provide output in the 

acceptable range whereas the PSO-W hampers with the consistency of its results. 

Considering 30 nodes, Figure 5.5 shows the minimum wire-length generated by the 

APO algorithm. and Figure 5.6 show lowest minimum cost generated by APO-PSO 

hybrid algorithm. 

Table 5.1: Comparison of Algorithms for overall interconnected wirelength 

 

Test 

RSMT Cost (in unit) 

PSO-W APO APO-PSO 

Min Mean Min Mean Min Mean 

15 

nodes 

Set 1 455 489.2 455 460.4 455 459.1 

Set 2 437 442.5 439 442.2 437 441.5 

30 

nodes 

Set 1 2510 2514 2450 2452.3 2441 2446.9 

Set 2 3515 3520.1 3435 3438.6 3432 3437.1 
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Figure 5.5. Minimum wirelength by APO for Set 1 with 30 nodes 

 

Figure 5.6. Minimum wirelength by APO-PSO for Set 1 with 30 nodes 
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Table 5.2 depicts the computational complexity of the algorithms during 

execution. The tests are carried out in a computer with specifications of 8 GB DDR3 

RAM, Intel Core i3 processor with 2.4 GHz speed. With increase in the number of 

nodes the average runtime of PSO-W increases non-linearly. Due to the physarum 

optimization the APO algorithm runs more efficiently due to the elimination of less 

viable routes synonymously the Steiner nodes gets removed. Due to this optimization 

unnecessary paths gets removed and time complexity gets optimized. However, when 

the number of nodes get large the complexity increases non-linearly. The table shows 

that implemented APO consume least average runtime. The hybridization of APO-

PSO results in better convergence but more execution time. 

Table 5.2.  Average algorithm runtime comparison  

Test 

(in seconds) 
PSO-W APO APO-PSO 

15 Nodes 

Set 1 4.91 3.89 5.76 

Set 2 4.35 3.42 5.39 

30 Nodes 

Set 1 8.26 5.599 11.93 

Set 2 10.80 6.506 15.36 

 

Table 5.3. Standard Deviation comparison obtained from RSMT 

Test PSO-W APO APO-PSO 

15 Nodes 

Set 1 15.44 15.21 11.71 

Set 2 14.13 13.65 10.23 

30 Nodes 

Set 1 33.809 23.744 18.92 

Set 2 42.48 35.145 31.56 
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In Table 5.3, when the test set is small in size the PSO and the hybridized algorithm 

cannot be distinguished as both the test result in terms of convergence is same. 

However, when the test set is large the later beats the PSO algorithm in time. The PSO 

algorithm provides the least Standard Deviation (SD) in less time than the physarum 

algorithm. Now on the parameter of solution space and distribution function involved 

the physarum algorithm is more efficient than the PSO algorithm. 

Table 5.4. Comparison with Geosteiner -5.0.1 

Test 
RSMT cost (in unit) 

Geosteiner 5.0.1 PSO-W APO APO-PSO 

15 Nodes 

Set 1 455 455 455 455 

Set 2 437 437 439 437 

30 Nodes 

Set 1 2357 2510 2450 2441.3 

Set 2 3345 3515 3435 3431.7 

 

 

Taking into account the benchmark of Geosteiner -5.0.1 of researchers [5.43] same 

parameters were set up for the experiment of 15 and 30 node data set. All the three 

discussed algorithms provided the least value of ‘455’ which is the benchmark for 15 

node data set. Table 5.4 shows the output data against the benchmark. It indicates that 

APO-PSO Hybrid creates the best while PSO-W generates the worst, proving that 

RMST graph problem can be solved efficiently utilizing APO-PSO hybrid to minimize 

wire length. 

A random data set of 200 terminal nodes is used to test the presented techniques in a 

large-scale setting. For 200 terminal nodes, the minimal wirelength cost created by 

APO-PSO is ‘11762’, compared to ‘11854’ generated by APO as shown in Figure 5.7. 
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Figure 5.7. APO-PSO result for 200 terminal nodes 

The performance of the presented algorithms is measured using some benchmark 

ISPD’98 [5.44] for global routing and the estimated wirelength is compared against 

the existing literature [5.45] as tabulated in Table 5.5. It is seen from the results that 

the discussed algorithm deviates around 5% where it beats the algorithm in some 

benchmarks.  

Table 5.5.  Comparison on Benchmark circuits 

Benchmark Wirelength in [5.45] 
(in unit) 

Wirelength in APO-PSO 
(in unit) 

ibm01 62815 62742 

ibm03 134511 134496 

ibm05 254512 254489 

ibm07 353078 353101 

ibm10 588269 588350 
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The APO-PSO algorithm exhibit superior performance than the conventional PSO 

algorithm. Experiments show that the APO-PSO hybrid generates the smallest 

wirelength of interconnected nodes, which is competitive with the established 

standards. On comparing the APO-PSO hybrid algorithm to APO, it is noticed a little 

amount of inconsistency; nevertheless, this is far less noticeable than in PSO-W. 

Nonetheless, this approach can be employed more effectively by running many copies 

of the same set, hence boosting the likelihood to its peak in obtaining the least optimal 

wirelength of the VLSI circuit, because of its great ability to lower the wire length size 

of VLSI circuits. 
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6.1.     Introduction 

     A set of viable nodes are spread over an area which communicate with each 

other to obtain the necessary information required forms the Wireless Sensor 

Network. The fields of disaster prediction and analysis, environmental study and 

health system has implemented varied implication of WSNs. This is because of the 

fact that WSNs are highly adaptive, obtains better result in less time and are reliable 

[6.1]. As routing algorithms are embedded in WSNs their output is more reliable and 

efficient and enables proper continues stream of data [6.2].  

 The nodes spread over the solution space are places together and this process is 

called clustering. It is implemented to deal with the issues of very large scaling, 

limited power supplies and reducing the power intake. Now the two variety of 

nodes [6.3] - [6.6] namely the Head node and the Sensor nodes are divided into from 

the cluster. To control the sensor nodes and to develop a line of communication 

between them the Head nodes come into play. 

 As with the advancement of technology the algorithms have become more 

efficient, this has made clustering [6.7] - [6.8] to be efficiently used to transfer data 

between nodes. The data can either be delivered to the Base Station(s) in the given 

described topology or it is intercepted by a neighboring node of the cluster or by 

another cluster in an Ad-Hoc topology. The 802.11 standards [6.9] is divided into 

three separate sections to establish a line of information exchange. The 802.11n is a 

modern and efficient protocol however it utilises a lot of power and bandwidth, 

hence is limited in WSNs. The 801.11a is old and is not viable enough to run the 

communication lines, so the 802.11b is the only viable option.  

Due to the varies size of the solution space and number of initial nodes in them 

meta heuristics is the apt way to find a viable solution. This genre of algorithm 

imitates the nature to search over a solution space and provide the best possible 

solution.   

ACO or Ant colony optimisation [6.10] - [6.11] follows ants which looks for food 

leaving behind pheromone trail for other ants to follow. So, if a path has more 

amount of this pheromone that means more ants have followed this path and other 
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path having less pheromone indicates a shorter route. This process of determining 

the shortest path has proven to be very efficient for routing in WSN however it 

falters when nodes get mobile.  

The PSO algorithm [6.12] - [6.16] is an efficient algorithm that employs particles 

in the search space to develop a viable solution. Its location determines the 

Candidate Solution for the respective particle. Every node tries to obtain a better 

candidate position hence the cluster as a whole strives toward a more efficient 

solution. At first the positions are opted by a random function. After their positions 

being initialised, they strive for opting a better one which leads to a more efficient 

solution. This acted as a necessary evil because this dynamic nature helps opt out the 

optimised solution however this unguided random function limits the output for 

varied topography. 

Meta-heuristics have found its varied application in WSN. This amalgamation 

results in viable output to existing real life problem which exist because WSN is 

dynamic in nature. Data transmission have become more efficient after meta-

heuristics are being incorporated in the LEACH [6.17] protocols. ACO implemented 

clustering algorithms has shown better output with WSN however the limitations 

faced by it is because of the dynamic nature of WSNs. LEACH and OEERP [6.14] are 

incorporated in PSO based clustering. This works efficiently within the cluster to 

provide viable output however when it is employed for inter cluster 

communications it cannot provide viable output. 

To offer more optimal usage conditions in the WSN environment, by 

communicating technologically communicable products with each other, important 

opportunities were unearthed. And this occurred with the rise of WSN technology 

and such products.  

The Electronics and Telecommunications Technology industries used these 

opportunities to develop the Internet of Thing, a networking-enabled and 

computational platform. The industries created this to provide for an exclusively-

connected breed of devices capable of parameterized awareness. The Internet of 

Things, or IoT, [6.18] - [6.20] provides a platform in which the IoT-enabled devices 

can communicate with other devices. With the development of an access 
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methodology, it also makes the mass control, deployment, and monitoring of those 

devices possible and the unique infrastructure of IoT interfaces to this methodology. 

This prototype is an assembled network of physical objects, namely “Things,” which 

is embedded with sensors, electronics, and connectivity. It achieves service and 

value by communicating with the operator, manufacturer, and other devices with 

the help of data pockets and by advanced network protocols. The realization of 

pedestrian mass, the applications industries use, and even governments can dawn 

with the interconnection of billions of such devices to the internet. This can bring in a 

set of proper usage metrics and vital optimizations never been seen before if IoT can 

prove this prototype.  

