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Chapter 1

Introduction

1.1 Background

A paradigm that describes the flow of genetic information across a living organism

is called the Central Dogma of Molecular Biology. In its most fundamental form,

it may be broken down into three distinct processes: transcription, translation, and

replication. Converting a section of Deoxyribonucleic acid (DNA) into messenger

Ribonucleic acid (mRNA) is referred to as transcription. The process by which mRNA

is converted into the protein it encodes is called translation. The process of making

duplicates of DNA is referred to as replication. The genetic material in the majority of

species is made up of DNA; however, there are other organisms, such as retroviruses like

HIV, that use RNA as their genetic material instead. The creation of DNA from RNA

in these kinds of organisms takes place via a process known as reverse transcription.

The process of convering a protein from DNA has been described in Figure 1.1

1.1.1 DNA to RNA to Protein

DNA is a molecule with a double helix structure made up of chains of nitrogenous

bases and a sugar-phosphate backbone. The Base pairing between the nitrogenous

bases in DNA molecules where Guanine interacts with Cytosine with three hydrogen

bonds and Thymine interacts with Adenine with two hydrogen bonds. The double

Figure 1.1: Central Dogma of Molecular Biology. The figure depicts the scheme for
the construction of proteins from DNA molecules.
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Figure 1.2: The structure of a single amino acid where alpha carbon is attached
with a carboxylic group-COOH, an amine group (-NH2), and a side chain R which
differentiate the chemical properties of different amino acid

helix structure aids in self-replication since it is self-complementary. Evolution is the

result of flaws in the replicating process.

Proteins and RNA are synthesized to carry out instructions from DNA. In most

organisms, replication into RNA accounts for less than 1% of the total DNA. Most of

the remaining 99% of our genetic material are either used for regulatory processes or

is completely useless which is also known as ”junk” DNA.

The next step, translation, is when the mRNA is actually ”translated” into a

protein. Triplets of nitrogen bases are the building blocks of the amino acid code.

There are 43=64 potential triplets in RNA due to its four bases. Each of the twenty

amino acids may be represented by a unique triplet or codon. As is clear, amino acids

may be encoded by more than one codon. In addition, there is a single codon that

indicates the final translation location.

1.1.2 Amino Acid

Amino acids are chemical molecules of biological significance; they are made up of

an amine (-NH2) and a carboxylic acid (-COOH) functional group (see Figure 1.2).

Codons are what determine which amino acids may be produced. The involvement of

proteins in almost all cellular processes makes amino acids crucial to survival. There

may be hundreds of amino acids in the natural world, yet only 20 are used to make

proteins. A protein is the result of the aggregation of a number of amino acids.
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Figure 1.3: Intra-species PPI where both the proteins are from the same organism.

1.1.3 Proteins

Most of the cellular function is performed by proteins, which are linear polymers of

amino acids. Proteins may have anything from several hundred to several thousand

individual amino acids held together by peptide bonds. The nitrogen atom at the

carboxyl terminus of one amino acid forms a peptide bond with the carbon atom

at the amino group of another amino acid, as shown in Figure 1.3. Enzymes are

proteins that speed up chemical processes in the body. Actin and myosin are two

more proteins that help with structural or mechanical tasks. There are additional

proteins that handle things like cell signaling, cell adhesion, immunological responses,

and the cell cycle.

1.1.4 Protein-Protein Interaction Network

The physical relationship of two or more proteins is referred to as protein-protein in-

teraction (PPI) and plays a critical role in the regulation of cellular activities, signaling

pathways, and disease mechanisms [1, 2]. Modulating protein function, localization,

stability, and activity may be achieved by PPIs involving enzyme-substrate, receptor-

ligand, and protein-protein complex forms. PPIs are crucial for cellular homeostasis

and function since they are involved in a wide variety of biological activities such as

signal transduction, gene regulation, protein trafficking, and cell signaling [1–3].

To decipher the intricate chemical interactions that control cellular processes,

knowledge of the mechanisms behind PPIs is essential. Protein domains, motifs, and

surfaces all play important roles in PPIs by allowing proteins to recognize and in-

teract with one another [4, 5]. PPIs originate and remain stable because to electro-

static interactions including hydrogen bonding, salt bridges, and Van der Waals forces,

which mediate electrostatic complementarity between interacting proteins [5, 6]. Pro-

tein structural changes, flexibility, and dynamics may also alter PPIs, either promoting

or inhibiting PPI [7, 8].

The connections between proteins in a cell or organism are represented by protein-
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Figure 1.4: Inter-species PPI where two different proteins are from two different
organisms.

protein interaction networks (PPINs), which are complex and ever-changing networks.

To put it simply, PPINs are essential for controlling many different cellular activities,

signaling pathways, and responses to stimuli [9, 10]. They help to understand cellular

behavior, disease causes, and drug development by revealing how proteins are orga-

nized and coordinated within a cellular environment. Functional modules, hubs, and

essential regulatory components may be uncovered by analyzing PPINs, which are

often represented as nodes or proteins linked by edges or interactions [11, 12]. PPINs

are produced using a range of experimental methodologies, such as yeast two-hybrid

(Y2H), co-immunoprecipitation (Co-IP), mass spectrometry (MS), and fluorescence

resonance energy transfer (FRET), among other techniques [13, 14]. The utilization

of experimental methodologies results in the production of extensive datasets per-

taining to PPIs, which can subsequently be scrutinized to construct all-encompassing

PPINs [15]. The analysis of PPINs frequently involves the application of computa-

tional techniques, including network-based methodologies, graph theory, and machine

learning algorithms. These approaches have been instrumental in uncovering valuable

information pertaining to protein function, protein complexes, signaling pathways, and

networks associated with the disease [11,12,16].

The examination of PPINs has resulted in the recognition of pivotal proteins, com-

monly referred to as hubs or network nodes, that serve as intermediaries between

various constituents of the network and exert a significant impact on its global op-

eration [17]. The aforementioned hubs have been identified as plausible therapeutic

targets for drug discovery and have been associated with a range of illnesses, such as

cancer, neurodegenerative disorders, and infectious ailments [18]. Additionally, the

examination of PPINs has demonstrated the significance of modular arrangement,

wherein proteins exhibiting comparable functions have a tendency to aggregate, cre-

ating functional modules or complexes that regulate cellular processes [19]. A way

of expressing systems as complicated sets of binary connections or relations between

distinct biological components is called a biological network. Biological networks can

be classified based on their type and detection method. Based on the type, a biolog-

ical network can be classified as follows. Figure 1.5 shows different classifications of

biological networks.
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Figure 1.5: Classification of different biological networks.

• Homogeneous Biological networks: In the case of homogeneous protein in-

teractions, the interacting proteins are both from the same species or origin,

meaning that their amino acid sequences and overall structures are almost iden-

tical. As a result of their shared primary, secondary, and tertiary structures,

the interacting proteins may be said to belong to the same protein family. The

dimerization of transcription factors, proteins that bind to DNA and control gene

expression, is a well-studied example of homogenous protein interaction [20].

• Heterogeneous Biological Networks: The term heterogeneous protein in-

teractions pertains to a specific category of protein-protein interaction wherein

the proteins involved are of diverse species or lineages. This means that the pro-

teins are distinct entities originating from different protein families, organisms,

or cellular compartments. To clarify, it can be observed that the proteins that in-

teract with each other do not possess identical or substantially similar amino acid

sequences and structures. Additionally, these proteins may exhibit distinct func-

tions or perform varying roles within the cellular environment. Heterogeneous

protein interactions are essential in various biological processes, including but not

limited to cell signaling, metabolism, and immune responses. The phenomenon

under consideration pertains to the interactions that occur between proteins

originating from distinct cellular compartments. These interactions may involve

membrane receptors and cytoplasmic signaling proteins, or nuclear proteins and

cytoplasmic factors. The significance of heterogeneous protein interactions lies

in their ability to facilitate cellular communication, coordination, and regulation.

This enables diverse proteins to collaborate in a synchronized manner, thereby

accomplishing intricate cellular processes. One instance of heterogeneous pro-

tein interaction can be observed in the interaction between enzymes and their

respective cofactors or substrates. Enzymes are a class of proteins that facilitate
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biochemical reactions within cells. Their activity is frequently dependent on the

presence of specific cofactors or substrates [21].

Based on the detection method, the biological network can be classified as follow:

• in-vivo: The networks of protein complexes that have been generated as a

result of biochemical processes or electrostatic forces and which perform a specific

biological function as a complex [15].

• in-vitro: A certain technique is carried out in an environment that is under

strict control and is located away from a live creature. Tandem affinity purifi-

cation, affinity chromatography, coimmunoprecipitation, protein arrays, protein

fragment complementation, phage display, X-ray crystallography, and nuclear

magnetic resonance spectroscopy are the in-vitro approaches for PPI identifica-

tion [15].

• in-silico: In-silico methods are those that are carried out on a computer

or via the use of computer simulation. In the process of PPI discovery, in-

silico techniques include sequence-based approaches, structure-based approaches,

chromosomal proximity approaches, gene fusion approaches, in-silico 2 hybrid

approaches, mirror tree approaches, phylogenetic tree approaches, and gene

expression-based approaches [15].

1.1.5 Post-Translational Modification

In biological systems, proteins perform a wide range of catalytic, regulatory, signaling,

and structural tasks. Most eukaryotic proteins undergo post-translational changes

after being assembled on ribosomes during their whole lifespan [22]. Post transla-

tional modifications (PTMs) are the changes that occur by different biomolecules in

the amino-acid side chain. The polypeptide backbone is frequently supposed to be

inert, although PTMs have traditionally been conceived of being reversibly attached

on amino acid side chains to nucleophilic functional groups. As new chemical and

functional variations of the protein backbone are found, this paradigm is changing.

Importantly, backbone PTMs act in distinct ways to achieve these properties while

being able to affect protein structure and function in a manner similar to side chain

changes [23]. Comparing the number of genes and the number of proteins generated

from the corresponding genes it has been observed that the number of encoded pro-

teins outnumbers the number of genes due to PTMs [24]. PTM crosstalk indicates the

coordinated action of several PTMs on one or more proteins for higher-level regula-

tion [25].
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PTMs can happen at different phases of the protein life cycle. Additionally, many

proteins have autocatalytic domains that allow them to change themselves. PTMs

have been proven to be important participants in the etiology of many illnesses, such

as cancer, diabetes etc., and play a crucial role in physiological processes occurring in

a healthy cell [24].

PTMs enable cells to control protein activities, transmit signals, and react to dis-

turbances. PTMs enhance the variety and functioning of proteins, which raises the

complexity of the proteome [25]. It has been demonstrated to work via altering PPIs.

In comparison to non-PTM proteins, proteins undergoing a PTM were shown to par-

ticipate in more interactions and to occupy more central positions [26].

1.2 Brief Literature Survey

The fundamental building blocks of a living thing are proteins. All living species

depend heavily on the interactions between proteins, which carry out specific tasks

and are essential for cellular and biological function. Since several PPIs take place

throughout a biological process, focusing on the precise set of interactions aids in un-

derstanding the molecular mechanism behind the specific biological activity and helps

to assign roles to unidentified proteins. Transporters, molecular machinery, and molec-

ular chaperones are just a few examples of complexes that are created when two or

more proteins physically bind to sustain the assembly [27]. The experimental tech-

niques can address a limited portion of PPIs for an organism. Proteome scale PPI

analysis for any full organism becomes impractical and time-consuming because to

the significant computing overhead. To solve these problems, effective algorithms that

work with high-throughput parallel architecture must be created. Different compu-

tational analyses are presented in biological research with two goals in mind: either

to help natural systems looking for biological answers or to offer a computational so-

lution for biological systems. In this section, previous research works are discussed

which include different methodologies for in-silico analysis and different applications

of PPIN

1.2.1 Clustering Large Biological Data

Proteins interact with other proteins to perform a wide range of essential biological

and cellular tasks. Proteomic data has been expanding at an exponential rate in recent

years. The exponential expansion in meta-genomic sequence accumulation enabled by

contemporary high-throughput sequencing methods has the potential to improve large-

scale functional annotation significantly. Researchers now have a significant barrier in

processing these lengthy and repetitive sequences. One of the primary actions taken to
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lessen the duplication of these massive resources and the analysis of such big biological

sequences is clustering by similarity.

Big Data, as the name implies, is a concept that promises to manage large data

volumes quickly by using several processors housed on multiple nodes. This huge

dataset necessitates parallel processing across several nodes. To process large datasets,

Apache Software Foundation came up with a framework, Apache Hadoop, an open-

source framework with a cluster of commodity hardware. Hadoop provides a module

called MapReduce which distributes the computing among the clusters and combines

the result on completion and also provides a distributed file system known as Hadoop

Distributed File System (HDFS) which is a specially designed file system for a huge

dataset with a cluster of commodity hardware and streaming access patterns.

Hadoop lacks some computational issues such as in-memory computations, real-

time computations, etc. To address the issues, Apache Software Foundation introduced

Apache Spark which accelerates the computational speed by using in-memory com-

putation with a new memory abstraction called Resilient Distributed Dataset (RDD).

Both Apache Hadoop and Apache Spark frameworks play a pivotal role in clustering

large protein datasets.

Protein sequences may be clustered using a number of different methods [28–31].

Partition-based clustering, hierarchical clustering, and density-based clustering are

the three main types of sequence clustering analysis. Decomposing a dataset into a

collection of independent parts, each of which stands in for a cluster, is the basis of

partitional clustering. On the other hand, hierarchical clustering structures the data

into a tree structure with several levels of nesting. A cluster that is based on density

refers to a set of objects that are connected through density and is considered maximal

concerning density-reachability. Any object that is not part of a cluster is considered to

be noise. DBSCAN is one of the most popular density-based classification algorithms.

DBSCAN algorithm explores clusters by examining the ϵ-neighborhood of each point

within the database. DBSCAN is a density-based spatial clustering approach that

explores the neighborhood within a radius and finds out the minimum number of

neighborhood points within the radius. From a set of objects, each object is checked

with the core object point to determine whether the object is density reachable or

not. The concept of density reachability is based on the transitive closure of direct

density reachability, which exhibits an asymmetric relationship. Only core objects

exhibit mutual density reachability. The relationship of density connectivity exhibits

symmetry. A density-based cluster refers to a collection of objects that are connected

by density and are considered maximal in terms of density-reachability. Any object

that is not assigned to a cluster is considered to be noise [32].
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1.2.2 Large-Scale Interaction of Human Proteome

After the Human Genome Project was finished, there was a massive increase in genetic

sequence data. Proteomic data, which includes measurements of protein abundance

across a variety of biological contexts, has grown at an exponential rate to keep pace

with genomic data. Sequence annotation, structural details, ontology links, annota-

tions of function, interactions, PTMs, and illness associations are all included. More

than 180 million un-reviewed proteins and around 500 thousand manually annotated

and reviewed proteins are accessible via UniProt, a publicly available collection of

protein data. Together, these proteins have the capacity to produce between 124

million and 15 billion protein interaction pairings [33]. Other well-known interaction

databases, such as DIP, catalog over 80,000 interaction pairs involving 28,850 proteins

across 834 species [34]. About 400,000 Human protein-protein interactions are also

included in BioGRID’s massive database of over a million [35]. About one million

interactions involving 113,926 proteins are stored in IntAct [36]. There are around

30,000 human proteins involved in the three billion interactions found in STRING’s

database of 24.6 million proteins from 5,090 species [37].

The study of proteins, particularly their structures and activities as well as the

analysis of their interconnection networks, is known as computational proteomics. By

feeding sequence-level data to computers like neural networks and support vector ma-

chines (SVM) that have already been trained with information taken from biologically

determined structures of protein sequences, it is possible to predict the structures of

protein sequences. The same approach may be used to estimate the relative solvent ac-

cessibility of individual amino acids in protein sequences. Only 13 protein structures

were saved in PDB’s database in the 1970s, but because of improvements in struc-

ture detecting techniques, the database today has more than 100,000 protein sequence

structures [38]. Prediction of protein structures in excess of 90% accuracy is an aim

that is yet to be achieved [39]. PPINs have been explored extensively to understand

how proteins interact together to form complexes. Researchers have been working on

Pairwise PPIN Alignment [40] and Multiple PPIN Alignment [41]. Both these require

heavy computational resources due to the sheer volume of data available. Understand-

ing the function of a protein will help us uncover the root of several diseases. The func-

tion of a protein can be predicted by several methods such as homology-based [42,43],

sequence motif-based [44,45], structure-based [46–48] and network-based methods [49].

All these methods have to rely on a huge set of data in order to provide accurate func-

tion prediction. Every biomolecule in the world functions by interacting with other

biomolecules. Similarly, DNA or other biomolecules may dock with proteins at certain
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sites. Accurate prediction of such sites will help eliminate diseases and facilitate the

proper functioning of the protein. A lot of research has been dedicated to the predic-

tion of such sites [50,51]. Just like other areas of computational biology, the problem of

protein binding site prediction also relies on a huge amount of non-trivial data for ac-

curate prediction of such sites. Currently, several works are trying to draw inferences

about species not only from sequence but also from interacting networks [52]. The

problem of finding conserved structures between multiple PPINs is computationally

very heavy since it requires the matching of networks of proteins. MIT researchers

have created a database IsoBase [53], which identifies functionally related proteins

across five major eukaryotic model organisms: Saccharomyces cerevisiae, Drosophila

melanogaster, Caenorhabditis elegans, Mus musculus, and Homo Sapiens. They are

further trying to extend the implementation of Isobase to Genetic Interaction Net-

work Alignment. Ay et al. have developed an algorithm SubMap [54] where they

have aligned two metabolic pathways using a mixture of homology and topological

similarity. Further the database BIND [55] archives biomolecular interaction, complex

and pathway information.

1.2.3 Host-Pathogen PPIN

Controlling highly contagious viral illnesses requires the identification of possible virus-

host interactions. This might aid in the creation of novel medications to treat viral

infections [56]. Because of viruses’ unidentified harmful processes, infectious illnesses

continue to be one of the most common and serious causes of mortality in people [57].

Here, the molecular interactions between the virus and its host are crucial. Thus,

for a better understanding of the process of infection and the pathophysiology of

infectious disorders, virus-host PPIs are essential [58, 59]. There have been a number

of advancements in PPI predictions across different types of animals. These PPI

prediction techniques provide crucial data for further examining the transmission of

illness between other species. Pathogenic microorganisms can leverage host capabilities

and elude host immune responses by manipulating host processes thanks to PPIs

between viruses and host proteins. Varied information about proteins such as sequence

[60–64], domains [65–68], structure [69,70], and virus host protein interactions [71] are

used for computational prediction of PPIN.

To anticipate new host-virus PPIs, many computational techniques have been de-

veloped. In innovative host-virus interaction predictions, a variety of predictive models

have been put out depending on the knowledge about interactions that are currently

available. Several researchers have proposed different models for the prediction of

host-pathogen PPIN. A linear motif-based prediction model has been proposed by
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Bacerra et al. [72] to predict HIV-Human PPIN. Segura et al. [73] suggested employ-

ing motif-domain interactions to represent the network of human-pathogen interac-

tions. Human viral proteomes were clustered using structural sequencing by Kharrat

et al. [74]. A bi-clustering strategy was put out by Mukhopadhyay et al. [75] to fore-

cast HIV-1-infected human proteins using interaction-based analysis. By using the

bi-clustering approach, a set of rules for association was extracted from the interaction

of HIV-1 proteins. Mukhopadhyay et al. [76] made additional advancements to their

work by adding type and pattern-based biclustering to already existing interactions

to anticipate novel host proteins. Hierarchical clustering using the protein sequence

of EBOV and Influenza virus was proposed by [77]. Phosphorylation clustering was

used to analyze the infection on the protein of bronchitis virus in a work by Spencer

et al. [78]. On the predictions of Salmonella-human interaction, several methods were

put out [79, 80]. Virus-host PPI prediction studies have effectively used SVM-based

different techniques with varied input features [81, 82]. Mei et al. [57] suggested

a transfer learning-based method with three distinct classifiers, where each classifier

was applied to three characteristics based on the gene ontology (GO) database [83].

According to reports, molecular mimicry performs a crucial part in host-pathogen in-

teractions, when a viral protein imitates a host protein’s structural binding surface.

As a consequence, the viral protein attaches to a different host protein in a competi-

tive manner and spreads throughout the host [84–87]. Assessment through semantic

similarity-based method using GO annotations plays a significant role in interacting

host-pathogen proteins [88–91].

1.2.4 PTM in Protein Sequences

The chemical alterations that take place after a protein is generated are referred to as

PTM of proteins. It can affect the electrophilicity, interactions, and structural prop-

erties of proteins. Nearly all proteins undergo PTM, which have a profound impact

on the structure and dynamics of proteins and is critical to many biological pro-

cesses [92]. Depending on the addition of the different chemical groups to the amino

acid side chain, a number of computational methods have been developed and stud-

ied for different PTMs (e.g., phosphorylation, Glycosylation, Sulfation, Acetylation,

Palmitoylation etc).

As many proteins undergo PTMs, the proteome is actually more complicated

than it would otherwise be. PTMs include the covalent alteration of the amino

acid sequences, and they have the effect of expanding the range of potential protein

species. [93]. PTMs are essential in controlling various cellular processes in response

to certain physiological demands [94] e.g., sub-cellular localization of proteins [95,96],
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stability of proteins [97], and regulates enzymes [98]. It has been identified that about

5% of the human genome codes for enzymes that catalyze the process of PTMs in pro-

tein sequence leading to alteration of protein [99]. These chemical changes of proteins,

such as phosphorylation, acetylation, methylation, carboxylation, or hydroxylation,

are frequently regulated by enzymes [100].

Experimental methods for mapping and measuring PTMs have advanced signif-

icantly in the last 30 years. For example, protein-based analysis using liquid chro-

matography (LC) and mass spectrometry (MS) allows the discovery of hundreds of

PTMs across whole proteomes [101]. However, the lack of understanding of the under-

lying enzymatic processes and their impacts on stable and dynamic proteins continues

to restrict the detection and characterization of PTMs. In this context, in-silico ap-

proaches, which are frequently based on the most recent understanding of PTMs, are

a potential method to conduct preliminary analysis and prediction that can super-

vise in-vivo and in-vitro research and contribute to the function of PTMs in cellular

processes [92].

The experimental techniques to locate PTM sites are expensive and time-consuming.

The need for computational approaches is highly significant [102]. Different high-

throughput experimental techniques, such as mass spectrometry [103], microarray of

protein sequences [104], and phosphor-specific proteolysis [105] has been used to study

PTM sites. Numerous studies have shown that sequence-based prediction techniques,

such as predicting protein localization, [106], identifying membrane proteins [107,108],

identification of functional classes of enzyme [109]. Sequence alignment-based predic-

tions of protein 3D structures can promptly offer an enormous amount of information

and understanding for both fundamental research and therapeutic development [110].

The SVM has been successfully used in computational biology and bioinformatics

to solve pattern recognition challenges, such as predicting protein subcellular local-

ization [106], PTMs [111]. [112] proposed that SVM also performs well when used to

predict PTM sites while predicting phosphorylation sites using the conventional bi-

nary encoding strategy, and the results were superior to those of all other techniques.

SVM has been used by different researchers for predicting kinase-specific phosphory-

lation sites [113, 114], methylation sites [115], phosphorylation using k-spaced amino

acid [116].

The bioinformatics research community is now particularly interested in the au-

tomated prediction of PTM locations. Based on the various types of categorization

algorithms in use, the four primary classes of PTM prediction tools that are now

accessible may be identified. The first category consists of tools that are generally

connected to PTM, such as Eukaryotic Linear Motifs (ELM), which quickly search
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regular expression patterns to forecast ELMs in protein sequences [117]. An online

tool called PROSITE makes a variety of PTM predictions based on consensus sequence

patterns [118]. The Scansite tool forecasts kinase-specific and motif-relevant to signal

transduction. The conserved sequence motifs serve as traces of significant biological or

biochemical tasks carried out by such proteins [119]. Plewczynski et.al. [120] proposed

a SVM-based automotive server for predicting PTM sites. Basu et.al. [121] upgrades

the work by proposing AMS 3.0 using a multilayer perceptron classifier. The work was

further extended by Plewczynski et.al. [122] where the features of 88 different PTMs

are clustered based on high-quality index and the performance was measured using a

multilayer perceptron classifier.

1.3 Motivation Behind the Current Study and Re-

search Gap Analysis

Computational Strategies for Analysis of Large-Scale Biological Data

In spite of a number of methods [28–31] developed in the last decades, sequence clus-

tering from large sequence data is still a serious challenge. Depending on the clustering

structure, there are basically two approaches: hierarchical clustering (HC) and greedy

heuristic flat clustering (GHFC). HC-based approach [123] organized the sequence in

the form of a clustering tree keeping different levels of operational taxonomic units

(OTUs) at various similarity levels that can explore more biological significance. The

HC-based approach still has some limitations as it requires pairwise distance compu-

tation and storing of the distance matrix. On the other hand, the popular GHFC

approach includes Cd-hit [30] and UCLUST [29] which reduces the computational

complexity. But GHFC produces lower cluster quality than that of the HC-based

clustering approach.

Clustering algorithms should be scalable to vast sequence data employing paral-

lel computation and high-performance computing architecture. However, redesigning

current procedures in parallel mode is challenging since each iteration distance calcu-

lation fully depends on its earlier step or each division/merging relies on the preceding

operations. Thus, in high-dimensional sequence data clustering, parallel density-based

clustering may be an efficient alternative.

Large-Scale Interaction of Human Proteome at Fuzzy Semantic Space

Proteins are essential to the structure of any living thing. Proteins are essential for

all biological processes because of the role they play in cellular communication and

PPIs. The identification of the correct interaction set aids in the decipherment of the
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molecular mechanism underlying a specific biological event and the assignment of roles

to unknown proteins [27]. The PPIN of a whole organism may tell us a lot about how

its cells and molecules perform, what signals they send, how diseases develop, and how

they are treated.

In-silico analysis of the PPIN can be constructed in two ways: i) prediction-based

and ii) assessment-based. The limitation of statistical prediction lies in verifying the

PPIs identified by the experiment to handle errors in experimental results such as

false positives or false negatives [27]. Most of the in-silico prediction methods work

in binary decision mode, either interacting or not. The binary mode PPIs are often

less efficient in pathway analysis and/or disease-related analyses as there is no indica-

tion of interaction affinity between two partners [27,124,125]. These predictions-based

approaches suffered from bias-free learning and more appropriately depend on the

train-test data. However, the selection of negative data and bias-free cross-validation

strategy are the major factors in PPI prediction that are overlooked in most of the

prediction models [126, 127]. In addition, these experimental methods can elucidate

a smaller subset of the PPI network of an organism. Due to the huge computational

overhead, proteome scale PPI investigation for any complete organism becomes infea-

sible and time-consuming. So, efficient algorithms, compatible with high-throughput

parallel architecture need to be designed to overcome these issues. On the other hand,

assessment-based studies effectively help to compute the protein interaction affinities

between the protein pairs without any prior train-test based predictive evaluation.

GO-based semantic assessment strategy is one of the major schemes to evaluate the

interaction affinity [128] as it includes different level hierarchical relationships of func-

tional annotation. However, with the increasing number of proteins, the growth of

possible PPI relations improves in exponential order.

The above study necessitates the need for a protein interaction network for better

and bias-free in-silico prediction-based outcomes of cellular and molecular function-

alities [129], reconstructing signaling pathways [130, 131], disease associations analy-

ses [56, 132], drug discovery [133]. Till date, there is no evidence of organism-specific

protein interactome. Moreover, recent studies show that weighted interactions are prof-

fered in pathway and/or disease analyses [134]. The above study motivates to develop

an efficient algorithm to compute the fuzzy binding affinity for large-scale PPIs using a

high throughput parallel architecture. The development of such an effective algorithm

to compute interaction affinity at the organism level eventually helps to construct a

semantic network that could be a key node to assess different cellular and molecular

mechanisms, disease analysis, host pathogenic relationships, drug target improvement,

etc.
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Human-nCoV PPIN

The discovery of host-pathogen PPINs has important implications for the knowledge

of infection transmission mechanisms, which in turn underpins the rational medica-

tion design that is so crucial to the advancement of therapies. Proteins from both

the pathogen and the host work together to promote infection and illness. Infectious

disease is actively propagated by the pathogen. The pathogen-host PPIN interac-

tion facilitates pathogen exploitation of host resources and host manipulation of host

systems for immune evasion [65,135,136]. The primary focus of studies is the identifica-

tion of target proteins by comparing pathogen and host PPIN [56,137,138]. Important

pharmacological targets are often topologically significant proteins with a large num-

ber of interactions. However, some biological pathway relevance suggests that proteins

with fewer interactions or topologically insignificant features may be involved in the

infection mechanism.

A single-stranded RNA virus known as SARS-CoV-2 has an estimated particle size

of 27 to 32 kb and its diameter range is between 65 and 125 nm [139]. The symptoms

of COVID-19 in people can range from a cough and cold to potentially lethal signs

such as respiratory infections, pyrexia, dyspnea, and multi-organ failure [140]. A com-

prehensive investigation of the genetic characteristics of SARS-CoV-2 using host-virus

PPI might discover potential treatment targets [141, 142]. PPI examines the protein

connections between humans and viruses in the host-pathogen interaction study and

identifies viral infections and host resistance responses [143]. The use of machine

learning algorithms in the prediction of PPI is an interesting and popular area of re-

search where the machine learning classifiers effectively distinguish between protein

pairs that interact and those that do not interact using binary classification [144]. Dif-

ferent machine-learning algorithms have been used to identify different host-pathogen

PPIN which include zika virus [145,146], HIV [147], SARS-CoV2 [148]. By amplifying

viral RNA in real-time reverse transcriptase polymerase chain reaction (rRT-PCR),

Brinati et al. [149] used machine learning to identify the COVID-19 infection from

regular blood test analysis. An ensemble machine-learning technique has been used

to determine human-nCoV PPI by Chakraborty et.al [150] using five different protein

sequence-based features and the result has been validated through web-based tools.

Not only machine learning algorithms but a graph theoretic approach is also useful

for determining protein functions [151–153] and spreader proteins [154–157] in a PPIN.

Centrality analysis is used to determine the PPIN’s transmission capacity and com-

pactness. Betweenness centrality, a novel centrality metric introduced by Anthonisse

in 1971 [158]. Sabidussi [159] introduced the concept of closeness centrality, another
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measure of centrality. Degree centrality [154] and local average centrality [156] are two

more crucial centrality measures that are also discovered to be highly useful in this

field of study. Thus, identifying target proteins by analyzing PPIN from the pathogen

and host, is discovered as the topologically significant proteins with a greater degree

of interaction which become major therapeutic targets. However, due to some biologi-

cal pathway importance, proteins with less interaction or with insignificant topologies

could be implicated in the process of infection.

Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has 89% genetic similarity

with Severe Acute Respiratory Syndrome (SARS-CoV). Based on this hypothesis,

the above study motivates the development of an in-silico human-nCoV PPIN model

which can identify the possible spreader proteins of SARS-CoV-2. Possible level-1 and

level-2 spreader proteins can further be used to identify the concerned potential Food

and Drug Administration (FDA)-approved drugs for COVID-19 treatment.

Drug Repurposing for COVID-19 using in-silico Methods

The respiratory system of animals, including humans, is often affected by coron-

aviruses, which can cause moderate to severe respiratory tract infections [160]. Two

highly pathogenic Human Coronavirus (HCoVs), Middle East Respiratory Syndrome

Coronavirus (MERS-CoV) and SARS-CoV, which emerged from animal reservoirs in

the past 20 years, have caused widespread epidemics with significant morbidity and

fatality rates [161]. In the year 2019, a new coronavirus disease emerged in Wuhan,

China, and was abbreviated as COVID-19/nCoV [162]. As nCoV was new to humans,

at the time of the research, there were no known drugs that could be used to eradicate

COVID-19. To prevent and cure COVID-19, several national and international re-

search teams were developing vaccinations. Treatments with various antiviral medica-

tions are taken into consideration and used to end COVID-19 based on prior knowledge

of big attacks such as major Ebola, cholera, etc. outbreaks. Thus drug repurposing

became one of the fundamental research areas for the treatment of COVID-19.

The fastest approach, drug repurposing, appears to be using an already-approved

medication or a substance that is currently through clinical trials for the treatment of

COVID-19, even though the discovery and evaluation of a new drug should take even

longer. This is because these compounds have either received regulatory approval

as drugs or have passed safety studies that indicate a therapeutic potential [163].

FDA-approved medications were discovered to be effective against 66 human proteins

or host factors out of 332 SARS-CoV-2 - human PPIs [164]. As reported, human

Angiotensin-converting enzyme 2 (hACE2) is abundantly expressed in lung alveolar

epithelial cells, endothelial cells that originate from small and big arteries, and other
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tissues, as well as in the heart, kidney, testis, and gastrointestinal system, recent studies

have demonstrated that the SARS-CoV-2 S-protein can bind the hACE2, [165, 166]

explaining the symptoms linked to the SARS-CoV-2 infection.

Molecular docking method allows us to characterize how tiny molecules behave

in the binding site of target proteins and to better understand basic biological pro-

cesses by simulating the atomic-level interaction of a chemical molecule with a pro-

tein [167]. Prediction of the ligand structure as well as its placement and orientation

inside these sites and evaluation of the binding affinity are the two fundamental pro-

cesses in the docking process. As it can show how a ligand interacts with its biological

targets, in-silico docking approach is now widely used in drug development stud-

ies [168, 169]. Using the main protease of different drugs, molecular docking plays a

significant role in drug repurposing studies. [170] proposed a molecular docking sim-

ulation using Autodock4 where zafirlukast and simeprevir came out to be the most

promising drugs to inhibit spike ACE2 interaction with host protein for combating

COVID-19. Virtual screening was performed by [171] on the drug data retrieved from

ChEMBL and drug bank on the main protease of nCoV. A generic framework for drug

repurposing has been proposed by [172] using drug and disease data collected from

public data repositories and different classification models to classify them. The iden-

tified drugs have been validated by molecular docking strategies to identify the binding

affinities of drug molecules against nCoV host targets. Molecular docking and virtual

screening strategies have been applied using a set of FDA-approved drugs on the crys-

tal structure of COVID-19 main protease 6LU7 to identify the repurposed drug [173].

Tipranavir, Lopinavir–Ritonavir, and Raltegravir have been confirmed to have the

best interaction position with the main protease of nCoV as proposed by [174].

Most of the research studies proposed different repurposed drugs from the list of

FDA-approved drugs that are associated with SARS-CoV-2 proteins. There may be

still room for research which might include the repurposing of drugs from symptom-

based analysis of COVID-19. The above study motivates the design of an in-silico

Human-nCoV PPIN model from the spreadability index of SARS-CoV protein. PPIN

and symptom-based analysis can be two major focuses in developing repurposed drugs.

Different molecular docking strategies can be employed over the available crystal struc-

ture of COVID-19 virus to validate the identified drugs.

Analysis of Large-Scale Human-Coronavirus Family Interactome

The family of enclosed, single-stranded RNA viruses known as coronaviruses is tax-

onomically related to the coronaviridae family [175]. It is not just humans that are

impacted by this single-stranded RNA virus; animals and birds are as well. Humans
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often experience symptoms of the flu or a common cold as a result of coronaviruses,

which leads to acute respiratory infections. However, because coronaviruses are conta-

gious, diseases like SARS-CoV and MERS-CoV have the potential to spread globally.

Both of these two coronaviruses belong to the family Coronaviridae’s genus Betacoro-

navirus [158]. SARS-CoV, which was initiated in 2003 in South China, had a fatality

rate of 15%. Whereas MERS-CoV, which originated in 2012 in the Middle East, had

a high fatality rate of 34%. According to Lu et al. (2020), the coronavirus known as

SARS-CoV-2 is a member of the same genus as MERS-CoV and SARS-CoV, which

is known as Betacoronavirus. There are both structural and non-structural proteins

in it. Structural proteins, such as the envelope, membrane, nucleocapsid, and spike

proteins, can be identified as prominent examples. Despite the fact that SARS-CoV-

2 has just recently been discovered, there is a severe lack of knowledge and data

needed to develop immunity against SARS-CoV-2 [176]. Several experimental ge-

nomic investigations have shown that SARS-CoV-2 and SARS-CoV are genetically

very similar [176–178]. A PPIN is at the center of the proposed method for iden-

tifying SARS-CoV spreading nodes. When it comes to identifying protein functions

and locating their central/essential spreading nodes, the PPIN is an extremely useful

module [152,154,155,179–181].

The discovery of SARS-CoV in caged animals from wild live markets in mainland

China raised the possibility that these creatures are the source of the SARS pandemic

[182]. Later research hypothesized that the civet may have merely been a SARS-CoV

amplifying host and habitat for significant genetic differences allowing effective animal-

to-human and human-to-human transfers [183–185]. Lineage C of MERS-CoV, Bat

coronaviruses (BatCoVs) HKU4 and HKU5 are two more significant members of the

betaCoV family [186]. These viruses continue to circulate in bats [187] despite being

originally discovered as genomes in lesser bamboo bats as well as Japanese pipistrelles

in 2006, respectively [188]. Human illnesses can be brought on through both alphaCoVs

and betaCoVs coronaviruses [175]. It has been challenging to develop models of MERS-

CoV disease since MERS-CoV is inherently resistant to small animals, which are often

employed to study viral pathogenesis [189]. Different non-human model has been

developed for MERS-CoV with different species for preclinical therapeutics study [190–

192].

Not only SARS-CoV2, SARS-CoV, and MERS-CoV interacts with human to spread

diseases. But other coronavirus species also interact with human proteins. Till date,

no study has been done on the entire coronavirus interactome. The above study

motivates to design of an in-silico model that can identify level-1 spreader proteins

of different coronavirus species that interact with human proteins and can efficiently

18



identify suitable repurposed drugs.

Prediction of PTM Sites in Protein Sequences

Among different PTMs, the covalent post-translational alteration of the cysteine thiol

side chain by palmitic acid is known as S-palmitoylation. S-palmitoylation is in-

volved in various human disorders and is crucial for a number of biological activi-

ties. Protein location, transport, and function are heavily regulated by protein S-

palmitoylation [193]. A picture of protein S-palmitoylation as a common yet distinct

chemical switch that enables the expansion of protein activities and subcellular local-

ization in minutes to hours emerges from a number of recent experimental findings.

Particularly numerous proteins controlled by S-palmitoylation are found in neural tis-

sue [194]. According to a theory, PTMs obtained throughout animal evolution offer

proteins new properties that are essential for the development of the nervous system’s

complexity and capacities [195]. Since learning and memory depend on synaptic plas-

ticity, it plays a crucial function in the brain. Different synaptic proteins express

changes in synaptic strength, which are then translated into variations in the struc-

tural and functional properties of neurons [196, 197]. Since sex-dependent variations

in the brain are common and may be seen even at the level of individual synaptic

connections, gender should be regarded as a significant biological variable in neuro-

science. Sex variations in neuronal function may be caused by differences in synapse

molecular organization [198], signaling pathways [199,200], and plasticity [201,202], as

well as differences in memory and learning [203], emotional reactions [204], fear, and

anxiety. These differences may also be explained by differences in synaptic plastic-

ity [201, 202]. The occurrence of discrimination based on gender in neuropsychiatric

disease [205] is a clear manifestation of the substantial clinical effects of biological sex.

Major depressive illness is more likely to affect women than men [206], but autistic

spectrum disorder [207] is more likely to affect men. S-palmitoylation, one of several

PTMs, stands out as a key process underlying synaptic integrity, and its failure has

a connection to neuropsychiatric disease [208]. Due to its S-palmitoylation-mediating

activities primarily through sex steroid receptors, one of the palmitoylating enzymes,

palmitoyl acyltransferase DHHC7, has a special interest in relation to sex-dependent

neuroplasticity [209]. Additionally, DHHC7 modifies other synaptic proteins [26–28],

controlling their cell membrane attachment, organizing, and function, all of which are

crucial for the efficient operation of synaptic connections [210–212].

Considering the in-silico techniques for identifying PTM sites for S-palmitoylation,

the CSS-palm [213] and NBA-palm [214] techniques were touted as the forerunners in

this sector with reasonable performance. Yang et al. [215] then suggested a regularised
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biobasis neural network (ANN) technique, which marginally improved performance.

Using an encoding system composed of k-spaced amino acid pairs, Wang et al. created

the CKSAAP-Palm approach, which performed better in terms of recognition accuracy

than earlier techniques [216]. The closest neighbor (NN) technique was then used by

Hu et al. [217] to develop the IFS-Palm approach using protein structure and sequence

information. Shi et al. [218] additionally provided a predictor via the SVMs approach

known as WAP-Palm. However, the identification results were poorer than those of the

CKSAAP-Palm approach. Fu et al. [219] suggested a novel predictor for the random

forest (RF) approach, and the RF algorithm’s out-of-bag assessment showed decent

performance in predicting with a reasonably good MCC score. Kumari et al. [220]

created a PalmPred model that also used SVMs and sequence profiling data. After

that, Pejaver et al. [221] created ModPred, a single PTM sites predictor that includes

23 different PTMs, including palmitoylation.

The need of the hour is to propose a model that can predict the S-palmitoylation

sites from data generated using in-vitro method. Despite some bottlenecks, deep

learning models may be useful in the prediction of sites for S-Palmitoylation. The

development of a web server with an extension to other PTM types may be beneficial.

1.4 Objectives of Current Research

In order to address the limitations of current methods in section 1.4, the thesis aims

to do the following.

Analysis of Large-Scale Human Protein Sequences Using Big-Data Frame-

work

Clustering is a powerful unsupervised learning technique that may be used to make

predictions and eliminate outliers by grouping data into related sets by reducing the

redundancies of large biological sequences [222]. For larger values of n, the dimension-

ality of the input space increases due to the usage of the n-gram feature representation,

which is often used in sequence clustering and classification. Processing all of the data

with the available computer resources has become a difficult task as the amount of

data grows daily. The time has come to approach it as a big data issue, requiring

cutting-edge technology to store and handle the data in a distributed manner [222].

Big data is a concept that allows to process of different large-scale data using different

frameworks (such as Apache Hadoop, and Apache Spark). Thus, an Apache Spark-

based DBSCAN algorithm is being proposed in this section of the thesis that efficiently

employs the higher dimensional input space and large-scale human sequence data us-

ing parallel computing resources [223]. The proposed method was implemented on an

20



Apache Spark cluster that eventually helps to parallelize the resource and computation

efficiently.

Large-Scale Interaction of Human Proteome at Fuzzy Semantic Space

Key insights into an organism’s cellular and molecular functions, signaling pathways,

and underlying disease causes may be gained by studying its large-scale PPIN. For

every given organism, the total amount of all possible positive and negative PPIs

far exceeds the number of known interactions. For humans, the total number of in-

teractions included in all available PPI datasets is only around 3.1%. Furthermore,

emerging evidence suggests that protein binding affinities may be used to effectively

identify protein complexes, conduct illness association research, rebuild signaling net-

works, etc. Keeping this in mind, the work proposed an Apache Spark-based parallel

architecture for designing of a fuzzy semantic score of binding affinity using the GO

network to assess the binding affinity between any two proteins at an organism level.

In the proposed work, human PPIN of ∼ 180 million potential interactions resulting

from 18,994 reviewed proteins for which GO annotations are available is being used.

This continues in the construction of a fuzzy semantic network at the proteome level

for the extraction of meaningful biological insights.

Computational Modeling of Host-Pathogen PPIN

SARS-CoV-2, a novel coronavirus, interacts with host proteins to reproduce the genome

of the host cell. Because of this, understanding how viruses spread illness and find-

ing possible COVID-19 drugs may both benefit from the identification of viral and

host PPIs. Host-pathogen PPINs are important for comprehending the method of

infection transmission, which is necessary for creating novel, more potent therapies,

including logical drug design. The PPIs between the pathogen and host cause in-

fection and illness to progress. The pathogen actively contributes to the spread of

infection. Pathogen and host PPIN permit pathogenic microorganisms to utilize host

capabilities by manipulating the host mechanisms to abscond from the host’s immune

responses [56,137,138]. The goal is to identify target proteins using PPIN analysis of

the pathogen and host. In general, it is discovered that topologically significant pro-

teins with a greater degree of interactions become major therapeutic targets. However,

due of some biological pathway importance, proteins with fewer interactions or with

insignificant topologies could be implicated in the process of infection. As, clinically

validated Human-nCoV PPI data is limited in the current literature, thus, this part of

the dissertation proposed an in-silico model human-nCoV PPIN along with the binding

affinity between protein pairs using semantic similarity of the available GO graph infor-

mation and Fuzzy affinity thresholding is done to detect High-Quality nCoV-Human
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PPIN. The chosen human proteins are regarded as nCoV level-1 spreader nodes in

humans. The Susceptible-Infected-Susceptible (SIS) model validates the spreadability

index for locating level-2 spreader nodes in the human-nCoV PPIN. [158]. The pro-

teins in the network have been subsequently validated with respect to FDA-approved

drugs for the treatment of COVID-19.

Drug Repurposing for COVID-19 using a Novel in-silico Method

An efficient medication or vaccination is urgently needed given the steadily rising

COVID-19 death rate. Several clinical trials are being conducted to evaluate several

drugs and vaccines for the treatment of COVID-19, including Remdesivir, Azithromycin,

Favirapir, Ritonavir, and Darunavir. Some of them have already been approved, but

others have shown positive outcomes and are currently being evaluated. Drug re-

purposing research has accelerated due to the prolonged approval process for novel

compounds. Analysis of Host-Pathogen PPIN may be used to efficiently gain a good

knowledge of disease transmission pathways [224]. Disease progression is aided by the

pathogen since it has the capacity to mutate and change. Through the connecting edge

of the host and pathogen contact, infection of the pathogen spreads. In order to find

new drugs, it is crucial to investigate target proteins and their interactions in networks

of host-pathogen PPIs [56]. Though there are different in-vitro methods based human-

nCoV PPIN [164] there is a need to develop an in-silico human-nCoV model and to

identify different repurposed drugs based on the host-pathogen PPIN model. Infection

of the pathogen gets broadcasted through the connecting edge of interaction between

the host and the pathogen. Keeping this in mind, the section of the thesis proposes a

two-way analysis which includes, human-nCoV network analysis and COVID-19 symp-

tom [225] based analysis (including “loss of smell”) using the in-silico model which has

been developed to identify potential spreader proteins in a human-nCoV interaction

network in the work of Saha et al. [158, 226] and which was validated using proteins

which are the targets of potential FDA-approved drugs [227] for COVID-19 treatment

to detect the potential candidates in the list of FDA-approved drugs for COVID-19.

Molecular docking has also been performed on potential FDA-approved drugs with the

available major COVID-19 crystal structures.

Assessment of GO-based Protein Interaction Affinities in the Large-Scale

Human-Coronavirus Family Interactome

A new coronavirus called SARS-CoV2 replicates by interacting with the host pro-

teins. Therefore, identifying viral and host PPIs might aid researchers in better un-

derstanding the manner in which viruses spread illness and help them discover potential

COVID-19 medicines. An organism’s large-scale PPI network offers useful clues for
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comprehending cellular and molecular functions, and signaling pathways may illumi-

nate the illness process, among many other advantages. Several similar studies based

on GO information have been done on host-pathogen PPINs. There is a real urge

to identify a complete PPIN for humans and the coronavirus family. Keeping this

in mind, this section of the thesis proposes a novel computational model to develop

the host-pathogen PPIN between humans and all other different variants of the coron-

avirus family. The proposed computational model will be able to assess the interaction

affinity between human-coronavirus interactome using GO graph information. The re-

sultant host-pathogen PPIN has been extended further toward the drug-repurposing

study by analyzing the FDA-approved COVID-19 drugs.

Prediction of S-Palmitoylation PTM Sites in Protein Sequences

The covalent post-translational alteration of the cysteine thiol side chain by palmitic

acid is known as S-palmitoylation. S-palmitoylation is involved in various human disor-

ders and is essential in a number of biological activities. Thus, identifying the precise

locations of this modification is essential to comprehending the functional ramifica-

tions in physiology and illness. The discovery of target proteins for S-palmitoylation

has been accomplished using a variety of techniques. Less research has been done

on site-specific S-palmitoylation detection. Using information from massive proteome

datasets, tools for predicting specific S-palmitoylation sites in various biological com-

plexes have been created recently [214, 228]. Different machine-learning-based algo-

rithms [121,228–230] have predicted S-palmitoylation sites with a decent performance

score. With the growing number of publicly available large-scale proteome databases

of the brain and somatic tissues, there is a need for the development of reliable and

accurate computational tools to process them. This part of the thesis proposes a

RF classifier-based consensus strategy, which can predict the palmitoylated cysteine

sites on synaptic proteins of the male/female mouse dataset generated by the mass

spectrometry-based method PANIMoni [231] and a detailed ZDHHC subtype-specific

and sex-mouse S-palmitoylome [232, 233] using AAIndex feature database along with

position-specific amino acid (AA) propensity information.

1.5 Organization of the thesis

In this dissertation, first, an unsupervised machine learning approach has been em-

ployed on a large set of human protein sequences using high-throughput parallel ar-

chitecture to show the benefit of using big data frameworks on large-scale biological

data.

As discussed, protein interaction networks are a valuable clue for finding valuable
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biological insights. However, it has been identified from different sources that for hu-

man proteins, around 96% protein interactions have not yet been explored. Moreover,

there is an urgent need to identify pure protein-protein negative interactions (PPNI)

for better in-silico predictions. Thus, a large-scale organism-specific protein interac-

tome, with respective binding affinity for each pair of proteins, has been developed

using fuzzy semantic space.

Understanding the route of virus transmission is crucial for developing innovative,

more effective treatments, including rational medication design, which depends on

host-pathogen PPINs. Next, the proposed fuzzy semantic network has been used to

detect high-quality human-nCoV PPIN and identities for level-1 and level-2 nCoV

spreader nodes in humans. The network has been validated with respect to FDA-

approved drugs for the treatment of COVID-19.

As vaccines or any specific drug for COVID-19 take a substantial amount of time for

approval, to eradicate the disease propagation of COVID-19, efficient drug repurposing

studies have gained considerable momentum. Thus, next, a in-silico model has been

developed to identify the spreader proteins in human-nCoV PPIN which was then

validated w.r.t different FDA-approved drugs for COVID-19 treatment based on two-

way disease analysis.

Next, an in-silico model based on the fuzzy semantic network has been proposed to

assess the interaction affinity between human-coronavirus interactome for identifying

the spreader nodes which eventually gets validated w.r.t possible FDA-approved drugs.

PTMs are the changes that occur by different biomolecules in the amino-acid side

chain. It has been studied that the proteins which undergo PTMs are more susceptible

to interact with other proteins. Thus, an in-silico model has been proposed to predict

the S-palmitoylation PTM sites in synaptic proteins for male/female mouse. The

dataset has been provided by The Nencki Institute of Experimental Biology, Poland.

The dataset is private and not available for the private domain.

In light of the discussion, the thesis has been organized as follows:

i) Chapter 2 describes the analysis of large-scale human protein sequences using

big data framework

ii) Chapter 3 elaborates large-scale interaction affinity for human proteome at

fuzzy semantic space

iii) Chapter 4 discusses computational modeling of Host-Pathogen PPIN.

iv) In Chapter 5 discusses, drug repurposing techniques for COVID-19 using a

novel in-silico method.
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v) Chapter 6 highlights the assessment of GO-based protein interaction affinities

in the large-scale human-coronavirus family interactome,

vi) Chapter 7 presents S-Palmitoylation Sites Prediction for Synaptic Proteins.

vii) Chapter 8 concludes the thesis with discussion and future scopes.
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Chapter 2

Analysis of Large-Scale Human Protein

Sequences Using Big Data Framework

2.1 Background

Proteins work together to carry out a variety of crucial cellular and biological func-

tions. Proteomic information has been growing exponentially in recent years. There

are over three billion interactions between 24.6 million proteins across 5,090 different

species in the STRING database. It is challenging to manage such a vast, dynamic,

heterogeneous network using current computational approaches. After the Human

Genome Project was finished, there was a massive increase in genetic sequence data.

Proteomic data, which includes measurements of protein abundance across a variety

of biological contexts, has grown at an exponential rate to keep pace with genomic

data.

The development of modern high-throughput sequencing techniques has resulted

in an exponential growth in meta-genomic sequence accumulation that could greatly

enhance large-scale functional annotation. Processing of these large and redundant

sequences has become a major challenge for researchers. Clustering by similarity is one

of the major steps to reduce the redundancy of these enormous resources and analysis

of such large biological sequences. The n–gram feature representation, generally used

in sequence clustering and classification, results in high dimensional input spaces, for

larger values of n. However, it becomes intractable to cluster such large-scale sequences

by current algorithms due to a large number of dimensions. An efficiently designed,

clustering approach can easily scale to handle large-scale sequences by utilizing the

power of parallel computing with high-performance computing systems.

Processing these data with limited processing resources is becoming more and more

of a challenge as the volume of data continues to grow exponentially. Today, this issue

must be tackled as a Big Data one, necessitating sophisticated tools for storing and

processing data in a decentralized manner. Apache Hadoop and Apache Spark are

the answer to this issue; they employ strategies built around the use of commodity

hardware to conduct processes in parallel. Big Data is classified under 5V’s. These

are Volume, Velocity, Variety, Value, and Veracity. All these classifications are briefly
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Figure 2.1: Data Growth Forecasted for Big Data [234]

described below:

• Volume: It refers to the vast amount of data generated every second.

• Velocity:It refers to the speed at which data is generated and the speed at which

the data moves around.

• Variety: It refers to the different types of data.

• Value: It refers to the messiness or trustworthiness of the data. With many

forms of Big Data, quality, and accuracy are less controllable, but Big Data and

analytics technology now allow us to work with this type of data.

• Veracity: Veracity generally refers to the uncertainty of the data, i.e whether

the obtained data is correct or consistent. Out of the huge amount of data that

is generated in almost every process, only the data that is correct and consistent

can be used for further analysis.

Figure 2.1 depicts a forecast of data growth for a range of 10 years. However,

just 2% of the 64.1 ZB of data produced in 2020 was maintained or stored until 2021,

according to IDC. IDC predicts a 23% CAGR for new data generation from 2020–2025,

leading to an estimated 175ZB of data creation in that time frame [234]. Therefore,

storing and analyzing the data becomes the primary issue. The time needed to process

such massive data grows proportionally with data size. Big Data refers to information

volumes and types that exceed traditional data storage and processing methods.
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In computational biology, many problems such as protein homology detection, and

functional annotation, can be formulated as sequence clustering tasks where amino

acid sequence compositions of proteins are considered as the key information. Protein

sequences are any combination of 20 constituent elements by maintaining intrinsic

dependencies between these amino acids. In a protein sequence, the dependencies

between neighboring entities can be explored by generating all possible overlapping

sub-patterns of a certain length n, called n-grams [28]. N-gram based dependencies in

data are explored to improve the richness of the representation. However, in n-gram

representation with higher values of n, the dimension of the input space increases

exponentially (20n). It became intractable to apply a data clustering algorithm with

higher dimensional input space while the dataset itself is large. So efficient algorithms

need to be designed that can cope with higher dimensional large-scale sequence data.

Plenty of methods have been developed in the last decades for sequence clustering

[28–31]. Though the sequence clustering from large sequence data remains a serious

challenge. Based on the structural organization of clustering, these approaches can

be categorized into two groups: hierarchical clustering (HC) and greedy heuristic

flat clustering (GHFC). In HC-based approaches [123], sequences are organized in a

hierarchical tree and produce different levels of OTUs at various similarity levels that

can explore more biological significance. However, HC-based methods have major

drawbacks in that it require pairwise distance computation and requires to store the

distance matrix. Cd-hit [30] and UCLUST [29] are widely used GHFC approaches that

employ greedy flat clustering to reduce computational complexity. Though GHFCs are

faster than HC-based approaches, GHFC produce lower cluster quality than HC-based

approaches. It is highly desired that clustering methods can be easily scaled to handle

massive sequence data using parallel computation with high-performing computing

architecture. However, it is inherently difficult to redesign the existing approaches in

parallel mode as each iteration distance computation totally depends on its earlier step

or each division/merging relies on the previous operations. In this scenario, parallel

density-based clustering could be an efficient alternative in large-scale sequence data

clustering with higher dimensional input space.

Big Data, as the name indicates, is a concept that promises to handle massive

data sets in a short amount of time by making use of several processors located on

separate nodes. In order to handle this massive amount of data, it must be processed

in parallel across several nodes. The Apache Software Foundation developed an open-

source framework called Hadoop [235] to hasten to compute. Hadoop allows users to

store and analyze a massive dataset on commodity computers with extremely high

bandwidth between clusters. Hadoop’s YARN and MapReduce components facilitate
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cluster-wide resource management and parallel computation, respectively.

2.1.1 Hadoop and MapReduce

In order to analyze the ever-growing dataset, it is necessary to break down the is-

sues into smaller, potentially independent subproblems for efficient parallel execution.

The MapReduce component of Hadoop, an open-source framework provided by the

Apache Software Foundation for storing and processing massive datasets with clusters

of commodity hardware, distributes the computation among the clusters and merges

the output upon completion [236,237].

Hadoop Distributed File System (HDFS) is a distributed file system provided by

Hadoop. Its default block size is 64 MB, however, this can be increased to 128 MB

if necessary. HDFS was developed to accommodate large datasets that are stored in

a cluster on inexpensive, general-purpose servers and accessed in a streaming fash-

ion. NameNode, Secondary NameNode, TaskTracker, DataNode, and JobTracker all

emerged in the HDFS cluster. The first three are master services, while the latter two

are slave services, and each master and slave can communicate with each other. The

client must keep the data in a cluster of several systems and share the data among

those systems in order to store and analyse the massive quantity of data in a reason-

able length of time. The workflow of the Map-Reduce paradigm is given in Figure

2.2.

Hadoop technology requires the input data to be partitioned into many blocks, or

input splits before it can be processed. All input partitions are either 64MB or 128MB

in size or smaller. There is one mapper and one record reader for each input split.

Since there are several forks in the input stream, multiple mappers will be executed.

Line by line, the record reader pulls data from its associated input split, parses it into

key/value pairs, and sends them on to the appropriate mapper and mapper starts.

The reducer takes all the key, value pairs as output from the mappers and shuffles and

sorts them to limit the number of duplicate keys. The record writer receives output

from the reducer as a last resort.

2.1.2 Apache Spark Architecture

Storing and processing a large amount of data requires splitting the problem into

some dependent and independent sets for parallel execution. Hadoop with a cluster of

commodity hardware can store and process huge datasets in a reasonable time [222].

However, Hadoop lacks some computational issues such as in-memory computation,

computing real-time data efficiently, etc. The intermediate data write-back operations

to HDFS results in low latency for the Map-Reduce scheme in Hadoop.

On the other hand, Spark by Apache software foundation makes computing faster
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Figure 2.2: The figure shows Hadoop architecture and MapReduce working procedure
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by using in-memory computation [238] with a new memory abstraction called Resilient

Distributed Dataset (RDD). RDDs are partitioned and distributed across multiple

nodes and can rebuild if a partition is lost. Apache Spark architecture is consisting

of master and worker nodes. The main module of the master node is the driver

program that controls the application by creating Apache Spark context. Apache

Spark context works with the cluster manager to manage multiple jobs distributed

over the worker nodes. The worker nodes execute the tasks on the partitioned RDD

and return the result back to the Apache Spark context. The block diagram of Apache

Spark architecture is given in Figure 2.3. A brief detail of Apache Spark architecture

are discussed below:

• Apache Spark architecture consists of a master node and several worker nodes.

The driver program is the central module of the master node that really does

the work of driving the apps.

• Apache Spark context is initially created in the driver program. Spark context

is the starting point for all Apache Spark operations. It’s analogous to linking

to a database. Spark context is applied to everything we do on Apache Spark.

• Apache Spark context then coordinates with the cluster manager to handle the

jobs. A job is any task that is executed within a Spark context. This job’s

execution throughout the cluster is handled by the driver program and Spark

context. Jobs are broken down into smaller tasks, which are then assigned to

individual worker nodes.

• When a Spark Context generates a RDD, it can be cached across several nodes.

As a result, the RDD is split up and sent to different worker nodes.

• The jobs run on the worker node’s partitioned RDD and send their output to

the Spark Context.

• By adding more worker nodes, we can do the same work much more quickly using

parallel processing. Additionally, the more RAM we have, the greater cache we’ll

have on this worker node. This means that we can store several RDDs in RAM,

making in-memory operations far quicker than their disk-based counterparts.

Because of this, Spark is much quicker than Hadoop/MapReduce.

Spark stores and processes huge data using a specific type of dataset called RDD.

The key characteristics of RDD are discussed below:

• Apache Spark foundation is the RDD. In the Spark program, RDDs may be

made, manipulated, analyzed, and stored.

32



Figure 2.3: Apache Spark Master-node Data-node architecture.

• Any data structure, such as strings, lines, rows, objects, or collections, can be

stored in an RDD.

• Multiple nodes might be used to spread the datasets in parts. Spark is responsible

for all data partitioning and dissemination.

• No changes may be made to RDDs. The name ”Resilient” was coined for this

reason. They are fixed and unmovable. An RDD’s context is fixed once it has

been constructed.

• Caching and persisting RDDs is possible. Typically, RDDs are kept on discs

for storage. The combination of RAM and discs is another viable option for

processing. When we require RDD for operations, we obtain it, modify it, and

then dispose of it.

2.2 Methodology for Clustering Protein Sequences

In this work, a Spark-based DBSCAN algorithm has been proposed, that efficiently

employs on the higher dimensional input space and large-scale human sequence data

using parallel computing resources. The proposed method was implemented on an

Apache Spark cluster that eventually helped to parallelize the resource and computa-

tion efficiently. Experimental result shows efficient speed-up in computation compared

with different experimental architectural setups. In addition, the quality of the clusters

is assessed with biological significance such as Domain Correspondence Score.
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Figure 2.4: Overview of proposed parallel scheme for large scale sequence clustering
using DBSCAN(left). DBSCANconD: consensus-based parallel DBSCAN clustering
on fixed length sub-dimensional partitioned data (right).

A new computational method for parallel clustering analysis of large-scale human

sequence data with higher dimensional input space has been developed. High di-

mensional input features are generated from each protein sequence by exploring the

n-grams feature (at n=3, the total number of features is 203=8000). The basic idea is

to first partition the data into equal-sized small partitions and process DBSCAN on

each partition in parallel mode and at the final step individual results are merged for

the final clustering solution. The DBSCAN algorithm within each partition is further

paralleled over the higher dimensional input spaces where each data is processed as

fixed-length multiple sub-dimensions. The clustering results from each sub-dimension-

based processing are merged using a consensus mechanism. Finally, merged results

from each partition are considered as the final cluster. The flowchart of the proposed

method is presented in Figure 2.4. All parallel computations are processed on Apache

Spark architecture.

2.2.1 Spark-based DBSCAN Algorithm

One of the main focuses of unsupervised learning or exploratory data analysis is

to group the data based on the characteristics of the data. Density Based Spatial

Clustering (DBSCAN), is a well-known data clustering algorithm that is commonly

used in data mining and machine learning. The architecture of the DBSCAN algo-
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Algorithm 2.1: DataPartition

Input : data D, block size
Output: < key, list(value) >
——————————————————————–
Process:

1. Transform the data D into RDD.

2. Convert the RDD to an array

3. noPart ← size(D) / block size

4. Parallelize RDD array over noPart partition containing the array and map
each partition with index as a new RDD.

5. Return new RDD as < key, value > pair

rithm is based on two basic parameters: radius(eps) and number of minimum points

(minPts) [239] The radius (eps) defines the neighborhood around a data point whereas

minPts defines a minimum number of neighbors within ‘eps’ radius. The neighbor

points N ∈ (p) for any point p (∈ D) is defined as:

Neps(p) = n ∈ D|dist(n, p) ≤ eps. (2.1)

Based on these parameters, data points are classified into 3 categories: core points,

border points and noise/outliers. A point is classified as a core point if it has more

than minPts points within eps whereas for a border point, it has fewer than minPts

within Eps, but is in the neighborhood of a core point. An outlier/noise point is one

that is neither a core point nor a border point. For any two points x and y are said

to be connected if x is dense and the distance between x and y is less than eps. The

distance of two data points x and y is defined as Euclidean distance.

To implement the DBSCAN algorithm in parallel, a method has been proposed by

distributing the dataset efficiently can minimize the computation time for large-scale

datasets. In this work, two-level parallel processing for large-scale data clustering has

been proposed. The first one is to split the dataset over the cluster by transforming

it into an RDD and then executing the DBSCAN algorithm to each split in parallel

(see Algorithm 2.1). Within each partition, DBSCAN is further paralleled over the

higher dimensional input spaces where each data is processed as fixed-length multiple

sub-dimensions (see Algorithm 2.2). Finally, the resultant clusters are collected from

different partitions and are written into disks as described in Algorithm 2.3
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Algorithm 2.2: Local DBSCAN

Input : D < key, list(value) >, ϵ, MinPts
Output: < key, list(value) >
——————————————————————–
Process:

1. The partition generates a list (values).

2. An arbitrary point p is selected from the partitioned data for searching the
neighborhood points. If N ϵ ≥ MinPts then we assign point p as the core point
else the point is marked as noise.

3. If p is marked as a core point, then we then make cluster c with point p and all
the other points belonging to cluster c. Each cluster is assigned a cluster
number.

4. Repeat steps 2 and 3 until all the points of the datasets are assigned to a
cluster or are marked as noise.

5. Returns the data points with their assigned cluster number.

Algorithm 2.3: Clustering

Input : q, ϵ, MinPts
Output: Cluster
——————————————————————–
Process:

1. D ← Load data of dimension (k,n)

2. PartitionRDD ← DataPartition(D, block size)

3. For each partRDD in PartitionRDD

• r ← n/q

• split data dimension over r number of sub-dimensions of length q as
partRDD i

• process Local DBSCAN in parallel over all sub-dimension set as CLi ←
Local DBSCAN(partRDD i, ϵ, MinPts)

• CL ← Consensus result overall CLi

4. Collect results for all partitions of PartitionRDD and merge them as the final
results.

5. Write to disk

2.2.2 Cluster Validation

The clustering results are analyzed and validated in the context of biological signifi-

cance. We have incorporated Domain Correspondence Score to quantify the clustering
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results as described in [28]. Domain Correspondence Score is the measure of purity for

any cluster in terms of functional domain annotation for a group of sequences. Domain

Correspondence Score is a more effective metric for both single and multiple-domain

proteins that belongs to a particular cluster. For detailed Domain Correspondence

Score computation please see [28]. Higher Domain Correspondence Score indicates

highly conserved domain annotation within a cluster and lower represents the reverse

or even corrupted. A cluster with exactly identical domain annotation (single or

multiple) for every point (protein) ensures Domain Correspondence Score as 1 which

indicates a high-quality pure cluster.

2.3 Experimental Result

In this work, human protein sequence data have been chosen for end-to-end ex-

periments. A total of 20431 reviewed human protein sequences are collected from

UniProtKB/Swiss-Prot [240] as fasta formats and then converted into the desired

higher n-gram (here n≤3) feature representations. The experimental setup is carried

out mostly on bigram and trigram features where the input spaces range from 400(202)

to 8000 (203). The experiment has been devised with two objectives,

1. speed-up efficiency

2. quality of cluster

First, we concentrate on the performance benefit of clustering on large biological data

by leveraging the power of parallel computation on the Apache Spark framework.

Then, the quality of the clustering result is analyzed and validated with respect to

biological relevance.

2.3.1 Speed-Up Efficiency

To compare the performance of the proposed method on different parameters such as

data size, data points, and data dimension, three different experimental environments

(EE) have been set up. They are 1 Master and 2 Slave multi-node based physical Spark

cluster referred to as EE1, Spark community edition distribution over cloud hosted by

databricks as EE2 and a single standalone node as EE3. The performance speed-up

has been reported in Table 2.1. The parallel execution of the DBSCAN clustering

algorithm on higher dimension (bigram or trigram) protein sequence data with EE1

setup is faster than the other two (EE2, EE3 ).

In all three EE -setups, the algorithm has experimented with different data-size and

dimensions. The results depict that increasing the size of the dataset, the speed-up

ratio of EE1 compared to EE2 and EE3 also increases. As the size of the datasets ex-
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Table 2.1: Performance speed up of different execution setup.

Data
Size

Data
Points

Data
Dimension

EE1# EE2# EE3#
Speedup

(EE2/EE1)
Speedup

(EE3/EE1)

16 20413 400 0.3 0.5 0.4 1.67 1.33

326 20413 8000 6.9 32 16 4.63 2.32

653 20413x2 8000 20 71 48 3.55 2.4

981 20413x3 8000 35 $ $ - -

#- units-time in minutes, $-unable to process

Table 2.2: Performance speed up of different execution setup.

Clustering
methods

Total
Clus-
ters

Non-
Singleton

%non-
Singleton

at
(Domain
Corre-

spondence
Score=1)

corrupt Seq/clust
%Redundancy
Reduction

BiGram con 10452 421 83.1 12 1.954 48.7

BiGram all 20369 49 100 0 1.003 0.21

TriGram con 14355 362 84.2 2 1.423 31.9

TriGram all 20126 54 100 0 1.006 0.14

Uniref90 [31] 19537 293 81.0 2 1.046 0.42

Cd-hit90 [30] 19544 108 84.1 1 1.045 0.425

ceeds the block size of the Spark framework (i.e 128MB), the parallel execution becomes

faster compared to sequential and pseudo cluster execution. To analyze the dataset,

first, the cluster consensus by partitioning the data into equal-length sub-dimensions

has been obtained. From the consensus result, singleton clusters are extracted as noise

in all clustering and the remaining are referred to as non-singleton clusters. The results

were obtained from the complete dimension-based approach and sub-dimension-based

consensus approach (see Table 2.2) in both bigram and trigram features.

............

2.3.2 Quality of Cluster

In complete dimension base approach in both features produces a maximum number

of clusters 20369 and 20126 which suggests that the redundancy removal power is very

low 0.21% and 0.14%. In contrast, the Consensus-based approach results in a higher

redundancy reduction rate of 48.7% and 31.9% for bigram and trigram respectively

although the bigram-based approach produces a maximum number of corrupted clus-
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ters. Interestingly, all the clusters resulting from complete dimension are single-domain

protein suggests the approach is not suitable for multi-domain proteins. The above

results suggest that consensus-based sequence clustering with higher dimensional rep-

resentation is sensitive to both single-domain and multi-domain proteins and highly

powerful in removing redundant sequences.

In the second phase, domain-based analysis is incorporated to quantify the cluster

quality in the context of biological importance. Domain annotation data for protein

sequences are collected from Pfam database [241]. The quality of the clusters is ana-

lyzed through Domain Correspondence Score for each non-singleton cluster. If all the

proteins in a cluster agree with the same Pfam domain, the cluster is considered as

pure or otherwise corrupted (see Table 2.2). Among the non-singleton clusters, Tri-

Gram con surpasses otherstate-of-the-art methods in creating high-quality compact

clusters as 84.2% having Domain Correspondence Score 1 whereas in Cd-hit is 84.1%

but the number of non-singleton clusters is more than 1/3 of TriGram con.

2.4 Discussion

Here, in this work, a two-level parallel DBSCAN clustering for human protein se-

quences that address the computational issues of large-scale biological data processing

and analysis is presented. The experimental result showed efficient speed-up in the

proposed method and effectively reduces the redundant from sequences as the method

has achieved a higher sequence/cluster score (1.423) considering only two corrupted

clusters. In the proposed method with trigram feature (consensus), the percentage of

non-singleton clusters having Domain Correspondence Score=1 is higher than in other

state-of-the-art approaches. The quantitative evaluation shows that the clustering re-

sults improved with higher values of n and the speed-up ratio improves with increasing

data size.

In this study, it has been discussed that the development of modern high-throughput

sequencing techniques has resulted in exponential growth of proteomic data in recent

years. Analysis of this large amount of protein sequence data with existing resources is

extremely challenging with existing computational resources. The computational issue

can be resolved by analyzing the problem using a Big Data framework. Not only pro-

tein sequences, but the variety and veracity issue plays a big role in such a large-scale

dynamic PPI network. Handling large, dynamic, heterogeneous protein interaction

networks using existing computational methods is really a tedious job. This became

the basis of developing an organism-specific computational model for large-scale pro-

tein interactions. In the following chapter, an in-silico model has been proposed for

developing fuzzy semantic scape for human proteome using GO graph-based approach.

39





Chapter 3

Large-Scale Interaction of Human

Proteome at Fuzzy Semantic Space

3.1 Background

Through their interactions with other proteins, proteins play a variety of biological

and vital roles in cellular processes. Exploring the contact affinity of protein pairs is

a very significant study topic in computational biology to reveal cellular and molec-

ular capabilities, signaling pathways, and critical insights into disease mechanisms.

This chapter presents a GO graph-based approach for computing the fuzzy semantic

score (FSS) of the human proteome. Large-scale PPI network of an organism pro-

vides key insights into its cellular and molecular functionalities, signaling pathways,

and underlying disease mechanisms. For any organism, the total number of unex-

plored protein interactions significantly outnumbers all known positive and negative

interactions. Proteins are involved in various biological functions in the cell through

interactions with other proteins. Such interactions are often modeled as graphs with

proteins as nodes and interactions as binary edges. These graphs are widely called

protein-PPINs [242,243]

A large-scale PPI network of an organism provides valuable clues for understanding

cellular and molecular functionalities [129], reconstructing signaling pathways [130,

131], multi-molecular complex detection [243], disease associations analyses [56, 132],

drug discovery [133,244,245], etc. Tremendous effort has been invested into developing

in-vitro experimental methods to extract positive PPIs [246–249]. However, these

experimental methods are able to produce only a fraction of the PPI network of an

organism while being costly and time-consuming.

Several computational approaches have been introduced to support PPI predic-

tion [66,126,250–256]. The effectiveness of many of the in-silico PPI prediction meth-

ods depends heavily on the selection of the positive and negative datasets during the

training process. While biologically validated positive PPI datasets are available, neg-

ative databases are scarce [257,258]. Therefore, in silico curation of negative datasets

is an interesting research problem for the bioinformatics community. If an interac-

tome is being considered with respect to any given organism, the total number of
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unexplored protein interactions significantly outnumbers the known positive/negative

interactions, even if the ones obtained from in-silico methods are considered. For ex-

ample, in the human proteome dataset from UniProt database [259], 20 350 reviewed

human proteins result in ∼ 207 million potential interaction possibilities. However,

so far the information available is about ∼ 5.61 million positive and ∼ 0.76 million

negative interactions, including both computational and experimental data. Together

this is ∼ 3.1% of the interaction possibilities in the Human interactome. Therefore,

there is a large number of unexplored interactions that need to be assessed. One of the

major challenges here is the cost of experimental PPI detection in the in-vitro case and

the sheer size of the complete interactome and lack of supporting biological data in

the in-silico case. Conventional PPI prediction methods generate binary interactions,

whereas recent studies show that weighted interactions are proffered in pathway and/or

disease analyses [134]. As has been shown in [260] protein-protein binding affinities

may be effectively assessed with the help of the associated ontological networks.

3.1.1 GO-based Model

Here, the probability of interaction between proteins based on the knowledge from

GO [261] knowledge base is being assessed which is the world’s largest source of in-

formation on the functions of genes. GO is a controlled and structured vocabulary of

ontological terms that describe information about protein’s localization within cellular

components (CC), participation in biological processes (BP), and association in molec-

ular function (MF) (see Figure 3.1). GO terms are grouped into three independent

direct acyclic graphs (DAGs) where nodes represent specific GO terms and the links

among nodes represent different hierarchical relationships.

Each of the three sub-graphs has a single most generic GO term, that can be

considered the root in the sense that all the other nodes of that sub-graph are reachable

from it. The root nodes are GO:0005575, GO:0003674 and GO:0008150 for CC, MF

and BP, respectively. Because of that, tree oriented notions are often generalized and

used with GO sub-graphs. For example a specific GO term is considered a descendant

of the more generic GO terms from which it has incoming edges [262–264].

The UniProt-Gene Ontology Annotation (UniProt-GOA) database (see http://

geneontology.org/docs/go-consortium/) includes information about GO annota-

tion of proteins in the UniProtKB dataset. For any protein, GO annotations are

broadly classified into two groups based on inference evidence: inferred from electronic

annotation (IEA) and manually reviewed (non-IEA). The non-IEA evidence includes

data inferred from Experiment (EXP), Direct Assay (IDA), Expression Pattern (IEP),

High Throughput Direct Assay (HDA), etc. (for details see http://geneontology.
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Figure 3.1: Schematic diagram of Gene Ontology details. Ontologies are organized
in 3 hierarchical relationship graphs.

org/docs/guide-go-evidence-codes/). The inclusion of IEA which provides ∼ 25%

of all annotations enhances coverage. In practice most of the semantic assessments with

GO are determined in two orientations, one being ‘with-IEA’ and the other ‘without-

IEA’. This results in a total of six semantic assessment scores for each pair of proteins,

i.e., IEA, and non-IEA scores for CC, BP, and MF, respectively. Here, such scores are

computed and combined into a single semantics assessment score, ranging from 0 to

1, which is referred to as FSS of binding affinity.

While writing this thesis, the GO dataset contains 44,579 annotations (release-

version:02-2020 ) of which 29,267 are BP, 11,126 MF, and 4,186 CC. The GO terms

annotated to proteins can be used to infer functional relationships between them.

To compute the binding affinity between two proteins it is necessary to estimate the

semantic similarity scores of all the GO term pairs, where the first term is annotated to

one of the proteins and the second to the other. Semantic similarity computation for

any GO pair by exploring three different GO relationship graphs is a time-consuming

task. Thus there is a strong need for a method that can handle large data and is easy

to distribute.