A sheer infrastructure needs a storage solution that is viable and reliable, and 

when required, people can access it with proper permissions. For this, the only 

appropriate solution is Cloud Computing, a software-defined model. Cloud 

Computing [6.21] - [6.22] works alongside resources that are geographically 

distributed, and it enables on-demand and favorable usage of a shared pool of 

storage resources or configurable computing. These geo-replicable resources and the 

distributed topology makes combining cloud services with the IoT infrastructure 

highly serviceable. The user’s indulgence in having access to these on-demand 

services is an evident benefit of this integration. 

To fetch and store the necessary information, a large number of devices must 

access the cloud service. Therefore, it can be hypothesized that this will result in a 

huge escalation in the coinciding wastage of leased bandwidth as well as the usage. 

To tackle such issues, a new platform delivering services and web applications to 

end-users by extending the cloud platform was developed. This was termed Fog 

Computing [6.23], a wireless load distributor. It distributes in the IoT model, a 

computational load of devices. This Fog Computing offers a useful load balancing 

technique [6.24]. The distributed operation blends with the IoT infrastructure and 

this technique is solicited by the nature of the operation. The proximity that Fog 

Computing maintains to the end-users as well as its support for mobility forms the 

distinct Fog characteristics. The IoT applications that require predictable, real-time 
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latency is supported by it.  Complexities may occur within the infrastructure due to 

the IoT field’s ever-evolving adoption. 

This chapter presents a modern efficient process inspired from PSO and ACO 

with levy flight to enhance the cluster creation along with its intercommunication. 

The specific Constricted approach of PSO creates a limiting factor which keeps the 

velocity of the particles in check unless the cluster is generated. ACO with a levy 

flight feature enables to generate a viable route both among the nodes and the 

clusters. In the next section of the chapter deploys a new hybrid algorithm that is 

built on Constricted PSO and DABA, that depends on the collective performance of 

decentralized agents within the IoT environment. This algorithm helps in efficient 

data routing as well as management of IoT devices. It is also used for the Dynamic 

Graph Partitioning algorithm that helps in balancing loads within Fog Servers.  

6.2. Literature Review 

A scheme for higher-level nodes' Self-Organization Management Protocols has 

been suggested [6.25] to compete with multi-hop form hierarchical clusters, 

introduces the "20/80 Rule" for determining the ratio of headers to member nodes, 

and develops a new cluster-based routing protocol that integrates inter-cluster on-

demand routing and intra-cluster table-driven routing for further consumer 

applications in Sensor Networks. 

Chi-Tsun et al. presented [6.26] a decentralized clustering algorithm based on 

social insect colonies mainly to increase the network lifetime. The results of this 

approach are compared with Low-Energy Adaptive Clustering Hierarchy, Power-

Efficient Gathering in Sensor Information Scheme and Power Efficient Data 

Gathering and Aggregation Protocol in this paper.  

Liao et al. suggested an optimal configuration for load-balanced clustering in 

WSN with distributed self-organization [6.27]. The goal of this research is to 

investigate a Balanced Clustering Algorithm with Distributed Self-Organization for 

Wireless Sensor Networks that can handle stochastic sensor node distribution. 

The suggested clustering scheme, Improved WCA, in the research article [6.28], 

when compared to existing algorithms, can efficiently optimize the cluster head 
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load, improve the clustering algorithm can improve the premise, in the stability of 

the clusters reduces the overhead while maintaining the characteristics of WCA 

Algorithm. 

Yadav et al. [6.29] focused on optimum clustering for UWSNs using any of the 

acoustic, free-space optical (FSO), or electromagnetic (EM) wave-based 

communication protocols in this research. A sensor node energy dissipation model 

for FSO and EM wave-based communication was presented, and it was compared to 

current energy dissipation models for acoustic-based communication, which shows 

this algorithm has low energy consumption and better optimal clustering. 

Dargie et al. suggested a method [6.30] based on computing a binary adjacency 

matrix that represents the neighborhood of a certain node. For stationary nodes, this 

method deterministically identifies the cluster heads and associated child nodes for 

each round, obviating the necessity (and expense) for nodes to announce their 

candidacy for cluster heads and, after the cluster heads are elected, to declare their 

membership. 

Kulkarni introduced PSO in WSN [6.31] and discusses how PSO can be used to 

address clustering issues in WSN. The main objective of this work is to give a taste of 

PSO in WSN for researchers to work on in the future. 

Ali et al. in 2021 [6.32] developed a cluster head selection algorithm in WSNs, 

incorporating rank-based clustering which reduces energy consumption and 

enhances network lifetime dynamically by considering residual energy and 

communication distance. It outperforms PSO by approximately 25%. 

Sahoo et al. [6.33] in 2021 explored meta-heuristic approaches like genetic 

algorithms and whale optimization (WOA) are emerging as efficient clustering 

methods to decrease energy consumption and extend WSN lifespan. He observed a 

comparative analysis where WOA surpassed that of differential evolution, GA, 

particle swarm, and grey wolf optimization. 

Chen et al. [6.34] in 2022 introduced a new distributed 2-hop cluster-routing 

protocol, formed clusters within a 2-hop range and selecting energy-efficient cluster 

heads where multiple chains connect cluster heads closer to the base station, 
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optimizing both intra-cluster and inter-cluster communication for prolonged 

network lifespan. 

Savazzi et al. suggested efficient and accurate methods [6.35] and tools for the 

optimization of wireless cloud networks and the prediction of virtual coverage using 

a stochastic model in the industrial domain to identify the imperfectly positioned 

nodes and inaccuracies in 3-D layout. They also decrease the loss over short range 

communication between clusters of devices in the cloud improving reliability on 

cloud networks composed of weakly connected clusters of devices by taking account 

of the relay deployment problem. 

W. Yichuan et al. [6.36] reported a novel model for the game theory that results 

in a significant reduction in threats from DDoS attacks over cloud networks. In the 

reported method they show the attacker tends to occupy as much bandwidth 

resources as possible by minimizing IoT attack devices while the defender tries to 

minimize the rate of false alarm considering both the attacker and the defender are 

rational and strategically dynamic. 

Siddiqui et al. [6.37] worked on a unique tool called Smart Meter to develop an 

effective filter to limit the disorder elements within a range of energy consumption. 

The reported work to limit the energy consumption of disorder devices in a cloud 

network and cloud of things find a way to drastically reduce the overall energy 

consumption and hence increase the lifespan of the devices in the cloud network. 

Sajid et al. highlighted the security issues in the industrial SCADA system [6.38] 

in the IoT-cloud environment. They also reported that the future techniques such as 

cloud computing integration of complex architecture with the technologies of IoT, 

Mobile Wireless Sensor Networks are open to public revealing security issues. They 

emphasize the issues that belong to the security of those future technologies through 

this paper. 

Pawlick et al. conceived a novel concept of trust or strategic trust [6.39] at large 

using game theory to provide a safe room to the administration of the cloud 

network. The trust signals are analyzed by the devices in a cloud that is already 

connected with a vulnerable cloud network. The accuracy of the trust signal passed 
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among devices of safe cloud infrastructure will ensure the overall safety of the cloud 

network. 

Nandan et al. [6.40] in 2022 explored IoT-enabled WSNs which demand energy-

efficient solutions due to limited battery power. Researchers employed a genetic 

algorithm for cluster head election, optimizing node density, distance, energy, and 

capability which integrates movable sinks to reduce communication distance and 

dynamic sensing range adjustment to minimize energy consumption.  

Ali et al. [6.41] in 2022 conducted a comprehensive survey to analyze data 

collection proposals, revealing consistent trends and identifying nine novel 

contributions predominantly in models and algorithms in IoT, WSN, and Sensor 

Cloud.  

M. Chiang et al. [6.42] discussed the use of fog computing in the future 

technologies of electronic automobiles and the challenges related to providing an 

efficient and agile architecture packed with a software application responding 

enough to encounter fundamental problems in electronic automobile design.  

Tang et al. [6.43] reported fog computing architecture in big data analysis for 

smart cities in 2017. They also suggested the concept of edge computation in a 

network under the shade of fog architecture to satisfy the low latency in the network 

designed for smart cities. The suggested architecture is responsive to neighborhood-

wide, community-wide, and city-wide levels with high accuracy. 

An effective and efficient architecture to analyze the large-scale data used in 

smart city applications were delivered by J. He. et al. [6.44]. They utilize dedicated 

multi-tier fog infrastructures for computing purposes built up with ad-hoc facilities 

in order to get high accuracy and low latency for large-scale data analysis. 

Y. A. Chen et al. [6.45] reported the use of fog task model to develop a unique 

way for load balancing without the knowledge of the schedule of individual tasks 

making the schedule problem for server level instead of the device level. They 

develop a mobility prediction algorithm at first to support all the later works and to 

achieve a smaller number of missing deadlines and minimum runtime for connected 

car systems based on fog computing infrastructure.  
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E. Batista et al. reported [6.46] a new approach of network programmability over 

the fog infrastructure for IoT devices in 2018 to help overcome the problems related 

to load balancing in Fog infrastructure. The approach using Software-Defined 

Networks optimizes the set of sensors in IoT management services by reducing the 

network link failures in IoT gateways and improves the overall efficiency and 

hardware stability of the Fog infrastructure in IoT devices such as Mobile, Desktop, 

Web etc.  

R. Beraldi et al. [6.47] presented a novel protocol to achieve load balancing in fog 

computing infrastructure in 2019. The reported method is a centralized protocol to 

select a node having the least load at a point from a set of randomly selected nodes 

to assign the jobs waiting in the queue. This solution strategically chooses the worker 

for a particular job instead of using a random selection process that may increase the 

overhead inside the fog infrastructure on the failure of job assignment. 

Maswood et al. developed [6.48] a unique approach of load balancing at the 

network and the server level considering an integration of the advantages of both 

fog and cloud environments. The reported work helps not only minimize the 

resource cost by load balancing in fog servers but also reduce bandwidth costs in 

CPU and path establishment from cluster point to server using Mixed-Integer Linear 

Programming.   