Here, an efficient algorithm has been proposed to compute the fuzzy binding affinity

for large-scale PPIs. A high throughput parallel architecture based on Apache Spark

is being used to implement the proposed algorithm. Spark is a popular platform for

large-scale data analysis [265, 266]. Its main advantages over previous frameworks

43

http://geneontology.org/docs/guide-go-evidence-codes/
http://geneontology.org/docs/guide-go-evidence-codes/


like Hadoop are expressive and high-level API, and the ability to keep intermediate

results in memory between computation phases. The latter saves disk I/O and results

in a huge efficiency gain. Furthermore, Spark has sub-modules for data analytics,

graph processing, machine learning and streaming so combining such applications in

one project does not introduce any integration overhead at the same time Spark core

optimizations, of which there are many, are applied on the end-to-end data processing

pipeline.

Several methods have been developed to measure the semantic similarities between

protein/gene pairs. The existing approaches can be classified into three broad cate-

gories based on the information that has been used from the GO relationship graphs.

These are node-based, link or edge-based, and hybrid methods. Edge-based methods

rely on the distance between two GO terms in the GO graph [267–269]. Usually, the

distance is computed as the number of edges in the shortest graph path between two

terms or as an average over all paths. Such distance can easily be normalized and

converted into a similarity measure. Another way to compute similarity is to check

the depth of the first common ancestor of the nodes. The deeper from the root of

the sub-graph the common ancestor is, the more the nodes have in common. Unfor-

tunately, the nodes and edges in the GO sub-graphs are not distributed uniformly,

nor edges at the same level in the ontology correspond to the same semantic distance

between terms [270]. In [271] such issues were addressed by weighting edges differently

according to their hierarchical depth or taking into account node density and link type.

Yet, this does not fully solve the problem and edge-based strategies and edge-based

approaches are considered ineffective in terms of semantic assessment [260].

Node-based approaches utilize the properties of the pair of GO terms themselves

and their ancestor or descendant nodes [272–275]. Sometimes the concept of infor-

mation content (IC) is used [276], which is a measure of how specific and informative

a GO term is. Resnik [272] has defined semantic similarity as the IC of the most

informative common ancestor (MICA) of two GO terms. The MICA and the lowest

common ancestor node refer to the same ancestor of two GO terms where the MICA is

presented in the context of searching common path between GO terms, and the latter

is presented in the context of IC of GO terms. In semantic similarity computation, sev-

eral methods have used the IC values of query proteins [273, 274]. Another IC-based

approach has been proposed by Schlicker et al. [275] where the relevance similarity

measure has been defined using the location of the query GO terms in the DAG by

considering the properties of MICA [277]. Mazandu and Mulder [278] have proposed

a method that normalizes the IC-based semantic similarity to 1 when measuring the

similarity between the same GO terms. A new approach, GraSM has been introduced
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in [279] to avoid the over-reliance on MICA. It is designed in such a way that it can

be applied to any IC-based method where the semantic similarity is calculated by the

average IC of the disjunctive common ancestors (DCAs). The DCAs are identified by

the number of distinct paths from the query GO terms to MICA [279].

The IC-based methods have an obvious advantage, as they use IC to indicate the

specificity of a GO term and are because of that free from the problems of nonuniform

semantic distance and edge density. However, corpora-dependent IC calculation can

cause problems. In general, IC-based approaches suffer from two major issues. First,

the IC calculation depends on the annotation corpora set, as the same GO term may

have different IC values when different corpora are used [280]. Second, the IC is

biased by the research trend [270], as the GO terms related to popular fields tend

to be annotated more frequently than the ones related to less popular fields and the

annotation of some terms may still be missing in the corpus [277]. These issues largely

degrade the overall performance and effectiveness of methods that only use ICs.

To overcome the limitations of the IC-based approaches, many hybrid methods

have been developed that consider both edges and nodes in the DAG. Wang et al. [253]

have proposed a hybrid GO-universal method that calculates the semantic similarities

based on the topology of GO DAG. It takes into account the topological position

characteristics in the GO sub-graphs and considers the number of children’s terms

instead of the frequency of terms from the annotation corpus. GO-universal defines

the topological position characteristic of the root to be 1 and calculates the topological

position characteristic of a non-root GO term by using a ratio based on the number of

children of all ancestor GO terms [281]. A hybrid structural similarity-based method

has been proposed by Nagar and Al-Mubaid [282] using the shortest path plus either

IC generated from corpora or structure-based IC generated from DAG. In recent work,

Dutta et al. [128] have proposed a hybrid semantic similarity measure between two GO

terms based on a combination of topological properties of the GO graph and average

IC of the DCAs of the GO terms.

Although GO-based methods are popular in assessing PPI binding affinity, one of

the major challenges lies in managing the computational overhead. For example, in a

human PPI network, the total number of protein interactions to be explored is in the

order of hundreds of millions. This has been the primary concern for most of the prior

studies [128, 277, 279, 281], which concentrated on a smaller subset of the complete

dataset. Due to the proposed distributed architecture and optimized algorithm, the

problem has been eliminated. In the proposed work, the complete human proteome

has been used, and the underlying GO annotations for efficient assessment of the PPI

binding affinity and propose a novel fuzzy semantic score. The outcome of the approach
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is not limited to quantitative analysis. The fuzzy semantic network helps to understand

different biological mechanisms such as protein complex module identification and

functional analysis, high-quality data identification for the PPI model, PPI interaction

analysis, etc. The work includes,

• Design of a fuzzy semantic score of binding affinity using the GO network to

assess the binding affinity between any two proteins at an organism level. Here,

the work has been done using human proteins.

• Implementation of the underlying algorithm using a Spark-based parallel archi-

tecture and using it to process a human PPI network of ∼ 180 million potential

interactions resulting from 18,994 reviewed proteins for which GO annotations

are available.

• Construction of fuzzy semantic network at proteome level from the above de-

signed binding affinity function and extraction of meaningful biological insights.

• Validation of the developed method with respect to the available state-of-the-art

methods on benchmark datasets.

• Development of a FuzzyPPI web-server with precomputed PPI affinity scores,

available freely for non-commercial use, at: http://fuzzyppi.mimuw.edu.pl/.

3.2 Dataset

Here two datasets are used. The first one, obtained from UniProt, contained informa-

tion about human proteins and their GO annotation. It has been used as the base for

predictions. The second one has been obtained by combining several popular datasets

and is composed of experimentally validated information about positive and negative

interactions between human proteins. It has been used as the benchmark for analysis.

3.2.1 Proteome Data

The UniProt knowledgebase (UniProtKB) [259] is the combined and uniform collection

of proteins from Swiss-Prot [283], TrEMBL [284], and PIR-PSD [285]. This database

maintains a bi-directional cross references between ”PIR-PSD” and ”Swiss-Prot +

TrEMBL” protein entries. The main objective of this database is to maintain a single

entry and to merge all reports for any particular protein [283]. Thus, it reflects a

complete structure of protein repository for different organisms where many of the

entries are derived from genome sequencing projects.
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As UniProt is highly popular, with over 0.4 million unique visitors to its website

per month [286] and over 20,000 total citations of its main publications, a thorough

analysis and annotation by biologists ensure the quality of this database.

In UniProt, the human proteome (id: UP000005640 ) contains 20,350 manually

annotated human proteins. Among these, 18,994 proteins are annotated with GO

annotations which is ∼ 93% of reviewed proteins. In the proposed experiment, the

fuzzy binding affinity is assessed for the resulting
(
18,994

2

)
∼ 180 million pairs of unique

proteins.

UniProt allows to export protein data together with annotations in a text format

presented in first part of Figure 3.2. For each protein with UniProt id (e.g. P29274) and

annotated to it GO term (e.g. GO:0030673) there is information about GO type (C,

F or P) and evidence type (IEA, non-IEA). This is encoded in a hierarchical format

as shown in Figure 3.2 and store as a Parquet file which is a binary and columnar

format integrated with Spark with optimizations that allow significant performance

improvement.

3.2.2 Protein Interaction Data for Benchmarking

To prepare the benchmark dataset experimentally validated human PPIs from several

popular datasets have been used such as HIPPIE [287], STRING [37], BioGRID [35],

DIP [34], HuRI [288] for positive data and Negatome 2.0 [257], Trabuco et al. [258]

for negative data. The statistics of the interaction data are presented in Table 3.1. All

the databases are combined into a single dataset with ternary information regarding

the interaction status of the protein i.e. whether the protein pairs interact, do not

interact, or are unknown. It has been considered that there is an interaction between

two proteins if there was evidence for that in any of the positive datasets and no evi-

dence for the lack of interaction in all of the negative datasets. The other way around,

it has been considered that there is no interaction between two proteins if there was

evidence for that in any of the negative datasets and no evidence for interaction in

all of the positive datasets. Gold samples of interactions are also being distinguished

with high confidence. The resulting combined dataset has information about 5,107,321

positive interactions, 730,122 negative interactions and 18,295 out of the total 18,994

proteins are somehow accounted. For the gold sample, the statistics are 361,076 posi-

tive interactions, 182,667 negative interactions, and 15,261 proteins. The statistics of

interactions for individual dataset are presented in Table 3.1

The databases have different scoring schemes to quantify the interaction quality.

For example for BioGRID the values are in the range [−∞,+∞], while for HIPPIE

in [0,1]. This is summarized in Table 3.2 where the threshold is also specified for
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considering two proteins to interact and for including the pair in the gold sample. For

other databases binary information is present but the data is grouped in high and

low-confidence groups. For example, for DIP there are two groups core and non-core

and it is considered that both of them as the source of evidence for interactions, but

only core as the source of evidence for high-quality interactions. Sometimes, as is the

case for HuRI, one group is a superset of the other, a high-quality group. Finally,

GoldPos and AllPos interaction datasets are constructed by considering the union of

individual gold data and all data respectively from the above-described five positive

interaction databases. The degree-range specific density plot of all proteins is shown

in Figure 3.3.

Recall, that for negative interactions it is required that no positive interaction

Figure 3.2: Transformation of UniProt text format to hierarchical representation of
Protein-GO annotations.
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Table 3.1: Database wise proteome level statistics of interactions of UniProt reviewed
proteins.

Database
Existing Intr. Unexplored Intr.

Individual Total Total (in %)

DIP [34] 4,652

5,611,787

2
0
0
,6
8
0
8
7
7

96.9%

HuRI [288] 64,711

BioGRID [35] 104,509

HIPPIE [287] 342,996

STRING [37] 5,415,071

Negatome 2.0
[257]

1,482
758,411

Trabuco et
al. [258]

756,994

exists in any of the datasets. In Negatome 2.0, [257] the negative data are categorized

as gold based on the selection strategy as of Manual stringent (MS). For the dataset

by Trabuco et al. [258], high-quality negative set is selected by removing the positive

interactions that have any type (in-vivo, in-vitro and in-silico) of evidence of positive

interaction (AllPosR) while all negative set is constructed by removing the interactions

that belong to the gold quality positive (GoldPos) interactions. Note that the AllPosR

Figure 3.3: Degree-range wise plot of positive interactions.
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Table 3.2: Details of benchmark interaction data selection

Database Score All-Interactions Gold Quality
range/groups

BioGRID [−∞,+∞] ≥ 0 ≥ 10

HIPPIE [0, 1] ≥ 0.75 ≥ 0.9

STRING [0, 1] ≥ 0.15 ≥ 0.9

DIP
core(C),

non-core(NC)
C+NC C

HuRI
HuRI(H),
HuRI-

Union(HU)
HU H

Negatome 2.0
Manual(M) ,
Manual-

stringent(MS)
M+MS MS

Trabuco et al. Negative (NT ) NT −GoldPos NT −AllPosR

set includes in-silico interactions where AllPos excludes in-silico interactions.

3.3 Methodology

Building on the model from work [128] in this section it is formally defined how the

fuzzy semantic network can be used to assess the interaction affinity of any two proteins

with GO annotations. The semantic similarity between any two proteins is estimated

based on the similarities of pairs of GO terms such that one GO term annotates the

first protein and the other the second. The pairs are considered independently for each

of the GO sub-graphs, i.e., it is considered that only pairs of terms from the same GO

sub-graph. For each GO sub-graph, semantic similarity is computed in two ways based

on the evidence type of annotations, i.e., for IEA and nonIEA which are denoted as

+ and -, respectively. A Spark-based parallel implementation of this scheme has been

designed by leveraging its high throughput architecture for large-scale proteome-level

interaction analysis. The implementation details of the fuzzy function and parallel

processing are presented in the following sub-sections.

3.3.1 GO Annotation

It has been assumed that the annotation of proteins with GO terms (see Figure 3.4

(A)) is available as termsieaSG(p), such that for each protein p, a GO sub-graph, SG ∈
{CC,MF,BP}, and the evidence type annotation iea ∈ {+,−} i.e. IEA/nonIEA it

returns the set of all GO terms from VSG that are annotated with specified IEA/nonIEA

annotation type iea. For example, as shown in Figure 3.4(A), terms+CC(P29274) =
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{GO : 0030673, . . .} while terms−MF (P29274) = {GO : 0001609, . . .}. Similarly,

protiea(t) has been defined, such that for each protein t and evidence type annotation

iea ∈ {+,−} i.e. IEA/nonIEA it returns the set of all proteins that are annotated

with term t, i.e., protiea(t) =
⋃

GO∈{CC,BP,MF}{p ∈ VSG||t ∈ termsieaSG(p)}.

3.3.2 GO Sub-graphs

Here, the standard notation is being used to denote a directed graph G = ⟨V,E⟩,
where the first element of the tuple V is the set of nodes and the second E the set of

edges between the nodes, i.e., E ∈ V × V .

Let CC = ⟨VCC , ECC⟩, MF = ⟨VMF , EMF ⟩ and BP = ⟨VBP , EBP ⟩ be the GO

sub-graphs for CC, MF, BP, respectively. By assumption VCC ∩ VMF = VCC ∩ VBP =

VMF ∩VBP = ∅ from which it follows that ECC∩EMF = ECC∩EBP = EMF ∩EBP = ∅.
It is also assumed that anc-or-self and desc-or-self functions are defined for each graph

node with standard meaning

3.3.3 Fuzzy Semantic Scoring for Proteins

The prevailing theory holds that proteins with similar roles are most likely to interact

with one another. Also the more functions they share and the more specific the

common functions are the higher the interaction chance is. The functions of proteins

are concluded from GO annotations that these proteins have. Different GO sub-

graphs represent different types of functionality and are examined separately and then

combined. This way numerous annotations from one GO sub-graph do not dilute

possibly less numerous but highly shared annotations in other sub-graphs.

At first, the semantic score (SS) of binding affinity for pairs of proteins is defined

and then normalize it into fuzzy semantic score. The scoring of proteins is based on the

scoring of the pairs of GO terms annotated to them that is defined in Subsection 3.3.4.

For any pair of proteins pa and pb SS of binding affinity is defined as:

SS(pa, pb) =
∑

SG∈{CC,MF,BP}
iea∈{+,−}

Siea
SG(pa, pb) + Siea

SG(pb, pa)

|termsieaSG(pa)|+ |termsieaSG(pb)|
(3.1)

where Siea
SG(p, q) is the similarity of proteins p and q within the GO sub-graph, SG,

based on the IEA/nonIEA annotation type iea, and is defined as:

Siea
SG(p, q) =

∑
tp∈termsieaSG(p)

maxtq∈termsieaSG(q)simSG(tp, tq) (3.2)

and simSG(tp, tq) is the semantic similarity for a pair of GO terms that is defined in

Subsection 3.3.4. Semantic score is normalized with the max-min normalization. It
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linearly transforms SS into fuzzy semantic score, FSS:

FSS(pa, pb) =
SS(pa, pb)−minp,q(SS(p, q))

maxp,q(SS(p, q))−minp,q(SS(p, q))
. (3.3)

Note that fuzzy semantic score results are limited to [0, 1] and can be viewed as the

probability of interaction between proteins p and q.

3.3.4 Semantic Similarity for GO terms

In the following Subsections, MDMSSG(ti, tj) is defined to be the maximal difference

in membership strengths (see Subsection 3.3.4) of the GO terms ti, tj to natural clus-

ters covering of sub-graph and SIC(ti, tj) to be the shared information content (see

Subsection 3.3.4) between the target GO-terms. With those, it defines the semantic

similarity of a pair of GO terms that come from the same GO sub-graph.

Definition 3.1 Semantic Similarity for a GO sub-graph, and any two vertices t1

and t2 where t1, t2 ∈ VGO the semantic similarity of t1 and t2 is defined as:

simSG(t1, t2) = (1−MDMSSG(t1, t2)) ∗ SIC(t1, t2) (3.4)

Note that the semantic similarity of two terms is highest if at the same time their

maximal difference in membership strengths is small and shared information content

is high.

Maximal Difference in Membership Strengths (MDMS)

The MDMSSG(ti, tj) is computed with respect to the set CCSG of cluster centers of

sub-graph, which is defined in the next subsection. Each cluster center computes how

close other nodes are to it, i.e., how strong their membership to this cluster. Large

differences in membership mean that nodes are not similar. Following [128] Gaussian

is being used to convert the distance to the cluster center into similarity and compute

the maximum difference of such similarities overall cluster centers:

MDMSSG(ti, tj) = maxc∈CCSG

∣∣∣∣e− d(c,ti))
2

2k2 − e−
d(c,tj))

2

2k2

∣∣∣∣ (3.5)

where d(t1, t2) is the smallest distances between nodes t1 and t2 taken in VSG and in

V −1
SG . That is d(t, t) = 0 and for t1 ̸= t2 d(t1, t2) has been defined as the smallest n such

that there exists a sequence of nodes w1, w2, . . . , wn−1 for which there exists a path

(t1, w1), (w1, w2), . . . , (wn−1, t2) ∈ VSG or a path (t1, w1), (w1, w2), . . . , (wn, t2) ∈ V −1
SG .
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Natural Cluster Covering of a GO Sub-graph

In [128] the cluster centers CCSG for each GO sub-graph were chosen to be the nodes

with high values of ratio of nodes reachable from them together with nodes from

which they are reachable to the total number of nodes in the graph. The ratio is

briefly defined first and then explained how it has been improved upon the selection

of cluster centers.

To formally define the ratio, transitive closure of the edge relation E∗ is used to

define as the set of all node pairs ⟨u, v⟩ ∈ V × V such that there exists a (u, v)-path

in the graph, i.e., (u,w1), (w1, w2), . . . , (wn, v) ∈ E. The node v is reachable from u if

⟨u, v⟩ ∈ E∗ and the set of all nodes reachable from u is denoted as E∗(u). With this,

the ration used to determine the cluster centers for any v ∈ V is defined as:

PrpMesSG(v) =
|{u ∈ VSG|u ∈ E∗

SG(v) ∨ v ∈ E∗
SG(u)}|

|VSG|
(3.6)

The ratio-based method proposed in [128] and other works leads to selecting 49

cluster centers for CC, 32 for MF, and 68 for BP. Here, centroid-based clustering meth-

ods are adapted to work on the respective graphs that consider the graph topology by

minimizing the distance between cluster centers and cluster members. The best results

with the K-Medoids Clustering method [289] are obtained. Starting from the centers

obtained from [128] and adding more centers using the k-medoids++ initialization

method until each term was reachable from some center. This resulted in 149, 728,

and 577 GO nodes as cluster centers from CC, MF, and BP sub-graphs respectively.

The new sets of centers share 23 (CC), 19 (MF), and 28 (BP) common GO terms with

Dutta et al. with 0.131 (CC), 0.126 (MF), and 0.045 (BP) Jaccard similarity. In the

gold standard positive and negative PPI dataset, the newly developed cluster center

selection algorithm has improved the overall performances (best Area Under Curve

AUC score: 0.780 at µ = 0.15) compared to Dutta et al. [128] having best AUC score

of 0.764 at µ = 0.15) and in ALL-PPI dataset, the improvement is around 1.5%.

Shared Information Content (SIC)

Now it is taken into account how informative the common ancestors of a pair of terms

are. The intuition is similar to the notion of term frequency–inverse document fre-

quency (TFIDF) [290] where rare words tend to more correctly summarize a document

than very common words. Similarly, some terms that are commonly annotated to pro-

teins are less useful in comparing them as opposed to rarely occurring terms. For that

IC of a term in GO sub-graph has been defined with respect to the evidence type
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annotation iea:

ICiea
SG(t) = − log

|
∑

t′∈anc-or-self(t) prot
iea
SG(t′)|∑

t′∈VSG
protieaSG(t′)

(3.7)

To obtain the SIC between a pair of GO terms, the average IC of all DCAs of the GO

terms is computed [128]:

SICiea
SG (ti, tj) =

∑
a∈DCA(ti,tj)

ICiea
SG (a)

|DCA (ti, tj) |
(3.8)

The DCA of any GO terms ti, tj are those common ancestors a such that for a given

difference of number of paths to a from ti, tj they have the highest information con-

tent. Let CA(ti, tj) be the set of all common ancestors of terms ti and tj defined as

CA(ti, tj) = anc-or-self(ti) ∩ anc-or-self(tj). Let PD(a, ti, tj) be the difference in

number of (a, ti) and (a, tj) paths. The DCA is defined as follows:

DCA(ti, tj) = {a ∈ CA(ti, tj)|..................

∀a′∈CA(ti,tj)PD(a, ti, tj) = PD(a′, ti, tj)

=⇒ IC(a) ≥ IC(a′)}

(3.9)

3.3.5 Parallel Implementation with Spark

The distributed algorithm and its Spark implementation of the fuzzy semantic scoring

function is presented in this section. Given a set of proteins, GO sub-graph, and

annotation type iea i.e. IEA/nonIEA that defines GO terms assigned to the proteins,

the algorithm computes Siea
SG(p, q) as defined in section 3.3.3. The algorithm is divided

into four phases that include: one phase of pre-processing of the input data, two phases

of pre-computation of values that otherwise would be computed many times, and the

final computation using the pre-computed values. The overall parallel implementation

is detailed in the following Figure 3.4.

Preprocessing: Hierarchical representation of Protein-GO annotation data

In the first phase, the annotation data is parsed and pre-processed into a hierarchical

data structure representing iea annotations. The information about 18,994 proteins

and their annotation with ∼ 266 million GO terms is stored as a text file (for sample

representation see in Figure 3.4(A)) and is considered as an input to the pre-processing

step. The information is organized into a hierarchical structure in which each protein

ID is mapped to a list of its GO terms grouped by GO sub-graphs and annotation

types. This structure is used to extract the dataset of proteins with their respective GO

terms for selected sub-graphs and iea, which is needed in subsequent algorithm phases.
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Figure 3.4: Parallel implementation details with Spark. A) Preprocessing: Repre-
sentation of Protein-GO annotation data into a hierarchical structure in which each
protein ID is mapped to a list of its GO terms grouped by GO sub-graphs and anno-
tation types. B) PreComputation-I: Distributed computation of GO pair generation
from all possible protein pairs which is quadratic with respect to the number of pro-
teins. C) PreComputation-II: The semantic similarity computation for independent
unique GO pairs by exploring GO sub-graphs. D) Similarity Computation at the pro-
tein pair level using the broadcasted semantic similarity from the previous step. Fi-
nally, the maximal similarity is computed using map-reduce implemented with Spark
transformations followed by the normalization phase.

As the size of the input data is small, this phase does not have to be distributed.

PreComputation-I: Finding unique GO term pairs from all protein pairs

The main goal of the work is to compute Fuzzy Semantic Score for each protein pair

as defined in section 3.3.3. For that, it is needed to calculate and combine semantic

similarities of all GO term pairs for the protein pair. As the number of protein pairs

is quadratic with respect to the number of proteins, this computation is substantial
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Algorithm 3.1: UniqueGOPairComputation

Input : Protein with GO annotations
Output: A set of non-redundant GO pairs from all possible protein pairs
——————————————————————–

/* .Cartesian product of proteins. */

cartesianDF = proteinsDF.join(proteinsDF).where
((p1, p2)⇒ p1.protein < p2.protein)

/* GO pairs for all protein pairs */

pairsDF = cartesianDF.flatMap((p1, p2)⇒
. for go1 in p1.goterms do

for go2 in p2.goterms do
yield (min(go1, go2), max(go1, go2))

end

end
)

/* ...Removing duplicate pairs... */

result = pairsDF.distinct.collect

and should be distributed. The pseudocode is presented in Algorithm 3.1. Naive

implementation would repeat computation of semantic similarities for GO term pairs

for different protein pairs. In order to avoid this, semantic similarities are being pre-

computed for all pairs that appear at least once for any protein pair. Using Spark,

the set of proteins along with their GO terms is distributed on the cluster in the form

of a Spark distributed collection DataFrame. Then, the Spark built-in mechanism is

leveraged to obtain the Cartesian product of the DataFrame with itself. Those rows

of the product are kept in which the first protein is lexicographically smaller than

the second one to get rid of duplicate combinations. Then, using Spark’s flatMap

transformation, DataFrame is obtained for all GO term combinations for all proteins.

Also, it has been taken care of not to distinguish the pairs where the same elements

are in a different order. Finally, duplicate pairs are removed with Spark distinct

transformation, which is implemented efficiently with grouping and combining on the

map side of the shuffle. The resulting set of unique GO term pairs for human proteins

is small enough which is 8,152,365k pairs before de-duplication and canonical ordering,

and 73,210k after de-duplication to be collected to a single machine.

PreComputation-II: Computation of the semantic similarity for unique GO

term pairs

Next, the semantic similarity score is computed, as defined in subsection 3.3.4, for all

unique GO term pairs obtained in the previous step. The computation for each pair is

independent so it can be easily distributed if the number of GO term pairs grows large.
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Algorithm 3.2: numberOfPaths

Input : GO Graph G(V,E)
Output: numberOfPaths[u][v ] – number of valid paths from any node u to its

successors node v. u, v ∈ V
——————————————————————–
numberOfPaths ={}
for u in V do

numberOfPathsFromNode(u)
end

Thanks to limiting of the number of pairs in the previous step, for human proteins

the score needs to be computed for only 73,210k pairs which can be completed in half

an hour by a sequential, centralized algorithm and with further linear speedup due to

distributing. The resulting similarities take little more than 1GB and can be easily

broadcast to every node in the cluster for the next step.

To compute SS for all the GO term pairs, at first SIC scores are computed (see

3.3.4) for each pair, then MDMS (see subsection 3.3.4) for each pair, and finally both

the scores are combined to get the semantic similarity.

It starts by explaining how to compute the SIC score for each GO term pair. Based

on the GO sub-graph, for each pair (t1, t2) of GO terms present in the sub-graph the

number of different paths from t1 to t2 are precomputed. This can be done in time

quadratic to the graph size using depth-first search. The result can be stored in a

sparse form as a map that for each node stores a map from another node into the

number of paths between them. The lack of entry in the map for a given node pair

denotes that there are no paths between the pair. The relevant pseudocode is presented

in Algorithm 3.2

The information content ICiea
SG is also precomputed (see subsection 3.3.4) for all

the GO terms. For that, once all the paths are computed for each GO term as well as

IC scores, SIC score can also be computed for each GO term pair. The pre-computed

structure with the number of paths is used to iterate over all of the descendants of a

term, along with the number of paths to it. The iteration is performed over all the

combinations of two descendants excluding the pairs that are not present in unique

GO term pairs set refereed in subsection 3.3.5 for reducing the redundancy.

The relevant maximum ICiea
SG value is being updated by calculating the difference

between the number of paths to each descendant in the pair and aggregating the value

across term pairs. In the case of human proteins, ∼ 38.5% of the values are discarded

as only term pairs with non-zero values are allowed. The pseudocode in Algorithm 3.3

demonstrates the computation of SIC scores for all GO term pairs.
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Now the computation of semantic similarity for GO term pairs can be explained.

For each of the cluster centers c of sub-graph SG, the smallest distance to all other

GO terms t is being computed using breadth-first search on the sub-graph and on its

transposition and the minimum of both values is used as d(c, t): the smallest distance

between c and t. Then, for all the GO term pairs for which the SIC is calculated in

the previous point, the MDMS and multiply SIC and MDMS are also computed to

obtain semantic similarity. Note that if the SIC score for a term pair is 0, it is not

present in the SIC structure, so the corresponding computation of sim for this pair

is also absent. Additionally, as with SIC, any semantic similarity scores equal to 0

are excluded. In the case of human proteins, ∼ 0.3% of values are discarded this way.

As SIC, MDMS and sim functions are symmetric, their values for ordered pairs are

stored only.

Function numberOfPathsFromNode(u)

Input : GO Graph G(V,E), node u ∈ V

Output: dictionary with number of valid paths from node u to each of its

successors nodes

——————————————————————–

if numberOfPaths[u] is not defined then
uPaths = {}
uPaths[u] = 1

for v in successors(u) do
vPaths = numberOfPathsFromNode(v)

for w in keys(vPaths) do
uPaths[w] += vPaths[w] numberOfPaths[u] = uPaths

end

end

end

return numberOfPaths[u]

Computation of the semantic similarity for protein pairs

Finally, the computation of the similarity for each protein pair can be explained(see

Algorithm 3.4) which follows the description in Subsection 3.3.3. First, for each pro-

tein pair and all its combinations of GO terms, the similarity is being computed using

the broadcasted semantic similarity from the previous step. Then, the maximal sim-

ilarity is found using map-reduce implemented with Spark transformations and used

to normalize the results.
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Algorithm 3.3: GOpairSICcomp

Input : GO Graph G(V,E), required GO pair list, numberOfPaths, IC
scores

Output: SIC scores for GO term pairs
——————————————————————–
D ={}
for anc in V do

paths = numberOfPaths[anc]
score = IC(anc)
for go1 in keys(paths) do

for go2 in keys(paths) do
if (go1, go2) in required GO pairs then

diff = |paths[go1]− paths[go2]|
D[go1][go2][diff] = max(D[go1][go2][diff], score)

end

end

end

end
SIC ={}
for go1 in keys(D) do

for go2 in keys(D[go1) do
sic=mean(values(D[go1][g2o]))
if sic ̸= 0 then

SIC[go1][go2] = sic
end

end

end

Optimizations

In this section, the optimizations applied in the proposed implementation is described

that significantly influence the performance of the computation.

Multiple variants at once: In order to compute the fuzzy semantic score for protein

pair (p, q), similarities Siea
SG(p, q) across all GO term sub-graphs and annotations need

to be combined. Instead of running the algorithm 6 times, once for each sub-graph and

annotation variant, and going through all its stages, everything has been calculated at

once and keep track of the variants.

Data format: Throughout the whole computation, all the GO terms and variant

identifiers are encoded as integers instead of strings. This decreases the amount of

memory needed along with the intra-cluster communication, which saves time.

Spark optimizations: The program has been implemented using Spark’s Dataset

API, rather than lower-level RDD API. Dataset API is less expressive, as all compu-

tations have to be translatable to SQL-like operations on structured data. Yet, this
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Algorithm 3.4: ProteinPairSimComp

Input : Protein list
Output: Normalized semantic similarity scores for protein pairs
——————————————————————–

/* ...Semantic score broadcast ... */

semanticSimilaritiesBC = broadcast(semanticSimilarities)

/* .Cartesian product of proteins. */

cartesianDF = proteinsDF.join(proteinsDF).where
((p1, p2)⇒ p1.protein < p2.protein)

/* ....Similarity computation..... */

simDF = cartesian.map((p1, p2)⇒
sem = semanticSimilaritiesBC.value
(p1, p2, calculateSim(p1, p2, sem)

).filter((p1, p2, sim) ⇒ sim̸= 0)

/* ......Score normalization...... */

maxSim = simDF.map((p1, p2, sim) ⇒ sim).reduce(max)

normalizedSimDF = simDF.map((p1, p2, sim)⇒ ..... (p1, p2, sim / maxSim))

Function calculateSim(p1, p2, semanticSimilarities)

Input : Proteins p1, p2, semanticSimilarities for GO terms
Output: Semantic similarity score for protein pair
——————————————————————–
local = {}, localT = {}
len1 = p1.goterms.length
len2 = p2.goterms.length
for go1 in p1.goterms do

for go2 in p2.goterms do
goMin = min(go1, go2)
goMax = max(go1, go2)
s = semanticSimilarities[goMin][goMax]
local[go1][go2] = s
localT[go2][go1] = s

end

end
sim = (sum(row-wise-max(local)) + sum(row-wise-max(localT))) / (len1
+ len2)
return sim

enables several significant optimizations within Spark internal framework [291, 292],

such as:

• Memory Management and Binary Processing: leveraging application semantics

to manage memory explicitly and eliminate the overhead of JVM object model
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and garbage collection.

• Cache-aware computation: Algorithms and data structures to exploit memory

hierarchy.

• Code generation: Using code generation to exploit modern compilers and CPUs.

3.4 Experimental Results

To compute fuzzy semantic scores of binding affinity for all possible protein pairs

complete human proteome dataset is used. The proposed method is able to quantify

the binding affinity of any two proteins within a range of [0,1]. To interpret the

numerical result, a threshold cut-off µ is used. If the affinity score is greater than µ,

it is considered as positive otherwise negative. A comparison of different values of µ is

shown in Table 3.3 where for a given value of µ the numbers of positive and negative

interactions can be seen as well as how well the classifier matches the gold sample

and whole dataset. The performance evaluation is highlighted in terms of low false

positive rate (FPR) and false negative rate (FNR). precision (a.k.a positive predictive

value) which is the fraction of true positives to the total of true-positive (TP) and false

positives (FP); recall (a.k.a sensitivity) which is the fraction of true positives to the

total of TP and false negatives (FN); and AUC of receiver operating characteristic,

which is obtained by plotting the true positive rate (TPR) against the FPR is also

computed.

3.4.1 High Quality Interactions

Positive High-Quality Interactions (PHQI) is being identified with low FPR for µ ≥
0.6. The low FPR score i.e. type-1 error indicates that the interactions determined

to be positive with µ ≥ 0.6 are very reliable, i.e., have a very-low possibility of being

negative. Thus the interactions with increasing threshold from 0.6 onward identifies

PHQI. The significant performance scores are highlighted (green) in the Table 3.3.

Negative High-Quality Interaction (NHQI) is also identified with low FNR for µ ≤
10−3. The low FNR score i.e. type-2 error that the interactions determined to be

negative with µ = 10−3 are very reliable, i.e, have a very low probability of being

positive. The proposed approach has achieved low FNR (< 0.01) on the Gold-PPI

dataset at µ = 10−3 threshold. However, in All-PPI dataset the FNR score is 0.053 at

the mentioned threshold. The thresholds with significant FNR scores are highlighted

(orange) in the Table 3.3.
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Table 3.3: Comparison of effects of different values of the threshold cut-off

µ
FuzzyPPI Gold-PPI All-PPI

Pos Neg FPR FNR Pre Rec AUC FPR FNR Pre Rec AUC

10−5 155101018 25275503 0.963 0.009 0.673 0.991 0.514 0.763 0.041 0.889 0.959 0.598

10−4 154560195 25816326 0.962 0.01 0.674 0.99 0.514 0.762 0.042 0.889 0.958 0.598

10−3 148640177 31736344 0.95 0.012 0.676 0.988 0.519 0.752 0.053 0.889 0.947 0.598

0.01 120473678 59902843 0.857 0.025 0.695 0.975 0.559 0.674 0.118 0.893 0.882 0.604

0.03 84384625 95991896 0.673 0.05 0.739 0.95 0.638 0.528 0.232 0.903 0.768 0.62

0.05 59805296 120571225 0.502 0.09 0.784 0.91 0.704 0.39 0.341 0.915 0.659 0.634

0.07 43432944 136943577 0.364 0.139 0.826 0.861 0.749 0.281 0.44 0.927 0.56 0.637

0.09 32219592 148156929 0.261 0.191 0.861 0.809 0.774 0.2 0.526 0.938 0.474 0.638

0.1 27810210 152566311 0.222 0.218 0.876 0.782 0.78 0.168 0.565 0.943 0.435 0.64

0.2 6774257 173602264 0.044 0.511 0.957 0.489 0.723 0.032 0.82 0.973 0.18 0.574

0.3 2236133 178140388 0.01 0.718 0.983 0.282 0.636 0.007 0.92 0.987 0.08 0.537

0.4 872529 179503992 0.002 0.837 0.993 0.163 0.58 0.002 0.963 0.993 0.037 0.518

0.5 429050 179947471 0.001 0.905 0.996 0.095 0.547 0.0008 0.982 0.996 0.018 0.509

0.6 182139 180194382 0 0.943 0.998 0.057 0.528 0 0.991 0.998 0.009 0.505

0.7 80483 180296038 0 0.967 0.999 0.033 0.517 0 0.995 0.999 0.005 0.503

0.8 24458 180352063 0 0.982 1 0.018 0.509 0 0.997 1 0.003 0.501

0.9 10184 180366337 0 0.993 1 0.007 0.503 0 0.999 1 0.001 0.501

0.95 2654 180373867 0 0.997 1 0.003 0.501 0 1 1 0 0.5

1 0 180376521 0 1 1 0 0.5 0 1 1 0 0.5

Pre: represents precesion.
Gold-PPI: represents Gold-PPI(Positive and Negative).
All-PPI: represents All-PPI(Positive and Negative).
Rec: represents Recall.
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Table 3.4: Performance analysis of JUPPI and Ding et al. with three different
datasets using Fuzzy semantic scoring threshold.

Method Data Type AUC AUPRC ACCU F1 MCC

JUPPI [138]

PHQI-NHQI 0.996 0.996 0.973 0.973 0.946

AP-AN 0.972 0.974 0.910 0.908 0.823

UP-UN 0.939 0.940 0.868 0.865 0.738

Ding et al. [293]

PHQI-NHQI 0.924 0.927 0.836 0.832 0.672

AP-AN 0.856 0.857 0.767 0.763 0.535

UP-UN 0.836 0.826 0.747 0.737 0.496

3.4.2 Critical Threshold

The experimental results from Table 3.3, suggest that the PHQI and NHQI interactions

can be successfully identified using proposed scoring scheme (µ ≤ 10−3 for NHQI and

µ ≥ 0.6 for PHQI). With the increasing values of threshold the quality of negative

interactions gradually decreases. Similarly, the quality of the positive interactions

drops as the threshold is decreased. To impose a critical cut-off on the scoring, different

evaluation metrics such as precision, recall, and AUC have been used. The precision

scores show an improving trend with the increase of threshold whereas the recall score

shows a better performance at a lower threshold. AUC score became crucial to fix

the threshold point, where both the precision and recall are on balance. Based on

the AUC scores on both datasets (ALL-PPI and Gold-PPI), 0.1 is considered as the

critical threshold. With the threshold cut-off of 0.1, for both datasets, the highest

AUC value is obtained (0.64 in All-PPI and 0.78 in Gold-PPI).

3.4.3 Validation w.r.t State-of-the-art

The proposed approach is able to provide a fuzzy semantic score between any protein

pair that signifies interaction affinity between them. The biological significance of these

scoring schemes is to categorize the interaction space into different significant levels

such as high confidence, both positive and negative interaction, and low confidence

which is uncertain.

This categorization has a significant effect on machine learning-based PPI pre-

diction models. To establish the importance of the proposed scheme, three different

datasets are selected from the interaction data pool using above described scoring

cutoffs and PPI prediction performances have been evaluated using two independent
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Figure 3.5: Performance changes with respect to AUC and AUPRC on three set
of PPI data extracted from PHQI-NHQI, AAP-AN and UP-UN. Plots in the 1st row
represents AUC, and the 2nd row represent AUPRC, respectively. The 1st and 2nd,
column-wise plots show the curves from JUPPI [138] and Ding et al. [293].

PPI prediction methods, JUPPI [138], and Ding et al. [293]. First, the PHQI-NHQI

dataset is selected from high-quality positive (with µ ≥ 0.6) and high-quality negative

(with µ ≤ 10−3). Second, the AP-AN dataset is selected randomly from the pool of

all known positive and negative interaction data. Finally, a UP-UN dataset is selected

from the uncertain region of interaction space (µ < 0.6 and µ > 10−3) as shown in

Table 3.3. In this final dataset, all ambiguous interactions are removed from both

positive and negative interaction sets for clarity of the test. The performances of both

methods are evaluated with five statistical metrics (AUC, AUPRC, ACCU, F1 and

MCC) and scores are reported in Table 3.4. Both methods have shown a significant

performance improvement on the PHQI-NHQI dataset compared to AP-AN and UP-

UN. The performances on the UP-UN dataset is worse than the other two due to the

uncertain positive and negative selection in training data. The AUC and AUPRC

curves from three sets of interaction datasets are shown in Figure 3.5.
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3.4.4 Proteome Level Disease Analysis

In this section, the significant sub-clusters have been extracted from a complete fuzzy

semantic network of the human proteome. For graph sub-cluster retrieval, MCL clus-

tering algorithm [294, 296] has been employed on the complete human interactome

with developed fuzzy semantic scores. To evaluate the significance of the developed

FuzzyPPI model, these sub-clusters are being characterized with respect to the disease

associated with twenty groups of human cancer disease from the Pathology Atlas of

Human Protein Atlas [295]. The cluster-disease association is presented with an ex-

ample cluster on three cut-off thresholds (µ) of FSS (≥ 0.5, ≥ 0.7 and ≥ 0.9). The

cluster hierarchy and their association are shown in Figure 3.6.

3.5 Discussion

In this chapter, a new fuzzy affinity-based scoring scheme has been presented for the

prediction of interaction affinity pairs of human proteins. The work is built upon the

GO associations of respective proteins and the underlying GO graphs for MF, CC, and

BP sub-graphs. A graph clustering approach has been used to identify representative

cluster centers in a graph, and the ancestor-descendent relationships between two nodes

have been utilized to design the fuzzy affinity functions. One of the major limitations

of the work is that it depends heavily on the GO annotations of the respective proteins.

In cases, where GO annotations are not available, the interaction affinity cannot be

predicted. However, among 20, 350 reviewed human proteins, only 1, 356 proteins did

not have a matching GO annotation and had to be excluded from the study, which

allowed to successfully estimate interaction affinity between ∼ 180 million of protein

pairs. Also, the GO annotation and underlying GO graphs get updated periodically.

Minor perturbations in the GO network may lead to changes in the PPI affinity scores.

Therefore, it is also proposed to update the web server periodically with new releases

of the GO annotations.

Computation of such a large number of interaction estimations would not have been

possible without the use of Spark-based parallelization. As for comparison, the work

by Dutta et al. [128] used only 4, 726 interactions from ∼ 2000 human proteins. With

a standard desktop computer and sequential implementation, the graph clustering

and affinity assessment score estimation algorithms take days/weeks to complete. In

contrast, ∼ 180 million interaction estimations took less than a week in a Spark-based

parallel cluster setup. It has been planned to extend our work with both reviewed and

unreviewed proteins and also for multi-organism PPI prediction problems, leading to

more than a trillion interactions.
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Finally, one of the major objectives of the work is to qualitatively categorize the

protein interactions, based on the affinity scores. It may be observed that the FuzzyPPI

may be useful for identifying high-quality positive interactions with very low FPR, as

well as high-quality negative data selection with very low FPR. The work has also

been compared with the state-of-the-art in the domain and its effectiveness has been

validated.

In this chapter, a new method has been depicted that can compute the interaction

fuzzy affinity between any two protein pairs. The development of such an effective

scheme to compute fuzzy interaction affinity at the organism level eventually helps to

construct a fuzzy semantic network. This fuzzy semantic network could be a key node

to assess different cellular and molecular mechanisms, disease analysis, host pathogenic

relationships, drug target improvement, etc. In the following chapter, an in-silico

host-pathogen network model has been developed for human-nCoV PIN which would

help in understanding the disease transmission mechanism by identifying the potential

spreader proteins.
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Chapter 4

Computational Modeling of

Host-Pathogen PPIN

4.1 Background

Host-pathogen PPINs are significant for understanding the mechanism of transmission

of infection, which is essential for developing new and more effective therapeutics,

including rational drug design. Progression of infection and disease results due to the

interaction of proteins in between pathogen and host. Pathogen plays an active role

in spreading infection. Pathogen and host PPIN permit pathogenic microorganisms

to utilize host capabilities by manipulating the host mechanisms to abscond from

the host’s immune responses [65, 135, 136]. Detection of target proteins through the

analysis of pathogen and host PPIN is the central point of research [56, 137, 138].

Topologically significant proteins having a higher degree of interaction are generally

found to be important drug targets. However, proteins with fewer interactions or

topologically not substantial may be involved in the mechanism of infection because

of some biological pathway relevance. Clinically validated human-nCoV PPI in the

current literature gives the motivation to develop a new computational model for the

human-nCoV PPI network. The proteins are subsequently validated which involves the

host-pathogen interactions with respect to potential Food and Drug Administration

(FDA)-approved drugs for COVID-19 treatment.

Coronavirus belongs to the family of Coronavirae. Besides affecting human beings,

it also infects birds and mammals. SARS-CoV-2 replicates the host cell’s genome by

interacting with the host proteins. Due to this fact, the identification of virus and host

PPIs could be beneficial in understanding the disease transmission behavior of the virus

as well as in potential COVID-19 drug identification. The International Committee on

Taxonomy of Viruses (ICTV) has declared that nCoV is highly genetically similar to

the SARS-CoV epidemic in 2003 having∼ 89% genetic similarity. Though the common

symptoms of the coronavirus are common cold, cough, etc., it is accompanied by severe

acute, chronic respiratory disease and multiple organ failure leading to human death.

SARS-CoV and MERS-CoV were the two major outbreaks in 2003 and 2012 before

SARS-CoV-2. The source of origin of SARS-CoV was located in Southern China. Its
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fatality rate was within 14%-15% [297], due to which 774 people lost their lives among

8804 affected cases. Saudi Arabia was marked as the base for the commencement

of MERS-CoV. 858 persons among 2494 infected cases were defeated in their battle

against the MERS-CoV virus. Therefore, in comparison to SARS-CoV, it resulted in

a mortality rate that was significantly greater, at 34.4% [298].

COVID-19 evolved in the Chinese city of Wuhan (Hubei province) [299]. The first

case of human species affected by nCoV was observed on 31st December 2019 [300].

Soon it expands its adverse effect on almost all nations within a brief period [301].

The World Health Organisation (WHO) recognises that the widespread catastrophic

outbreak of nCoV is primarily the result of widespread community transmission, and

on January 30, 2020, they announce the declaration of a global health emergency.

After proper assessment, WHO presumes its fatality rate to be 4% which urges global

researchers to work together to discover an appropriate treatment for this pandemic

[302,303].

All three epidemic creators SARS, MERS, and SARS-CoV-2, are biologically in-

cluded in the genus beta coronavirus under the Coronaviridae. Both structural and

non-structural proteins are involved in the formation of SARS-CoV-2. After enter-

ing the human body, the structural proteins, such as the envelope protein, membrane

protein, nucleocapsid protein, and spike protein, connect with the receptors and play

a vital part in the transmission of the disease [304]. So, there is an urgent need to

understand and analyze the mechanism of disease transmission of this new virus.

In this research work, PPIN are the most significant attribute in studying the dis-

ease propagation mechanism from SARS-CoV-2 to humans. It plays a crucial role in

identifying essential proteins [137, 157, 158, 305, 306] responsible for various diseases.

They are also significant in identifying protein functions [152,153,180,307]. According

to Lotem et al. [308], though human PPIN is constantly expanding, very little infor-

mation is available about the human PPIN, which gets generated in disease conditions.

With the enhancement in the availability of human PPIN data, the primary focus of

research has been shifted from the basic understanding of the PPIN to the study of

the PPIN underlying various kinds of human disease [309]. According to the work of

Ideker et al. [310], PPIN study mainly falls under four categories: 1) Identification

of human disease genes based on network analysis, 2) Implication of additional genes

involved in the disease by using protein networks, 3) Identification of protein subnet-

works involved in diseases and 4) Classification of case-control studies based on protein

PPIN.

It has been reported that SARS-CoV has ∼ 89% [311,312] genetic similarities with

nCoV. SARS-CoV-Human protein-PPIN has also been studied widely and is available
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in the literature [313–315]. Recently, a computational model has been developed to

identify potential spreader proteins in a Human-SARS-CoV interaction network using

the SIS model [158]. In addition, sequence information of 29 nCoV proteins has been

released [33] GO information of 14 of the nCoV proteins are available [33, 316]. A

method to predict interaction affinity between proteins from the available GO graph

has been recently developed [128]. Assessment of interaction affinity between nCoV

proteins with potential Human target/bait proteins, which are susceptible to SARS-

CoV infection, has been done. Fuzzy affinity thresholding is done to detect high-

quality human-nCoV PPIN. The selected human proteins are considered level-1 human

spreader nodes of nCoV. level-2 spreader nodes in human-nCoV PPIN are detected

using the spreadability index and validated by SIS [158, 317] model. The developed

model is validated for the target proteins of the potential FDA-approved drugs for

COVID-19 treatment [227]

4.2 Dataset Description

Human-SARS-CoV PPIN serves as a baseline for the proposed model. The potential

level-1 and level-2 human spreaders of SARS-CoV become the possible candidate set

for selecting level-1 human spreaders of SARS-CoV-2. Various datasets have been

curated for this purpose which have been outlined below:

4.2.1 Human PPIN

The dataset [318, 319] consists of all possible interactions between human proteins

experimentally documented in humans. Human proteins are represented as nodes,

while edges represent the physical interactions between proteins. It is a collection of

21557 nodes and includes 342353 edges/interactions.

4.2.2 SARS-CoV PPIN

PPIs caused by SARS-CoV are included in the dataset. There are 7 distinct proteins

and 17 interacting helices present. Since densely coupled proteins play a more direct

effect in infection spread than solitary ones, only these are taken into account [313].

4.2.3 SARS-CoV - Human Protein-PPIN

The dataset consists of 118 instances of interactions between SARS-CoV and human

hosts. The purpose of this method is to retrieve the primary human interactions

associated with SARS-CoV [313].

4.2.4 SARS-CoV-2 Proteins

This data is collected from the pre-released dataset of available SARS-CoV-2 proteins

from UniProtKB [33,320], which includes 14 reviewed SARS-CoV-2 proteins.
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4.2.5 GO Graph and Protein-GO annotations

GO graph types i.e. CC, MF, and BP are collected from GO Consortium [316]. In

addition, the protein to GO-annotation map is retrieved from the UniProtKB database.

4.2.6 Potential COVID-19 FDA-approved drugs

Six potential FDA-approved: Lopinavir [321], Ritonavir [322], Azithromycin [323],

Remdesivir [324–326], Favipiravir [327, 328], and Darunavir [329] have been identi-

fied from the DrugBank [330] published white paper [227] which have been used for

validating the proposed model.

4.3 Methodology

The developed computational model for human-nCoV PPIN that has been proposed

here consists of two crucial methodologies 1) validation of the SIS model in addition to

the identification of spreader nodes based on the spreadability index and 2) fuzzyPPI

model. First, the SIS model identifies spreader nodes of SARS-CoV proteins which

are the candidate set of nCoV interactors. Then, the fuzzyPPI model is applied to

extract the human-nCoV interactions, and finally, nCoV spreaders are identified using

the SIS model.

4.3.1 Identification of Spreader nodes by Spreadability Index

Along With the Validation by SIS Model

In human-nCoV PPIN, the former acts as a pathogen/bait while the host, the human,

acts as ‘Prey’. The transmission of infection starts when a pathogen enters a host

body and infects its protein, affecting its directly or indirectly connected neighbor

proteins. Considering this method of transmission, PPIN of humans and SARS-CoV

are considered to detect spreader nodes. Spreader nodes are those nodes/proteins

that transmit the disease fast among their neighbors. However, not all the nodes in

a PPIN are spreaders. So, proper detection of spreader nodes is crucial. Spreader

nodes are found by the utilization of the spreadability index, a metric that quantifies

the transmission capacity of a given node or protein. Moreover, the compactness of

PPINs and their capacity for transferability are assessed by centrality analysis. Nodes

exhibiting high centrality values are commonly regarded as spreader nodes or the most

pivotal nodes within a network.

The spreadability index [158] is one of the centrality-based measures that combines

three major topological neighborhood-based features of a network. They are

• Node weight (Nw) [331]

72



• Edge ratio (Er) [332]

• Neighborhood density (ND) [332]

Nodes having a high spreadability index are considered spreader nodes. The spreader

nodes thus identified are also validated by the SIS model [317]. The SIS model is

implemented to design the SARS-CoV and SARS-CoV-2 outbreak into a disease model

consisting of proteins based on their present infection status. A protein can be in either

of the three states:

• S: Susceptible, which means that every protein is initially susceptible though not

yet infected but at risk of getting infected by the disease.

• I: Infected, which means that the disease already infects the protein.

• S: Susceptible, which means proteins again become susceptible after getting re-

covered from the infected state.

This model is implemented to generate the overall infection capability of a node after

a certain range of iterations. Thus the sum of the infection capability of the top

selected spreader nodes is computed by this model, which is compared against the

sum obtained for the selected top critical nodes by other existing centrality measures

like:

Betweenness Centrality (BC) [181] is one of the ways of measuring a node’s impact

on the transmission of information between every pair of nodes in a graph, consider-

ing that this transmission is always executed over the shortest path between them.

Mathematically, it is defined as:

C
(u)
B =

∑
s ̸=u̸=t

ρ(s, u, t)

ρ(s, t)
(4.1)

where ρ(s, t) is the total number of shortest paths from node s to node t, and ρ(s, u, t)

is the number of those paths that pass through u.

Closeness Centrality (CC) [159] is a procedure for detecting nodes that transmit

information within a network efficiently. Nodes with high closeness centrality values

are considered to have the shortest distance to all available nodes in the network. It

can be mathematically expressed as:

C
(u)
C =

|Nu| − 1∑
v∈V dist(u, v)

(4.2)

Where, |Nu| denotes the number of neighbors of node u and dist (u, v) is the distance

of the shortest path from node u to node v.
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Degree Centrality (DC) [333] is considered the simplest among the available cen-

trality measures that only count the degree of a node, i.e., the number of directly

connected neighbors. Nodes having a high degree are said to be the highly connected

module of the network. It is defined as:

C
(u)
D = |Nu| (4.3)

Where, |Nu| denotes the number of neighbors of node u.

Local Average Centrality (LAC) [302] of a node represents how close its neighbor-

hood proteins are. It is defined to be the local metric to compute the essentiality of

the node for transmission ability by considering its modular nature, the mathematical

model of which is highlighted as:

LAC(u) =

∑
w ∈Nu

degwCu

|Nu|
(4.4)

Table 4.1: Computation of spreadability index of Figure 4.1 and validation of selected
top 5 spreader nodes by the SIS

Rank Proteins ESi
out ESi

in Er ND Nw Si

Sum of
SIS

infection
rate of
top 5
nodes

1 Node 3 6 3 1.75 6.94 2.83 14.99

1.19
2 Node 9 5 4 1.20 7.07 3.00 11.48
3 Node 6 5 2 2.00 3.93 2.60 10.46
4 Node 8 6 2 2.33 2.27 3.25 8.55
5 Node 1 5 4 1.20 4.21 3.40 8.45

ND: Neighbourhood Diversity

The proposed method for selecting spreader nodes in SARS-CoV PPIN [158] has

performed better than the other existing state-of-the-art like BC [181], CC [159],

DC [154] and LAC [156]. The detailed comparison and results are given below in

Table 4.2, Table 4.4 to Table 4.7 with reference to the Figure 4.3 . A synthetic PPIN

is considered in Figure 4.1 to demonstrate the entire methodology of the spreadability

index (see Table 4.1). In addition, computational analysis of the spreadability index

of the proposed model with one of the other methodologies LAC [334] has been high-

lighted in Table 4.3. ESi
out is the total number of edges that are outgoing from the ego

network Si [158]. Whereas, ESi
in is denoted as the total number of interconnections in
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Figure 4.2: Ego Network of node 1 in a synthetic PPIN is highlighted by the dotted
circle.

the neighbor of node i [332]. ES3
out of node 3 is 6 while ES3

in of node 3 is 3, which high-

lights that node 3 has the highest transmission ability from its ego network to outside

when compared to other nodes. Node 3 also has the highest spreadability index. But

LAC failed to rank node 3 in the first position. The same scenario can be observed

for some other nodes in the synthetic network too. Besides SIS validation result shows

that the selected top-ranked spreader nodes in this proposed model have the highest

infection capability compared to the other ranked nodes. Ego network can be defined

as:

Ego network [332] of node i (Si) is defined as the grouping of node i itself along

with its corresponding level-1 neighbors and interconnections. N(Si) consists of the set

of nodes that belong to the ego network, Si i.e., i∪Γ(i) where i∪Γ(i) denotes node i’s

neighbors. It is used in the identification of spreader proteins in SARS-CoV-Human

PPIN in [158]. The figure of Ego network is given in Figure 4.2.

4.3.2 FuzzyPPI Model for Potential SARS-CoV-2 - Human

Interaction Identification

The binding affinity between any two interacting proteins can be estimated by com-

bining the semantic similarity scores of the GO terms associated with the proteins

[56, 128, 335–337]. A greater number of semantically similar GO annotations between

any protein pair indicates higher interaction affinity. The fuzzyPPI model is a hybrid

approach [128] that utilizes both the topological [338] features of the GO graph and

information contents [273,274,337]of the GO terms.
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GO is organized in three independent DAGs are MF, BP, CC [316]. The nodes in

each GO graph represent GO terms, and the edges represent different hierarchical re-

lationships. In the proposed work, the two most essential relations, ‘is a’ and ‘part of ’

have been used for GO relations [339].

The semantic similarity between any two proteins is estimated by considering the

similarities between all pairs of annotating GO terms belonging to a particular onto-

logical graph. The similarity of a GO term pair is determined by considering specific

topological properties of the GO graph and the average IC [340] of the DCAs [335,336]

of the GO terms as proposed in [128]. FuzzyPPI first relies on a fuzzy clustering of the

GO graph where the selection of GO terms as cluster center is based on the level of

association of that GO term in the GO graph. Then, the cluster centers are selected

based on the proportion measure of GO terms. The proportion measure for any GO

term t is computed as:

PrM (t) =
|An (t)|+ |Dn (t)|

|NO|
(4.5)

where, (t), Dn(t) represents the ascendant and descendant of term t and N0 is the total

number of GO terms in ontology. A higher value of the proportion measure (PrM(t))

signifies higher coverage of ascendants and descendants associated with the specific

node. Finally, the GO terms for which this (PrM(t)) is above a predefined threshold

are selected as cluster centers. In this work, the cluster centers are chosen based on

the threshold values as suggested in [56,128]

After selecting the cluster centers, the degree of membership of a GO term to

each of the selected cluster centers is calculated using its respective shortest path

lengths to the corresponding cluster centers. The membership of the GO term to a

cluster decreases with an increase in its shortest path length to the cluster center. The

membership function is defined as:

MmFc(t) = e−
−(x−ci)

2

2 k2 (4.6)

where, ci is i -th center and k is the width of membership function, and x is the

shortest path length from t to ci. The difference D(ti,tj) in membership values between

the GO pair ti and tj for each cluster center, is computed to find the weight parameter.

The weight parameter is defined as:

Wt(ti, tj) = 1−maxD(ti, tj) (4.7)

This weight value determines how different two GO terms can be with respect to the

cluster centers. Next, the SIC is computed using the average IC [340] of the DCA of
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the GO term pair (ti,tj) for all three GO graphs. The SIC is defined as:

SIC(ti, tj) =

∑
a⊆DCA(ti,tj)

IC(a)

|DCA(ti, tj)|
(4.8)

where DCA(ti,tj) represents the disjunctive common ancestors of GO-term ti and

tj. The semantic similarity,sim, between the GO term pair ti and tj is defined as:

sim(ti, tj) = Wt(ti, tj)× SIC(ti, tj) (4.9)

The semantic similarity of protein pair Pi,Pj for each GO-type i.e. CC, MF, and

BP, is estimated by utilizing the maximum similarity of all possible GO pairs from

the annotations of proteins Pi and Pj for each type of GO. The interaction affinity

of protein pair (Pi,Pj) is defined as the average of CC, MF, and BP-based semantic

similarity.

This work uses the available ontological information to calculate the fuzzy inter-

action affinity score between the protein pairs of SARS-CoV-2 and spreader human

proteins (see Figure 4.4). Here, the SARS-COV’s level-1 and level-2 spreader proteins

are employed as the primary target for the proposed fuzzyPPI model for interaction

affinity computation. A bipartite relation of GO pairs is primarily generated from each

pair of proteins for each type of GO annotations i.e. CC, MF, and BP independently

(Figure 4.4A) To reduce the computational overhead and time, semantic similarity

scores are previously computed between all GO pairs belonging to a particular GO

type using equation 4.9 [128]. The semantic similarity is computed by exploring the

topological properties of the GO sub-graph. For each type of GO sub-graph, a differ-

ent set of cluster center nodes, which are GO terms, are identified based on proportion

measure (see Equation 4.5) that rely on the annotation score and GO relationship

graph hierarchy. The GO semantic similarity is estimated with a distance-based mea-

sure between the target GO pair by exploring the membership score (see Equation 4.6

and 4.7) and values (see Equation 4.8) compared to respective cluster centers of each

GO sub-graphs (Figure 4.4B). For each GO type, the max of all possible scores of the

bipartite links in a particular GO sub-graph is considered the final SS of that type of

GO.

Similarly, all three different scores are evaluated and averaged to find the inter-

action affinity for the annotated protein pair. Then, the fuzzy score of interaction

affinity is computed by normalizing the interaction affinity using max-min normaliza-

tion. Finally, with high specificity threshold (see Figure 4.5), high-quality interactions

are extracted for human-SARS-CoV-2 PPIN which involves 78 interactions involving
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Table 4.2: Computation of spreadability index of Figure 4.3 and validation of selected
top 5 spreader nodes by the SIS

Rank Proteins ESi
out ESi

in Er ND Nw Si

Sum of
SIS

infection
rate of
top 10
nodes

1 1 13 0 14.0 5.19 3.40 76.15

2.46

2 24 4 2 1.66 12.5 1.87 22.70

3 4 6 1 3.50 3.63 2.40 15.11

4 5 8 3 2.25 4.39 3.60 13.48

5 19 6 2 2.33 3.8 2.80 11.66

6 23 5 4 1.20 6.58 3.00 10.89

7 17 4 1 2.50 3.33 2.00 10.33

8 6 7 0 8.00 0.87 3.00 10.00

9 2 4 4 1.00 6.84 2.83 9.68

10 22 6 4 1.40 3.88 3.60 9.03

11 25 7 0 8.00 0.71 3.00 8.71

−−

12 27 7 0 8.00 0.71 3.00 8.71

13 28 7 0 8.00 0.71 3.00 8.71

14 30 7 0 8.00 0.71 3.00 8.71

15 18 6 0 7.00 0.85 2.66 8.66

16 20 7 2 2.66 1.78 3.50 8.26

17 7 4 3 1.25 4.15 2.80 7.98

18 21 3 6 0.57 6.66 3.33 7.13

19 3 3 3 1.00 4.00 2.60 6.60

20 16 4 2 1.66 2.06 2.75 6.19

21 15 4 2 1.66 2.06 2.75 6.19

22 31 6 1 3.50 0.75 3.33 5.95

23 33 6 1 3.50 0.75 3.33 5.95

24 32 4 2 1.66 1.75 2.75 5.66

25 8 4 3 1.25 1.88 3.25 5.60

26 14 6 0 7.00 0.40 2.66 5.46

27 9 2 4 0.60 3.64 2.80 4.98

28 10 5 1 3.00 0.50 3.00 4.50

29 13 1 3 0.50 1.70 2.50 3.35

30 11 1 3 0.50 1.70 2.50 3.35

31 12 1 3 0.50 1.70 2.50 3.35

32 29 2 0 3.00 0.00 1.33 1.33

33 26 2 0 3.00 0.00 1.33 1.33
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Table 4.3: Computation of the LAC of the synthetic network of Figure 4.1 and
validation of selected top 5 spreader nodes by the SIS model.

Rank Proteins LAC Sum of SIS infection rate of top 5 nodes
1 Node 1 2

0.86
2 Node 9 1.6
3 Node 5 1.33
4 Node 8 1.33
5 Node 3 1.2

37 human level-1 spreaders proteins.

4.4 Experimental Results

The proposed computational model of human-nCoV PPIN contains high-quality inter-

actions and proteins identified by Fuzzy affinity thresholding and spreadability index

validated by the SIS model. The sources of input and the generated results always

play a crucial role in any computational model, which is also true for the proposed

model.

4.4.1 Spreader Nodes Selection in Human-SARS CoV Inter-

action Network Using Spreadability Index

SARS-CoV - human PPIN, up to level-2, is formed by the combination of SARS-CoV -

human and Human-Human PPIN datasets. SARS-CoV - human dataset generates the

direct level-1 human interactions of SARS-CoV, while the human-human PPIN dataset

is used to fetch the corresponding level-2 human interactions. Potential spreader nodes

are identified using the spreadability index validated by the SIS model [158]. The entire

process of the detection of spreader nodes in SARS-CoV - human PPIN is depicted in

four steps in Figure 4.6

• 6 Spreader nodes in SARS-CoV PPIN are detected by the spreadability index.

• Corresponding level-1 human proteins of the spreader nodes in SARS-CoV PPIN

are identified.

• 24 Spreader nodes in level-1 human proteins of the spreader nodes in SARS-CoV

PPIN are detected.

• The same process is repeated, and 9 spreader nodes in level-2 human proteins of

the spreader nodes in SARS-CoV PPIN are identified.
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Table 4.4: Computation of CC of Figure 4.3 and computation of spreadability rate
of selected top 10 spreader nodes by SIS model [158]

Rank Proteins
Closeness
Centrality

Sum of SIS
spreadability rate
of top 10 nodes

1 1 0.085

1.94

2 5 0.083

3 2 0.082

4 4 0.082

5 23 0.081

6 3 0.081

7 21 0.081

8 22 0.081

9 7 0.08

10 15 0.08

11 16 0.08

12 19 0.079

13 14 0.079801

14 9 0.079602

15 20 0.079602

16 6 0.079602

17 8 0.079404

18 17 0.078818

19 10 0.078624

20 11 0.078049

21 12 0.078049

22 13 0.078049

23 18 0.07767

24 24 0.041558

25 32 0.041237

26 28 0.041237

27 30 0.041237

28 25 0.041237

29 27 0.041237

30 31 0.041184

31 33 0.041184

32 29 0.040921

33 26 0.040921
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Table 4.5: Computation of BC of Figure 4.3 and computation of spreadability rate
of selected top 10 spreader nodes by SIS model [158]

Rank Proteins
Betweeness
Centrality

Sum of SIS
spreadability
rate of top 10

nodes
1 1 269.1

2.2

2 2 117.93
3 4 117.1
4 3 114
5 5 108
6 24 57
7 23 56.4
8 19 45.56
9 17 39.1
10 7 36.9
11 6 32.9
12 18 32
13 21 29.36
14 22 20.53
15 16 12.1
16 15 12.1
17 14 12.1
18 28 7
19 30 7
20 25 7
21 27 7
22 20 6.63
23 9 4.16
24 32 1
25 29 1
26 26 1
27 8 0
28 11 0
29 12 0
30 13 0
31 10 0
32 31 0
33 33 0

4.4.2 Identification of the human-nCoV proteins interactions

using fuzzyPPI model

The GO information can be helpful in inferring the binding affinity of any pair of

interacting proteins using three different types of GO hierarchical relationship graphs,
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Table 4.6: Computation of LAC of Figure 4.3 and computation of spreadability rate
of selected top 10 spreader nodes by SIS model [158]

Rank Proteins
Local Average

Centrality

Sum of SIS
spreadability rate
of top 10 nodes

1 21 2.4

2.19

2 9 2
3 22 2
4 8 2
5 11 2
6 12 2
7 13 2
8 2 1.6
9 23 1.6
10 7 1.5
11 3 1.5
12 5 1.5
13 16 1.33
14 15 1.33
15 20 1.33
16 32 1.33
17 19 1
18 10 1
19 31 1
20 33 1
21 24 0.57
22 4 0.5
23 17 0.5
24 1 0
25 14 0
26 18 0
27 6 0
28 28 0
29 29 0
30 30 0
31 25 0
32 26 0
33 27 0

namely CC, MF, BP [316]. The fuzzyPPI model has been applied to find the inter-

action affinity between the SARS-CoV-2 and Human proteins using GO-based infor-

mation (see Figure 4.4 and section 4.3.2 for details). To identify the interactors of

SARS-CoV-2 on humans using the fuzzyPPI model, a set of candidate proteins are

selected, which are identified as the level-1 and level-2 spreader nodes of SARS-CoV

using the SIS model as depicted in Figure 4.6. The fuzzyPPI model is constructed
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Table 4.7: Computation of DC of Figure 4.3 and computation of spreadability rate
of selected top 10 spreader nodes by SIS model [158]

Rank Proteins
Degree

Centrality

Sum of SIS
spreadability rate
of top 10 nodes

1 24 7

2.3

2 2 5
3 23 5
4 21 5
5 1 4
6 7 4
7 9 4
8 3 4
9 4 4
10 17 4
11 5 4
12 22 4
13 19 4
14 8 3
15 11 3
16 12 3
17 13 3
18 16 3
19 15 3
20 20 3
21 32 3
22 10 2
23 14 2
24 18 2
25 6 2
26 28 2
27 29 2
28 30 2
29 25 2
30 26 2
31 27 2
32 31 2
33 33 2

from the ontological relationship graphs by evaluating the affinity between all possible

GO pairs annotated from any target protein pair. Finally, the fuzzy score of the in-

teraction affinity of the protein pair is computed from these GO pair-wise interaction

affinity into a range of [0,1].

In the proposed work, experimentally validated human PPIs from publicly available

interaction databases have been used, such as HIPPIE [287], STRING [37], BioGRID
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Table 4.8: Benchmarking details of gold-standard positive and negative interactions

Type Database Range of score/Group Cut-off for Gold standard

Positive

HIPPIE [0,1] ≥ 0.9

STRING [1,1000] ≥900

BioGRID [-∞,+∞] ≥10

DIP core , non-Core Core

HuRI HuRI(core), HuRI Union HuRI(core)

Negative
Negatome Manual, Manual Stringent Manual Stringent

Trabuco et al. Negative (NTr) NTr-All Positiveany

[35], DIP [34], HuRI [288] for positive data and Negatome 2.0 [257], Trabuco et al. [258]

for negative data. The positive interactions are also filtered by removing the edges

that are common in both positive and negative interaction sets. In each database,

Gold standard data is curated by using the scoring scheme provided by the respective

databases. The selection criteria are described in Table 4.8.

With this benchmarking data set, the fuzzyPPI Model has been assessed with

different fuzzy scoring cut-off values. The performance of this assessment is depicted

in Table 4.9. In any classification task, specificity signifies the ability to identify a

positive sample correctly. In order to identify high-quality positive interactions, here

specificity metric has been used. With the increasing value of specificity, the number

of FP interactions has shown a sharp fall as depicted in the following Table 4.9. At

threshold≥ 0.2 and≥ 0.4, the FP is 0.0048% and 0.0001% of total negative interactions

respectively. Thus, the Specificity threshold is set at ≥ 0.4. The heatmap, depicted

in Figure 4.7, representation of fuzzy interaction affinities with a score ≥ of 0.2 for

very high specificity ∼ 99%. The high-quality interaction is retrieved at threshold 0.4

having almost ∼ 99:98% Specificity, which results in a total of 78 interactions between

SARS-CoV-2 and humans which includes 37 human level-1 spreaders proteins. The

interaction networks predicted from the FuzzyPPI model are shown in Figure 4.8.

4.4.3 Identification of Human Spreader Proteins for nCoV

Human proteins present in the high-quality interactions of human-nCoV PPIN fetched

by applying fuzzy affinity threshold are considered level-1 spreaders. From these 37

level-1 spreaders, corresponding level-2 human interactions are obtained using the

human-human PPIN dataset. The spreadability index is thus computed for these

level-2 human proteins for the identification of level-2 human spreader nodes. The
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Table 4.9: Fuzzy Interaction affinity-based assessment of benchmark data at different
thresholds

Threshold TP FN TN FP Precision Recall Specificity

0.0001 334179 2721 5144 162368 0.673 0.9919 3.071

0.001 333311 3589 6877 160635 0.6748 0.9893 4.105

0.01 326522 10378 29753 137759 0.7033 0.9692 17.762

0.5 286460 50440 101715 65797 0.8132 0.8503 60.721

0.1 188584 148316 154310 13202 0.9346 0.5598 92.119

0.2 84784 252116 166712 800 0.9907 0.2517 99.522

0.3 48641 288259 167194 318 0.9935 0.1444 99.81

0.4 21187 315713 167502 10 0.9995 0.0629 99.994

0.5 16036 320864 167503 9 0.9994 0.0476 99.995

0.6 12109 324791 167505 7 0.9994 0.0359 99.996

0.7 8879 328021 167509 3 0.9997 0.0264 99.998

0.8 6355 330545 167511 1 0.9998 0.0189 99.999

0.9 2460 334440 167512 0 1 0.0073 100

1 973 335927 167512 0 1 0.0029 100

SIS model also verifies the selection. The computational model of human-nCoV PPIN

along with human level-1 (marked in yellow) and level-2 spreader nodes (marked in

green) for both low and high thresholds is depicted in Figure 4.9

4.4.4 Validation Using FDA-approved Drugs for COVID-19

After proper assessment of all potential drugs as mentioned in the DrugBank [330],

white paper [227], six drugs: Lopinavir [321], Ritonavir [322], Remdesivir [324, 326,

341], Favipiravir [327, 328], and Darunavir [329] are identified which are showing ex-

pected results to some extent in the clinical trials done for SARS-CoV-2 vaccine. All

approved human protein targets for each of the five approved drugs are fetched from

the advanced search section [342] of the drug bank [330, 343]. When searched, these

targets are found to play an active role of spreader nodes, in the proposed model of

human-nCoV PPIN. This reveals that the selected spreader nodes are of biological

importance in transmitting infection in a network makes them the protein drug tar-

gets of the potential FDA-approved drugs for COVID-19. The target protein hits in

the propoed human-nCoV PPIN for each of the 7 potential FDA-approved drugs are

highlighted in Figure 4.10. It can be observed that 3 target proteins for Ritonavir, 2

target protein hit for each of Lopinavir, Darunavir, and Azithromycin, and 1 target

protein hit for Remdesivir and Favipiravir. Out of these protein targets, ACE2 is the

most important one since it is considered one of the crucial receptors of humans for

nCoV to transmit infection deep inside the human cell [344,345].
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4.5 Discussion

In any host-pathogen interaction network, the identification of spreader nodes is crucial

for disease prognosis. However, not every protein in an interaction network has an

intense disease-spreading capability. In the proposed work, SARS-CoV - human PPIN

network and the spreader nodes at both level-1 and level-2 using the SIS model have

been used. These spreader nodes are considered for computing the PPI affinity score

to unmask the level-1 human spreaders of nCoV. In addition, GO annotations have

also been considered along with PPIN properties to make this model more effective

and significant. With the gradual progress of the work, it has been observed that

the selected human spreader nodes, identified by the proposed model, emerge as the

potential protein targets of the FDA-approved drugs for COVID-19.

The primary hypotheses of the work may be listed as follows:

• There is a genetic overlap of ∼ 89% [346] between SARS-CoV and SARS-CoV-2,

which also leads to a significant overlap in spreader proteins between human-

SARS-COV and human-SARSCOV-2 protein-interaction networks.

• FuzzyPPI approach can assess PPI affinities at very high specificity with respect

to benchmark datasets, as shown in Figure 4.5

High specificity signifies a meager false-positive rate at a given threshold. Thus, at a

0.4 threshold (∼ 99:9% specificity), the proposed model evaluates high-quality positive

interactions in human-nCoV PPIN. Finally, it has been proposed that the developed

computational model effectively identifies human-nCoV PPIs with high specificity.

The human-nCoV interactions are inferred from another pandemic initiator SARS-

CoV, which is highly genetically similar to nCoV. It has also been recognized that

the spreadability index of the human spreader proteins, up to level-2, was validated

through the SIS model. Due to high network density in human interaction networks,

the number of proteins increases with the transition from one level to another. Thus,

the proposed model can also identify human spreader proteins in level-2 by using the

spreadability index validated by the SIS model.

The proposed method has identified the ACE2 and TMPRSS2 as an interactor of

SARS-CoV-2 proteins, which is essential for entry into the human host. SARS-CoV-2

interacts with the SARS-CoV entry receptor ACE2 as SARS-CoV-2 preserves those

amino acid residues of SARS-CoV that are essential for ACE2 binding [347]. However,

the binding strength of SARS-CoV-2 with ACE2 is 10 to 20 times more than the SARS-

CoV-2 - ACE2 attachment [348]. This is because several changes occur in the receptor-

binding domains (RBDs) of SARS-CoV-2 spike protein [166]. In addition, the cellular
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serine protease TMPRSS2 primes SARS-CoV-2 for host entry, and a Serine protease

inhibitor blocks SARS-CoV-2 infection of lung cells [166, 347–349]. Thus, TMPRSS2

activity is essential for viral spread and pathogenesis in the infected host [166,347–350]

In a recent study [164], Gordon et al. have identified 332 high-confidence SARS-

CoV-2-human PPIs where they have worked on the sequence analysis of SARS-CoV-2

isolates. They cloned, tagged, and expressed 26 of the 29 SARS-CoV-2 proteins in

human cells and identified the human proteins that were physically associated with

each using affinity-purification mass spectrometry (AP-MS). However, while compar-

ing their seminal work with the proposed method, UniProt accession IDs are not

directly mapping to the SARS-CoV-2 protein sequences implemented by Gordon et

al.. In the proposed method, the work is performed only on the UniProt listed SARS-

CoV-2 proteins and applies a mathematical model of binding affinity assessment on

a subset of UniProt listed reviewed Human proteins. Therefore, direct comparison

and validation could not be possible with respect to Gordon et al., primarily because

of the unavailability of direct mapping of SARS-CoV-2 proteins into corresponding

UniProt accession ids. However, an attempt has been made to map UniProt ids of

SARS-CoV-2 proteins of et al., from COVID-19 UniProtKB reference data [300].