A. J. Kadhim elaborated [6.49] a proactive load balancing technique that helps in 

reduction of mitigated tasks assigned to cloud servers significantly by using 

software defined network in fog computing infrastructure supported by parked 

vehicles. The suggested work supports the load balancing process by utilizing the 

parked vehicles as available fog computing nodes in the infrastructure and 

prioritizing deadline-specific tasks. 

Angelin et al. [6.50] in 2022 Integrated fog-cloud-IoT architecture to optimizes 

WSN's ecological monitoring potential where edge computing augmented network 

efficiency, overcoming distributed computing drawbacks. 

Dorigo et al. [6.51] stated ACO as a completely new type of meta-heuristic. The 

ACO meta-heuristic was suggested with the possibility that it may help in the 
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ongoing research in this growing field, along with the development of new 

applications with ease. 

In 2003, K. M. Sim et al. [6.52] promoted an idea of balancing the load in the 

network by going through the difference regarding routing information, routing 

overhead and adaptivity between ACO and traditional routing algorithms. The 

issues regarding stagnation in ACO algorithms were discussed, and analyzed over 

the state-of-the-art approaches on mitigation of the stagnation.  

A novel ACO algorithm (Three Pheromones ACO, TPACO), where three types 

of pheromones instead of one type are used to find the solution with an efficiency, 

was reported by Lee et al. [6.53]. An ant covers the sets of fewer sensors with the 

help of local pheromone, one of the three pheromones whereas other two global 

pheromones optimize the number of required active sensors per Point of Interest, 

and form a sensor set equal to the number of active sensors selected by an ant using 

former pheromone. Probabilistic sensor detection models and heterogeneous sensors 

in continuous space techniques are also reported in this paper to solve the EEC 

problem. 

John et al. [6.54] demonstrated one of the nature-inspired algorithms, ACO for 

clustering in MANET in 2014. ACO is used to find shortest path in routing problems 

with other solutions of complex dynamic problems e.g. Traveling Salesman Problem, 

Scheduling, Network Model Problem etc.  

A noble approach using ACO algorithm [6.55] to find an optimal route 

approaching better performance and faster convergence in WSNs to transmit data is 

reported by Sharmin et al. with the help of remaining energy and the mobility of the 

nodes. 

Sharmin et al. [6.56] in 2021 suggested a secure bio-inspired WSN routing 

protocol, integrating trust evaluation and ACO for energy-efficient, secure paths in 

IoT environments.  

A study [6.57] described a metaheuristic method based on evolutionary 

computation and swarm intelligence notions, as well as the basics of microbat 

echolocation. The goal is to solve mono- and multi-objective optimization issues 

with brushless DC wheel motors. 
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A. Rekaby et al introduced [6.58] the "Directed Artificial Bat Algorithm" (DABA) 

is a novel bio-inspired swarm algorithm in this study. The echolocation behavior of 

bats inspired this method. The DABA algorithm employs the same approach to 

tackle optimization issues. DABA is a computer method that provides a 

computational representation of actual bat hunting principles. 

Afrabandpey suggested a fundamental idea [6.59] is to employ chaotic 

sequences to initialize virtual bats' parameters rather than random initialization. The 

influence of chaotic sequences on the Bat algorithm's convergence behavior was 

investigated in this work. 

In their work [6.60], Y. Saji et al. suggested a novel adaptation of the Bat 

Algorithm to solve the Travelling Salesman Problem (TSP) which is known as an 

NP-Hard Problem. This is the first adaptation of the BA to solve a discrete problem 

such as the TSP problem. 

The literature in [6.61] suggested to solve the WSN with weighted mesh clients 

and integrate it with three local search schemes using the bat-inspired algorithm. A 

dynamic probabilistic local search method is applied to choose the optimal search 

model dynamically during the algorithmic process. 

In his work [6.62], G. Wang et al. demonstrated a multi-swarm bat algorithm 

(MBA) for global optimization, in which different swarms with their own parameter 

settings explore the specified territory concurrently in the MBA approach, and they 

can communicate information via the immigration operator. This arrangement can 

achieve a nice balance between global and local search in this way. The finest 

individuals from each swarm are then gathered by a selection operator to form the 

elite swarm 

Parija and Sahu [6.63] dealt with an optimal design for cellular network to 

minimize the total location management cost using the Bat Algorithm. The Bat 

method is developed in this research for tackling the complicated issue of 

minimizing the overall mobile location management cost. 

In the research article [6.64], Ambulance vehicles are routed using the Bat 

Algorithm to create a network of quick response time in case of an accident through 

the shortest path. The position of the accident and the accident is fed through the Bat 
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Algorithm, Roads are simulated as the nodes, and the Bat Algorithm gives the 

shortest path to the accident place as the output. 

Pitchaimanickam in 2021 [6.65] integrated LEACH-C with bat-inspired 

echolocation techniques to balance exploration and exploitation, selecting cluster 

heads based on residual energy and node distance, resulting in prolonged lifetime 

and reduced energy consumption in Wireless sensor networks. 

Wen et al. [6.66] in 2022 employed cellular grids to organize the monitoring area, 

construct a bipartite graph model, and utilize the vampire bat algorithm for 

matching where improved virtual force optimization enhanced coverage and 

reduced moving distance.  

 

 

6.3.     Clustering optimization using Constricted PSO  
           and ACO with Levy Flight 

6.3.1    ACO based Clustering in WSN  

 Ant Colony Optimization is created based on the activities of ants to find and 

gather food through pheromone trails. The area in which the ants search for food is 

synonymous to the given search space. The ants are synonymous to the software 

agents which strive to provide the viable solution. The foraging ants leave behind 

pheromones so that other ants can follow the path taken. The more the ants walk on 

a certain path the more volatile pheromone present in the path leading to an optimal 

solution. 

 Based on the given algorithm [6.10] a group of 𝑚 ants or agents are employed to 

create a solution from a given search space components, 𝐶 = { 𝐶ij}, 𝐼 = {1, … , 𝑛}, 𝑗  =

{1, … , |𝐷i| },   𝐶 = { 𝐶𝑖𝑗},   𝐼 = {1, … , 𝑛}, 𝑗 =  {1, … , |𝐷i| }. An empty solution set 𝑠𝑝= ∅ is 

initially considered to begin with the framing of a solution set. Then at every 

iteration 𝑠𝑝 is updated with the current viable solution from the neighboring nodes 

𝑁 (𝑠𝑝)  ⊆  𝐶. This procedure is taken as path creation of the graph 𝐺C (𝑉, 𝐸). These 

paths generated in the graph 𝐺C are created as we go along with the solution, it also 



Chapter 6: Optimization in Cluster based WSN & IoT environment using Swarm Intelligence 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. 
Thesis by Subhrapratim Nath. Page | 185 
 

creates the set 𝑁 (𝑠p) based on the partial solutions. The selection of a partial solution 

from 𝑁 (𝑠p) is done using a probability at each iteration where the rule given in (6.1). 

 p(𝑐𝑖𝑗 𝑠𝑝)⁄ =
τij

α.ηij
β

∑ τij
α.η

ij
β  , ∀ 𝑐𝑖𝑗 𝜖 𝑁                                  (6.1) 

 where, the pheromone value of 𝑡𝑖𝑗 and the heuristic value of 𝜂𝑖𝑗  are related with 

the component 𝑐𝑖𝑗 , 𝛼 and 𝛽 are positive real parameters which defines the relative 

importance of pheromone with respect to heuristic data. This pheromone value is 

very crucial to the determination of the best solution path as its value is directly 

proportional to the efficiency index of the path. This is obtained in (6.1) by 

diminishing all the pheromone values through pheromone evaporation, and in (6.2) 

by increasing the pheromone levels associated with a chosen set of good solutions.   

𝜏𝑖𝑗 ← (1 − 𝜌)𝜏𝑖𝑗 + 𝜌 ∑ 𝐹(𝑠), 𝑠 ∈ 𝑠𝑢𝑝𝑑|𝑐𝑖𝑗 ∈ 𝑠𝑚
𝑖=1                     (6.2)                                                                            

 where 𝑆𝑢𝑝𝑑 is the set of solutions that are used for the update, 𝜌 ∈ [0,1] is a 

parameter called evaporation rate, and 𝐹 ∶  𝑆 → 𝑅 + 0 is a function such that  𝑓(𝑠)  <

𝑓(𝑠′)  ⇒ 𝐹(𝑠)  ≥  𝐹(𝑠′) , ∀𝑠 ≠  𝑠′ ∈ 𝑆 . F(⋅) commonly referred to as the fitness 

function.  

 As evident from the equations, ACO [6.67] is an iterative algorithm that gives 

out the time required to sketch out the best possible route. Hence it is derived that 

the number of iterations is directly proportional to the viability of the output.  The 

only drawback arises is when time and number of agents to scourge the solution 

space is limited along with the dynamic nature of the nodes, it falters to provide a 

viable output. 

 

6.3.2     PSO Based Clustering in WSN   

 To deal both discrete and continuous data set the PSO or particle swarm 

optimizations is used. It is a data quantity determined algorithm [6.12] that enables 

particles to scourge the solution space to find a viable output. The coordinates of 

these agents demarcate the solutions of the optimizations issue. To further optimize 

the solution the velocity of the particles is updated with respect to position.  
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 The algorithm starts by deploying particles using a random function in the 

designated solution space 𝛩′ ⊆ 𝛩. The particle velocities are stored with 𝛩′ or zero or 

by using a random function. This helps to keep the particles within the search space. 

Within the main loop the particle coordinate and their velocity are updated using 

(6.3) and (6.4) until a limiting condition is met. 