One of the key highlights of the study may be underlined by the fact that the

target proteins of the potential FDA-approved drugs for COVID-19 overlap with the

spreader nodes of the proposed human-nCoV PPIN. Target proteins of six potential

FDA-approved drugs: Lopinavir [321], Ritonavir [322], Azithromycin [323], Remdesivir

[324,326,341], Favipiravir [327,328], and Darunavir [329] for COVID-19 as mentioned

in the DrugBank white paper [227] overlap with the spreader nodes of the proposed

in-silico human-nCoV PPI model (see Figure 4.10). Though clinical trials for the

COVID-19 vaccine are on their way to date, three out of the six repurposed drugs, i.e.,

Remdesivir [341] and Favipiravir [351] are found to be the most promising as well as

effective ones. The proposed model successfully identified their protein targets R1AB

SARS2, TLR9, ACE2, CYP3A4, and ABCB1 as spreader nodes. This assessment

reveals the fact that these spreader nodes indeed have biological relevance relative to

disease propagation. It also motivates us to further do a drug repurposing study on the

generated SARS-CoV-2 - human PPIN in the subsequent research work [352], which

highlights that the drug Fostamatinib/R406 might be one of the potential drugs to be

used for SARS-CoV-2.

In this chapter, a computational model has been developed by computing a fuzzy in-

teraction affinity between human and nCoV proteins to identify the potential spreader

nodes using fuzzy semantic scoring methods, discussed previously. The spreader pro-

teins at both levels have been validated by using SIS model. For disease prediction,
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spreader node identification is essential. The suggested model’s identification of the

selected human spreading nodes as prospective protein targets for COVID-19 treat-

ment has been seen to advance the work gradually. In the following chapter, a in-silico

drug repurposing study has been proposed by using the target spreader proteins for

COVID-19 treatment. COVID-19 Symptom-based analysis has also been done to iden-

tify the list of FDA-approved drugs. A molecular docking study has also been done

on the identified drug for validation.
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Chapter 5

Drug Repurposing for COVID-19 using a

Novel in-silico Method

5.1 Background

The world has witnessed several severe epidemics like Spanish flu, ebola, cholera etc.

Now the world is in front of the most life-threatening viral outburst with COVID-19.

The feature that makes this new coronavirus, nCoV, unique is its ability to quickly

transmit through an infected COVID patient [353]. The virus causing COVID-19 is an

assimilation of accessory, non-structural and structural proteins [354]. According to

WHO coronavirus disease dashboard [355], 162,704,139 confirmed cases of COVID-19,

including 3,374,052 deaths, have been reported as of 1:39 pm CEST, 17 May 2021.

Based on the prior knowledge of major outbreaks of Ebola, cholera etc., treatments

with different antiviral drugs are considered and implemented to terminate COVID-19

based on previous knowledge of significant attacks. With the gradual increase in the

COVID-19 mortality rate, thus there is an urgent need for an effective drug/vaccine.

Several drugs like Remdesivir, Azithromycin, Favirapir, Ritonavir, Darunavir, etc.,

are put under evaluation in more than 300 clinical trials to treat COVID-19. On

the other hand, several vaccines like Pfizer-BioNTech, Moderna, Johnson & Johnson’s

Janssen, Sputnik V, Covishield, Covaxin, etc., also evolved from the research study.

While few of them already gets approved, others show encouraging results and are

still under assessment. In parallel, there are also significant developments in new

drugs for related diseases. But, since the approval of new molecules takes substantial

time, drug repurposing studies have also gained considerable momentum. A literature

survey [356] is recently carried out through a refined computational search in various

online repositories like Google Scholar, Science Direct, PubMed, etc., to enlist various

COVID-19 drug-related research articles since the onset of this pandemic. Almost 22

most relevant COVID-19 related drug articles [356] have been filtered out from the

search results. All these significant researches and some others have been extensively

studied. It is noted from the study that the most recommended drugs are azithromycin,

lopinavir, ritonavir, remdesivir, and favipiravir. It also appears that the amount of

data accessible for these drugs is insufficient to recommend any one of them as a

99



treatment for COVID-19 until and unless the necessary amount of appropriate clinical

trials are executed. Relative data comparison is missing in almost all human-related

studies about COVID-19. So, it is uncertain whether the COVID infected patient

recovers due to applying the suggested drug or recover due to extensive clinical care

and isolation. However, some of the in-vitro studies have shown favourable results

for these drugs. Still, these are all preliminary data, which need much more evidence

before putting it in clinical trials.

COVID-19 vaccines are also in the same race as COVID-19 drugs. According to

a current report [357]. by the Centers for Disease Control and Prevention (CDC),

Pfizer-BioNTech, Moderna, and Johnson & Johnson’s Janssen are the recommended

and authorized vaccines in the United States COVID-19. In addition, another vaccine

Sputnik-V has been developed by Gamaleya National Center in Russia. Though it

is found effective in initial trials, it has been recommended only for emergency use

by the Technical Advisory Group (TAG) of WHO. In contrast, Covishield [358] and

Covaxin [359] are the recommended vaccines in India. All these vaccines might have

specific side effects that need further analysis and research. But the two significant

areas of concern are:

• It is still unknown whether these vaccines are effective against all COVID-19

strains.

• “getting vaccinated” does not guarantee that COVID-19 will not happen again

Still, it says it could save somebody’s life by refraining from getting seriously ill if they

get infected with COVID-19. So, vaccines do not provide any herd immunity.

Due to the daily increase in deaths [360] there is an urgent need to identify a po-

tential vaccine/drug that will eventually help eradicate COVID-19. So, with no other

alternatives left, clinical trials have been started by WHO [137] on all the suggested

drugs which have somehow proved to be substantially beneficial in case studies of

COVID-19. Drug design needs a proper understanding of disease transmission mecha-

nisms that can be effectively done by analyzing host-pathogen PPIN [137]. Pathogen

facilitates disease progression as it has the potential to transform itself by mutation.

Infection of pathogen gets broadcasted through the connecting edge of interaction be-

tween host and pathogen. Thus, it is essential to explore target proteins and their

interactions in host-pathogen PPI [56] networks for potential drug discovery [361].

However, the only recognized in-vitro human-nCoV PPIN available to date is in the

work of Gordon et al. [164]. But UniProt reviewed nCoV proteins cannot be mapped

through this in-vitro generated PPIN. So, all this led to the development of an in-silico

human-nCoV PPIN through the SIS model [317] and fuzzy thresholding. Further study
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of protein targets of potential FDA-approved drugs [227] of COVID-19 in the formed

human-nCoV PPIN network also shows that FDA-approved drug, Fostamatinib which

is having R406 as its active promoiety [362] can be a potential drug for COVID-19

treatment. Rigel Pharmaceuticals, Inc. [363] got approval for TAVALISSE (Fostama-

tinib disodium hexahydrate) for the treatment of Chronic immune thrombocytopenia

(ITP) [364] from the FDA-approved on 17/04/2018.

The major contribution in this work is designed as follows:

• It uses an in-silico model which has been developed to identify potential spreader

proteins in a human-nCoV interaction network in the work of Saha et al. [158,

226], which was validated using proteins which are the targets of potential FDA-

approved drugs [227] for COVID-19 treatment.

• A two-way analysis:

– Human-nCoV interaction network analysis

– COVID-19 symptom [225] based analysis (including “loss of smell”), have

been implemented to detect the potential candidates in the list of FDA-

approved drugs for COVID-19

• In both the analyses, Fostamatinib/R406 [362], an FDA-approved drug, com-

monly used for the treatment of chronic ITP [365] ranks as the top having a

maximum overlap of target proteins in the human-nCoV interaction network.

• Fostamatinib/R406 is used for ITP [366] which is also associated with COVID-19

infections [367]

• Molecular docking, has been also performed on Fostamatinib/R406 and other

potential FDA-approved drugs [227] with the available major COVID-19 crystal

structures having PDB IDs: 6LU7 [368], 6M2Q [369], 6W9C [370], 6M0J [165],

6M71 [371], and 6VXX [372]. While Fostamatinib registers the highest score for

6LU7 and 6M2Q, it obtains a second position to the other COVID-19 structures.

• The active promoiety of Fostamatinib, i.e., R406, generates the highest docking

scores compared to all other active metabolites.

5.2 Dataset

The following datasets, given in Table 5.1, are used for the following work. The table

depicts that there is no interaction evidence between SARS-CoV - SARS-CoV protein

interactions and SARS-CoV-2 - SARS-CoV-2 protein interactions in publicly available

databases.
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Table 5.1: Description and details of the datasets

Database Name Description Nodes
Interactions

/Edges

Human PPIN
Human-human protein

interactions
21557 342353

SARS-CoV PPIN
SARS-CoV-SARS-CoV

protein interactions
7 —-

SARS-CoV - human
PPIN

SARS-CoV - human
protein interactions

120 118

SARS-CoV-2
proteins

UniProt collected
reviewed COVID-19

proteins
14 —-

5.3 Methodology

The proposed methodology involves 4 datasets: 1) Human PPIN [318, 319] 2) SARS-

CoV PPIN [313] 3) SARS-CoV - human PPIN [313] and 4) SARS-CoV-2 proteins

[33].The overall dataset statistics are highlighted in Table 5.1. The entire proposed

methodology of drug repurposing can be categorized into four major sub-sections:

5.3.1 Detection of Spreader Nodes in Human-nCoV PPIN

The only recognized in-vitro human-nCoV PPIN available to date is in the work of

Gordon et al. [164]. But UniProt reviewed nCoV proteins cannot be mapped through

this in-vitro generated PPIN. So, an attempt has been made to construct a human-

nCoV PPIN based on the available PPIN information of SARS-CoV, which has 89%

similarity [311, 312] with SARS-CoV-2. Not every protein in a PPIN is a spreader

protein/node. Spreader proteins are considered to be those specific proteins that

have a unique fast capability of transmitting infection in their neighborhood in a

short time [158]. They are identified through a spreadability index computed by the

combination of three terminologies s discussed in chapter 4: 1) Er [332], 2) ND [332]

and 3) Nw [331].

The spreadability index of node i is defined as the ability of node i to mediate a viral

infection in a PPIN. With the previously mentioned three terminologies, spreadability

index can mathematically defined as:

Spreadability index(i) = (Edgeratio(i)× neighborhood diversity(i) + {Node(wi)})
(5.1)

Nodes having a high spreadability index are termed as spreader nodes, i.e., if the

viral proteins establish interactions with these nodes, then the viral infection can be

mediated to a more significant number of nodes in a much short amount of time
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compared to the other nodes in PPIN. Identification of spreader proteins is conducted

initially in the SARS-CoV PPIN dataset. Corresponding connected human proteins,

i.e., level-1 and level-2 of selected SARS-CoV spreader proteins, are chosen from SARS-

CoV - human PPIN and human PPIN datasets. The selected spreader nodes are also

validated by SIS model [317]. The schematic diagram for the construction of COVID-

19-Human PPIN is given in Figure 5.1.

In a PPIN, level-1 proteins of a node are those proteins that are in direct connection

with that node, i.e., its immediate neighbors, whereas level-2 proteins are those pro-

teins that are indirectly connected with level-1 proteins of that node, i.e., its indirect

neighbors [152]

This results in forming a PPIN consisting of 7 SARS-CoV, 24 level-1 and 111

level-2 human spreader proteins, respectively, under a low threshold [158]. The poten-

tial human-nCoV interactions have been identified using developed in-silico fuzzyPPI

model [128]. In this model, SARS-COV spreader nodes which include level-1 and level-

2 proteins in humans are considered the candidate set of interactors for nCoV [226].

The human-nCoV pair-wise relationships are quantified using the semantic similarity

of their annotated GO pairs. A hybrid approach has been applied to assess the seman-

tic similarity between GO target pairs using the topological properties of three GO

sub-graphs [261]. These GO-level assessment scores are incorporated to obtain the

fuzzy interaction affinity score which ranges between [0, 1] between the target human

and nCoV protein pair and results (see Figure 5.1). The high specificity i.e. 99.9%

has been achieved on a threshold of 0.4 fuzzy interaction affinity score on a benchmark

human PPI dataset. Finally, with the high specificity threshold, potential interactions

are identified between nCoV bait and human prey [226].

5.3.2 Identification of FDA-approved Candidate Drugs w.r.t

COVID-19 Spreader Nodes Using Human-nCoV Inter-

action Network Analysis

Once the COVID-19-human PPIN is formed, all the level-1 and level-2 human pro-

teins of COVID-19 are mapped with their corresponding drugs from DrugBank [330].

DrugBank is an online repository [343] that contains comprehensive data about drugs,

drug-protein targets and information about drug metabolism. Due to the high-quality

annotation in DrugBank, it becomes the most used database in almost all in-silico

methodologies involved in drug design, docking of drugs, and drug interaction predic-

tion. It contains about 60% and 10% of FDA-approved and experimental drugs, respec-

tively [330]. On proper analysis, it has been observed that various spreader nodes in

COVID-19-human PPIN are the protein targets of potential COVID-19 FDA-approved
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listed drugs [227]: hydroxychloroquine [323, 373], azithromycin [323], lopinavir [321],

ritonavir [322], remdesivir [324, 326, 341], and Favipiravir [327, 328]. The details of

significant overlap between spreader nodes and drug-protein targets are highlighted in

Table 5.2 [226]

Table 5.2: Details of overlap of spreader nodes and potential COVID-19 FDA-
approved drugs

Sl. No.

COVID-19
FDA-

approvedlisted
Drugs

DrugBank
ID

Drug Protein
targets/

Spreader nodes

No.
of hits

1 Hydroxychloroquine DB01611
TLR9, ACE2,

CYP3A4, ABCB1
4

2 Azithromycin DB00207 CYP3A4, ABCB1 2
3 Lopinavir DB01601 CYP3A4, ABCB1 2
4 Ritonavir DB00503 CYP3A4, ABCB1 2
5 Remdesivir DB14761 R1AB SARS2 1
6 Favipiravir DB12466 ABCB1 1
7 Darunavir DB01264 CYP3A4, ABCB1 2

It has been observed from the table that hydroxychloroquine has the highest

hit/overlap, i.e. four, while each of azithromycin, lopinavir, ritonavir and darunavir

has two hits [226]. Remdesivir and favipiravir have one impact individually [226].

Remdesivir is the only drug that acts directly on the COVID-19 protein R1AB SARS2.

Significant overlapping drug targets and spreader nodes in Table 5.2 motivate us to an-

alyze further and develop a consensus strategy to identify potential drugs for COVID-

19 treatment. The consensus strategy is described in Algorithm 5.1. Drug consensus

score (DCS) is used in Algorithm 5.1, defined as the frequency of occurrences of a drug

at a particular level of PPIN. Execution of Algorithm 5.1 is also highlighted in Fig-

ure 5.2 by considering a randomly generated COVID-19-Human PPIN. In this PPIN,

corresponding linked drugs are mapped with each human protein (marked as green)

in level-1 and level-2, as shown in Table A in Figure 5.2.

Hence the DCS, i.e., frequency of each drug, is computed and highlighted in Table

B in Figure 5.2. Since Fostamatinib has the highest DCS in both levels, it is considered

the potential drug for the target nCoV protein in the randomly generated COVID-19-

Human PPIN (marked as red). Algorithm 5.1 is also implemented to the host targets

of in-vitro generated human-nCoV PPIN of Gordon et al. [164].
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Algorithm 5.1: Potential Drug Selection using Consensus Strategy
(DCS)

Input : The set of spreader proteins in COVID-19-human PPIN, as Sl =
{S1, S2 . . . ..Sn}. The set of drugs listed in DrugBank, Dl =
{D1, D2 . . . ..Dn}for spreader protein Si, (1 ≤ i ≤ n)

Output: mxKey- a potential drug for COVID-19
———————————————————————————–

/* .Empty list of drug for level-1 and level-2 spreader. */

DL1 ← [ ],DL2 ← [ ]
Dc1 ← [ ], Dc2 ← [ ]
for each spreader protein Si=1 do

if Si ∈ Dt(Dk ) then
append Dk in DL1

end

end
for each drug Di from DL1 do

compute DCS1(Di) and Dc1[Di] ← DCS1(Di)
end
for each spreader protein Si from Sl=2 do

if Si ∈ Dt(Dk) then
append Dk in DL2

end

end
Dc1sort ← sortdesc(Dc1)
Dc2sort ← sortdesc(Dc2)
if (Dc1sort(D

1
0) ≥ Dc2sort(D

2
0)) then

mxKey ← D1
0 /* .drug D from Dc1 with highest DCS1 value in

DL1. */

mxKey ← D2
0 /* .# drug D from Dc1 with highest DCS2 value in

DL1. */

end
return mxKey
—————————————————————————————————–
Dt (Dk ) : Target proteins of drug Dk

DCSt (Di ): DCS of drug Di at level t
sortdesc (Dcf ): Descending ordered sorting of dictionary Dcf , based on the
values of the dictionary. f-level of spreader protein.

5.3.3 Identification of FDA-approved Candidate Drugs w.r.t

COVID-19 Spreader Nodes Using COVID-19 Symptoms,

Risk Factors and Clinical Outcome-Based Analysis

COVID-19 is associated with specific health symptoms like cough, fever, breathing

difficulty, “loss of smell”, etc. Usually, the symptom “loss of smell” plays a higher
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significant role in comparison to the other existing symptoms [374–376] due to the

following reason:

• According to a correspondence published on April 15, 2020, in The Lancet Infec-

tious Diseases [374] it was highlighted by the authors that though the reason of

losing smell by COVID-19 patients was not discovered yet, their initial inspec-

tion suggests that “loss of smell” “manifests either early in the disease process

or in patients with mild or no constitutional symptoms.”.

• Another correspondence published on June 04, 2020, in The Lancet [375], stated

that “after quantifying the sensitivity, specificity, positive predicted value, and

negative predicted value of fever, cough, fever or cough, and “loss of smell” in

76,260 users of the COVID Symptom Study app who underwent the SARS-CoV-2

test (13,863 testing positive; 62,397 testing negative), they found that the predic-

tive ability of “loss of smell” and taste to be higher than fever or persistent cough,

which is in line with their previous finding that “loss of smell” and taste was the

strongest predictor of having the virus [376]. Moreover, they found that the me-

dian duration of anosmia symptoms was 5 days, whereas the median duration of

fever was only 2 days.”

These symptoms are linked with specific human gene sets chosen as the bait’s possible

target prey, i.e., nCoV. The same is also true for other risk factors and clinical outcomes

of COVID-19. So, all these genes under the mentioned categorization are grouped [322]

from the disease-gene dataset available from DisGeNET. DisGeNET [377] is considered

one of the significant resources covering all the relevant information about various dis-

eases. These multiple gene sets are compared with each other [225] using molbiotools.

The resultant gene set is again compared [225] with the curated COVID-19 dataset

available in Comparative Toxicogenomics Database (CTD) [378] under respiratory

tract disease & viral disease to obtain an overlapping gene set. CTD is yet another

significant resource that collects, organizes and stores scientific data which describes

the interrelationship between proteins, pathways, interactions, drugs etc. The overlap-

ping gene set is further intersected with the spreader protein set in level-1 and level-2

of generated human-nCoV interaction network [226]. The top 10 key genes are selected

from the resultant intersection in each level based on the fuzzy score and spreadability

index score in level-1 and level-2. These genes are considered the most significant

ones that play an essential role in COVID-19 transmission [176, 379–382] and pre-

vention [383–387] in the human-nCoV interaction network. Potential FDA-approved

drugs having these key genes/spreader proteins as known targets are identified from

DrugBank data [330, 343]. Then Algorithm 5.1 is executed to determine the most
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potential candidate FDA-approved drugs for COVID-19. The entire process of the

symptom-based analysis is highlighted in Figure 5.3.

5.3.4 Computational Docking of Potential Drugs w.r.t COVID-

19 Protein Structures

The earlier sections discuss how several SARS-CoV-2 proteins react with the human

level-1 and level-2 spreaders to form SARS-CoV-2 - Human PPIN. Hence, a drug

repurposing study is done based on network and symptom-based analysis. It reveals

Fostamatinib/R406 might be a potential drug for COVID-19. However, a docking

study is required to light this further, stating how well Fostamatinib/R406 binds with

the SARS-CoV-2 proteins. One of the most powerful approaches for structure-based

drug discovery is molecular docking. It is defined as analyzing how more than one

molecular structure, i.e. drug and protein or enzyme gets attached [388]. In other

words, docking can be interpreted as a molecular modeling methodology, which is

implemented to anticipate how small molecules, i.e., ligands, interrelate with proteins,

i.e., enzymes. But to do docking, protein structures of both SARS-CoV-2 proteins

and Fostamatinib/R406 are required. So, protein-ligand docking is executed by using

Molegro Virtual Docker (version: 6.0) on potential COVID-19 FDA-approved drugs,

Fostamatinib and R406, with all the so far available protein structures on nCoV having

PDB IDs: 6LU7 [368], 6M2Q [369], 6W9C [370], 6M0J [165], 6M71 [371], 6VXX

[372]. Grid-based cavity prediction is used to identify the potential binding sites.

Models involving flexible ligands are taken into consideration. The orientation of

ligands usually differs, and ranking for each ligand is based on the energy scores. The

entire algorithm is implemented at 1500 iterations with a simplex evolution size of 10

runs. Compounds that take the lowest binding energy in comparison to others are

considered to be the best. The molecules of the potential COVID-19 FDA-listed drugs

are downloaded from DrugBank [330] in the Structure data file (SDF/PDB) format.

These scores assist in the identification of the best molecules docked in the selected

target site. All the molecules are sorted based on these scores, representing the lowest

energy required to get tied up with amino acid (AA) components. The docking returns

two types of scores:

Moldock scores: MolDock is based on a new heuristic search algorithm that combines

differential evolution with a cavity prediction algorithm. The docking scoring function

of MolDock is an extension of the piecewise linear potential (PLP), including new

hydrogen bonding and electrostatic terms. As a result, MolDock has a very high

docking accuracy for the identification of ligand-binding modes [389]

Rerank scores: The re-rank score is a linear combination of E-inter (steric, Van
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der Waals, hydrogen bonding, electrostatic) between the ligand and the protein and

E-intra. (torsion, sp2-sp2, hydrogen bonding, Van der Waals, electrostatic) of the

ligand weighted by pre-defined coefficients. The re-ranking procedure is adequate for

identifying high-quality binding modes in place of more advanced scoring schemes [389]

5.4 Experimental Results

Computational studies and results of associated drugs with human proteins in human-

nCoV PPIN show that there is a probability that Fostamatinib/R406 may act as one

of the potential candidates for COVID-19 treatment.

5.4.1 Drug Consensus Results for COVID-19 Spreader Nodes

Using Human-nCoV Interaction Network Analysis

Drugs and their corresponding IDs are mapped with all human spreader proteins in

human-nCoV PPIN by matching the related drug-protein targets with spreader nodes.

Using Algorithm 5.1, it is seen that Fostamatinib/R406 has the highest frequency of

occurrence in the whole PPIN among all human proteins, with an overlap of 155

target proteins in human-nCoV PPIN, i.e., highest DCS as discussed earlier in section

5.3. It has a DCS score of 7, i.e., count of level-1 protein targets of Fostamatinib as

shown in Table 5.3, and 148, i.e., count of level-2 protein targets of Fostamatinib as

shown in Table 5.4, in level-1 and level-2 human spreader proteins. This establishes

that the algorithm has succeeded in detecting the appropriate drug molecules with

the highest protein targets in both levels. Protein targets corresponding to the DCS

score of Fostamatinib in level-1 is highlighted in Figure 5.4, while that of level-2 is

shown in Figure 5.5. In Figure 5.4, green nodes represent level-1 protein targets of

Fostamatinib, while blue and yellow nodes denote COVID-19 and other level-1 human

proteins, respectively. In Figure 5.5, green nodes represent level-2 protein targets

of Fostamatinib, while blue and yellow nodes denote COVID-19 and other level-1

spreader human proteins, respectively. Other level-2 human spreaders in Figure 5.5

are not shown to avoid visual complexity. The highest frequency of Fostamatinib/R406

is observed when Algorithm 5.1 is implemented on human-nCoV PPIN of Gordon et

al. [164]

5.4.2 Drug Consensus Results for COVID-19 Spreader Nodes

Using COVID-19 Symptoms, Risk Factors and Clinical

Outcome-based Analysis

Grouping genes based on various categories of COVID-19 symptoms, risk factors, and

clinical outcomes [225] is done using DisGeNET [377]. The numerical statistics of
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Table 5.3: Detailed analysis of DCS score at level-1 (Top 5 DCS have been shown)

Drug Drug ID DCS (level-1)
Fostamatinib/R406 DB12010 7

Arsenic trioxide DB01169 2
Acetylsalicylic acid DB00945 2

Resveratrol DB02709 2
Tamoxifen DB00675 1

Table 5.4: Detailed analysis of DCS score at level-2 (Top 5 DCS have been shown)

Drug Drug ID DCS (Level-2)
Fostamatinib/R406 DB12010 148

Copper DB09130 88
Zinc acetate DB14487 57

Zinc DB01593 57
Zinc chloride DB14533 57

the result are highlighted in Table 5.5. Mobiotools [390] are used to compare these

gene sets to obtain 4931 unique genes. These genes are further compared with the

curated COVID-19 dataset of CTD [378], containing 12672 genes. The comparison

generates an overlapping gene set containing 3525 genes. When used for validation

against the spreader proteins in the human-nCoV interaction network, these genes

produce a significant overlap of 1448 genes in both level-1 and level-2. This highlights

the fact that 1448 out of 3525 genes are selected as spreader nodes in the network.

Hence, the top 10 key genes are selected from 1448 in each level based on the fuzzy and

spreadability index scores in level-1 and level-2. The selected top genes from level-1 are

PPIA, ACE2, EIF3F, UBC, PRKDC, CDK2, CDK1, AKT1, PRKCA, and TRAF6

level-2 are APP, ELAVL1, NTRK1, XPO1, MEOX2, GRB2, EGFR, TP53, BAG3

and NXF1. Potential FDA-approved drugs having these key genes/spreader proteins

as known targets are identified from DrugBank data. It is also observed that after

applying Algorithm 5.1 on the obtained result, Fostamatinib/R406 has a significant

overlap of 3 target proteins which is also the highest frequency of occurrence. Similarly,

for the symptom ”loss of smell”, 12 overlapping genes are detected, and mapping with

known drug targets in DrugBank has also been done as shown in Table 5.6. After

applying Algorithm 5.1, only Fostamatinib/R406 and copper emerge based on their

frequency of occurrence.
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Table 5.5: Few statistical analyses of genes in COVID-19 symptoms, risk factors and
clinical outcome

Categorizations Symptoms Total no. of genes

COVID-19 symptoms [225]

Cough 270

Fever 1743

Dyspnea 323

Pneumonia 1416

Risk factors [225]

Heart Disease 1964

Kidney Disease 2131

Lung Disease 1018

Diabetes 5078

Hypertension 1573

Cancer 4747

Clinical Outcomes [225]
Lymphopenia 241

(Mild & Moderate Case)
Pulmonary
infiltrate

43

Clinical Outcomes (Severe Case) [225]

Leukocytosis 179

Neutrophilia 152

Sepsis 1506

Kidney injury 228

Coagulopathy 21

Thrombocytopenia 774

Multiple organ
failure

25

5.4.3 Docking Results for Potential COVID-19 Drugs w.r.t

COVID-19 Protein Structures

Molecular docking is used in the proposed methodology to measure the binding capabil-

ity of the potential COVID-19 drugs on 6LU7, 6M2Q, 6W9C, 6M0J, 6M71 and 6VXX.

The detailed procedure of execution has been already discussed in the methodology

section. In this work, SDF/PDB format is used for the docking of all the COVID-19

drugs. The details of Best dock poses for potential COVID-19 drugs and interactions

of hydrogen bonds with respect to 6LU7 are given in Table 5.7. The Moldock schore

and Rerank score are depicted in Table 5.8. At the same time, docking results with

others are shown in Table 5.9 and Table 5.10. It is observed from the results that

115



Table 5.6: Mapping of FDA-approved drug of DrugBank with selected key genes of
level-2 associated with “loss of smell” symptom of COVID-19

Genes in L2 n-CoV Target drugs DrugId Approved
DCC 2 N/A N/A N/A
EIF4G1 N/A N/A N/A
GIGYF2 N/A N/A N/A
HTRA2 N/A N/A N/A
LRRK2 Fostamatinib DB12010 TRUE
PARK7 Copper DB09130 TRUE
PINK1 N/A N/A N/A
PODXL N/A N/A N/A
PTPN11 Dodecyltrimethylammonium DB02779 FALSE
SNCA Copper DB09130 TRUE

UCHL1 Phenethyl Isothiocyanate DB12695 FALSE
VPS35 N/A N/A N/A

while Fostamatinib/R406 registers the highest score for 6LU7 and 6M2Q, it obtains

the second position in comparison to the other COVID-19 structures.

5.4.4 Docking Results for Active Metabolites/Promoieties of

COVID-19 Prodrugs w.r.t COVID-19 Protein Struc-

tures

Several drug molecules consist of pharmacologically inactive compounds, which are

known as Prodrugs [391]. These drugs get metabolized after entering the human body

to liberate the active drug. On careful observation, it has been observed that Fosta-

matinib is also a prodrug. Fostamatinib (R788) is considered to be an orally induced

prodrug in humans that releases active metabolite/promoiety R940406 (R406) [392].

R406 is a spleen tyrosine kinase (SYK) inhibitor responsible for treating rheumatoid

arthritis [392]. Similar instances have also been observed in the case of remdesivir and

favipiravir. So, the binding capability of these active metabolites/promoieties must be

validated against 6LU7, 6M2Q, 6W9C, 6M0J, 6M71, and 6VXX by molecular docking

for consideration of any prodrug as a COVID-19 drug. The results of this docking with

6LU7 are highlighted in Table 5.11 and Table 5.12. The result draws the reference

that R406 also shows high binding affinity scores compared to the others, which pro-

motes the fact that Fostamatinib/R406 can be a potential COVID-19 drug. Molecular

docking results of Fostamatinib and its corresponding promoiety, R406, have also been

highlighted in Figure 5.6.
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Table 5.7: Best dock poses for potential COVID-19 drugs and interactions of hydro-
gen bonds with respect to 6LU7

Drugs Drug ID
Best

docked
poses

H-bond
interaction

details
best pose

H-bond
interaction
best pose

Fostamatinib DB12010

Remdesivir DB14761

HCQ∗ DB01611

Favipiravir DB12466

Darunavir DB01264

Azithromycin DB00207

Lopinavir DB01601

Ritonavir DB00503

Table 5.8: Moldock Score and Rerank Score for potential COVID-19 drugs and
interactions of hydrogen bonds with respect to 6LU7

Drugs Drug ID Moldock score Rerank Score
Fostamatinib DB12010 -140.495 -102.464

Remdesivir DB14761 -134.19 -56.312
Hydroxychloroquine DB01611 -106.266 -69.417

Favipiravir DB12466 -62.855 -55.371
Darunavir DB01264 -128.798 -80.316

Azithromycin DB00207 -86.77 29.53
Lopinavir DB01601 -83.09 -30.19
Ritonavir DB00503 -110.36 103.40
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Table 5.9: Docking scores (Moldock Score) of drugs for 6VXX, 6M71, 6M2Q, 6W9C,
6M0J

Drugs
Drug
ID

6VXX 6M71 6M2Q 6W9C 6M0J

Ritonavir DB00503 -228.318 -201.076 -121.515 -230.852 -197.609

Fostamatinib DB12010 -172.859 -179.834 -120.397 -185.156 -176.483

Lopinavir DB01601 -166.217 -166.388 -114.563 -181.474 -170.136

Remdesivir DB14761 -152.678 -160.739 -112.938 -172.778 -165.157

Darunavir DB01264 -144.579 -152.622 -90.9735 -156.453 -152.907

HCQ DB01611 -127.194 -110.183 -80.4403 -132.054 -122.721

Azithromycin DB00207 -120.155 -105.759 -66.3967 -127.711 -115.321

Favipiravir DB12466 -76.41 -73.7678 -14.436 -72.6467 -70.8629

Table 5.10: Docking scores (Rerank Score) of drugs for 6VXX, 6M71, 6M2Q, 6W9C,
6M0J

Drugs
Drug
ID

6VXX 6M71 6M2Q 6W9C 6M0J

Ritonavir DB00503 -154.226 -140.533 -92.2327 -160.902 -130.098

Fostamatinib DB12010 -57.5164 -110.545 -87.5182 -130.02 -130.509

Lopinavir DB01601 -81.6619 -138.449 12.9996 -147.683 -125.165

Remdesivir DB14761 -101.76 -124.925 -84.1368 -108.703 -119.626

Darunavir DB01264 -103.522 -122.378 -66.1872 -115.516 -73.643

HCQ DB01611 -100.612 -88.6121 18.5798 -102.419 -97.8097

Azithromycin DB00207 -88.4657 -72.8345 -54.8591 -100.182 -31.7329

Favipiravir DB12466 -62.055 -52.7567 793.471 -59.1369 -57.8456

Table 5.11: Docking scores (Moldock Score) of Prodrugs for 6VXX, 6M71, 6M2Q,
6W9C,6M0J

Prodrugs
Active

promoieties
6VXX 6M71 6M2Q 6W9C 6M0J

Fostamatinib
RP406 (using

3FQS)
-143.34 -131.064 -115.229 -150.184 -134.057

Remdesivir GS-441524 -115.54 -106.624 -106.108 -107.333 -120.417

Favipiravir
RdRp complex

(6K32)
-92.5709 -100.143 -54.3239 -93.9083 -71.9692

5.4.5 Analysis of 3 Key Target Genes of Fostamatinib/R406

in Human-nCoV Interaction Network in Symptom-based

Analysis

The three key target genes of Fostamatinib/R406, as identified in Table 5.13 and Table

5.14, are CDK1 (level-1) and NTRK1, EGFR (level-2). It is noted that these three
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Table 5.12: Docking scores (Rerank Score) of Prodrugs for 6VXX, 6M71, 6M2Q,
6W9C,6M0J

Prodrugs
Active

promoieties
6VXX 6M71 6M2Q 6W9C 6M0J

Fostamatinib
RP406 (using

3FQS)
-115.106 -109.152 -76.3059 -111.853 -111.887

Remdesivir GS-441524 -91.7647 -80.5349 -70.1108 -87.910 -94.3608

Favipiravir
RdRp complex

(6K32)
-66.4667 -84.9671 -49.3377 -81.8392 -57.9054

Table 5.13: Mapping of FDA-approved drug of DrugBank with selected key genes of
level-1

Level-1 Key Genes
Approved/Approved & Investigational Drug

Drug Drug ID

PPIA
Cyclosporine DB00091

Copper DB09130

ACE2
Hydroxychloroquine DB01611

Chloroquine DB00608
EIF3F No approved drug
UBC No approved drug

PRKDC Caffeine DB00201
CDK2 Bosutinib DB06616
CDK1 Fostamatinib DB12010

PRKCA

D-alpha-
Tocopherol acetate

DB14002

Midostaurin DB06595
alpha-Tocopherol

succinate
DB14001

Phosphatidyl
serine

DB00144

Vitamin E DB00163
Tamoxifen DB00675

Ingenol mebutate DB05013
AKT1 Arsenic trioxide DB01169

TRAF6 No approved drug

genes are related to the most significant COVID-19 symptoms, risk factors, and clinical

outcomes, which are highlighted in Table 5.15. Moreover, these three genes also play

an essential role in response to viral infections (see Table 5.16). All these depict

the fact that Fostamatinib/R406 might be a potential drug treatment for COVID-19

treatment.
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Table 5.14: Mapping of FDA-approveddrug of DrugBank with selected key genes of
level-2

Level-1 Key Genes
Approved/Approved & Investigational Drug

Drug Drug ID

APP

Aluminium
phosphate

DB14517

Dimercaprol DB06782
Copper DB09130

Florbetapir (18F) DB09149
Flutemetamol

(18F)
DB09151

Deferoxamine DB00746
Zinc DB01593

Zinc sulfate,
unspecified form

DB14548

Florbetaben (18F) DB09148
Zinc acetate DB14487

Aluminum acetate DB14518
Aluminium DB01370

Zinc chloride DB14533
ELAVL1 No approved drug

NTRK1

Entrectinib DB11986
Fostamatinib DB12010
Cenegermin DB13926

Amitriptyline DB00321
Imatinib DB00619

Regorafenib DB08896
Larotrectinib DB14723

XPO1 Selinexor DB11942
MEOX2 No approved drug
GRB2 Pegademase DB00061

EGFR

Lidocaine DB00281
Gefitinib DB00317

Fostamatinib DB12010
Zanubrutinib DB15035
Cetuximab DB00002
Erlotinib DB00530

Vandetanib DB05294
Osimertinib DB09330
Dacomitinib DB11963

5.4.6 Application of Algorithm 5.1 on the Host Targets of

in-vitro Generated Human-nCoV PPIN of Gordon et

al. [164]

Gordon et al. [164] cloned, tagged, and expressed 26 of the 29 SARS-CoV-2 proteins in

human cells and identified the human proteins that are physically associated with each
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Table 5.15: Mapping of CDK1 and NTRK1, EGFR with COVID-19 symptoms, risk
factors and clinical outcomes

Drug
Key Target

Genes
Level

COVID-
19

symp-
toms

Clinical
outcome

(severe case)

Risk
Factor

Fostamatinib

CDK1 Level-1 pneumonia −− diabetes
cancer

NTRK1 Level-1
fever −−

kidney
disease
cancer

hypertension

pneumonia
−−

lung
disease

diabetes

EGFR Level-2

pneumonia neutrophilia

heart
disease

hypertension
cancer

dyspnea neutrophilia
kidney
disease

fever kidney injury
lung

disease
cough thrombocytopenia diabetes

Table 5.16: Role of CDK1 and NTRK1, EGFR in viral infections

Drug
Key Target

Genes
Level Role in viral infections

Fostamatinib
CDK1 Level-1

Viruses can express some oncoproteins.
Genome replication gets induced inside

the hosts’ cells due to some signals
generated due to the interference of these

proteins with CDK and CIKs
function [391].

NTRK1 Level-2
NTRK1 has an active role in the immune

response against viral infection [392]

EGFR Level-2
Hindrance of EGFR signaling might

prevent an excessive fibrotic response to
SARS-CoV.

of the SARS-CoV-2 proteins by affinity-purification mass spectrometry. As a result,

332 high-confidence PPI between SARS-CoV-2 and human proteins are identified.

These 332 host targets are collected, and Algorithm 5.1 is implemented on the same. It

is observed from the implementation that Fostamatinib/R406 has a significant overlap

of 10 target proteins (i.e., DCS of 10) in human-nCoV PPIN, which is also the highest

122



Table 5.17: Detailed analysis of DCS score (Top 6 DCS have been shown)

Drug Drug ID DCS (Level-1)
Fostamatinib DB12010 10

NADH DB00157 5
Flavin adenine dinucleotide DB03147 5

Romidepsin DB06176 2
Glutamic acid DB00142 2
Atorvastatin DB01076 1

frequency of incidence across the entirety of the PPIN when contrasted with the other

human proteins related to drugs. The result is highlighted in Table 5.17.

The ten host target genes associated with Fostamatinib/R406 in Table 5.17 are

TBK1, CIT, NEK9, RIPK1, COQ8B, CSNK2A2, MARK1, MARK3, MARK2 and

PRKACA. In addition, on careful observation, it has been noted that these genes also

play an essential role in response to viral infections, which has been discussed below:

1. TBK1: TBK1 (TANK-binding kinase 1) plays a highly significant role in devel-

oping natural immunity against antiviral activities. It activates IRF (interferon

regulatory factor) 3, which in turn induces type I interferon (IFNs) (IFN-α/β)

proteins regulating immune activity [393].

2. CIT: Encoded serine/threonine protein kinases are unique features in a specific

set of giant DNA viruses. However, their role in the replication of virus vary. But

different viral serine/ CIT (Citron Rho-Interacting Serine/Threonine Kinase) has

the potential to act as the targets of antiviral drugs [363].

3. NEK9: Nek9 exhaustion leads to the reduction of virus replication centers

within which it remains confined. However, Nek9 overexpression will increase

the number of viral genomes in the infected cell [394].

4. RIPK1: Enhancement of plasma pro-inflammatory cytokines and lymphopenia

is considered to be one of the significant predictors in increasing COVID-19

severity. Activating RIPK1 promotes the growth of these cytokines. In addition,

it leads to the exhaustion of T cell populations (lymphopenia) in patients who get

infected with HIV, which might pave the way for the entrance of SARS-CoV-2

in them [395].

5. COQ8B: Mitochondrial metabolism is executed as a part of the metabolic path-

way through the interaction of SARS-CoV-2’s M protein and COQ8B [396].
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6. CSNK2A2: CSNK2A2 is involved in the regulation of primary cellular pro-

cesses as well as viral infection [397].

7. MARK1: MARK1 plays an active role in viral responses [398]. .

8. MARK3: MARK3 controls cardiovascular disease, which is considered one of

the significant symptoms of COVID-19 [399].

9. MARK2: MARK2 is engaged in stimulating FEZ1 (Fasciculation And Elonga-

tion Protein Zeta 1) phosphorylation on the central cores of viruses [400].

10. PRKACA: PRKACA also plays a similar role as that of MARK3 [401]

5.5 Discussion

In this computational study, the human-nCoV PPIN has been analyzed and attempted

to identify the candidate drugs for the level-1 and level-2 spreader proteins. The study

identifies Fostamatinib/R406, an FDA-approved drug, as the most promising drug

with the best chances to target the COVID-19 spreader proteins. The work relies on

the hypothesis that SARS-CoV-2/nCoV has 89% genetic resemblance with SARS-

CoV. Based on this, human-nCoV PPIN has been developed, and its spreader nodes

have been identified using the SIS model and fuzzy thresholding. Furthermore, a con-

sensus strategy by a two-way analysis has been utilized to analyze drugs based on

the overlap of spreader proteins and drug-protein targets. The consensus scores for

Fostamatinib/R406 are the highest in analyzing the candidate drugs for COVID-19

spreader proteins. Besides, Fostamatinib/R406 also generates satisfactory results in

molecular docking with the available COVID-19 protein structures. It also targets

CAYP34A [366, 402], a common target for almost all the FDA-approved drugs [227]

for COVID-19. Moreover, recent studies also suggest that it is used for thrombocy-

topenia [366] which is also associated with COVID-19 infections [367]. A clinical test

is needed as the FDA approves Fostamatinib/R406 in ITP [403] and to determine its

efficacy against SARS-CoV-2. Rigel Pharmaceuticals have already started the clinical

trials of Fostamatinib/R406 [371]. The results obtained are quite encouraging and pos-

itive regarding reports published to date [370,403]. According to the report [370,403],

Fostamatinib meets the “primary endpoint of Safety in Phase 2 Clinical Trial” con-

ducted in hospitalized patients affected with COVID-19. In addition to this, they have

also enrolled themselves for a Phase 3 clinical trial of fostamatinib/R406 to treat the

same. But arriving at a specific conclusion needs time and more research analysis.

In a nutshell, our computational research evidence discovers that Fostamatinib/R406

may be considered one of the strong contenders for COVID-19 treatment.
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This chapter represents an in-silico study on repurposing of drugs for COVID-19

treatment. Identified spreader proteins for both the levels i.e. level-1 and level-2 which

are validated from SIS model are used as target proteins for re-purposed drugs. Still,

now, it has only been studied how nCoV interacts with human proteins, and suitable

repurposed drugs are identified from the target proteins. But not only nCoV but

other COVID variants also interact with human proteins. In the following chapter, an

assessment has been done to identify the GO-based interaction affinities between the

human-coronavirus family interactome. The chapter also identifies level-1 potential

spreader proteins to find out FDA-approved drugs which are used to treat COVID

related diseases.
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Chapter 6

Assessment of GO-based Protein

Interaction Affinities in the Large-Scale

Human-Coronavirus Family Interactome

6.1 Background

The emerging coronavirus pandemic has Sparked a flurry of research into the SARS-

CoV-2 virus and the COVID-19 disease it causes in people [404]. As discussed in

Chapter 4, COVID-19 was identified in Wuhan (Hubei province) [299] and was soon

declared as global emergency by WHO . A coronavirus is a member of the family

Coronaviridae. SARS-CoV-2 is a novel coronavirus that replicates itself by inter-

acting with the host proteins. As a result, identifying virus and host PPIs could help

researchers better understand the virus disease transmission behavior and identify pos-

sible COVID-19 drugs. Along with humans, it also affects mammals and birds. Even

though the coronavirus typically causes the common cold, cough, etc., it also causes se-

vere acute, chronic respiratory disease, multiple organ failure, and, ultimately, human

mortality.

Apart from SARS-CoV-2, coronavirus family have 44 different variants. . Based

on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-

CoV-2, SARS-CoV, MERS-CoV, Bat coronavirus HKU3, Bat coronavirus Rp3/2004,

Bat coronavirus HKU5, Murine coronavirus (M-CoV), Bovine coronavirus (BCoV),

Rat coronavirus (RCoV), Bat coronavirus HKU4, Bat coronavirus 133/2005, are con-

sidered from 44 viral variants. Before SARS-CoV-2, the two primary outbreaks were

MERS-CoV and Severe Acute Respiratory Syndrome (SARS). Southern China was

the location of SARS’s inception. Its fatality rate was between 14 and 15% [297]. The

MERS-CoV outbreak was supposed to start in Saudi Arabia. In the fight against the

MERS-CoV virus, 858 out of 2494 afflicted cases prevailed. As a result, it produced a

substantially higher death rate of 34.4% compared to the SARS-CoV.

Regarding biology, the three epidemic-starting viruses, SARS, MERS, and SARS-

CoV-2, belong to Coronaviridae’s genus Beta coronavirus. Proteins that are both

structural and non-structural contribute to the development of SARS-CoV-2. Out of
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the two, structural proteins such as the spike protein, nucleocapsid protein, membrane

protein, and envelope protein play a crucial part in spreading the disease by binding

with receptors after entering the human body [304].

The primary factor that needs to be considered while examining the disease trans-

mission process from SARS-CoV-2 to humans is PPIN. It is critical for determining

essential proteins and functions [137, 152, 153, 157, 158, 180, 305–307, 405–409] respon-

sible for various diseases. The primary focus of research has changed from the study

of the PPIN underlying various types of human diseases to the study of the PPIN due

to the improvement in the availability of human PPIN data [309]. According to the

report, SARS-CoV-2 has ∼ 89% similarity with SARS-CoV [312, 410]. SARS-CoV, a

disease that initially appeared in the Guangdong Province of China in November 2002,

spread to 28 regions worldwide in 2003 and resulted in 774 fatalities among the 8096

people with COVID-19 [411,411]. According to phylogenetic analysis, it was assumed

that SARS-CoV was different from previously known coronaviruses [412, 413]. Even

though the etiological agent was discovered and molecular research on the SARS-

CoV advanced quite quickly, the mystery surrounding the disease’s cause remained

unsolved. Data indicated that SARS-CoV was an animal-borne disease from the be-

ginning [411, 414, 415]. After the surge of SARS-CoV in 2012, there was another

coronavirus surge, MERS-CoV, in Jordon. A bat and numerous dromedary camels

have been reported to have MERS-CoV sequences. MERS-CoV is an enzootic disease

in the Arabian Peninsula, portions of Africa, and the Middle East. It affects camels as

its primary reservoir and occasionally, but infrequently, infects humans [416]. MERS-

CoV is a member of the Beta coronavirus family. WHO confirmed 2220 people with

COVID-19 along with 790 deaths for MERS-CoV [417]. There is a 35% fatality rate

from MERS. MERS-CoV is not specifically treated. MERS-CoV outbreaks in hospitals

and homes are brought on by person-to-person transmission [418]

A beta-CoV prevalent in wild mice, the MHV or M-CoV is similar to SARS-CoV-

2. In-depth research has been done on laboratory MHV strains to understand host

antiviral defense systems and coronavirus virulence factors [419]. Murine-CoV contains

several strains that induce variable symptoms in the respiratory, digestive, hepatic,

and neurological systems [420–422]. The genus of beta-CoVs includes all MHV strains

and certain human CoVs viz. HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV,

and SARS-CoV-2. The tropism and pathogenicity of various MHV strains vary, and

research on recombinant MHV variations has uncovered host and viral variables that

affect viral propagation or evade immune Identification [423].

The wide variety of mammalian and avian species that coronaviruses have been

found to infect and the highly varied disease syndromes they cause are well known. One
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of the well-known traits of several coronaviruses is variable tissue tropism, which also

allows them to overcome inter-species boundaries easily. Beta-coronaviruses, known

as BCoVs, cause shipping fever, winter dysentery in older cattle, and neonatal calf

diarrhea. Interestingly, there have not been any specific genetic or antigenic markers

found in BCoVs linked to these unique clinical disorders. BCoVs, on the other hand,

are quasispecies that coexist with other coronaviruses. In addition to cattle, BCoVs

and coronaviruses resembling cattle were found in several domestic and wild ruminant

species, dogs, and humans [424]. The pneumoenteric virus known as the BCoV is a

member of the Betacoronavirus genus. Because of several instances of genetic recombi-

nation and interspecies transmission, members of the Betacoronavirus species appear

to be host-range variants descended from the same parental virus due to their close

antigenic and genetic relatedness [425–428]

Two separate teams reported finding SARS-like CoVs (SL-CoVs) in bats in 2005,

and they hypothesized that bats were SARS-CoV natural reservoirs [429, 430]. Most

bat SL-CoVs were discovered in rhinolopus bats, especially Rhinolophus sinicus. They

share 87 to 92% of their nucleic acid and 93 to 100 % of their amino acid sequences with

the SARS-CoV [429–433]. According to a phylogenetic study, MERS-CoV is a member

of lineage C of the Betacoro-navirus genus. It resembled the pipistrelle bat (Pipistrellus

pipistrellus) and lesser bam-boo bat (Tylonycteris pachypus) most closely, as well as

the bat coronaviruses HKU4 and HKU5 [417, 434]. The whole genomic sequences

of HKU4 and HKU5 and the RNA-dependent RNA polymerase (RdRp) gene show

nucleotide identity with MERS-CoV of 50% and 82%, respectively. A recent study

established that CD26, also known as dipeptidyl peptidase 4 (DPPIV), is a functional

receptor for MERS-CoV. Additionally, it has been demonstrated that this molecule

is evolutionarily conserved among mammals and that MERS-CoV can infect a wide

variety of mammalian cells (including those from humans, pigs, monkeys, and bats),

indicating ease of transmission between hosts [186,435].

A large-scale PPI network of an organism provides valuable clues for understand-

ing cellular and molecular functionalities, and signaling pathways can provide crucial

insights into the disease mechanism, etc. Much biological information is available and

encoded in different ontologies called GO. Semantic similarity is the degree of related-

ness between the two biological entities (Gene/Protein) based on GO annotations that

provide a quantitative measure of their GO-level relationship [280]. Different combi-

nations of edge-based and node-based semantic similarity measures have been applied

over the years from GO graphs [270,272–275,279,335,336,340,436,437]. These meth-

ods have specific shortcomings concerning their designed GO semantic features. Some

of them have used topological properties of the GO graph, some have used only the
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information content (IC) of the most informative common ancestor [272–274,436], and

some have used DCA based approach [279,335,336]. To define the interaction affinity

of any two proteins from their GO information, this hybrid approach is more effective

as it incorporates topological features and average IC-based DCA techniques. Much

work [128] has already been done to analyze host-pathogenic interactions [56, 136],

disease detection [438], and disease-specific multi-omics network analyses [132].

6.2 Dataset

Alpha-, Beta-, Gamma-, and Delta-coronavirus are the four genera that comprise the

enormous family of enveloped positive-strand RNA viruses known as coronaviruses.

Among all the 44 organisms of coronavirus, here in this work, only 11 organisms

have been considered based on the available GO-annotated proteins. The human

is considered the host, and the work mainly suggests the affinity of host-pathogen

interaction for different coronavirus organisms. Below, a brief description of all selected

organisms is given.

1. Human Protein: All potential interactions between human proteins that have

been experimentally verified in humans make up the dataset [318, 439]. The

proteins in the Human organism are represented by nodes, whereas the edges

represent the respective interactions between the organism. The proteins and

their GO annotations are collected from Uniprot, the protein repository [33].

Uniprot contains 20,386 reviewed Human proteins, among which 19,283 proteins

are associated with GO annotations.

2. SARS-CoV-2 Proteins: SARS-CoV-2 is a biological member of the Coron-

aviridae, which belongs to the genus beta coronavirus. The virus contains four

structural proteins, namely envelop protein, membrane protein, nucleocapsid

protein, and spike protein which help in binding with receptors after entering

the human body and have a crucial function in spreading the disease [304]. Here

the work is carried out by collecting the dataset of available SARS-CoV-2 protein

from UniProtKB. The repository includes 16 reviewed SARS-CoV-2 proteins as

of date.

3. SARS-CoV Proteins: SARS-CoV is a highly pathogenic and zoonotic virus

that causes severe respiratory illness, gastrointestinal, neurological, and fatalities

among humans [440–442]. The 2002-2003 SARS-CoV pandemic showed how

susceptible humans are to coronavirus epidemics [313]. However, the dataset is

collected from UniprotKB, which holds 15 reviewed SARS-CoV proteins.
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4. MERS-CoV Proteins: MERS-CoV is also a member of Betacoronavirus. It is

an even more pathogenic and zoonotic virus in comparison to SARS-CoV. MERS-

CoV emerged around 2012 in the Arabian Peninsula with very high transmissi-

bility by affecting more than 2000 people [443]. The dataset has been retrieved

from UniProtKB, which holds around 10 MERS-CoV proteins.

5. Bat coronavirus HKU3 Proteins: Surveillance research in Hong Kong

among non-caged animals from wild regions found that a closely similar bat

coronavirus, SARS-related Rhinolophus bat coronavirus HKU3, was the natural

animal host [346]. We have retrieved a protein set of Bat coronavirus HKU3

from UniProtKB, having 12 proteins.

6. Bat coronavirus RP3/2004 Proteins: With the high geographic spread

and species variety, bats represent an order with significant evolutionary success.

Bats are the natural reservoirs of several viruses closely related to SARS-CoV

[444]. A search for ACE2 sequence similarities in domestic and wild animals in

Italy revealed domestic mostly horses, cats, cattle, and sheep and wild mostly

European rabbits and grizzly bears animal species as potential SARS-CoV-2

secondary reservoirs. Molecular docking of these species ACE2 against the S

protein of the Bat coronavirus (Bt-CoV/Rp3/2004) suggests that the primary

reservoir Rhinolophus ferrumequinum may infect secondary reservoirs, domestic

and animals living in Italy [445].

7. Bat coronavirus HKU5 Proteins: An enclosed, positive-sense single-stranded

RNA mammalian Group 2 Betacoronavirus called bat coronavirus HKU5 was

found in Japanese Pipistrellus in Hong Kong. This coronavirus strain is closely

related to the recently discovered novel MERS-CoV, which is to blame for the

coronavirus outbreaks linked to the Middle East respiratory illness in 2012 [188,

417].

8. Bat coronavirus HKU4 Proteins: Tylonycteris bat coronavirus HKU4, a

member of Betacoronavirus, is an enveloped, single-stranded virus having a ge-

netical similarity with MERS-CoV or HCoV-EMC. The main difference between

HCoV-EMC and bat coronavirus HKU4 lies in between the spike protein and en-

velop protein, where HCoV-EMC have five ORFs instead of four with low amino

acid identities to Bat-CoV HKU4 [446]. The human CD26 (hCD26) receptor

is engaged explicitly by a receptor binding domain (RBD) in the MERS-CoV

envelope-embedded spike protein to start viral entry. Due to the viral spike pro-

tein’s great sequence identity, we looked into whether or not HKU4 and HKU5
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can detect hCD26 for cell entrance. We discovered that HKU4-RBD binds to

hCD26, but not HKU5-RBD and that pseudotyped viruses incorporating HKU4

spike can infect cells by recognizing hCD26. The overall hCD26-binding mech-

anism of the HKU4-RBD/hCD26 complex was identical to that of the MERS-

RBD, according to the structure. However, HKU4-RBD has a lower affinity for

receptor binding than MERS-RBD because it is less suited to hCD26 [447].

9. Bat coronavirus 133/2005: The spike and RdRp proteins of MERS-CoV

were sub-jected to phylogenetic analysis, which indicated that the virus is linked

to bat viruses. Coronavirus surveillance investigations in several populations of

bats have shown that they are potential reservoirs for this unique virus [448].

Different phylogenetic studies reveal that MERS-CoV was grouped with the Be-

tacoronavirus genus, particularly near BtCoV/133/2005 and BtCoV HKU4-2,

which had the most significant S1 amino acid sequence similarity (60%) with

MERS-CoV [449].

10. Murine coronavirus: M-CoV, a member of the Betacoronavirus family having

Emba-covirus subgenus, is mainly found responsible for infecting rats [450,451].

Enterotropic and Polytropic are the two strains of M-CoV. MHV strains D,

Y, RI, and DVIM are examples of enterotropic strains. In contrast, hepatitis,

enteritis, and encephalitis are the leading causes of illness caused by polytropic

strains like JHM and A59 [452]. M-CoV comes in over 25 distinct strains. These

viruses, which spread by the fecal-oral or respiratory routes and infect mice’s

livers, have been utilized as an animal disease model for hepatitis [453]. The

strains MHV-D, MHV-DVIM, MHV-Y, and MHV-RI, which are transmitted in

fecal matter, primarily affect the digestive tract. However, they can occasionally

affect the spleen, liver, and lymphatic tissue [454].

11. Bovine coronavirus: BCoV is a member of Betacoronavirus, and it can in-

fect both cattle and humans [455, 456]. It is also an enveloped single-stranded

RNA virus that enters the host cell by binding itself with the N-acetyl-9-O-

acetylneuraminic acid receptor [457, 458]. BCov is mainly responsible for caus-

ing gastroenteritis in calves resulting in massive economic damage [459]. BCoV

consisted of five structural proteins, namely spike glycoprotein; integral mem-

brane protein; hemagglutinin-esterase glycoprotein; small membrane pro-tein,

and nucleocapsid phosphoprotein [460]. A phosphoprotein with a high content

of essential amino acids, the N protein joins the genomic RNA directly to create

a helicoidal nucleocapsid. The N protein carries out numerous activities related
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to viral pathogenicity, transcription, and replication. Because it is a highly con-

served protein expressed in significant amounts during viral replication, it is

frequently employed for molecular diagnosis of BCoV [461].

12. Rat coronavirus: RCoV, subset of Murine coronavirus, is also a single-stranded

RNA virus belonging to the Betacoronavirus family which is responsible for in-

fecting rats [462]. The respiratory disease in adult rats is caused by RCoV in

adult rats, which is characterized by an early Polymorphonuclear neutrophils

(PMN) response, viral multiplication, inflammatory lung lesions, modest weight

loss, and efficient infection resolution [463]. When a virus is present, PMN in the

respiratory tract is typically associated with severe disease pathology [464–467]

6.3 Methodology

A GO-based Graph theoretic model is proposed to determine the interaction affinity

between the host-pathogen protein pairs for humans and different coronavirus organ-

isms. Currently, 19,281 human proteins have GO annotations, whereas around 242

viral proteins are obtained from a selected organism having GO annotations. Based

on the above data, Level-1 interactors generate ∼ 4.5 million potential host-pathogen

interactions. The variety and veracity issue plays a significant role in such a large-

scale dynamic PPI network. Handling large, dynamic, heterogeneous networks using

in-silico methods is tedious. Therefore, an Apache Spark-Based analytical study is

proposed to compute the interaction affinity in large-scale PPIN using the GO graph.

6.3.1 GO Graph-based Scoring for Potential Host-Pathogen

Protein Interaction Identification

Combining the similarity scores of the GO terms connected to the proteins will yield an

estimate of the semantic similarity between two interacting proteins [56,272,317,336].

The greater the similarity between two GO pairs, the greater the interaction affinity

between the proteins. The GO hierarchy’s independent DAGs represent three distinct

features of proteins: CC, MF, BP. Each node represents GO terms, and edges indicate

various hierarchical relationships. The two fundamental relations ”is a” and ”part of”

GO graphs are considered for semantic score computation. Considering the similarity

between all the GO pairs, the semantic similarity of the protein pairs can be estimated.

The shortest path length between a pair of terms in a GO graph and the average

information content IC [340] of the DCA of the respective GO term [336,337] measures
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the similarity of the pair.

PrM (t) =
|An (t)|+ |Dn (t)|

|NO|
(6.1)

where An(t) is the ascendant term for t and Dn(t) is the descendent term of t. No is

the total number of GO terms in ontology O, and PrM(t) is the proportion measure of

term t. The GO keywords chosen as cluster centers are those for which this proportion

metric is higher than a certain threshold. The cluster centers in this study are selected

using the proposed threshold values [56, 132, 317, 438]. Once the cluster centers have

been chosen, the shortest path lengths between each term in the ontology and the

cluster centers have been calculated. The membership value of a GO term decreases

with the increase in the shortest path length. The membership function of a GO term

is given by.

MmFc(t) = e−
−(x−ci)

2

2 k2 (6.2)

Where ci is the ith cluster center, x is the shortest path length and k is the width of the

membership function. If no path from any GO term to a cluster center is found, then

the membership of the GO term with respect to that cluster center will be considered

0. Similar membership for any target GO pair indicates very closely related concepts of

GO functionality and widely related membership value represents separated concepts.

For any target pair of GO-term (ti,tj), a weight parameter is introduced to estimate

this difference in membership. The weight parameter is thus defined by

WT (ti, tj) = 1−maxD((ti, tj) (6.3)

Where maxD(ti,tj) represents the maximum difference in membership values of GO

pair (ti,tj) across all cluster centers of any particular GO graph type(CC/MF/BP).

The information content (IC) based information of the disjunctive common ancestor

(DsjCAs) of any GO graph is more significant in the semantic similarity assessment

of two GO terms [279] IC of any GO term t, with respect to a GO graph g is defined

as

ICg(t) = −log(Pr(t)) (6.4)

The probability Pr(t) is the occurrences of the term t with respect to the total anno-

tations of GO graph g. The occurrences of term t depend on its annotations over the

protein cor-pus. Using the IC of the DsjCA, the shared information content (SIC) is
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computed for the target GO term pair (ti,tj). The SIC is computed as

SIC (ti, tj) =

∑
a∈DCA(ti,tj)

IC (a)

|DCA (ti, tj) |
(6.5)

Finally, the semantic similarity, sim, between two GO pairs ti and tj is calculated as

sim(ti, tj) = WT (ti, tj) SIC (ti, tj) (6.6)

When comparing the annotations of the proteins Pi and Pj for each type of GO,

the maximum similarity of all possible GO pairs is used to determine the semantic

similarity of the protein pair (Pi, Pj) for each GO-type i.e. CC, MF, and BP. The

average of the CC, MF, and BP-based semantic similarity is used to define the pro-

tein pair’s interaction affinity (Pi, Pj). Figure 6.1. refers to the schematic diagram of

our proposed model where the host-pathogen interaction affinity between humans and

organisms from the coronavirus family is calculated using the GO information, result-

ing in high-quality interactions for retrieving vulnerable human Prey for coronavirus

hosts.

6.4 Experimental Result

The in-silico model proposed here, contains protein interaction affinity between hu-

mans and different organisms from the coronavirus family. The in-silico model is

validated by identifying the overlapped edges w.r.t. the state-of-the-art datasets. Any

computational model must always consider the input and output source, and the pro-

posed model is no exception.

6.4.1 Identification of Host-Pathogen Protein Interactions for

the Different Organisms of the Coronavirus Family

Identification of host-pathogen protein interactions for the different organisms of the

coronavirus family [128]. The proposed GO-based in-silico model is applied to find the

interaction affinity between the host protein and different organisms of the coronavirus

family. Among 44 different organisms of the coronavirus family, based on the avail-

ability of the proteins, 11 organisms are considered. The proposed model is created

from the ontological relationship graphs by comparing the affinities of all potential

GO pairings that may be annotated from any target protein pair. Finally, the score of

interaction affinity of protein pair based on their annotated GO pair-wise interaction

is computed within a range of [0, 1]. Table 6.1 gives a detailed description of the num-

ber of proteins available for the respective coronavirus organism and the number of
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Table 6.1: Detailed description of proteins and host-pathogen interaction for all
organisms from the coronavirus family

Organism
# of

Proteins
# of Host-pathogen Interaction

Severe acute respiratory
syndrome coronavirus 2

(SARS-CoV-2)
14 205,140

Severe acute respiratory
syndrome

coronavirus(SARS-CoV)
15 233,411

Bat coronavirus HKU3 12 125,904
Bat coronavirus

Rp3/2004
13 125,904

Murine coronavirus 40 425,162
MERS-CoV 10 174,136

Bovine coronavirus 94 688,115
Bat coronavirus HKU5 10 117,090

Rat coronavirus 12 92,508
Bat coronavirus HKU4 10 117,090

Bat coronavirus 133/2005 10 98,494

possible host-pathogen interaction networks that can be generated for each organism.

6.4.2 Detailed Description of Human–nCoV Protein Interac-

tion Network

The 2019 coronavirus disease pandemic was brought on by the novel coronavirus known

as SARS-CoV-2/nCoV. It affected over 12 million people and caused over 560,000

fatalities in 213 nations [468]. To infect a host, the nCoV protein, like other virus

proteins, must interact with the host protein and replicate the genome. At the time

of our experiment, Uniprot [33] holds around 19,283 human proteins and 16 nCoV

proteins (see Table 6.3) having GO annotations. Here, through our proposed in-silico

model, we compute all the possible protein interactions between human-nCoV for all

the proteins having GO annotations (see Table 6.4). Detailed descriptions for all types

of possible interactions are given in Table 6.2.

6.4.3 Validation Through the State-of-the-art Dataset

Gordon et al. [164] proposed a host-pathogen interaction dataset physically connected

with the human cell by cloning, tagging, and expressing 27 out of 29 proteins using

affinity-purification mass spectrometry. Up to 14 open-reading frames can be encoded

by a 30-kb genome (ORFs). In order to create the 16 non-structural proteins (NSP1-
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Table 6.2: Detailed statistics of Human-nCoV protein interactions computed by our
proposed model

Intersection Type Organism Proteins Interactions
All Total Dataset 19,297 164,701,415

Host-Pathogen
Human-
nCoV

19,297 206,516

Pathogen-
Pathogen

nCoV-nCoV 14 83

Host-Host
Human-
Human

19,283 164,494,816

Table 6.3: Details of nCoV proteins collected from Uniprot [33]

Entry Entry Name Protein Name

P0DTD1 R1AB SARS2 Replicase polyprotein (ORF1ab polyprotein)

P0DTC1 R1A SARS2 Replicase polyprotein (ORF1a polyprotein)

P0DTC2 SPIKE SARS2 Spike glycoprotein (Peplomer protein)

P0DTD8 NS7B SARS2 ORF7b protein (Accessory protein 7b)

P0DTC6 NS6 SARS2 ORF6 protein, ORF6 (Accessory protein 6)

P0DTC8 NS8 SARS2 ORF8 protein, ORF8 (Non-structural protein 8, ns8)

P0DTF1 ORF3B SARS2 Putative ORF3b protein

P0DTC5 VME1 SARS2 Membrane protein (E1 glycoprotein)

P0DTD3 ORF9C SARS2 Putative ORF9c protein

P0DTC3 AP3A SARS2 ORF3a protein

P0DTG0 ORF3D SARS2 Putative ORF3d protein

P0DTG1 ORF3C SARS2 ORF3c protein (ORF3h protein, ORF3h)

P0DTC7 NS7A SARS2 ORF7a protein, ORF7a

P0DTD2 ORF9B SARS2 ORF9b protein, ORF9b

P0DTC9 NCAP SARS2 Nucleoprotein

P0DTC4 VEMP SARS2 Envelope small membrane protein

NSP16) that make up the replicase transcriptase complex, ORF1a and ORF1ab encode

polyproteins. This produces a dataset of 332 high-confidence host-pathogen PPIN.

However, while validating our computational model, we discovered that the protein

sequences provided by Gordon et al. do not have any mapping with the corresponding

UniProt id. The proposed method has exclusively focused on the SARS-CoV-2 pro-

teins published on UniProt. The proposed method has used a mathematical model
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Table 6.4: Details of Human-nCov Interactions at different threshold values

Interaction Type Organism Threshold Nodes Edges Human nCoV

Host-Pathogen Human-nCoV

0.2 109 592 10 12

0.15 245 1,174 128 13

0.1 886 2,909 768 13

0.09 1,193 3,586 1,075 13

0.08 1,754 4,619 1,636 13

0.05 7,397 16,209 7,278 13

0.02 15,551 74,560 15,431 13

0.001 18,936 166,382 18,816 14

to determine the binding affinities of a portion of the evaluated human proteins listed

on UniProt. Because SARS-CoV-2 proteins could not be directly mapped into corre-

sponding UniProt accession IDs, direct comparison and validation concerning Gordon

et al. was impossible. Thus, the nCoV proteins from Gordon et al. were mapped to the

corresponding Uniprot IDs. As the proposed research heavily depends on the underly-

ing GO network of the host-pathogen protein interaction network, those proteins are

selected with all three GO annotations. To validate the proposed method, all possible

interactions are computed in the proposed computational environment, which gives

57,615 possible interactions, which are their respective fuzzy score from 27 bait and

332 prey. Among these interactions, 129 existing host-pathogen from high confidence

dataset proposed by Gordon et al. whose scores are calculated.

Apart from the high-confidence host-pathogen protein interaction network dataset,

Gordon et al. also provided a host-pathogen interaction dataset that contains a human-

nCoV protein interaction network without any threshold. This mainly contains scor-

ing results of all bait and all prey proteins showing spectral counts of experimental

samples. The dataset contains 22,153 interactions, including 27 bait and 2753 host

proteins. The proposed model generates an interaction network with the said protein,

which generates all-vs-all interactions. Among those 22,153 interactions, there are

7,866 existing host-pathogen interactions whose scores are calculated. Table 6.5 gives

detailed information regarding the host-pathogen interaction for the high-confidence

human-nCoV dataset and the generic human-nCoV dataset proposed by Gordon et al.

6.4.4 Comparison with Gordon.et.al. [164]

To validate the proposed computational model, the data set has been compared with

that proposed by Gordon et al. [164]. To experiment with the proposed computational
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Table 6.5: Overall statistics for interaction affinity score of high confidence human-
nCov dataset and all human-nCov dataset proposed by Gordon et al. computed by
the proposed model

Dataset
# of

Interactions
# of Bait # of Prey

Total
Interac-
tion
Score
Com-
puted

High Confidence
Host-Pathogen

PPI
332 27 332 57,615

All Host-Pathogen
PPI

22,153 27 2,753 2,156,507

model, a dataset of human and SARS-CoV-2/nCoV proteins has been constructed by

retrieving from the UniProt protein repository, as discussed above. The computation

results in fuzzy scoring of the protein pair viz. human-human ppin, human-nCoV

ppin, and nCoV-nCoV ppin. The edge-overlapping has shown the validation of our

computational model between two datasets at different threshold values set on the

fuzzy score. Edge overlapping signifies the common edges present in both datasets.

For the experiment, the fuzzy score threshold ranging from 0.1-0.001 has been kept. At

first, the network of the proposed model has been compared with the high-confidence

human-nCoV network proposed by Gordon et al. The dataset contains 332 host pro-

teins and 27 viral proteins. Table 6.7 compares two datasets at different threshold

values and produces the intersected nodes and edges between the two datasets, along

with the common host and viral proteins.

The high-confidence dataset and the other dataset proposed by Gordon et al.,

which contains scoring results of all bait and all prey proteins showing spectral counts

of experimental samples, are also being compared in the same manner discussed here

with varying threshold values imposed on fuzzy interaction affinity score. The thresh-

old ranges from 0.1-0.001. The dataset proposed by Gordon et al. contains 2753 host

proteins and 27 viral proteins. Table 6.6 represents the comparison between the two

datasets at different threshold values and produces the intersected nodes and inter-

sected edges between the two datasets.

6.4.5 Comparison with Dick. et al [469]

Protein-protein Interaction Prediction Engine (PIPE) is a sequence-based PPI predic-

tion approach that looks at sequence windows on each query protein proposed by Dick
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Table 6.6: Detailed validation of the model compared to all human-nCov Datasets
proposed by Gordon et al. [164]

Data
(Gordon
et.al)

Proposed Dataset

Number
of Host

No. of
Bait

Threshold
Number
of Host

No. of
Bait

# Inter-
sected
Nodes

#
Intersect-
ed Edges

2753 27 0.1 17875 13 88 149

2753 27 0.09 18064 13 104 176

2753 27 0.08 18218 13 128 214

2753 27 0.05 19838 14 381 626

2753 27 0.02 19123 14 1129 2513

2753 27 0.001 19193 14 1817 6634

Table 6.7: Detailed validation of our model compared to High confidence human-
nCoV proposed by Gordon et al. [164]

Data
(Gordon
et.al)

Proposed Dataset

Number
of Host

No. of
Bait

Threshold
Number
of Host

No. of
Bait

# Inter-
sected
Nodes

#
Intersect-
ed Edges

332 27 0.1 768 13 8 5

332 27 0.09 1075 13 8 5

332 27 0.08 1636 13 8 5

332 27 0.05 7278 13 20 14

332 27 0.02 15431 13 60 51

332 27 0.001 18816 14 109 99

et.al. [469]. The evidence for the putative PPI is strengthened if the two sequence

windows have a lot in common with other pairs of proteins that have been found to

interact. Normalization is used in a similarity-weighted scoring system to consider

common sequences unrelated to PPIs. A PPI is anticipated, given enough supporting

data [470–472]. For understudied species, the PPI Prediction Engine (PIPE4) iteration
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Table 6.8: Detailed validation of the model compared to all Human-nCov Datasets
proposed by Dick et.al

Dataset Dick
et.al

# of
Interactions

# of Bait # of Prey

Total
Interac-
tion
Score
Com-
puted

PIPE4 702 13 518 575

SPRINT 510 15 368 413

has recently been modified [473].

Like PIPE, the SPRINT predictor gathers data from previously reported PPI in-

teractions based on window similarity with the query protein pair to determine its

prediction scores [474]. SPRINT uses a spaced seed method to compare the sequences

of protein windows, where only certain places in the two windows must match, as deter-

mined by the bits of the spaced seeds. Additionally, because proteins are encoded with

five bits per amino acid, it is possible to quickly compute protein window similarities

and, consequently, forecast scores using very efficient bitwise operations [474].

Here, the two datasets produced by Dick et al. [469] are being compared, and an

interaction affinity pair is being generated by using our proposed method. Table 6.8

shows the details of the comparison with both datasets. The table shows that PIPE4

contains 702 interactions, among which the proposed model identifies 575 interactions,

and the score has been generated. On the other hand, the SPRINT dataset contains

510 interactions, among which 413 are identified by the proposed method.

6.4.6 Vulnerable Host Protein

One of the main focuses of the research is to identify the common vulnerable host

proteins at different threshold values. As discussed in subsection 6.4.1, the proposed

computational model efficiently computes the interaction affinity and can generate a

fuzzy score for any host-pathogen interaction pair for any organism from the Corona

family. The host-pathogen network has been experimented for the entire corona family

with the selected organism, as mentioned in section 6.2 and retrieved the network

at different threshold values ranging from 0.1-0.001. At each threshold score, the

network for each COVID organism is segregated and constructed in their respective

networks. Thus for each threshold score, a separate host-pathogen network is obtained

for each coronavirus organism. So, for each threshold score, some common host protein
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interacts with all the coronavirus organisms. As the value of the score decreases from a

high threshold to a low threshold value, the number of common host proteins increases.

These host proteins are the level-1 spreader nodes. These spreader nodes are identified

by fuzzy thresholding, and these host proteins are vulnerable to the propagation or

contamination of the diseases caused by the viral proteins. Table 6.9 represents the

number of vulnerable host proteins at different fuzzy threshold scores. Figure 6.2

and Figure 6.3 represent the Venn diagram of the vulnerable host proteins at 0.1

and 0.001 threshold values, respectively. For simplicity and ease of the process, the

viral organism is divided into three subsets. SARS-CoV-2, SARS-CoV and MERS-

CoV forms one group, all the different organism from BAT-CoV viz., Bat coronavirus

HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Bat coronavirus HKU4,

Bat coronavirus 133/2005 forms one group, and M-CoV, BCoV and RCoV forms the

third group. Then the common host proteins from all three groups are identified

separately. Intersected host protein sets from all three groups are identified and again

intersected. This results in the common vulnerable host proteins at the specified

threshold value. For visualization, a threshold value of 0.1 is selected arbitrarily for

constructing the Venn diagram. 0.1 threshold value gives 191 vulnerable host proteins

interacting with all selected coronavirus organisms.

All level 1 human proteins of the coronavirus family are mapped with their match-

ing medicines from DrugBank once the coronavirus family-human PIN has been cre-

ated [330]. DrugBank is an online database that offers extensive information on

medicines, drug-protein targets, and drug metabolism [352]. Most in-silico approaches

used in drug design, drug docking, and drug interaction prediction use DrugBank as

their most frequently used database because of its high-quality annotation.

It has around 60% FDA-approved medications and 10% of investigational drugs.

It has been determined through adequate analysis that some spreader nodes in COVID-

19-human PPIN are the protein targets of possible COVID-19 FDA-approved medicines

[227]: hydroxychloroquin [323], azithromycin [323], lopinavir [321], remdesivir [226,

324], etc. Not only the list of drugs for COVID-19, but we have obtained a list of

FDA-approved drugs from level-1 vulnerable host proteins for the entire coronavirus

family by using DCS. The algorithm is defined as the number of times a drug occurs

at a specific PPIN level. Each human protein is mapped with the appropriate related

medicines in this level-1 PPIN.

The DCS, or frequency of each drug, is therefore calculated. Table 6.10 represents

the top-5 FDA-approved drug at different fuzzy threshold values and the number of

vulnerable host proteins at that corresponding threshold value, Drug ID, and corre-

sponding DCS score for each drug. Fostamatinib is thought to be a promising med-

143



F
ig
u
re

6
.2
:

V
en

n
d

iagram
of

n
u

m
b

er
for

v
u

ln
erab

le
h

ost
p

rotein
s

ob
tain

ed
from

h
ost-p

ath
ogen

in
teraction

for
all

selected
coron

av
iru

s
organ

ism
s

at
0.1

fu
zzy

th
resh

old
valu

e.
(A

).
T

h
e

in
tersection

of
h

ost
p

rotein
id

en
tifi

ed
from

S
A

R
S

-C
oV

-2,
S

A
R

S
-C

oV
,

an
d

M
E

R
-C

oV
.