 𝑣⃗ 𝑡1+1  =  𝑤𝑣⃗ 𝑡1  +  𝜑1𝑈⃗⃗⃗ 𝑡1  (𝑏⃗⃗ 𝑡1 − 𝑥⃗ 𝑡1)  + 𝜑2𝑈⃗⃗⃗ 𝑡2  (𝑙 𝑡1 − 𝑥⃗ 𝑡1)            (6.3) 

𝑥⃗ 𝑡1+1 =  𝑥⃗ 𝑡1 +  𝑣⃗ 𝑡1+1                                                           (6.4) 

  where w represents the inertia weight, 𝜑1 and  𝜑2 are acceleration coefficients 

and 𝑈⃗⃗⃗ 𝑡1   and 𝑈⃗⃗⃗ 𝑡2   are two 𝑛 ×  𝑛 diagonal matrices where the main diagonal 

elements are selected using a uniform random function within the interval 

[0,1].  With each iteration these matrices are recreated and updated. The vector 𝑙 𝑡1 is 

denoted as the neighborhood best, and 𝑥⃗ 𝑡1+1 is the best coordinate obtained by any 

particle within the vicinity of the particle 𝑝𝑖, that being,  𝑓(𝑙 𝑡1)  ≤  𝑓(𝑏⃗⃗ 𝑡1) ∀𝑝𝑗 ∈  𝑁𝑖 . 

Considering the values of w, φ1 and φ2 suitably kept under parameter, the particle’s 

velocities do not increase to infinity and best fitness solution can be achieved.  

 The updation algorithm of PSO [6.13], [6.14] enables the intercommunication 

between the clusters. This algorithm also updates the particle velocities for every 

iteration. This procedure is synonymous to the WSNs dynamic movements and this 

algorithm efficiently provides an output. However, the PSO fails miserably when 

number of clusters increase. During the starting phase of PSO the particle 

coordinates are randomly assigned. The dynamic nature, and distances among the 

clusters of WSNs, the change in coordinate vector for approaching optimization does 

not lead to the target cluster therefore a more guided approach is necessary for the 

multi node optimizations. 

6.3.3.   Cluster formation and Data routing using C- PSO and 
            ACO-Levy Flight 

 In WSNs where multi clusters are involved the existing algorithms do not 

perform as expected. Now these drawbacks if mended would result to better viable 

outputs. So, to improve the already existing algorithm the implemented PSO-C is 
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implemented which creates cluster during the learning phase, which helps us to 

generate clusters with better densities.  As WSNs are dynamic in nature with their 

low power supply and fast routing conditions are necessary. These requirements 

lead to the use of ACO with Levy Flight (ACO-LF). This revised algorithm mimics a 

Random Walk tendency which reaches to a viable solution more efficiently. In intra-

cluster optimization the algorithm has sorted to PSO-C and for inter-cluster 

optimization ACO-LF is used. 

6.3.3.1   Constricted PSO for Cluster Formation in WSN 

Constricted Particle Swarm Optimization [6.15] comes into play when the 

clusters become highly dynamic in nature. When these limiting factors are applied 

the expansion of cluster creation width decreases. It also reduces the distances 

between the nodes within the cluster. It thus frees up space for inclusion of more 

nodes into the said cluster thereby improving and increasing the 

intercommunication within the cluster.  This limiting factor also minimizes swarm 

explosion. It directly relies on the search results of the previous iteration. 𝜒 is the 

constriction factor, as in (6.5),  

𝜒 =
2

[2− 𝜑 – √𝜑2 −4𝜑] 
,                                                                      (6.5)  

where, 𝜑 =  𝜑1 +  𝜑2 , 𝜑 > 4, φ being the acceleration coefficients. The constriction 

factor is put into the velocity equation of conventional PSO (6.3) and changes to (6.6).   

𝑣⃗ 𝑡1+1  =  𝜒[𝑣⃗ 𝑡1  + 𝜑1𝑈⃗⃗⃗ 𝑡1 (𝑏⃗⃗ 𝑡1 − 𝑥⃗ 𝑡1) + 𝜑2𝑈⃗⃗⃗ 𝑡2 (𝑙 𝑡1 − 𝑥⃗ 𝑡1)]           (6.6) 

 In most cases the value of 𝜑 is around the value of 4.1, resulting 𝜒 at 7.29. The 

previous velocities are multiplied by 0.729. [3.65] For stabilising the algorithm these 

values are only taken while implementing constriction in PSO. The results of the 

routing are stored in a knowledge table and are utilized to keep the fitness of the 

agents to point. 
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6.3.3.2.   Constricted PSO Algorithm for Cluster Formation  

Step1:  Nodes (Distributed Randomly), velocities initialized. 

Step2:  Calculate the Fitness Function for each nodes, defined by the velocity vector 

in (6.3) 

Step3:  Select the new nodes from the initial nodes, based on the Fitness values, 

computed in the previous step (Current Velocity is defined by the rate at 

which the particle’s velocity has changed) 

Step4:  New Velocity is evaluated by the Constricted Value as in (6.6) 

Step5: Update the new positions by (6.4) 

Setp6: If (new fitness value > old fitness value) 

    Select the node accordingly. 

Step7: Select the Local Best node; goto Step2 

Step9: The Local Best are used to create the clusters. 

Step10: The Global Best of each cluster is selected as the Cluster Head. 

 

6.3.3.3.  Levy Flight Based ACO Routing Optimizations in WSN  

 The ACO-LF has the same features as that of the ACO with a small change in the 

movement patterns of the ants. To meet the needs of the dynamic topography of 

WSNs, ACO-LF uses random walk to produce viable output. The value of 𝜌 remains 

constant in ACO [6.68] however the ants implement the levy distribution to produce 

efficient results. In random walk the velocities of 𝑢 and 𝑣 follow the normal 

distribution. It is defined by 𝑢∼ N (0, σ2), 𝑣 ∼ 𝑁(0, 𝛿𝑣), and is combined to produce 

the Levy flight equation as 𝐿(𝑠) ~ 
𝑢

|𝑣|
1
𝛽

  . By substituting it in (6.2) the pheromone 

equation is modified as in (6.7). 

(𝑡 +  1)  =  (1 −  𝜌𝑖, )  ×  𝜏𝑖𝑗(𝑡)   + ∆𝜏𝑖𝑗(𝑡),  𝜌𝑖,𝑗 ∼ 𝑙𝑒𝑣𝑦(𝛽)               (6.7) 
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 where,          𝑙𝑒𝑣𝑦(𝛽)  ∼
𝑢

|𝑣|
1
𝛽

(𝜏𝑖𝑗(𝑡 + 1) − 𝜏𝑖𝑗(𝑡)  and  𝑢 ~ 𝑁(0, 𝜎2𝑢), 𝑣 ∼ 𝑁(0,1)   

                              σu =
τ(1+β)sin (βπ/2)1/β

τ(
1+β

2
)β2(β−1)/2

                                                                           (6.8)        

6.3.3.4   Levy Flight Based ACO Routing Algorithm  

Step1:  Initialization of Hello Packets 

Step2:  Set the initial path of the traversal, to any of Cluster Heads, and set it as 

the start   node 

Step3:   Initialize the traversal paths. 

Step4:   If (current node = destination node) Add node to the path 

Step5:     Else if, the node has a routing table: 

Step6:     Check if the routing table contains destination node 

Step7:     Set the current node to the destination node; goes to Step 4 

Step8:    Sort the node distribution w.r.t the pheromone concentration, defined by  

                𝛽, 𝑢 and 𝜎𝑢  as in (6.7).  

Step9:     Select the node based on the pheromone concentration 

Step10:   Initiate the Random Walk; goes to Step 4 

 

6.3.4.   Simulation Setup 

 The experiments to prove the said algorithm is performed using the INET 

Framework in OMNET++ 5.0. To implement real life cases very small changes are 

made in the .ini file. The properties required for the smooth working of the WSN 

networks are laid down in the simulation area in Table 6.1. To ensure the proper 

simulation for this algorithm to function the iterations are run for 3400s. Given 

below are representations of the WSN and clustering in the Cmdenv of the 

OMNET++ 5.0. 
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Table 6.1.  Simulation Attributes for execution 

Parameters Value Parameters Value 

Topology 1200 m x 1200 m Mobility Model Random Walk 

Number of Nodes 600 Maximum Channel 
Power 

2mW 

Data Packet Size 4 bytes Radio Bitrate 1000kbps 

Control Packet Size 100 bits Simulation Time 3400s 

Initial Energy Per 
Node 

2.1 J Simulation Style  Cmdenv-fast-mode 

 

6.3.5.   Result and Discussions 

 The pre clustering and the post clustering results are depicted in Figure 6.1 and 

Figure 6.2. respectively.  
 

 
Figure 6.1. Pre-Clustering Scenario. 
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         Figure 6.2 depicts the algorithm run closer to the finishing point of the complete 

run from inutilization of PSO-C. As the data is not discrete hence cannot be put 

down into charts. Therefore, the continuous data sets are plotted against given 

parameters. 

         In Figure. 6.3 for the unguided clustering and the guided PSO-Constricted 

Clustering, number of dead nodes plotted versus time. Because the PSO-C based 

clustering is constrained to a specific dimensional search space and has a skill set to 

search across, it produces fewer non-functional nodes. This aids in increasing the 

cluster's concentration and, as a result, enhancing the relay properties for which they 

were placed in the first place. 

 The Table 6.2 shows that Hybridised AODV out performs the other algorithms 

in all parameters of Loss percentage, packet delivery ration in varied topology.  

 

Table 6.2. Comparison over loss percentage, packet received and packet delivery ratio. 