(B
)

In
tersected

h
ost

p
rotein

s
from

M
u

rin
e-C

oV
,

B
ov

in
e-C

oV
,

an
d

R
at

C
oron

av
iru

s.
(C

).
In

tersected
h

ost
p

rotein
s

of
th

e
d

iff
eren

t
v
iral

organ
ism

s
of

B
at

C
oron

av
iru

s.

144



F
ig
u
re

6
.3
:

V
en

n
d

ia
gr

am
of

a
n
u

m
b

er
of

v
u

ln
er

ab
le

h
os

t
p

ro
te

in
s

ob
ta

in
ed

fr
om

h
os

t-
p

at
h

og
en

in
te

ra
ct

io
n

fo
r

al
l

se
le

ct
ed

co
ro

n
av

ir
u

s
or

ga
n

is
m

s
at

0.
00

1
fu

zz
y

th
re

sh
ol

d
va

lu
e.

(A
).

T
h

e
in

te
rs

ec
ti

on
of

h
os

t
p

ro
te

in
id

en
ti

fi
ed

fr
om

S
A

R
S

-C
oV

-2
,
S

A
R

S
-C

oV
,
an

d
M

E
R

-C
oV

.
(B

)
In

te
rs

ec
te

d
h

os
t

p
ro

te
in

s
fr

om
M

u
ri

n
e-

C
oV

,
B

ov
in

e-
C

oV
an

d
R

at
C

or
on

av
ir

u
s.

(C
).

In
te

rs
ec

te
d

h
os

t
p

ro
te

in
s

fr
om

d
iff

er
en

t
v
ir

al
or

ga
n

is
m

s
of

B
at

C
or

on
av

ir
u

s.

145



Table 6.9: Number of Vulnerable host proteins identified from the host-pathogen
network for all selected coronavirus organisms at a different fuzzy threshold score

Threshold # of Vulnerable Human Proteins

0.001 14279

0.005 11208

0.03 3889

0.05 526

0.07 351

0.1 191

ication for the target nCoV protein in the randomly created COVID-19 Human PPI

since it has the highest DCS in most cases.

6.5 Discussion

The number of vulnerable host proteins at different threshold values is represented

in Table 6.10, and the list of the top 5 drugs, along with their drug-id based on

the DCS score, are listed. This leads us to the analysis with the application of the

lowest threshold values (i.e., 0.001), based on which the possible repurposed drugs are

proposed.

Drug repurposing is a powerful strategy that gives new therapeutic alternatives by

identifying other uses for already-approved medications, as vaccine and drug develop-

ment can take years [475]. The traditional conservative drug development approach,

which is restricted to ”one drug, one target” paradigms, does not take into account

or assess the off-target effects or the likelihood of numerous drug indications, even

though some of them have since been confirmed to exist [476]. Upon the formation

of the coronavirus-human PPIN, all level-1 Coronavirus human proteins are mapped

with the appropriate medications via DrugBank [330].

DrugBank is an online database that provides detailed information on pharmaceu-

ticals, drug-protein targets, and drug metabolism. DrugBank is the most often utilized

database in practically all in-silico approaches used in drug design, drug docking, and

drug interaction prediction because of the high-quality annotation in the database.

It includes 10% and 60% of FDA-approved and investigational medications. It is ob-

served that the above list of drugs at the threshold value 0.001 are listed in Table

6.9.
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Table 6.10: Top 5 target drugs with their respective DCS score at different threshold values

Threshold Vulnerable Human Proteins Drug ID DCS Score Drug Name

0.001 14279

DB12010 181 Fostamatinib
DB09130 47 Copper
DB14533 45 Zinc chloride
DB14487 45 Zinc acetate
DB01593 45 Zinc

0.005 11208

DB12010 173 Fostamatinib
DB01069 45 Promethazine
DB01593 39 Zinc
DB09130 39 Copper
DB14487 39 Zinc acetate

0.03 3889

DB12010 25 Fostamatinib
DB09130 6 Copper
DB04464 5 N-Formylmethionine
DB14487 5 Zinc acetate
DB11638 5 Artenimol

0.05 526

DB12010 7 Fostamatinib
DB12267 2 Brigatinib
DB00041 2 Aldesleukin
DB00074 2 Basiliximab
DB09130 2 Copper

0.07 351

DB00041 2 Aldesleukin
DB12010 2 Fostamatinib
DB11638 2 Artenimol
DB00004 2 Denileukin diftitox
DB02240 1 Quinacrine mustard

0.1 191

DB12267 1 Brigatinib
DB00111 1 Daclizumab
DB11942 1 Selinexor
DB08804 1 Nandrolone decanoate
DB00047 1 Insulin glargine
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When compared to the remaining human protein-associated medications, fostama-

tinib has the highest frequency of occurrence in the entire PPIN and has a sizable

overlap of target proteins in the human-coronavirus PPIN with highest DCS of 181.

It was already discussed and proposed in [352] that Fostamatinib has the highest DCS

score w.r.t level-1 and level-2 human spreader proteins.

Thus, the drug of concern for the proposed work has shifted to the one with the

next highest score, copper. Copper has an enormous effect in defeating COVID-19

which helps it to dominate with a high DCS score. The study proposed in [226] aims

to investigate the effects of a highly specialized drug, ”Hinokitiol Copper Chelate”

on enormous quantities of 2019-nCoV Spike Glycoprotein with a single RBD. This

investigation offers a superior version of Hinokitiol Copper Chelate for in-vitro testing

against 2019-nCoV Main Protease.

The authors suggest combining copper, NAC, colchicine, NO, and the experimental

antivirals remdesivir or EIDD-2801 as a potential treatment for SARS-COV-2 [477].

In-silico docking study of copper complexes with SARS-CoV-2 viruses shows a steady

binding with SARS-CoV-2 main protease (Mpro) active-site region [478].

Zinc supplements also play a crucial role in combating different organisms of coro-

navirus. The essentiality of Zinc lies in the preservation of natural tissue barriers such

as the respiratory epithelium, preventing pathogen entry, for a balanced functioning

of the human immune system. The deficiency of Zinc can probably lead to the in-

fection and detrimental progression of COVID-19 [479]. The body’s tissue barriers,

which contain cilia, mucus, anti-microbial peptides like lysozymes, and interferons,

stop infectious organisms from entering. The primary mechanisms for SARS-CoV-2

entering cells are the cellular protease TMPRSS2 and the angio-tensin-converting en-

zyme 2 (ACE2) [347]. People with COVID-19 are accompanied by ciliated epithelium

destruction and ciliary dyskinesia, which limit mucociliary clearance [480]. The quan-

tity and length of bronchial cilia increased after zinc supplementation in zinc-deficient

rats [481]

In COVID-19, zinc supplementation was hypothesized to reduce mortality. Sup-

plementing with zinc had no positive effects on how the illness progressed. The zinc-

supplemented group’s hospital stay was lengthier. There is no evidence to back up

regular zinc supplementation in COVID-19 [482]. The confounding variables impact-

ing zinc’s bio-availability may be avoided by administering zinc intravenously, enabling

zinc to fulfill its medicinal potential. If effective, intravenous zinc might be quickly

incorporated into clinical practice due to benefits such as lack of toxicity, cheap cost,

and accessibility of supply [483].

Promethazine, an antipsychotic agent showing clathrin-mediated endocytosis, is
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one most effective drugs for SARS-CoV and MERS-CoV, which has been repurposed

for the treatment of COVID-19 as there are almost 89% genetic similarity with SARS-

CoV-2 and SARS-CoV [354]. Two pills were offered as an intervention, one with

Aspirin and Promethazine and the other with vitamins D3, C, and B3, together with

zinc and selenium supplements [484]. A randomized clinical trial has been conducted

to recover mildly to moderate COVID-19 patients.

Based on this validation, further research on the repurposed drug, docking study,

and other symptomatic analyses will help to identify the potential drug for the entire

coronavirus family. A clinical study on Promethazine and Fostamatinib [352, 484] is

also in progress. Even though the research is in its early stages, it in some way partially

corroborates our findings.

In this chapter, an assessment model has been proposed that finds the interaction

affinity between human-coronavirus interactome. It also identifies the potential repur-

posed drugs for the treatment of COVID-19 from level 1 spreader proteins. From the

above study, it has been elucidated that protein interaction network plays a significant

role in disease mechanisms. It has also been observed that proteins which undergo

PTM are more involved in interacting with other proteins [26]. In the following chap-

ter, an in-silico model has been proposed to predict the S-palmitoylation PTM sites

in synaptic protein sequences in male/female mouse data.
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Chapter 7

Prediction of PTM Sites in Protein

Sequences - A Case Study with

S–Palmitoylation for Synaptic Proteins

7.1 Background

The chapter presents a prediction approach for predicting the S-Palmitoylation site

for Synaptic proteins in mouse data. S-palmitoylation is a reversible covalent post-

transnational modification of cysteine thiol side chain by palmitic acid. S-palmitoylation

plays a critical role in a variety of biological processes and is engaged in several human

diseases. Therefore, identifying specific sites of this modification is crucial for under-

standing their functional consequences in physiology and pathology. An RF-classifier-

based prediction strategy has been proposed to predict palmitoylated cysteine sites

on synaptic proteins from male/female mouse data. A heuristic strategy for selec-

tion of the optimum set of physicochemical features from the AA-Index dataset using

(a) K-Best (KB) features, (b) genetic algorithm (GA), and (c) a union (UN) of KB

and GA based features have been introduced. A class of neuron-specific phosphoric

proteins known as synaptic proteins is connected to synaptic vesicles. They attach

to the cytoskeleton and are found on the surface of practically all synaptic particles.

Synaptic proteins are mainly found in central nervous system and are distributed over

the brain. Brain functions strictly depend on precise structural and functional synap-

tic integrity regulation. Among the mechanisms governing synaptic protein functions,

PTM [485,486] play a pivotal role. PTM’s may influence synaptic protein activity and

turnover, localization at the synapse, and signaling cascades [487–490].

One of the PTMs is protein S-palmitoylation involving covalent attachment of

palmitic acid (C16:0) to cysteine residue(s) via a thioester bond. Recent studies showed

that S-palmitoylation can modulate protein localization, stability, activities, and traf-

ficking and play an essential role in various biological processes, including synaptic

plasticity [491,492], cell signaling, cellular differentiation [493], and apoptosis [494].

Unlike other fatty acid modifications, S-palmitoylation is a reversible process,

tightly regulated by two groups of enzymes: palmitoyl acyltransferases (PATs) which
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is a palmitoylating enzymes and palmitoyl thioesterases which is a depalmitoylating

enzyme. It is widely accepted that repeated cycles of palmitoylation/depalmitoylation

are critically involved in regulating multiple protein functions. The molecular mech-

anisms that lie behind site-specific protein S-palmitoylation remain largely unknown.

Several human diseases are often associated with the atypical activity of PATs to-

gether with changes in the pattern of S-palmitoylation. S-palmitoylation has been

implicated in a wide range of human disease states such as cancer [193], Alzheimer’s

disease [495], Parkinson’s disease, cardiovascular disease, schizophrenia [496], or ma-

jor depressive disorder (MDD) [208]. Therefore, identifying substrates that undergo

S-palmitoylation and specific sites of these modifications may provide candidates for

targeted therapy.

Twenty-three PATs have been identified in mammalian cells, which mediate the

majority of protein S-palmitoylation. One of the known PATs is a zinc finger DHHC

domain-containing protein 7 (Zdhhc7, abbreviated ZDHHC7). This enzyme palmitoy-

lates various synaptic proteins involved in the regulation of cellular polarity and prolif-

eration [497,498]. Moreover, Zdhhc7 is responsible for S-palmitoylation of sex steroid

receptors such as estrogen and progesterone receptors [232, 498, 499]. Importantly,

Zdhhc7-/- mice developed symptoms characteristic of human Bartter syndrome (BS)

type IV because ZDHHC7 protein may affect ClC-K-barttin channel activation [233].

Thus, targeting ZDHHC7 activity may offer a potential therapeutic strategy in certain

brain pathophysiological states. Most recently, using the mass spectrometry approach,

we have identified sex-dependent differences in the S-palmitoylation of synaptic pro-

teins potentially involved in the regulation of membrane excitability and synaptic

transmission as well as in the signaling of proteins involved in the structural plasticity

of dendritic spines in the mice brain [232]. For the first time, sex-dependent action of

ZDHHC7 acyltransferase is being manifested. Furthermore, it has been revealed that

different S-palmitoylation proteins control the same biological processes in male and

female synapses [232,233].

Several methods have been developed for the identification of S-palmitoylation

target proteins. However, site-specific identification of S-palmitoylation is less studied.

Large-scale identification of S-palmitoylation sites mainly relies on mass spectrometry-

based methods such as PANIMoni [231] or PALMPiscs or ssABE [500]. These methods

have been successfully used to identify a large number of S-palmitoylated proteins

in different species, such as rats, mice, or humans. For instance, PANIMoni has

been used to describe endogenous S-palmitoylation and S-nitrosylation of proteins in

the rat brain excitatory synapses at the level of specific single cysteine in a mouse

model of depression [231]. In recent years, results of large-scale proteome databases
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obtained with PANIMoni, PALMPiscs, or ssABE methods were used to develop tools

to predict sites of specific S-palmitoylation in other biological complexes. Several

machine learning-based algorithms [121,228–230] have been developed for predictions

of S-palmitoylation sites such as; NBA-PALM [214] and CSS-PALM [228], but their

accuracy is uncertain. Therefore, with the growing number of publicly available large-

scale proteome databases of the brain and somatic tissues, there is a need for the

development of reliable and accurate computational tools to process them.

Considering the growing recognition for the importance of PTMs of proteins in

cell physiology, this study aims to develop a computational tool for predicting S-

palmitoylation sites using proteomic data obtained by the mass spectrometry-based

method PANIMoni [231]. Most recently, the approach has been successfully used to

create a detailed ZDHHC subtype-specific and sex-mouse S- palmitoylome [232, 233].

Here, in this work, these protein databases are used for validation of the computational

tool.

This chapter has proposed a RF [501] classifier-based consensus strategy, which

can predict the S-palmitoylated cysteine sites on synaptic proteins of the male/female

mouse dataset. Different heuristic selection strategies have been applied to the physico-

chemical features from the AAIndex feature database [502] along with position-specific

amino acid (AA) propensity information, which eventually generates three different

sets of features: (a) KB features, (b) GA based features [503], and (c) UN of K-Best

and GA based features. The experiment has been carried out on three categorized

synaptic protein datasets originally described in [232,233]; viz., male, female, and com-

bined i.e., combination of male and female. In each experimental group, the weighted

data is used as the training set, and the knock-out is used as the hold-out test set for

performance evaluation and comparison. A novel RF-driven consensus strategy with

efficient feature selection shows significant performance in predicting S-palmitoylation

sites in mouse data.

7.2 Dataset Description

Experimental S-Palmitoylated datasets, used here, are categorized into three groups,

male, female, and combined (includes both male and female), where each category

contains two types of data: weight (WT ) and knock-out (KO). WT is used for

training, and KO data is considered for testing. The dataset was derived using

the mass spectrometry-based PANIMoni method from WT and KO from ZDHHC7

mouse brains. The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium via the PRIDE partner repository with the dataset

identifier PXD025286.
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Table 7.1: Dataset details of positive and negative sites for all three benchmark data;
Male, Female, and Combined.

Category Type # of Proteins # of Cystene Sites

Male Positive(PD) 1077 1877(Experimental)

Negative(ND) 1175 9279(Identified)

Female Positive(PD) 1036 1773(Experimental)

Negative(ND) 1131 8934(Identified)

Combined Positive(PD) 1180 2083(Experimental)

(Male+Female) Negative(ND) 1293 10,403(Identified)

The benchmark dataset for this experiment is constructed with the data avail-

able in the said repository. In this experiment, for all three benchmarking datasets,

namely, male, female, and combined, WT data is considered a train set, and KO data

is considered the test set for classification. Both male and female datasets contain

peptides, modified sites, and assigned proteins. All the modified cysteines are la-

beled. The cysteines which are labeled with Carbamidomethyl are palmitoylated and

are considered as positive data. The cysteines which are labeled as N-ethylmaleimide

are not palmitoylated and they constitute the negative data. In this approach, to re-

trieve the high-quality negative samples, the cysteine positions, which are not within

the selected fragments of positive samples, are considered. The cysteine positions

with both Carbamidomethyl and N-ethylmaleimide modification create ambiguity in

S-palmitoylation identification and thus are discarded from this experiment. In all

experiments, the positive and negative ratio is kept as 1:1 for balanced classification.

The details of the three benchmark datasets are shown in Table 7.1.

7.3 Feature Set

To design the features for the classification task, physicochemical properties of the

amino acid are being incorporated [502]. The position-specific amino acid propensity

is computed from the primary sequence of proteins and extracting α-length sequence

window for each cysteine site with the cysteine at the center of the subsequence.

7.3.1 Position-Specific Amino Acid Propensity (PSAAP)

The position-specific feature of amino acids is introduced for feature design. First, the

position-specific amino acid composition is computed for all λ-length sub-sequences in

the positive dataset (say PD). Initially, the positive data set is divided into five different

non-overlapping subsets. For any subset of positive data, the amino acid composition
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for i-th position is defined as, (AP
1,i, A

P
2,i, A

P
3,i, A

P
4,i......, A

P
20,i)

T where, i=1,2,3,...,λ and

20 amino acids are ordered alphabetically according to their single letter code. Then,

the position-specific amino acid composition is computed as the position-wise average

over all five subsets, denoted as A−P
1,i . Similarly, the negative dataset is partitioned

into five equal partitions where each subset size =|ND|=|PD|. The position-wise amino

acid composition is computed for all negative subsets (as done in the case of PD).

The position-wise amino acid composition for individual negative subsets is calculated

as, (AN
1,i, A

N
2,i, A

N
3,i, A

N
4,i......, A

N
20,i)

T where, i=1,2,3,...,λ is the average of amino acid

composition over five negative subsets is represented as A−N
1,i Finally, the propensity

of the j-th amino acid at position i in the cysteine sites is computed as:

Xi,j =
Ā−P

1,i − Ā−N
1,i

σ̄N
j,i

(7.1)

where, σ̄ represents the standard deviation of j-th amino acid at position i overall

negative subsets. With these propensity values, final propensity matrix ProP20×λ is

constructed as:
X1,1 X1,2 . . . X1,λ

. . . . . . . . . . . .
...
. . .

...
. . .

...
. . .

...

X20,1 X20,2 ... X20,λ


7.3.2 Physicochemical Properties Based PSAAP

In the next level, a physicochemical property-based feature is generated by incorpo-

rating the PSAAP (ProP). Currently, there are 566 physicochemical features in the

AAIndex database [502] A numeric score is assigned to each amino acid in the AAIndex

database representing any particular physicochemical property scale. Then, the scores

are normalized by [0, 1] for all amino acids for individual AAIndex using max–min nor-

malization. From any target subsequence (length=λ), the final feature for any amino

acid θ at position ι is for amino acid property φ defined as

τ(θ, ι) = ProP ((Ordx(θ), ι)× PHYφ(θ, ι) (7.2)

where, Ordx(θ) represent the ordering index of amino acid θ in ProP matrix and

PHYφ(θ, ι)

7.4 Sub-Sequence Length Selection

To prepare the dataset, protein sequences are segmented into equal-length windows

containing the cysteine at the center position. Amino acid sequences before and after
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Table 7.2: Performance with different lengths of sub-sequences.

Length(n) Precision Recall Accuracy F1 AUC

15 0.657 0.792 0.69 0.718 0.765

16 0.701 0.731 0.709 0.715 0.781

17 0.699 0.722 0.706 0.71 0.777

18 0.72 0.731 0.722 0.725 0.788

19 0.724 0.717 0.723 0.72 0.79

20 0.715 0.731 0.719 0.723 0.789

the cysteine position in the sequence window are referred to as backward (BW) and

forward (FW) subsequences, respectively. The window size (λ) is varied from 31 to 41

(i.e.,|BW |=|FW |=n) is varied from 5 to 20 and (λ = (2 × n + 1)). Different length-

wise experimental analysis has been carried out to find the optimal subsequence length

(window size). Based on the AUC score, it has been found that the performance is

optimum when n=19 (window size=2 × 19 + 1) as depicted in Table 7.2. Thus, the

length of the subsequence in this approach is set to 19 for all consecutive experiments.

7.5 Feature Selection

To select the features, two different types of feature optimization strategies have been

used for predicting the S-palmitoylation sites in mouse protein. The method includes

a KB feature optimization strategy and a GA feature optimization strategy. Both

strategies have been applied to three types of datasets as discussed above and their

performances are being recorded and evaluated on the cross-validated test set, and

hold-out test set. A detailed discussion of each feature optimization strategy is dis-

cussed below.

7.5.1 KB Feature Selection

KB feature selection strategy has been introduced to identify significant and non-

redundant features from 566 physicochemical property-based PSAAP features. Ini-

tially, individual physicochemical property-wise performance has been evaluated with

different varying subsequence lengths (31 to 41). Based on these performances, AUC

score, physicochemical properties are sorted/ranked for individual subsequence lengths.

Top-performing K features are extracted from each subsequence length-wise evaluation

with four different thresholds of K i.e. top 25, 50, 75, and 100. Finally, two sets of

features are constructed by considering the intersection of KB i.e. IB-k and the union

of KB i.e. (UB-K) features from different length-wise evaluations.

Once retrieving these KB feature sets, performance has been evaluated with the

merged feature where individual features are concatenated into a single feature vector
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Table 7.3: . Performance of top K features.

Feature Precision Recall Accuracy F1 AUC

IB25 0.724 0.717 0.722 0.72 0.79

IB50 0.715 0.713 0.715 0.714 0.784

IB75 0.702 0.673 0.694 0.687 0.772

IB100 0.707 0.702 0.705 0.704 0.775

UB25 0.72 0.722 0.72 0.721 0.789

UB50 0.714 0.715 0.714 0.714 0.782

UB75 0.709 0.706 0.708 0.707 0.778

UB100 0.703 0.700 0.702 0.701 0.771

for final representation. The concatenated feature is generated for the window length

39 (2 × n + 1, where n = 19) as it shows superior performance compared to other

window lengths. The Union and Intersection-based performance evaluation with four

different thresholds i.e. 25, 50, 75, and 100 are depicted in Table 7.4. Based on AUC

and accuracy scores, it has been concluded that window length 39 with IB25 gives the

best result with the highest AUC score among all as depicted in see Table 7.3, thus

constituting the KB features. Figure 7.1 shows the detailed workflow for selecting the

KB feature from the 566 feature set. Finally, the KB feature results in 19, 20, and 21

features in male, female, and the combined datasets, respectively.

Figure 7.1: A detailed flow chart for K -Best feature selection.
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Table 7.4: Detailed performance of K -Best features on different length of sub-sequences

Length
Intersection based Feature Set Union based Feature Set

IB Pre Rec Accu F1 AUC UB Pre Rec Accu F1 AUC

15

25 0.657 0.792 0.69 0.718 0.765 25 0.684 0.719 0.694 0.701 0.77

50 0.69 0.718 0.698 0.703 0.766 50 0.686 0.724 0.696 0.704 0.764

75 0.687 0.715 0.694 0.7 0.762 75 0.684 0.713 0.692 0.698 0.761

100 0.681 0.709 0.689 0.695 0.757 100 0.683 0.698 0.686 0.69 0.758

16

25 0.701 0.731 0.709 0.715 0.781 25 0.699 0.724 0.706 0.711 0.78

50 0.692 0.724 0.701 0.707 0.773 50 0.7 0.716 0.705 0.708 0.776

75 0.697 0.716 0.702 0.706 0.772 75 0.689 0.723 0.699 0.705 0.769

100 0.679 0.709 0.686 0.693 0.763 100 0.694 0.703 0.697 0.698 0.768

17

25 0.699 0.722 0.706 0.71 0.777 25 0.699 0.721 0.706 0.71 0.777

50 0.698 0.713 0.702 0.705 0.772 50 0.696 0.715 0.702 0.705 0.77

75 0.684 0.722 0.694 0.702 0.766 75 0.692 0.706 0.695 0.698 0.767

100 0.688 0.706 0.693 0.697 0.766 100 0.685 0.712 0.693 0.698 0.763

18

25 0.72 0.731 0.723 0.725 0.788 25 0.717 0.733 0.722 0.724 0.787

50 0.711 0.728 0.716 0.719 0.781 50 0.709 0.726 0.714 0.717 0.787

75 0.704 0.725 0.71 0.714 0.774 75 0.709 0.728 0.715 0.718 0.777

100 0.71 0.724 0.714 0.717 0.774 100 0.707 0.72 0.711 0.713 0.773

19

25 0.724 0.717 0.722 0.72 0.79 25 0.72 0.722 0.72 0.721 0.789

50 0.715 0.713 0.715 0.714 0.784 50 0.714 0.715 0.714 0.714 0.782

75 0.702 0.673 0.694 0.687 0.772 75 0.709 0.706 0.708 0.707 0.778

100 0.707 0.702 0.705 0.704 0.775 100 0.703 0.7 0.702 0.701 0.771

20

25 0.715 0.731 0.719 0.723 0.789 25 0.716 0 .73 0.72 0.722 0.787

50 0.709 0.728 0.715 0.718 0.783 50 0.712 0.728 0.717 0.72 0.782

75 0.703 0.719 0.708 0.711 0.776 75 0.704 0.719 0.708 0.711 0.778

100 0.707 0.719 0.71 0.712 0.775 100 0.702 0.713 0.705 0.707 0.775

N.B.:
Pre represents precesion.
Accu represents Accuracy.
IB represents Intersection based Feature Set.
UB represents Union based Feature Set.
Rec represents Recall.
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7.5.2 GA Based Feature Selection

GA, which is inspired by the natural selection and evolution process, is a guided

random optimized search technique that results in an excellent semi-optimal solution

to the feature selection problem [504]. Under GA, fitter children, i.e. chromosomes,

populated from the earlier generation i.e. parents have a better chance of survival.

The feature subsets are encoded as chromosomes are considered as individuals and the

collection of such chromosomes represents the population. Here, the chromosomes are

encoded as a binary string where ‘1’ at any position i of represents the selection of

i -th feature and ’0’represents the refusal. Each chromosome representing a subset of

features is given a fitness score, which is obtained as the AUC in predicting the correct

S-palmitoylation modification using this feature subset and RF classifier.

Initially, the 566 physicochemical properties are hierarchically clustered based on

the amino acid properties. Then, the hierarchical cluster tree is partitioned into 331

non-singleton and 185 singleton clusters using the same splitting strategy proposed

in [28]. In this experiment, GA has been used in two steps:

• First, GA is employed over the non-singleton clusters to obtain the best-performing

feature among the cluster members.

• Second, GA is applied with the newly identified features from the non-singleton

clusters and with the remaining features from singleton clusters.

In the method proposed here, RF is used for classification purposes while evalu-

ating the performance of feature(s) at each generation. However, the AUC score is

incorporated in fitness/objective computation. In this experiment, a roulette wheel

selection strategy and uniform crossover are employed. The crossover probability (p)

and uniform mutation probability (q) are set to 0.7 and 0.01, respectively, to populate

the next generation chromosome. The positive and negative data ratio is kept as 1:1

for evaluation purposes. The tie between equally performing chromosomes, the one

with the lesser number of features, is retained. The method results in the globally

best chromosomes. Finally, the GA-based approach identified 6 features in males, 7 in

females, and 21 features in the combined dataset, respectively, for final classification.

The overall workflow of GA-based feature design is detailed in Figure 7.2.

7.5.3 Classifier Selection

To check the efficacy of the classifier, the PTM prediction method has been evaluated

on a subset of the dataset using the KB feature s described above with two machine

learning algorithms SVM [251] and RF [501]). The performance of both classifiers is

presented in Table 7.5. Based on the AUC, F1, and Accuracy scores, RF outperforms

SVM. Thus, all the experiments presented in the main manuscript are carried out
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Table 7.5: Performance evaluation on SVM and RF classifier.

Classifier Precision Recall Accuracy F1 AUC

SVM 0.671±0.03 0.620±0.08 0.652±0.01 0.720±0.018 0.636±0.03

RF 0.669±0.08 0.650±0.02 0.664±0.01 0.728±0.01 0.659±0.01

using RF on all three different types of mouse data i.e. Male, Female, and Combined.

For each fold, the positive and negative samples are selected in equal ratios for both

train and test sets to obtain an unbiased classification.

7.6 Experimental Results

The proposed method, predicts the S-palmitoylation sites from the primary sequence

information of synaptic proteins. In the mouse model experiments, three categories of

data, viz., Male, Female, and Combined, and three different feature sets, viz., KB, GA,

UN, along with the RF classifier, have been used. The rationale behind the choice of the

RF classifier is elaborated in Table 7.5. Features are extracted from the sequence motifs

of variable length, and detailed experiments are conducted to select the optimum length

of such sequence motifs. These experiments are summarized in section 7.3 and detailed

results are described in Table 7.4. Finally, the proposed approach presents a three-

star consensus model for the final classification task. The efficacy of PTM prediction

depends heavily on selecting appropriate feature sets, the choice of the classifier, and

the underlying evaluation strategy. In this work, GA-based features show better the

AUC score for male, female, and combined datasets. The UN features show promising

performances for the female dataset with higher accuracy, whereas KB and GA features

achieve the highest accuracy in male and combined datasets, respectively. Finally, a

three-star approach has been presented for the final classification task The consensus

model significantly improved the performance compared to individual feature-specific

models. The proposed consensus-based approach, has been further considered with

two state-of-the-art methods.

7.6.1 Performance Evaluation

The performance of the proposed model has been evaluated with five-fold cross-

validation on three different feature sets viz. KB, GA, UN, using an RF classifier.

Five-fold cross-validation has been introduced to estimate the model’s strength on all

three categories of datasets, male, female, and combined, and the performances are

reported in Table 7.6. The individual fold-wise performances on all three datasets

are reported in Table 7.9. In all three datasets, the GA-based feature outperforms

the rest two in AUC score. However, in the proposed method, for fold-wise testing,
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Figure 7.3: A schematic diagram depicting the underlying consensus strategy for
S-palmitoylation prediction.

the GA-based feature shows a ∼ 79% Average AUC (AvgAUC) score for both male

and combined datasets, and ∼80% AUC on the female dataset, surpassing the other

two features. For female data, the UN-based feature outperforms KB and GA-based

features, having an accuracy score of ∼71.9% and F1 of ∼71.3% (see Table 7.6). The

AUC and AUPRC curves from training models are shown in Figure 7.4.

The KO data has been used as the hold-out test set from three categories of data

viz.Male, Female, and Combined individually. In the KO hold-out test set, the GA-

based feature shows better performance for all the datasets than other features with an

AUC score of ∼ 66.4% in males. ∼68.6% in females, and ∼62.5% in combined dataset

(see Table 7.7). Moreover, GA has higher accuracy in all hold-out test data except

the males set, where the KB-based model achieves ∼62% accuracy. Furthermore, we

have introduced a consensus strategy for the final classification of S-palmitoylation on

the hold-out test set. Initially, the best models are extracted from the cross-validation

strategy for each feature set on the three categories of data set independently.

7.6.2 Comparison with the State-of-the-Art Approaches

To demonstrate the performance of the proposed method, the proposed approach has

been compared with existing PTM prediction models. Three state-of-the-art method

have been identified for benchmark purposes.
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Table 7.6: : Performance evaluation of 5-fold cross-validation on Male, Female, and Combined dataset with KB, GA and UN features.

Type Feature
5-Fold Cross-Validation

AvgAUC MaxAUC Pre Recall Accu F1

Male

KB 0.785 ± 0.0137 0.801 0.732±0.02 0.666 ± 0.02 0.711 ± 0.01 0.697 ± 0.016

GA 0.790 ± 0.013 0.812 0.726 ± 0.02 0.675 ± 0.02 0.710 ± 0.02 0.700 ± 0.02

UN 0.786 ± 0.013 0.798 0.726 ± 0.02 0.662 ± 0.01 0.706 ± 0.01 0.693 ± 0.01

Female

KB 0.796 ± 0.02 0.82 0.715 ± 0.02 0.701 ± 0.02 0.708 ± 0.02 0.706 ± 0.016

GA 0.801 ± 0.018 0.827 0.732 ± 0.02 0.69 ± 0.04 0.718 ± 0.02 0.709 ± 0.02

UN 0799 ± 0.018 0.821 0.729 ± 0.02 0.698 ± 0.03 0.719 ± 0.02 0.713 ± 0.02

Combined

KB 0.791 ± 0.02 0.830 0.718 ± 0.04 0.689 ± 0.02 0.708 ± 0.03 0.703 ± 0.03

GA 0.795 ± 0.02 0.830 0.733 ± 0.03 0.684 ± 0.03 0.717 ± 0.02 0.707 ± 0.03

UN 0.793 ± 0.02 0.820 0.734 ± 0.02 0.670 ± 0.01 0.714 ± 0.02 0.701 ± 0.02

163



Figure 7.4: Performance evaluation on three datasets, Male, Female, and Combined.
Plots in the 1st, 3rd, and 5th rows show the AUC, and the 2nd, 4th, and 6th rows
represent AUPRC, respectively. The 1st, 2nd, and 3rd column-wise plots represent
KB, GA, and UN type features-based evaluation.
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Table 7.7: Performance evaluation using fold-wise and consensus strategy on hold-out test data.

Dataset Feature Pre Rec Accu F1 MCC AUC

M
a
le

F
W

KB 0.643 ± 0.01 0.54 ± 0.02 0.620 ± 0.01 0.587 ± 0.01 0.244 ± 0.02 0.661 ± 0.01

GA 0.629 ± 0.01 0.535 ± 0.02 0.609 ± 0.01 0.578 ± 0.01 0.222 ± 0.02 0.664 ± 0.01

UN 0.634 ± 0.02 0.532 ± 0.01 0.612 ± 0.01 0.579 ± 0.01 0.227 ± 0.03 0.661 ± 0.01

C
o
n

1∗ Con 0.585 0.812 0.618 0.68 0.255 0.639

2∗ Con 0.667 0.713 0.678 0.689 0.357 0.679

3∗ Con 0.676 0.423 0.610 0.520 0.238 0.628

F
e
m
a
le

F
W

KB 0.617 ± 0.01 0.566 ± 0.01 0.608 ± 0.01 0.591 ± 0.01 0.216 ± 0.02 0.667 ± 0.01

GA 0.641 ± 0.01 0.600 ± 0.01 0.632 ± 0.01 0.62 ± 0.01 0.265 ± 0.01
0.686 ±

0.004

UN 0.622 ± 0.01 0.566 ± 0.02 0.611 ± 0.01 0.593 ± 0.01 0.223 ± 0.02
0.684 ±

0.004

C
o
n

1∗ Con 0.593 0.792 0.624 0.678 0.264 0.64

2∗ Con 0.799 0.706 0.764 0.749 0.532 0.768

3∗ Con 0.800 0.447 0.668 0.573 0.373 0.708

C
o
m
b
in
e
d F
W

KB 0.586 ± 0.02 0.475 ± 0.01 0.57 ± 0.01 0.525 ± 0.01 0.142 ± 0.02 0.597 ± 0.01

GA 0.608 ± 0.02 0.486 ± 0.02 0.586 ± 0.02 0.54 ± 0.02 0.176 ± 0.03 0.625 ± 0.01

UN 0.605 ± 0.02 0.472 ± 0.02 0.581 ± 0.02 0.53 ± 0.02 0.167 ± 0.03 0.615 ± 0.01

C
o
n

1∗ Con 0.654 0.719 0.669 0.685 0.340 0.671

2∗ Con 0.679 0.669 0.676 0.674 0.353 0.676

3∗ Con 0.612 0.374 0.568 0.464 0.148 0.580

FW=Fold-Wise Score
Con=Consensus Score
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Table 7.8: Performance comparison with the state-of-the-art methods for S-
palmitoylation prediction

Methods AUC AUPRC Accu F1 MCC

CapsNet
[229]

0.780 ±
0.02

0.500 ± 0.07 NA NA NA

MusiteDeep
[230]

0.771 ±
0.02

0.484 ± 0.05 NA NA NA

ModPred
[221]

0.8553 ±
0.01

0.5973 ± 0.04 NA NA NA

Proposed
Method

(1:1)

0.936 ±
0.01

0.889 ± 0.02
0.824 ±

0.03
0.799 ±

0.04
0.669 ±

0.05

Proposed
Method

(1:2)

0.928 ±
0.02

0.785 ± 0.04
0.816 ±

0.02
0.645 ±

0.06
0.577 ±

0.06

The three state-of-the-art method that have been identified for benchmark are

CapsNet [229], MusiteDeep [230], and ModPred [221]. The CapsNet [229] is a deep

learning-based architecture that provides prediction models for different PTM sites.

MusiteDeep [230] [505] is a deep-learning-based system that can predict general and

kinase-specific phosphorylation sites from primary sequence information. ModPred

[221] is a sequence-based PTM prediction tool developed on the structural and func-

tional signatures of proteins. The CapsNet, provides a 10-fold cross-validation re-

sult on the benchmark dataset of animal species viz. metazoa, extracted from the

NCBI taxonomy database [506] which has been curated by collecting annotations from

Uniprot/Swiss-Prot [507] with less than 30% sequence similarity.

The proposed approach has also been trained with the similar dataset used in

CapsNet [229] for S-palmitoylated cysteine prediction for comparison purposes. When

compared with all three existing approaches on similar datasets, the performance

scores are directly incorporated from Wang et al. [229]. In the proposed model, class-

imbalanced learning has also been proposed by imposing a positive-negative ratio at 1:2

along with the balanced learning (1:1). The performance has been compared with the

existing approaches concerning the AUC and AUPRC scores (see Table 7.8). The pro-

posed method outperforms the state-of-the-art methods in both metrics. The AUC

and AUPRC have improved by 8% in comparison with the earlier best-performing

method. Additionally, the proposed approach has surpassed the prior approaches by

32% in the AUPRC score, as depicted in Table 7.8. The detailed fold-wise evaluation

scores are shown in Table 7.10 and Table 7.11 with balanced and imbalanced datasets

respectively.
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Table 7.9: : Performance evaluation of 5-fold cross-validation on Male, Female, and
Combined dataset with KB, GA, and UN features.