Loss Percentage 

Nodes Topology (m) 
Regular 

AODV (%) 

ACO_ AODV 

(%) 

Hybridized_ 

AODV (%) 

20 600 x 600 78.26 72.14 69.13 

40 1200 x 1200 88.61 87.57 83.27 

60 1800 x 1800 97.64 93.36 89.22 

80 2000 x 2000 98.00 96.07 92.12 

Packets Received 

Nodes Topology (m) 
Regular 

AODV 
ACO_ AODV 

Hybridized_ 

AODV 

20 600 x 600 740 946 1049 

40 1200 x 1200 374 422 569 

60 1800 x 1800 99 254 367 

80 2000 x 2000 68 133 266 
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Figure 6.2. Clustering using PSO-C algorithm. 

Although both algorithms indisputably converge near the end of the assessment, the 

performance level of the PSO-C approach is superior in a given length of time for the 

simulation, which can be demonstrated for better data collecting. 

Packet Delivery Ratio 

Nodes Topology (m) 
Regular 

AODV 
ACO_ AODV 

Hybridized_ 

AODV 

20 600 x 600 0.22 0.27 0.31 

40 1200 x 1200 0.11 0.12 0.17 

60 1800 x 1800 0.03 0.07 0.11 

80 2000 x 2000 0.02 0.04 0.08 



Chapter 6: Optimization in Cluster based WSN & IoT environment using Swarm Intelligence 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. 
Thesis by Subhrapratim Nath. Page | 193 
 

0

100

200

300

400

500

600

700

0 300 600 900 1200 1800 2100 2400 2700 3000 3300

N
u

m
b

e
r 

o
f 

D
e

ad
 N

o
d

e
s

Time(s)

Node Deaths vs Time

Un-aided Clustering PSO-Based Clustering PSO-C Based Clustering

 When compared to unguided routing, ACO-based routing, and ACO-LF-based 

data routing, Figure 6.4 shows the packet delivery ratio. Unguided routing, it 

suffices to say, fails to perform and is unable to reach the 85 percent dense cluster 

structures for data routing. The ACO and ACO-LF both break beyond the 80% 

barrier, however the ACO comes up short due to its repetitive drawback. ACO 

requires numerous iterations to produce a promising outcome, but it loses to the 

Random Walk-inspired ACO-LF in the situation of a decaying power source. This 

outperforms the ACO in terms of searching the complete search area (the 

topography) for its goal, and hence produces better results when compared to its 

basic equivalent. 

 

Figure 6.3. Comparison of the algorithms during Cluster formation 
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Figure 6.4. Comparison of the algorithms during node Cluster connectivity 

 

6.4.     Routing Optimization and Workload Balancing 
           in IoT Environment 

6.4.1.   IoT Environment 

 WSNs have become the more potent solution at implementing IoT due to the 

rapid growth of the sensor technology The WSN communication link with the global 

network can be separated into three different parts [6.18]. The simplest way lies in 

creating clusters of WSNs, a single network gateway and therefore it provides access 

to the global network for transfer of data and on demand access with the only 

drawback being a little bit of network congestion which depends on the number of 

concurrent nodes using the same default gateway. Another way of implementing 

this is using a hybrid infrastructure, which encompasses the overplayed network 

infrastructure while maintaining its independence and hence allowing for the 

network connection with the help of a few dual sensor nodes which are capable of 

expanding the network signals around their neighbours. The last procedure requires 
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the usage of the WLAN structure. In this the WSNs form a rather dese 802.1x access 

point networks which enable more than one sensor nodes to join and have a news 

delay-less access to the global network with just one hop. 

 The biggest drawback that can be found regarding the first technology is that it 

uses a single-access network gateway. In a situation when there is huge traffic and 

the resources fail to comply, the access to the global connection will be delayed 

which will result in heavy loss for the entire infrastructure. The second and the third 

method of doing this is way better than this one. Due to the presence of multiple 

external network access routes and gateways, when a single gateway crashes, it is 

easy to balance the load and hence due to this the network never really crashes. 

 Requirements for the types of network access provider, depends mostly on the 

deployment scenarios and the type of IoT enabled devices that are being used. The 

initial approach solely relies and is heavily modelled, based on the star topography 

distribution scenarios, whereas the latter two methodologies revolve around the 

mesh topologies, which is, in fact mainly used in WSN scenarios. Nonetheless, the 

secondary and tertiary device integration techniques are able to support merely the 

static network configurations and there is minimal area of change. But it is also to 

consider that, every newly introduced device waiting to have an access the public 

network needs time-consuming Routing Information Protocol reprogramming. 

Therefore, it is quite understandable, that such existing methodologies are not 

feasible for complete IoT integration, because of the stated obvious loopholes. 

Contemporarily, more feasible approaches are widely used to develop more modern 

distributed networks where the IoT nodes are but a connected collection of complete 

duplex enabled network devices. 

 The Cloud Infrastructures [6.21] are primarily designed to provide consumers 

with on-demand services only when a produced process from a user request 

requires them. Cloud devices can allocate and use resources on-demand that are 

required, such as server nodes or elastic storage, and thus fulfil a specific task while 

de-allocating unused resources to a central heap. Because of the nature of Cloud 

Infrastructures, scaling up or down the operating infrastructure on-demand to meet 

work requirements is relatively simple and cost effective. Due to the distributed 
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nature of the computing nodes, data fragmentation processes can be dispersed 

among geographically replicated, distributed nodes enabling parallel process 

execution. 

 The simultaneous connections between the respective lowest base level nodes 

and the supplied cloud servers in IoT are taxing on both the nodes' intrinsic 

resources and the system's overall bandwidth consumption. As a result of these 

advances, the Fog Servers, a new iteration level that sits between the lowest base 

level and the highest cloud level, were quickly created. The primary serfdom of this 

level is geared toward load management through packet filtering and the 

establishment of external connections to the cloud for data transfer. A generic Fog 

Server functions by associating with any IoT capable base devices in its reception 

proximity, allowing the node to be assigned a priority queue position, which, 

depending on the resource regulation algorithm in place, will assign the device a 

proper gateway address, allowing the node to authorize an uplink with the Cloud 

Domain. This serves two significant purposes. To begin with, bandwidth wastage is 

significantly reduced due to the reduction in the simultaneous construction of 

uplinks with the Cloud Do-main. Furthermore, because the total number of valid 

devices establishing an uplink with the Cloud Domain is dramatically decreased, it 

helps to reduce total power consumption at the IoT-enabled device level. 

 When two or more machines or clusters [6.7] communicate via Fog servers in an 

IoT context, the connections involved in the resource allocation table can be 

represented in graph. Isomorphic graphs are generated when the connections 

remain identical after reassigning subjugated connections, resulting in balanced and 

improved network fluidity when modelling isomorphism inside machine networks. 

The graph partitioning [6.8], [6.69] problem is stated in the form of a graph 𝐺 =

 (𝑉, 𝐸) with 𝑉 vertices and 𝐸 edges, where 𝐺 is partitioned into smaller entities with 

particular properties. Good partitions can be defined as those with the fewest 

possible edges between the separated components. If graph G1 is isomorphic to G2, it 

implies that there is a matching edge-preserving vertex. Mathematically, 

bijection 𝑓: 𝑉1  →  𝑉2, 𝑢 —  𝑣 in 𝐸1 if 𝑓 (𝑢) —  𝑓 (𝑣) in 𝐸2, where 𝑢 —  𝑣 is an edge in G1 

and in 𝐺2  𝑓(𝑢) — 𝑓(𝑣) is an edge. This concept of properly configured, complete 



Chapter 6: Optimization in Cluster based WSN & IoT environment using Swarm Intelligence 

“Development of Efficient Algorithms suitable for VLSI Circuits and Wireless Sensor Networks,” Ph.D. 
Thesis by Subhrapratim Nath. Page | 197 
 

network-enabled Fog server gave rise to an efficient IoT paradigm, although with 

certain changes and adaptations, to modify the paradigm depending on the 

deployment scenarios. 

6.4.2. Optimization in IoT Environment 

 IoT infrastructures are in high demand causing an increase in the load in servers 

and heightening itself beyond the boundaries. Therefore, data synchronization and 

connection will get more importance. Such complexities and complications may 

negatively affect the Cloud and Fog Infrastructures. 

 The primary problems include the legitimate entrustment of Fog Server nodes 

and in the complex network mobility of these IoT-based devices, instantaneous 

manipulation of nodes. Although normal load balancing is adequate, it degrades 

noticeably when dealing with increased traffic and adverse node positioning 

changes. Currently, existing infrastructures are viable, despite the fact that they lack 

proper escalation, require optimization at every level in the IoT infrastructure, and 

are essential for convenient and efficient management.  

 The reported IoT infrastructure is divided into three distinct intrinsic sections, in 

order to make it more constrained and limited. The base portion is responsible for 

incorporating a number of clusters of IoT-connected devices. This segment has a 

considerable volume of network overhead, resulting in the absorbance of the highest 

power frequency. Fog servers, which serve as an intermediary layer between the 

nodes, IoT clusters, and the Cloud Servers, make up the second level of 

infrastructure. These Fog servers are mostly used for connection filtering, allowing 

for precise treatment of the bandwidth that can be obtained. The gateways, which 

are assigned to each node, establish a link with the Cloud Server and these Fog 

servers apportions them when a certain node is nearby and recover the priority to 

approach or reach the resource. The final and highest level includes Cloud Server 

nodes that are geographically distributed, and whose primary goal is to conserve 

data enumerations with geographically distributed redundancy and to govern 

access, based on the public key infrastructure as and when needed. 
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6.4.2.1 Hybrid metaheuristic approaches in intra IoT Clusters  

 In each device, the 2.4 GHz receptors permit intra-cluster communications at the 

base level of the presented framework. The suggested metaheuristic DABA is 

employed to allow for smooth and drop-free communication between nodes. This is 

because of the already overcrowded 2.4 GHz spectrum and a large number of nodes. 

In DABA, n bats, and their positions 𝑥𝑖   and velocities 𝑣𝑖  are being updated where 

the fitness of each particle is calculated with the help of frequency (𝑓𝑖) which is 

multiplied with the directed bat’s wavelength (𝜆). The pulse increase factor (r) and 

the amplitude decay factor (A) manipulates the pulse frequency. The right updating 

of the amplitude  (𝐴𝑖) and the pulse rate  (𝑟𝑖) balances the tendencies of exploration 

and exploitation of each. The updated velocities 𝑣𝑖 and locations 𝑥𝑖 are as follows:  

𝐹𝑖 =  𝑓min + (𝑓max –  𝑓min)𝛽                                                                             (6.8) 

𝑉it=  𝑣it−1 +  (𝑥it −1 −  𝑥*)𝑓i                                                               (6.9) 

𝑋it=  𝑥it−1 +  𝑣it                                                                            (6.10) 

where  𝛽 = random vector that is drawn from uniform distribution [0, 1]. During the 

iteration, the pulse emission rates and the amplitude undergoes particular changes, 

and among n bats within the population, the current best solution x*  

can be attained. 

 The DABA employed, in this case, was controlled by a single node, which was 

also used to choose the targets. By creating a regulated process of broadcasting Hello 

packets, the virtual mapping of Ad Hoc On Demand Distance Vectoring Protocol is 

done. Using DABA, the Route Request (RREQ) messages are transmitted equally 

from the source node across the full mapped topology. Here the Timestamp values 

collected while traversing between neighborhood cluster nodes help generate the 

frequency value (fi). If a node intercepts an RREQ message, it sends to the source 

node a Request Reply (RREP) message, which generates a path to destination from 

the source. A suitable path to the destination is randomly sought utilizing the 

produced Neighbor table and Encapsulation that is based on Location for 

probabilistic behavior using DABA's Pulse increase factor and Amplitude decay 
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factor. In the IP header of the RREP message, this probabilistic technique is mapped 

to the Time-to-live (TTL) field to calculate hop counts. 

 Through the accurate spread of IoT-capable devices and the maintaining of an 

adequate cluster density using Normal Distribution, Inter Cluster communication is 

achieved. The Normal Distribution facilitates in uniformly dispersing the nodes 

across the infrastructure. This assists in the acquisition of a situation in which IoT 

devices are hightailed in a city or an urban area. The function Ø(𝑥)  = 𝑒  
(−

1
2

𝑋2)

√2  is used 

to visualize the node positions and modify them, resulting in optimum efficacy. Inter 

cluster communication intends to dynamically search for cluster heads. It also 

maintains communication by using a PSO-based routing method with velocity as the 

critical factor, as Constricted PSO. The suggested routing algorithms perform 

significant package transfer using swarm intelligence. This employs infrastructure 

gateways that are assigned to specific devices and adjust to their presumed position.  

 At the lowest level, the exchanges in surplus packet among IoT nodes in close 

proximity reduce the overall system's efficiency. As a result, issues with bandwidth 

waste arise as a result of counterproductive packet flooding, which causes the 

network to back up, preventing proper data channeling. C-PSO and DABA's 

hybridization for density control and increased packet delivery mechanism 

effectively resolve this issue. 

DABA algorithm for intra cluster communication in IoT 

01  Initialize total generation of base level connected nodes 

02  Select an initial bat for iteration, i.e. cluster head 

03  Define pulse frequency 3if = and wavelength 5 = at
ix  

for each cluster head (bat) so, generated by PSO do 

04      Calculate mean function of the wave’s solution fitness values determined by 
the TTL of the Hello Packets by employing equations (6.8), (6.9) and (6.10) 

05        Calculate wave’s average fitness with the mean values of that instance. 

06        Select the maximum of the average values. 

07       If the maximum average is less than the current cluster head’s fitness value 
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08       then 

09            Find out the fitness values of all visited solutions 

10            Find the maximum fitness value from the newly calculated ones. 

11            If the new maximum is less than the current bat, then 

12                  If the present node is at the best solution, change the cluster head (recall 
                      the PSO) endif 

13                 If the present node fitness is not equal the current best fitness, traverse to  
                     node with the present value endif 

14                 Revert to the initial values with minimizing f and maximizing λ after 
                     traversal end if 

15                 if the present maximum fitness is more than the fitness of the present 
                      node, traverse to the node with the maximum average fitness,  
                      and revert the values to default after traversal endif 

14               end if 

15    if the maximum average is more than the current cluster head fitness value  
        then 
16             Revert the value with maximizing f and minimizing λ  

17             Set new maximum fitness value with this max value  

18        end if 

19        Update the Best Solution 

20   end for 

6.4.2.2   Hybrid metaheuristic approaches in intra IoT Clusters  

The velocity updating technique, which is intended to replicate the dynamic 

motions of IoT-equipped devices, ensures its use in inter-cluster connections and 

generates an optimum path for data packets. However, it has limitations due to the 

randomization nature of the process. Despite these advantages, PSO suffers from 

premature convergence. This is due to its probabilistic structure, as well as the 

inability to balance cognitive and social searches due to the non-adjusted control 

parameter inertia weight. During updating, the position vector might not reach the 

target cluster due to the variable nature and interconnected distances between IoT 
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clusters, and so stays un-optimized. During these multi-node optimizations, a more 

regulated approach is necessary. Because PSO does not rely on the starting 

population for convergence, but can occasionally experience premature convergence, 

a novel technique based on PSO with a constriction factor is developed. For multi-

cluster optimizations, it is hybridized with the DABA.  The PSO's inertia weight 

factor is replaced by the constriction factor, ensuring a guided and controlled 

balance between the global and local search processes. This results in effective multi-

cluster optimizations in the IoT paradigm. 

C-PSO algorithm for inter cluster communication in IoT. 
 

01   Initialize particle (cluster node) velocity and position distributed with normal  
       distribution 

02   Evaluate fitness of each particle  

03   Define  𝜑1 = 2 and 𝜑2 = 1.4 

04   procedure PSO (search space, terminal nodes, swarm size, max-iterations) 

05         Generate a population of particles in the search space with initial fitness  
             value while maximum no. of iterations is not reached do 

06  Evaluate new acceleration coefficients  

07  Evaluate constriction factor using equation (6.5) 
  for each particle in the cluster do 

08   Update particle velocity using equation (6.6) 

09   Update particle position using equation (6.4) 

10   Calculate the fitness of the particle and use this local best to  
                                    generate a cluster node 

11  end for 

12  Find the best fitness in the swarm and use this global best to select the  
                        cluster head 

13 end while 

14 Calculate the fitness for each particle and find the best fitness in the cluster 

15   end procedure 
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6.4.2.3.  Load Balancing in Fog Servers 

 When a zone's network traffic density due to a single Fog server rises during 

authentic operations, a number of attributes reveal the system's competence. 

However, because there is no Fog server facility for creating a viable uplink or there 

is a waiting period in the allocation of resources in a Fog server, most nodes fail to 

achieve a genuine uplink to these cloud servers. This causes the nodes to come to a 

standstill for an uncertain amount of time in order to gain access to cloud servers. 

The Dynamic Graph Partitioning approach is presented to control the pack to 

perform such obstructions. This is done to counteract this resource allocation issue. 

 The best repartitioning technique for dynamic graphs in Fog servers considers 

that the partitions must be updated because variations are unavoidable. Partitioning 

must be changed quickly in response to graph changes in order to avoid 

performance degradations. Also, high ascend ability must be guaranteed for these 

partition optimization decisions. 

 The Resource Allocation Table was the primary focus of the Dynamic Graph 

Partitioning Algorithm. This table was present and operated in each Fog Server. The 

graph, an enumerated list of all node connections in the range of a specific swarm, 

can be used effectively, thanks to repartitioning. The position of every node was 

changed and updated from a flat file that contained each node's positional changes 

to ensure a good allocation and wait cycle. 

 𝐺(𝑡)  =  (𝑉 (𝑡), 𝐸(𝑡))  is a dynamic graph that is constructed to outline a graph 

with edges 𝐸 and vertices 𝑉 and transits with respect to time 𝑡. This graph is 

obtained after the reduction of the elements. Now suppose, at time 𝑡, 𝑅(𝑡) is a 

collection of partitions that is on 𝑉 and 𝑅𝑖(𝑡). Here, 𝑖 is the individual partition 

and |𝑅𝑖 |  =  𝑚. The divisions are done accordingly such that 𝑚, 𝑖, 𝑡, 𝑅𝑖 (𝑡)  =  𝑉  and 

𝑅𝑖 (𝑡) ∩ 𝑅𝑗  (𝑡) =  ∅; this is for any 𝑖 = 𝑗. From the edge cut set the restricting point 

vertices, that is, 𝐸𝑐 ⊆  𝐸, which is a set of edges, is a part of the distinctive divisions. 

A distributed graph processing system divides the distribution and allocation 

between compute nodes. At time = 0, each vertex is allocated to a section, and here 

the graph is supplied with an initial section. The additional vertices in the graph 
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must also be allocated to a section within the IoT-particularized connection set when 

𝑡 >  0. In large-scale IoT-based dynamic graph processing systems, hash partitioning 

is a widely used scenario. If 𝐻(𝑣) 𝑚𝑜𝑑 𝑘 =  𝑖,  then a vertex is allocated to a 

segment 𝑃𝑖(0) , where 𝐻(𝑣) is the hashing function. The Dynamic Graph Partitioning 

algorithm optimizes the Fog Servers by balancing the load in concurrence with an 

IoT infrastructure that is optimized. 

6.4.3.   Simulation Setup 

 To offer a good monitoring environment and a comparatively straightforward 

algorithm deployment, the INET framework mode and the relevant topology setups 

run the simulations. Several things such as the allotment timings of the network, the 

propensity of the IoT devices that are base level, node cluster managements, packet 

transmissions, and monitoring— all are utilized as an SDN simulation with the help 

of OMNET++ 5.0 network simulator [6.70], [6.71]. This is done for the deployment 

and appropriate usage of the algorithms. This procedure was performed using a 

base test case with 600 network-capable nodes. And, the topographic size of 1600m × 

1600m to 2200m × 2200m. 

 With the simulation's known nature, a certain degree of stress is produced on the 

complete subsystem of nodes. Considering the simulation's Random Walk mobility 

model and the stress conditions that are imposed, a close-to-realistic scenario has 

been produced, while portraying a sparse distribution. Table 6.3 below lists the 

attributes of simulation for the experiments. 

 The Fog servers are implemented in Python 2.7.7 [6.72]. It also uses the node 

handovers that occurs during server load balancing, A concurrency is tough to 

sustain due to the timing discrepancies. And because it cannot be fed through to the 

python simulations, a record is kept. This record is then used as a sample file by the 

Fog Server simulation. 
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Table 6.3.  Simulation Attributes for the experiment 

Parameter Values 

Topology Size 1600 m × 1600 m to 2200mm x 2200mm 

Number of Nodes 600 

Data Packet Size 4 bytes 

Control Packet Size   100 bits 

Initial Energy Per Node   2.1 J 

Mobility Model   Random Walk 

Maximum Channel Power 2mW 

Radio Bitrate 1000kbps 

 
Simulation Time 3400s 

Simulation Style   Cmdenv-fast-mode 

 

6.4.4.   Results and discussions 

By having consistent node connections, the simulation was accomplished for the 

purpose of evaluation. Traversing of Nodes with DABA are also simulated, as well 

as two other presented hybrid algorithms: nodes with DABA, C-PSO hybrid and 

nodes with DABA, PSO hybrid. To achieve a near palpable milieu, each condition is 

repeated 30 times for a total of 3400 seconds. Table 6.4 contains the results of all 

algorithms. It shows that the presented algorithm's nodes with both DABA C-PSO 

hybrid and DABA-PSO hybrid connections outperform the traditional regular 

connection of nodes and also nodes with DABA in contrast with the packet loss 

percentage. Both the algorithms that are presented produce minimal loss 

percentages when the number of nodes in the network is increased. It is also 

apparent that when the network topology grows more complex, the efficiency of all 

algorithms reduces, despite the fact that the suggested algorithm DABA C-PSO 

hybrid yields the smallest loss percentage value when compared to the other 

algorithms. 
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Table 6.4.  Loss Percentage of packets in IoT environment 

Nodes Topology 

Loss Percentage (%) 

Regular 
node 

connections 

Nodes with 
DABA 

Nodes with 
DABA and 
PSO hybrid 

Nodes with 
DABA and 

C-PSO 
hybrid 

40 1200 × 1200 88.32 54.24 41.2 39.1 

60 1800 × 1800 96.31 77.46 64 61.2 

80 2000 × 2000 98.74 86.74 71.8 67.5 

100 2200 × 2200 98.8 87.44 72.1 67.9 

 

Table 6.5 shows that when DABA and C-PSO hybrid are used, they outperform 

their equivalents in terms of packet delivery ratio, resulting in a more dependable 

IoT environment. 

When using the aided and non-aided Fog load balancing, characterizing the total 

number of nodes, a correct Fog Server allocation out on a predetermined number of 

existing nodes is devised. Figure 6.5 depicts the outcomes of both modes, which are 

recorded and shown in a graph. 

Table 6.5:    Comparison over packet delivery ratio in IoT environment 

Nodes Topology 

Packet Delivery Ratio 

Regular 
nodes 

connections 

Nodes 
with 

DABA 

Nodes with 
DABA and 
PSO hybrid 

Nodes with 
DABA and 

C-PSO 
hybrid 

40 1200 × 1200 0.1168 0.4576 0.588 0.605 

60 1800 × 1800 0.03689 0.2254 0.36 0.391 

80 2000 x 2000 0.0126 0.1326 0.282 0.318 

100 2200 × 2200 0.098 0.1198 0.271 0.304 
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Figure 6.5.  Comparison of fog load balancing. 

With the placement of the Dynamic Graph Partitioning Algorithm in case of 

their Load Balancing, the Fog allocations and the node handovers are far enhanced, 

as can be seen in the graph in the image. Fog allocations are ominously unusual to 

expedite appropriate data flow in the IoT environment, even in the situation of node 

constraints or bottlenecks. 
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CONCLUSIONS AND FUTURE SCOPE OF THE 
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7.1.    Conclusions  
7.2.    Future Scope of the Work 

________________________________________________ 
 

7.1. Conclusions: 

Over the course of the last few decades, the world has transitioned from simple 

electronic circuits and devices to complex intelligent systems capable of making real-

time decisions and collaborating with other systems over a network in order to reach 

a common high-level goal. This constantly connected digital world is increasingly 

defined by cutting-edge advances in a wide range of fields including circuit design, 

mathematical optimization, networking and artificial intelligence. VLSI design of 

electronic circuits is the most crucial and sought-after technology for building 

efficient and reliable digital systems due to its enormous advantages. Modern VLSI 

designs demand a wide range of functionalities like small device size, high 

efficiency, high speed and low power consumption. This imposes a great challenge 

on VLSI physical design, especially in the arena of VLSI Routing. Routing being a 

computationally hard problem cannot be solved in polynomial time. Thus, 

metaheuristic algorithms are alternative way to obtain near satisfactory results. 

Several Swarm Intelligence techniques ACO, PSO, IWO, Physarum BioNetwork and 

their variants and hybrids are carried out in this research which have shown great 

promise in solving the ever-growing problem of routing optimization in VLSI 

physical design. 

With over a decade of research efforts aimed at improving their performance, 

Wireless Sensor Network have developed from an initial concept to a mature field 
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with numerous supporting protocols. It laid the foundation of key technologies like 

IoT. WSNs are used to deploy network topologies of varied dimension with the use 

of conventional protocol. These varied possibilities of its usage are merely because of 

its platform. Although many issues have been studied in route discovery and 

clustering phenomena, WSN have design and operational complexity. Meta-

Heuristics are constantly being used and are fine tuned to reduce packet loss in 

various scenarios of WSN. Swarm Intelligence is one of the key factors which 

mandates the efficiency of a swarm. metaheuristics play an important role in 

optimizing the behavioural tendencies of a swarm and hence helps us in reducing its 

complexities.   Thus, the dissertation aimed to attain better circuit performance by 

addressing the routing issues VLSI circuit and WSN. 

Chapter 3 first part mainly focuses on variations of the Particle Swarm 

Optimization method that have been developed to handle the global routing 

problem in the VLSI environment. Simultaneously, the control of the acceleration 

constant in PSO for the VLSI routing problem has been verified. Finally, a 

proportional analysis is performed among the aforementioned algorithms, as well as 

three PSO variations that have been recognized as good routing algorithms in VLSI 

design. The results show that PSO-ST performs well in topologically different issue 

spaces in the VLSI domain, whereas PSO-SAAC performs best in an almost uniform 

distributed problem space. PSO-SAAC outperforms PSO-W and PSO-ST in terms of 

virtually uniform terminal node distribution in VLSI layout generating the minimum 

interconnection global cost value of ‘338’ for the random dataset of bivariate 

distribution of terminal nodes in VLSI layout. As a result, it is acceptable to conclude 

that PSO-SAAC reduces the cost of RSMT produced by linking the terminal nodes 

for almost uniform distributions while PSO-ST reduces the cost of RSMT constructed 

by increasing random bivariate distributions. The performance of PSO-C and PSO-

MU has also been observed to be unaffected by the heterogeneous distribution of 

VLSI global routing issue space. From the same bivariate set 𝑔𝑏𝑒𝑠𝑡 value of PSO–MU 

is determined to be ‘329,’ indicating that this method takes substantially longer to 

execute than PSO-W. The PSO-C algorithm has a runtime of 101.51 seconds, whereas 

the PSO-MU algorithm has a runtime of 85.48 seconds. In the context of VLSI global 
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routing, this means that the PSO-MU algorithm outperforms the traditional PSO-W 

and PSO-C algorithms while decreasing the Timing budget when compared to the 

PSO-C algorithm. For the two coordinate sets, the SD value of PSO-C is ‘0.71’ and 

‘2.25,’ respectively. These values are significantly lower than any other SD values of 

PSO-W and PSO-MU, ensuring robustness while sacrificing system execution time of 

the algorithm independent of the search space distribution complexity in VLSI 

designs. The PSO-MU algorithm's performance maintains a balance between 

optimization and convergence rate. Despite the fact that PSO-MU is stable in a 

random problem space, PSO-C appears to be the best algorithm in terms of 

robustness. 

The second section elaborates the proposed method that combined Constricted 

Particle Swarm Optimization with transformation activity algorithms for 

synchronous buffer inclusion in a creative way and wirelength minimization in VLSI 

global routing to achieve the circuit's shortest interconnect latency and minimization 

of delay in VLSI circuits. The suggested technique is compared to the prior approach 

based on BPSO in order to restrict the general aggregate wirelength of the VLSI 

circuit in the first step and VLSI interconnect latency in the second step, using CPSO-

MU to provide optimal routing arrangements with buffer addition. The suggested 

CPSO-MU method has been shown to be a capable solution for the benchmark 

32 × 32 grid-graph, and it could be useful in the routing of large mechanical circuits 

with higher levels of complexity. The results of the algorithm's re-enactment show 

that, like the previous BPSO, the proposed algorithm effectively produces an 

interconnect delay of ‘371.43’ ps for the test graph while achieving global 

convergence with the fewest number of iterations ‘343,’ which is vastly improved 

when compared to the prior approach. It also shows that the proposed CPSO-MU is 

comparable to the previous BPSO in terms of producing the best solution for a 

general wire length of ‘49’ pieces with the smallest number of iterations and lower 

standard deviation for both elements of the test, ensuring more predictable 

execution. 
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The prime motive of chapter 4 section one based on Invasive Weed Optimization 

is suggested for solving the MRST problem for application in VLSI global routing. 

The EIWO and EIWO-PSO algorithms are compared to the PSO-W algorithm using 

MRST Improvement over Minimum Spanning Tree. When compared to the PSO-W 

method, the suggested algorithm EIWO achieves a greater improvement over the 

Minimum Spanning Tree. On comparison to the other algorithms, EIWO-PSO hybrid 

provides the lowest MRST cost regardless of the data set in the test bed. EIWO and 

EIWO-PSO have higher temporal complexity due to subroutines implementation of 

the elimination mechanism, whereas PSO-W is substantially faster because it has no 

overhead due to the elimination of low fitness members. The algorithm is compared 

to the Geosteiner-5.0.1 benchmark which is a high-space-complexity precise RMST 

algorithm. The EIWO and EIWO-PSO Hybrid algorithms perform identically to the 

benchmark, with the lowest minimal wire length cost of ‘2198’. The EIWO-PSO 

hybrid method has a higher optimization but a slower convergence rate. For large 

instance data sets, both EIWO and EIWO-PSO algorithms beat PWO-W. For 500 

terminal nodes, EIWO-PSO hybrid generates a minimum wire length cost of 18014, 

compared to ‘18405’ for EIWO-PSO hybrid. Further, the hybrid algorithm is 

compared to a standard VLSI global routing benchmark, ISPD'98, and the wirelength 

obtained is measured where the findings clearly demonstrate the proposed method's 

comparable efficiency, which deviates roughly 7% from the benchmark, and in some 

situations, the suggested algorithm demonstrates its superiority. The algorithms' 

superior performance, even with limited resources and large VLSI instances, and 

comparable performance against standard benchmarks, establishes their robustness, 

allowing for improved interconnect wire-length optimization of VLSI circuits, 

allowing devices to act faster and consume less power.  

Chapter 5 focuses on new optimization strategies based on biological 

microorganism behaviour could be very useful in solving computer difficulties. With 

a larger number of terminal nodes in the search space, the proposed methods 

outperform PSO-W. The suggested algorithms are more effective in determining the 

shortest connected rectilinear path between nodes. It's also worth noting that, 

regardless of the terminal node distribution pattern or the difference between the 
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minimum and mean wire-length value, both the proposed Physarum-based 

Optimization algorithm and its hybrid produce overall interconnected wirelengths 

within acceptable ranges, whereas PSO-W causes PSO's consistency to suffer. Due to 

the randomization nature of PSO-W, the average CPU runtime increases in a non-

linear manner as the number of nodes increases. The suggested APO algorithm uses 

less CPU time because, in Physarum Optimization, the connection where flow is 

steadily diminishing is deleted at a rapid rate, resulting in the elimination of 

unneeded steiner points. The algorithms' least optimal wirelength is compared to 

that of the Geosteiner-5.0.1 benchmark where APO-PSO achieve the shortest 

minimum wire length of ‘455’ for 15 terminal nodes, which is identical to the 

benchmark. On a large instance random data set of 200 terminal nodes, the proposed 

techniques are tested. APO-PSO generates a minimum wirelength cost of ‘11762’ as 

opposed to APO's ‘11854’. The suggested algorithms are evaluated using the ISPD'98 

global routing benchmark, and the estimated wirelengths are compared. The 

experimental results show that the suggested method deviates roughly 5% in 

various benchmarks, where it outperforms the approach. 

Chapter 6 section one dedicated on operating a WSN system on a wide scale in a 

variety of settings, it is critical to conserve energy while simultaneously maintaining 

a steady connection among the other nodes. In a WSN, the clustering technique tries 

to improve node connectivity and increase system efficiency. The addition of a 

constrained factor to PSO not only allows for faster and denser cluster formation in a 

high-scale WSN environment, but it also provides smooth convergence and beats its 

competitors. For both unguided clustering and directed PSO-Constricted Clustering, 

the number of non-functional nodes is evaluated versus time. Because the PSO-C 

based clustering is constrained to a certain search domain and has a knowledge base 

to search across, it produces fewer non-functional nodes. This aids in increasing the 

cluster's density and, as a result, improving the relay properties for which they were 

placed in the first place. When compared to unguided routing, ACO-based routing, 

and ACO-LF-based data routing, the packet delivery ratio is higher. Unguided 

routing, it goes without saying, fails to perform and is unable to reach the 85 % 

dense cluster structures for data routing. The ACO-LF, on the other hand, uses the 
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Random Walk to develop greater connectivity within topographies, but it does so in 

a more enhanced method due to its Levy Flight characteristics, which improves the 

results over the original ACO. The suggested technique demonstrates that it may be 

used to create and route data for Cluster-based WSN in an efficient and reliable 

manner. The ACO and ACO-LF both break beyond the 80% barrier, however the 

ACO loses ground due to its iterative drawback. ACO requires numerous iterations 

to produce a good outcome, however it loses to the Random Walk inspired ACO- LF 

in the situation of a decaying power supply. This outperforms the ACO in terms of 

scouring the entire search space (the topography) for its goal, and hence produces 

superior results when compared to its basic equivalent. The addition of a 

constrained factor to PSO not only allows for faster and denser cluster formation in a 

high-scale WSN environment, but it also provides smooth convergence and beats its 

competitors. 

Section two of Chapter 6 focuses on the connection of thousands of appliances to 

the internet, combined with the recent penetration of WSN technology, provides a 

problem in terms of establishing a solid network and promises the creation of an 

unrestricted IoT infrastructure platform. A clever combination of fog and cloud 

computing has resulted in a flexible and ascendable IoT platform. The incorporation 

of both metaheuristics PSO and DABA optimization algorithm as a hybridization 

process has greatly aided in cumulating node connections and packet routing in 

congested and mobbed settings, as demonstrated by simulated results. The results of 

algorithms (Nodes with DABA, Nodes with DABA and PSO hybrid, Nodes with 

DABA and C-PSO hybrid) show that in terms of packet loss percent-age, both the 

suggested methods nodes with DABA-PSO hybrid and DABA C-PSO hybrid 

outperform traditional regular node connections as well as nodes with DABA. Both 

proposed algorithms produce modest loss percentages when the number of nodes in 

the network is increased. It is also apparent that when the network topology grows 

more complex, the efficiency of all algorithms diminishes, despite the fact that the 

suggested algorithm DABA C-PSO hybrid yields the lowest loss percentage value 

when compared to the other algorithms. When compared to traditional methods, the 

dynamic graph partitioning mechanism incorporated in Fog computing has 
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effectively aided in maintaining a flatter handover and resource usage. When they 

are arranged functionally to properly load balance the intermediate fog servers, the 

proposed IoT infrastructure, which is super meant by the hybrid algorithm and 

dynamic graph partitioning, can graft excessively and is competent to handle 

bottlenecks and network traffic superiorly. Furthermore, the addition of C-PSO, 

DABA hybrid further improves the overall structure's efficiency by preventing 

premature convergence of the PSO algorithm in route optimization. With the 

addition of the dynamic graph partitioning mechanism for load balancing, node 

handovers and fog allocations are greatly enhanced.  

 

7.2. Future Scope of the Work 

The outcomes of the present research dissertation also show that there still exists 

room for improvement and possible extensions can be aimed as future work. 

1. Future work can be done by taking into account a varying distance between the 

terminal points (indicating a part of the system is more crowded than the other parts 

which is a quite common scenario in modern VLSI systems) in contrast to the fixed 

equal distances between terminal points used in this work assuming full availability 

of the chip area for routing. Hybridized metaheuristic algorithm can also be applied 

for solving other problems like obstacle avoidance and congestion avoidance along 

with interconnect wire length reduction. 

2. The fog allocations are ominously remarkable to expedite appropriate data flow in 

the IoT infrastructure, even in the face of node constraints. Significant optimization, 

combined with the proper application of swarm intelligence at various levels of the 

IoT infrastructure, can significantly improve the platform's efficacy. To systematize 

and abridge the IoT, changes might be implemented into the system design. 

Auxiliary research can be done to develop a more radical and vibrant cloud platform 

capable of handling and delivering the unique requirements of IoT infrastructure. 

3. The goal of finding the most optimal solution possible against the odds of the high 

computational complexity of perfect optimization of these problems can led 
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researchers to look at approaches used in fields beyond metaheuristics such as data-

intensive algorithms that perform predictive analytics. Machine learning, and data 

science in general, bring with them the marvel of algorithms that learn from 

experience, that better their results with each new test case they see – opening new 

horizons for machine-intelligence and machine-experience based optimization and 

problem-solving in the future. Neural networks that model the neural pathways of 

the brain have been successfully used for combinatorial optimization in tandem with 

adaptive learning, when given adequate hardware resources for large-scale parallel 

processing of vector operations. New algorithms for machine learning and new 

architectures of neural networks are currently in development by a large number of 

research groups across the world and their progress are suitable for any researcher 

in optimization of algorithms in VLSI circuits and WSNs to look forward to. 

 

 