Dataset Feature Fold Pre Rec Accu AUC F1 MCC
M

a
le

KB

0 0.748 0.65 0.715 0.791 0.695 0.434
1 0.717 0.644 0.695 0.768 0.679 0.392
2 0.736 0.684 0.719 0.792 0.709 0.44
3 0.699 0.671 0.691 0.775 0.685 0.383
4 0.761 0.682 0.734 0.801 0.719 0.47

GA

0 0.714 0.668 0.701 0.788 0.691 0.402
1 0.702 0.65 0.687 0.776 0.675 0.375
2 0.762 0.701 0.741 0.812 0.73 0.483
3 0.714 0.687 0.706 0.789 0.7 0.412
4 0.74 0.668 0.717 0.79 0.702 0.435

UN

0 0.734 0.658 0.71 0.793 0.694 0.422
1 0.716 0.639 0.693 0.768 0.675 0.387
2 0.735 0.674 0.715 0.796 0.703 0.432
3 0.701 0.663 0.69 0.775 0.681 0.38
4 0.747 0.679 0.725 0.798 0.711 0.451

F
e
m
a
le

KB

0 0.725 0.723 0.725 0.819 0.724 0.449
1 0.718 0.698 0.712 0.802 0.708 0.424
2 0.676 0.715 0.686 0.763 0.695 0.373
3 0.74 0.709 0.73 0.818 0.724 0.461
4 0.698 0.658 0.686 0.78 0.677 0.373

GA

0 0.742 0.684 0.723 0.822 0.712 0.448
1 0.718 0.698 0.712 0.793 0.708 0.424
2 0.712 0.746 0.722 0.789 0.728 0.444
3 0.762 0.686 0.736 0.817 0.722 0.474
4 0.727 0.638 0.699 0.785 0.68 0.401

UN

0 0.744 0.723 0.737 0.822 0.734 0.475
1 0.713 0.675 0.702 0.799 0.694 0.405
2 0.697 0.729 0.706 0.768 0.713 0.413
3 0.755 0.698 0.736 0.814 0.725 0.473
4 0.738 0.667 0.715 0.793 0.7 0.431

C
o
m
b
in
e
d

KB

0 0.708 0.617 0.697 0.776 0.689 0.395
1 0.691 0.695 0.692 0.783 0.693 0.385
2 0.673 0.688 0.677 0.777 0.68 0.353
4 0.774 0.726 0.757 0.83 0.749 0.515
4 0.747 0.668 0.721 0.792 0.706 0.445

GA

0 0.724 0.673 0.708 0.787 0.697 0.417
1 0.731 0.659 0.708 0.793 0.693 0.418
2 0.699 0.692 0.697 0.777 0.696 0.394
3 0.779 0.731 0.762 0.83 0.754 0.525
4 0.731 0.666 0.71 0.786 0.697 0.422

UN

0 0.727 0.685 0.714 0.788 0.705 0.429
1 0.722 0.656 0.702 0.7989 0.688 0.406
2 0.709 0.656 0.694 0.776 0.682 0.388
3 0.763 0.688 0.737 0.82 0.723 0.476
4 0.753 0.668 0.725 0.794 0.708 0.452

To investigate the significance of the proposed model on a novel S-palmitoylation

dataset, it has been evaluated and compared the performance with two web servers

MusiteDeep [230, 505] and CSS-Palm [228]. MusiteDeep [230, 505] is a web resource

with a deep-learning framework that can predict and visualize different PTM sites
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Table 7.10: : Performance evaluation of proposed methods for S-palmitoylation pre-
diction on the dataset given in [229] with balanced learning (Positive: Negative=1:1)

Fold Precision Recall Accuracy AUC AUPRC F1 MCC
1 0.922 0.714 0.827 0.94 0.89 0.671 0.805
2 0.897 0.696 0.808 0.92 0.872 0.632 0.784
3 0.934 0.749 0.848 0.941 0.904 0.71 0.831
4 0.963 0.678 0.826 0.934 0.901 0.682 0.796
5 0.954 0.649 0.809 0.945 0.889 0.652 0.772
6 0.942 0.649 0.804 0.942 0.883 0.641 0.768
7 0.945 0.828 0.89 0.953 0.929 0.786 0.883
8 0.909 0.633 0.785 0.917 0.863 0.598 0.746
9 0.893 0.726 0.819 0.927 0.878 0.65 0.801
10 0.924 0.708 0.825 0.945 0.889 0.668 0.802

Table 7.11: : Performance evaluation of proposed methods for S-palmitoylation
prediction on the dataset given in [229] with class imbalanced learning (Positive: Neg-
ative=1:2)

Fold Precision Recall Accuracy AUC AUPRC F1 MCC
1 0.971 0.508 0.746 0.938 0.862 0.667 0.56
2 0.945 0.525 0.747 0.913 0.854 0.675 0.552
3 0.965 0.525 0.753 0.935 0.864 0.68 0.568
4 0.98 0.552 0.77 0.935 0.878 0.706 0.601
5 0.985 0.463 0.728 0.949 0.858 0.63 0.538
6 0.96 0.488 0.734 0.933 0.852 0.647 0.537
7 0.953 0.63 0.8 0.949 0.884 0.759 0.637
8 0.914 0.422 0.691 0.908 0.812 0.578 0.454
9 0.934 0.452 0.71 0.904 0.83 0.61 0.491
10 0.97 0.51 0.747 0.94 0.863 0.668 0.561

Table 7.12: Performance comparison with MusiteDeep [230] [505] and CSS-Palm
[228] web server with holdout dataset.

Method
Type of
Data

Pre Rec Accu F1 MCC

MusiteDeep
Male 0.827 0.088 0.535 0.159 0.155
Female 0.808 0.107 0.51 0.188 0.151

Combined 0.555 0.0719 0.507 0.127 0.029

CSS-Palm
Male 0.857 0.132 0.555 0.229 0.206
Female 0.783 0.147 0.524 0.247 0.168

High
Threshold

Combined 0.75 0.129 0.543 0.22 0.153

CSS-Palm
Male 0.768 0.158 0.555 0.262 0.182
Female 0.761 0.177 0.532 0.288 0.173

Medium
Threshold

Combined 0.735 0.179 0.557 0.289 0.176

RFCF-PALM
Male 0.628 0.539 0.609 0.58 0.222
Female 0.639 0.583 0.627 0.61 0.254

Combined 0.623 0.504 0.599 0.556 0.202

168



from protein sequence information. CSS-Palm [228] is developed based on a cluster-

ing and scoring strategy (CSS) algorithm and Group-based Prediction System (GPS)

algorithm. CSS-Palm is evaluated with two high-performing thresholds, as stated by

the authors in [228]. The novel hold-out test data from male, female, and combined

sets has been submitted to the above two web servers, and performances have been

recorded for comparison purposes (see Table 7.12). The proposed method has achieved

a better result in more balanced metrics F1, and MCC compared to each of these web

servers in S-palmitoylation prediction depicting the efficacy of the proposed method

on S-palmitoylation prediction. In all three datasets, male, female, and combined, the

proposed approach has improved the F1 score by 54%, 52%, and 48%, and MCC score

by 7%, 32%, and 13%, respectively.

In this novel hold-out data set, both web servers show high precision having 0.827

in MusiteDeep and 0.857 in CSS-Palm and very low recall having 0.0882 in MusiteDeep

and 0.1324 in CSS-Palm. A high precision score depicts low false positivity, and low

recall depicts the increase in false-negative data, which can be interpreted as a failure

for predicting the positive data. This may lead to a biased classification. Low recall

also results in a low F1 score, the harmonic mean of precision and recall. Not only the

recall score, but the MCC score for both the web servers are low, which depicts the

failure of the class imbalance issue [508]. In contrast, the proposed method achieves

0.638 precision, and 0.583 recall scores on this hold-out dataset, which shows a more

balanced scenario of classification outcome. In addition, the proposed method shows

the highest accuracy for all three categories of the data, which outperforms the other

two where accuracy improvement is by 9%, 15%, and 7% in male, female, and the

combined dataset.

7.7 Discussion

The method proposed here, computationally predicts the S-palmitoylation sites us-

ing the primary sequence information of the synaptic group of proteins from three

categories of mouse data, designed as sex-dependent i.e. male and female and sex-

independent i.e. combined mode. The computational model has been developed

through a rigorous feature selection strategy and optimal model selection for pre-

dicting the S-palmitoylation modification sites in a given sub-sequence window. The

proposed model has been evaluated with five-fold cross-validation, and model perfor-

mances have been compared with the state-of-the-art approaches using three different

feature sets; KB, GA, and UN. Finally, a consensus strategy is designed based on the

feature-specific best models from their cross-validated models. The performance of the

consensus model improved significantly compared to state-of-the-art. The significant
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performance improvement in predicting S-palmitoylation modification sites portrayed

the efficacy of the proposed method. In a nutshell, the proposed method has been de-

veloped with effective feature selection and consensus strategy for in-silico prediction

of S-palmitoylation in mouse protein and shows significant improvement.
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Chapter 8

Conclusion

In order to find answers to fundamental concerns about how life functions, biology

provides a wealth of knowledge that may be exploited. The majority of the genetic

instructions required to produce proteins are found in the DNA of a cell. Numerous

crucial biological activities occurring inside a cell are carried out by proteins interacting

with one another. In computational biology, examining the contact affinities of protein

pairs is an important research issue for revealing cellular and molecular capacities,

signaling cascades, and crucial insights into disease causes.

After the Human Genome Project was finished, genetic sequence data was mas-

sively increased. Proteomic data has grown at the same exponential rate as genomic

data in many biological contexts thanks to the rise of high-throughput studies. Se-

quence annotation, structural details, ontology links, functional descriptions, interac-

tion networks, PTMs, diseases linked to specific genes, etc. UniProt, a freely accessible

protein data database, has around 180 million unreviewed and roughly 500,000 man-

ually annotated and reviewed proteins.

PPINs are the most important factor in determining which proteins are responsible

for various disease conditions and for studying how diseases spread from pathogen to

host. They are also very helpful in determining the function of certain proteins. Ana-

lyzing host-pathogen networks provides the necessary insight into disease transmission

processes for drug creation. Because of their capacity for mutation, pathogens aid

in the spread of illness. When a pathogen infects a host, it spreads along the inter-

face between the two. Therefore, it is crucial to investigate target proteins and their

interactions within the host-pathogen network in order to identify new therapeutic

targets.

Proteins may undergo covalent modifications at specific amino acid residues via a

biochemical process known as PTM. Proteins have the ability to break into pieces or

add sugar, phosphate, or sulfate groups to surface residues through covalent bonds.

Protein interactions influence and control many different protein activities through

PTM. However, in biological knowledge databases, only 4% of PPIs have PTM anno-

tations [509].

In a dynamic PPIN of this magnitude, diversity and trustworthiness are major

factors. Using current computational tools to manage such a huge, dynamic, hetero-
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geneous network is a time-consuming task.

With these considerations in mind, the research presented in this thesis focuses on

four key areas: 1) analyzing computational strategies for large-scale biological data,

2) in-silico computation of interaction affinity of human proteome in fuzzy semantic

space, 3) in-silico analysis of host-pathogen protein interaction network and identifying

repurposed drug, and 4) in-silico prediction of PTM sites in protein sequences.

It has become extremely difficult for researchers to process these lengthy and re-

peated sequences. One of the key stages to reducing the duplication of these immense

resources and analysis of such massive biological sequences is clustering by similar-

ity. For greater values of n, the n-gram feature representation, which is typically

employed in sequence clustering and classification, produces high dimensional input

spaces. However, because there are so many dimensions, it becomes impossible to

cluster such massive sequences using present techniques. By harnessing the power

of parallel computing with high-performance computing platforms, an effectively de-

signed clustering technique may quickly scale to accommodate large-size sequences.

In Chapter 2, addressing the computing challenges of processing and analyzing

large-scale biological data, a two-level parallel DBSCAN clustering for human protein

sequences is proposed. Using parallel computer resources, the DBSCAN technique

may be used effectively for high-dimensional input spaces and large-scale human se-

quencing data. The suggested technique was put into practice on a spark cluster,

which ultimately aids in the resource and computing facility’s parallelization.

The results of the experiments demonstrated the effectiveness of the suggested

strategy in speeding up the process and eliminating unnecessary sequences. The sug-

gested technique using the trigram feature (n=3) outperforms state-of-the-art methods

by increasing the proportion of non-singleton clusters with Domain Correspondence

Score=1. According to the data, the clustering results become better with larger values

of n, and the speedup ratio gets better as the data size grows.

All living things depend on protein interactions for cellular and biological processes.

Following, we provide a quick overview of the state of many interconnected project-

related application domains where high throughput parallel architecture is a crucial

factor.

On the basis of the existing high-throughput experimentally validated positive and

negative interactions, machine learning-based PPI prediction models are built. Except

for a select few, few people are aware of the empirically confirmed PPNI databases.

The creation of the models in the current techniques utilized the negative data created

randomly. This haphazard selection of data samples yields an imprecise PPI predictive

model, which can lead to inaccurate prediction. Negative data is just as crucial as
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positive data in supervised classification, therefore careful selection of negative data

makes the classifier resilient towards PPI prediction.

PPIs must be understood in order to comprehend how a protein works. Combining

the ontological connection between any two protein pairs will yield an estimate of

their interaction affinity. GO-based methods offer a more accurate and reliable PPI

evaluation framework. In Chapter 3, a unique method for determining the interaction

affinity between protein pairs has been proposed by using a hybrid approach of GO

graph. The method may take into account the three ontological links in order to

characterize the protein binding affinities into a fuzzy score that lies between [0,1].

The larger the interaction affinity, the higher the score. The PPI interactions are

represented in this scheme in a weighted form, making it a useful input object for

pathway analysis, illness identification, medication development, etc.

Large-scale PPI analysis at the proteome level is labor and time-intensive, and

sometimes computing becomes unsolvable for an organism like a human. For instance,

the set of 19,000 evaluated human proteins may interact in 180,000,000 different ways.

Similar to this, there are 14 billion potential interactions for the 170000 unreviewed

human proteins. It has been suggested to use a distributed environment and a GO-

based graph-theoretic technique to map all of these large-scale interactions at fuzzy

semantic space.

Finally, classifying the protein interactions qualitatively based on affinity scores

is one of the main focuses. It can be seen that the FuzzyPPI may be effective for

both high-quality negative data selection and high-quality positive interactions with

extremely low FPR. The work’s efficacy has also been confirmed by comparison with

the relevant state-of-the-art methods

PPI prediction has been a popular issue in proteomic research for years. Different

PPI-based approaches provide crucial data for future investigation of infection path-

ways between various species. Pathogenic microorganisms can influence host systems

to harness host capabilities and evade host immune responses thanks to PPIs between

the virus and host proteins. Therefore, for the creation of novel and more potent

treatments, a thorough knowledge of infection processes via PPIs is essential.

In Chapter 4, the SARS-CoV-Human PPIN network and the spreader nodes at

both level-1 and level-2 using the SIS model have been used. When calculating the

protein interaction affinity score to identify the level-1 human spreaders of nCoV,

these spreader nodes are taken into account. To make this model more powerful and

meaningful, GO annotations and PPIN attributes have also been taken into account.

The suggested model’s identification of the chosen human spreader nodes as prospec-

tive protein targets for the COVID-19 FDA-approved medications has been seen as the
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study has progressed. The proposed model evaluates high-quality positive interactions

in human-nCoV PPIN. A critical threshold has been identified that gives a balanced

false-positive rate. Finally, it has been suggested that the created computational

model successfully and very specifically detects Human-nCoV PPIs. The interactions

between nCoV and humans are deduced from SARS-CoV, another pandemic starter

that has a great deal of genetic similarity with nCoV. It has also been acknowledged

that the SIS model was used to validate the spreadability index up to level-2 of the

human spreader proteins. The number of proteins grows with each level change in

human contact networks because of the high network density. As a result, the spread-

ability score confirmed by the SIS model may be used by the proposed approach to

identify human spreader proteins at level-2.

In chapter 5, it has been tried to find potential treatments for the level-1 and level-2

spreader proteins by analyzing the human-nCoV PPIN. The analysis names the FDA-

approved medication Fostamatinib/R406 as the most promising medication with the

best potential to target the COVID-19 spreading proteins. The research depends on

the assertion that SARS-CoV2/nCoV shares 89% of its genetic makeup with SARS-

CoV. Based on this, the human-nCoV PPIN was created, and the SIS model and fuzzy

thresholding were used to determine the spreader nodes of the PPIN. Additionally, a

two-way analytic consensus technique has been used to evaluate medications based

on the overlap of spreader proteins and drug-protein targets. In the analysis of the

potential treatments for COVID-19 spreading proteins, the consensus ratings for Fos-

tamatinib/R406 are the highest. Additionally, Fostamatinib/R406 produces positive

results in molecular docking with the COVID-19 protein structures that are currently

accessible.

In, chapter 6, a complete human-coronavirus interactome has been proposed. In

the family Coronaviridae, a coronavirus is a member. A new coronavirus called SARS-

CoV2 replicates by interacting with the host proteins. Therefore, identifying viral and

host PPIs might aid researchers in better understanding the manner in which viruses

spread illness and help them discover potential COVID-19 medicines. It impacts not

just people but other animals and birds. In addition to severe acute and chronic

respiratory diseases, multiple organ failure, and eventually human mortality, the coro-

navirus also often causes the common cold, cough, etc.

As vaccine and medicine development can take years, drug repurposing is a potent

method that provides new therapeutic alternatives by exploring additional uses for

already-approved pharmaceuticals. The conventional conservative drug development

method, which is limited to ”one drug, one target” paradigms, does not consider or

evaluate the probability of various pharmacological indications or off-target effects. All
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level-1 Coronavirus human proteins are mapped with the relevant drugs via DrugBank

upon the creation of the coronavirus-human PPIN. It is noted that fostamatinib has

the highest frequency of occurrence in the entire PPIN and has a significant overlap

of target proteins in the human-coronavirus PPIN with the highest DCS of 181 when

compared to the other human protein-associated medications. As already discussed

and proposed by [352], fostamatinib has the highest DCS score for level-1 and level-2

spreader proteins, Thus the drug of concern shifted to the one with the next highest

score, copper. The purpose of Copper is to examine the effects of a highly specialized

medication called ”Hinokitiol Copper Chelate” on massive amounts of 2019-nCoV

Spike Glycoprotein with a single receptor binding domain. Supplemental zinc is also

essential in the fight against several coronavirus species. For the healthy functioning

of the human immune system, zinc is crucial for maintaining natural tissue barriers

like the respiratory epithelium, which block the entry of pathogens. Promethazine,

an antipsychotic medicine with clathrin-mediated endocytosis that has been used to

treat COVID-19 due to its close genetic resemblance to SARS-CoV-2 and SARS-CoV,

is one of the most effective medications for SARS-CoV and MERS-CoV.

S-palmitoylation is a post-translational covalent modification of the side chain of

cysteine thiol by palmitic acid. S-palmitoylation is involved in various human disorders

and is essential in a number of biological activities. In Chapter 7, an RF-classifier-

based prediction strategy has been proposed to predict palmitoylated cysteine sites

on synaptic proteins from three categories of mouse data viz.male, female, and sex-

independent. A heuristic method for choosing the best collection of physicochemical

characteristics from the AA-Index dataset has been developed. It makes use of the

KB, GA, and UN of KB and GA-based features. A rigorous feature selection technique

and the best model for predicting the S-palmitoylation alteration sites in a certain sub-

sequence window were used to create the computational model. Three separate feature

sets—have been used to assess the proposed model using five-fold cross-validation, and

model results have been compared with state-of-the-art techniques. On the basis of the

feature-specific best models from their cross-validated models, a consensus strategy is

then developed. When compared to state-of-the-art, the consensus model performed

much better.

............

............

............
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Scope for future study

While designing the two-level parallel DBSCAN algorithm using Apache spark frame-

work, bi-gram, and tri-gram features have been used to show the speed-up efficiency

and cluster quality. In future, the method can be extended to operate on higher dimen-

sions with a higher value of n, where n≥3, and even large datasets at the cross-organism

level.

In designing large-scale interactions for human proteome at fuzzy semantic space,

the work has been done using reviewed human protein having GO annotations. The

work can be extended for both reviewed and unreviewed proteins and also for multi-

organism PPI prediction problems, leading to more than a trillion interactions.

In designing a computational model for human-nCoV protein interaction network,

the work highlights Fostamatinib/R406 as one of the potential drugs for SARS-CoV2.

This motivates to further do a drug repurposing study on the generated SARS-CoV2-

human PPIN.

As the study shows Fostamatinib/R406, an FDA-approved drug, as the most

promising drug with the best chances of targeting the COVID-19 spreader proteins, a

clinical test is needed as the FDA approves Fostamatinib/R406 in ITP and to deter-

mine its efficacy against SARS-CoV-2. According to the reports, Fostamatinib meets

the “primary endpoint of Safety in Phase 2 Clinical Trial” conducted in hospitalized

patients affected with COVID-19. This Phase 3 trial is highly desirable.

Analyzing the Human-coronavirus family interactome and identifying target pro-

teins for FDA-approved drugs using level-1 spreader nodes, apart from Fostamatinib,

Promethazine is also one of the potential drug candidates for coronavirus-related dis-

eases under clinical trials. The study can be extended to identify target proteins using

level-2 spreader nodes.

S-Palmitoylation site prediction may further be enhanced by incorporating deep-

learning models though the major bottleneck lies with the limitation of adequate

training samples. The proposed model for S-Palmitoylation site prediction can be

extended by developing a web server and can further be extended for other PTM

types.
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I. Figiel, A. K. Halder, P. Kamińska, F. E. Müller, S. Basu, W. Zhang et al.,

“S-palmitoylation of synaptic proteins as a novel mechanism underlying sex-

dependent differences in neuronal plasticity,” International journal of molecular

sciences, vol. 22, no. 12, p. 6253, 2021.

[233] N. Gorinski, D. Wojciechowski, D. Guseva, D. A. Galil, F. E. Mueller, A. Wirth,

S. Thiemann, A. Zeug, S. Schmidt, M. Zareba-Kozio l et al., “Dhhc7-mediated

palmitoylation of the accessory protein barttin critically regulates the functions

of clc-k chloride channels,” Journal of Biological Chemistry, vol. 295, no. 18, pp.

5970–5983, 2020.

[234] S. Writer, “Big growth forecasted for big data,” Datanami, Jan-

uary 2022. [Online]. Available: https://www.datanami.com/2022/01/11/

big-growth-forecasted-for-big-data/

[235] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file

system,” in 2010 IEEE 26th symposium on mass storage systems and technologies

(MSST). Ieee, 2010, pp. 1–10.

[236] A. K. Koundinya, K. Sharma, K. Kumar, K. U. Shanbag et al., “Map/reduce

deisgn and implementation of apriori alogirthm for handling voluminous data-

sets,” arXiv preprint arXiv:1212.4692, 2012.

200

https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/
https://www.datanami.com/2022/01/11/big-growth-forecasted-for-big-data/


[237] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems for big data

analytics: A technology tutorial,” IEEE access, vol. 2, pp. 652–687, 2014.

[238] Y. Qi and L. Jie, “Research of cloud storage security technology based on hdfs,”

Computer Engineering and Design, vol. 34, no. 8, pp. 2700–2705, 2013.

[239] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin, “A parallel dbscan algorithm

based on spark,” in 2016 IEEE International Conferences on Big Data and Cloud

Computing (BDCloud), Social Computing and Networking (SocialCom), Sus-

tainable Computing and Communications (SustainCom)(BDCloud-SocialCom-

SustainCom). IEEE, 2016, pp. 548–553.

[240] U. Consortium et al., “Uniprot: the universal protein knowledgebase,” Nucleic

acids research, vol. 46, no. 5, p. 2699, 2018.

[241] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L.

Gavin, P. Gunasekaran, G. Ceric, K. Forslund et al., “The pfam protein families

database,” Nucleic acids research, vol. 38, no. suppl 1, pp. D211–D222, 2010.

[242] U. Stelzl, U. Worm, M. Lalowski, C. Haenig, F. H. Brembeck, H. Goehler,

M. Stroedicke, M. Zenkner, A. Schoenherr, S. Koeppen et al., “A human protein-

protein interaction network: a resource for annotating the proteome,” Cell, vol.

122, no. 6, pp. 957–968, 2005.

[243] T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein complexes

in protein-protein interaction networks,” Nature methods, vol. 9, no. 5, p. 471,

2012.

[244] M. AY, K.-I. Goh, M. E. Cusick, A.-L. Barabasi, M. Vidal et al., “Drug–target

network,” Nature biotechnology, vol. 25, no. 10, pp. 1119–1127, 2007.

[245] H. Ruffner, A. Bauer, and T. Bouwmeester, “Human protein–protein interaction

networks and the value for drug discovery,” Drug discovery today, vol. 12, no.

17-18, pp. 709–716, 2007.

[246] Y.-C. Chen, S. V. Rajagopala, T. Stellberger, and P. Uetz, “Exhaustive bench-

marking of the yeast two-hybrid system,” Nature methods, vol. 7, no. 9, pp.

667–668, 2010.

[247] S. Fields, “High-throughput two-hybrid analysis: The promise and the peril,”

The FEBS journal, vol. 272, no. 21, pp. 5391–5399, 2005.

201
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be broken down into three distinct processes: transcription, translation, and replication. Converting a

section of Deoxyribonucleic acid (DNA) into messenger Ribonucleic acid (mRNA) is referred to as

transcription. The process by which mRNA is converted into the protein it encodes is called translation.

The process of making duplicates of DNA is referred to as replication. The genetic material in the majority

of species is made up of DNA; however, there are other organisms, such as retroviruses like HIV, that use

RNA as their genetic material instead. The creation of DNA from RNA in these kinds of organisms takes

place via a process known as reverse transcription. The process of convering a protein from DNA has been

described in Figure 1.1 1.1.1 DNA to RNA to Protein DNA is a molecule with a double helix structure made

up of chains of nitrogenous bases and a sugar-phosphate backbone. The Base pairing between the

nitrogenous bases in DNA molecules where Guanine interacts with Cytosine with three hydrogen bonds

and Thymine interacts with Adenine with two hydrogen bonds. The double Figure 1.1: Central Dogma of

Molecular Biology. The �gure depicts the scheme for the construction of proteins from DNA molecules.

Figure 1.2: The structure of a single amino acid where alpha carbon is attached with a carboxylic group-

COOH, an amine group (-N H2), and a side chain R which differentiate the chemical properties of different

amino acid helix structure aids in self-replication since it is self-complementary. Evolution is the result of

�aws in the replicating process. Proteins and RNA are synthesized to carry out instructions from DNA. In
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Abstract: SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host
proteins. As a result, identifying virus and host protein-protein interactions could help researchers
better understand the virus disease transmission behavior and identify possible COVID-19 drugs.
The International Committee on Virus Taxonomy has determined that nCoV is genetically 89%
compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host–pathogen
protein interaction affinity of the coronavirus family, having 44 different variants. In light of these
considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for
determining the binding affinity of any two proteins at the organism level. Based on the availability
of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus
HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat
coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants.
The fuzzy scoring function of the entire host–pathogen network has been processed with ~180 million
potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million
potential level one host–pathogen interactions are computed based on the estimated interaction
affinity threshold. The resulting host–pathogen interactome is also validated with state-of-the-art
experimental networks. The study has also been extended further toward the drug-repurposing
study by analyzing the FDA-listed COVID drugs.

Keywords: COVID-19; SARS-CoV-2; COVID-19 variants; go-semantic score; gene ontology; COVID-19
drugs; protein–protein interaction network

1. Introduction

The emerging coronavirus (CoV) pandemic has sparked a flurry of research into
the SARS-CoV-2 virus and the COVID-19 disease it causes in people [1]. COVID-19 was
identified in Wuhan (Hubei province) [2]. It starts spreading soon to other nations. On
30 January 2020, World Health Organization (WHO) declared this outbreak of nCoV as a
global emergency [3]. A coronavirus is a member of the family Coronaviridae.

Along with humans, it also affects mammals and birds. Even though the coronavirus
typically causes the common cold, cough, etc., it also causes severe acute, chronic respiratory
disease, multiple organ failure, and, ultimately, human mortality. Before SARS-CoV-2, the
two primary outbreaks were Middle East Respiratory Syndrome (MERS) and Severe Acute
Respiratory Syndrome (SARS). Southern China was the location of SARS’s inception. Its
fatality rate was between 14 and 15% [4]. The MERS outbreak was supposed to start in
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Saudi Arabia. In the fight against the MERS virus, 858 out of 2494 afflicted cases prevailed.
As a result, it produced a substantially higher death rate of 34.4% compared to the SARS.

Regarding biology, the three epidemic-starting viruses, SARS, MERS, and SARS-CoV-2,
belong to Coronaviridae’s genus Beta coronavirus. Proteins that are both structural and
non-structural contribute to the development of SARS-CoV-2. Out of the two, structural
proteins such as the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and
envelope (E) protein play a crucial part in spreading the disease by binding with receptors
after entering the human body [5].

The primary factor which needs to be considered while examining the disease trans-
mission process from SARS-CoV-2 to humans is the Protein–Protein Interaction Network
(PPIN). It is critical for determining essential proteins and functions [6–19] responsible for
various diseases. The primary focus of research has changed from the study of the PPIN
underlying various types of human diseases to the study of the PPIN due to the improve-
ment in the availability of human PPIN data [20]. According to the report, SARS-CoV-2 has
~89% similarity with SARS-CoV [21,22]. SARS-CoV, a disease that initially appeared in the
Guangdong Province of China in November 2002, spread to 28 regions worldwide in 2003
and resulted in 774 fatalities among the 8096 people with COVID-19 [23–25]. According to
phylogenetic analysis, it was assumed that SARS-CoV was different from previously known
coronaviruses [26,27]. Even though the etiological agent was discovered and molecular
research on the SARS-CoV advanced quite quickly, the mystery surrounding the disease’s
cause remained unsolved. Data indicated that SARS was an animal-borne disease from
the beginning [23,24,28,29]. After the surge of SARS-CoV in 2012, there was another coron-
avirus surge, Middle East Respiratory Syndrome (MERS), in Jordon. A bat and numerous
dromedary camels have been reported to have MERS-CoV sequences (DC). MERS-CoV is
an enzootic disease in the Arabian Peninsula, portions of Africa, and the Middle East. It af-
fects camels as its primary reservoir and occasionally, but infrequently, infects humans [30].
MERS-CoV is a member of the Beta coronavirus family. World Health Organization (WHO)
confirmed 2220 people with COVID-19 along with 790 deaths for MERS-CoV [31]. There is
a 35% fatality rate from MERS. MERS is not specifically treated. MERS-CoV outbreaks in
hospitals and homes are brought on by person-to-person transmission [32].

A beta-CoV prevalent in wild mice, the mouse hepatitis virus (MHV) or Murine-CoV
is similar to SARS-CoV-2. In-depth research has been done on laboratory MHV strains to
understand host antiviral defense systems and coronavirus virulence factors [33]. Murine-
CoV contains several strains that induce variable symptoms in the respiratory, digestive,
hepatic, and neurological systems [34–36]. The genus of beta-CoVs includes all MHV
strains and certain human CoVs (HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and
SARS-CoV-2). The tropism and pathogenicity of various MHV strains vary, and research
on recombinant MHV variations has uncovered host and viral variables that affect viral
propagation or evade immune Identification [37].

The wide variety of mammalian and avian species that coronaviruses have been found
to infect and the highly varied disease syndromes they cause are well known. One of
the well-known traits of several CoVs is variable tissue tropism, which also allows them
to overcome interspecies boundaries easily. Betacoronaviruses, known as bovine CoVs
(BCoVs), cause shipping fever, winter dysentery in older cattle, and neonatal calf diarrhea.
Interestingly, there have not been any specific genetic or antigenic markers found in BCoVs
linked to these unique clinical disorders. BCoVs, on the other hand, are quasispecies that co-
exists with other CoVs. In addition to cattle, BCoVs and CoVs resembling cattle were found
in several domestic and wild ruminant species, dogs, and humans [38]. The pneumoenteric
virus known as the bovine coronavirus (BCoV) is a member of the Betacoronavirus 1 genus.
Because of several instances of genetic recombination and interspecies transmission, mem-
bers of the Betacoronavirus 1 species appear to be host-range variants descended from the
same parental virus due to their close antigenic and genetic relatedness [39–42].

Two separate teams reported finding SARS-like CoVs (SL-CoVs) in bats in 2005, and
they hypothesized that bats were SARS-CoV natural reservoirs [43,44]. Most bat SL-CoVs
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were discovered in rhinolopus bats, especially Rhinolophus sinicus. They share 87 to
92% of their nucleic acid and 93 to 100% of their amino acid sequences with the SARS-
CoV [43–47]. According to a phylogenetic study, MERS-CoV is a member of lineage C of the
Betacoronavirus genus. It resembled the pipistrelle bat (Pipistrellus pipistrellus) and lesser
bamboo bat (Tylonycteris pachypus) most closely, as well as the bat coronaviruses HKU4 and
HKU5 [31,48]. The whole genomic sequences of HKU4 and HKU5 and the RNA-dependent
RNA polymerase (RdRp) gene show nucleotide identity with MERS-CoV of 50% and 82%,
respectively. A recent study established that CD26, also known as dipeptidyl peptidase 4
(DPPIV), is a functional receptor for MERS-CoV. Additionally, it has been demonstrated
that this molecule is evolutionarily conserved among mammals and that MERS-CoV can
infect a wide variety of mammalian cells (including those from humans, pigs, monkeys,
and bats), indicating ease of transmission between hosts [49,50].

A large-scale PPI network of an organism provides valuable clues for understanding
cellular and molecular functionalities, and signaling pathways can provide crucial insights
into the disease mechanism, etc. Much biological information is available and encoded in
different ontologies called Gene Ontology. Semantic similarity is the degree of relatedness
between the two biological entities (Gene/Protein) based on GO annotations that provide a
quantitative measure of their GO-level relationship [51]. Different combinations of edge-
based and node-based semantic similarity measures have been applied over the years from
gene ontology graphs [52–63]. These methods have specific shortcomings concerning their
designed GO semantic features. Some of them have used topological properties of the GO
graph, some have used only the information content (IC) of the most informative common
ancestor [52,53,55,56], and some have used DCA [58–60] based approach. To define the
interaction affinity of any two proteins from their GO information, this hybrid approach is
more effective as it incorporates topological features and average IC-based DCA techniques.
Much work [64] has already been done to analyze host–pathogenic interactions [65,66],
disease detection [67], and disease-specific multi-omics network analyses [68].

From the above discussion, it is clear that several similar studies based on GO informa-
tion have been done on host–pathogen interaction networks. However, a complete PPIN
must be identified for humans and different coronavirus organisms to detect probable
human targets from all perspectives. So, in this study, the interaction affinity between the
protein pairs from the different organisms of the coronavirus family and human spreader
proteins is calculated using the available ontological information using the proposed in-
silico model. Section 2 describes the proposed in-silico model for calculating the interaction
affinity of the bait-prey protein pairs in an apache spark-based parallel computational
environment. Section 2.2 gives a detailed description of the database used for different coro-
navirus organisms. The results are discussed in Section 3, which includes host–pathogen
protein interactions for the different organisms of the coronavirus family and validation of
our proposed in-silico model using the state-of-the-art database.

2. Materials and Methods

A GO-based Graph theoretic model is proposed to determine the interaction affinity
between the host–pathogen protein pairs for humans and different coronavirus organisms.
Currently, 19,281 human proteins have GO annotations, whereas around 242 viral proteins
are obtained from a selected organism having GO annotations. Based on the above data,
level 1 interactors generates ~4.5 million potential host–pathogen interaction. The variety
and veracity issue plays a significant role in such a large-scale dynamic PPI network. Han-
dling large, dynamic, heterogeneous networks using in-silico methods is tedious. Therefore,
an Apache Spark-Based analytical study is proposed to compute the interaction affinity in
large-scale protein–protein interaction networks using the Gene Ontology (GO) graph.

2.1. GO Graph-Based Scoring for Potential Host–Pathogen Protein Interaction Identification

Combining the similarity scores of the GO terms connected to the proteins will yield
an estimate of the semantic similarity between two interacting proteins [52,66,69,70]. The
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greater the similarity between two GO pairs, the greater the interaction affinity between
the proteins. The GO hierarchy’s independent directed acyclic graphs (DAGs) represent
three distinct features of proteins: cellular component (CC), biological process (BP), and
molecular function (CC). Each node represents GO terms, and edges indicate various
hierarchical relationships. The two fundamental relations “is_a” and “part of” GO graphs
are considered for semantic score computation. Considering the similarity between all the
GO pairs, the semantic similarity of the protein pairs can be estimated. The shortest path
length between a pair of terms in a GO graph and the average information content (IC) [57]
of the disjunctive common ancestors (DsjCA) of the respective GO term [52,70] measures
the similarity of the pair. Our proposed method based on the GO graph is fuzzy clustered,
and the degree of relationship between each GO term and the cluster center determines
which GO term is chosen as the cluster center. The cluster centers are then chosen using the
GO term proportion measure. The proportion measure of any GO term t is given by

PrT(t) =
|AnC(t)|+ |DnC(t)|

|No| (1)

where AnC(t) is the ascendant term for t and DnC(t) is the descendent term of t. No is the
total number of GO terms in ontology O, and PrT(t) is the proportion measure of term t.
The GO keywords chosen as cluster centers are those for which this proportion metric is
higher than a certain threshold. The cluster centers in this study are selected using the
proposed threshold values [66,69]. Once the cluster centers have been chosen, the shortest
path lengths between each term in the ontology and the cluster centers have been calculated.
The membership value of a GO term decreases with the increase in the shortest path length.
The membership function of a GO term is given by

M f nc(t) = e−
−(x−ci)

2

2k2 (2)

where ci is the ith cluster center, x is the shortest path length, and k is the width of the
membership function. If no path from any GO term to a cluster center is found, then
the membership of the GO term with respect to that cluster center will be considered 0.
Similar membership for any target GO pair indicates very closely related concepts of GO
functionality, and widely related membership value represents separated concepts. For any
target pair of GO term (ti,tj), a weight parameter is introduced to estimate these differences
in membership. The weight parameter is thus defined by

WT(ti, tj) = 1 − maxD (ti,tj)

where maxD(ti,tj) represents the maximum difference in membership values of GO pair
(ti,tj) across all cluster centers of any particular GO graph type(CC/MF/BP).

The information content (IC) based information of the disjunctive common ancestor
(DsjCAs) of any GO graph is more significant in the semantic similarity assessment of
two GO terms [60]. IC of any GO term t, with respect to a GO graph, g is defined as
ICg(t) = −log(Pr(t)). The probability Pr(t) is the occurrences of term t with respect to the
total annotations of GO graph g. The occurrences of term t depend on its annotations over
the protein corpus. Using the IC of the DsjCA, the shared information content (SIC) is
computed for the target GO term pair (ti,tj). The SIC is computed as

SIC
(
ti, tj

)
=

Σa ∈ DsjCAIC(a)∣∣DsjCA
(
ti, tj

)∣∣ (3)

Finally, the semantic similarity between two GO pair ti and tj is calculated as

SStitj = WT
(
ti, tj

)
× SIC

(
ti, tj

)
(4)
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When comparing the annotations of the proteins Pi and Pj for each type of GO, the
maximum similarity of all possible GO pairs is used to determine the semantic similarity
of the protein pair (Pi, Pj) for each GO type (CC, MF, and BP). The average of the CC, MF,
and BP-based semantic similarity is used to define the protein pair’s interaction affinity
(Pi, Pj). Figure 1 refers to the schematic diagram of our proposed model where the host–
pathogen interaction affinity between humans and organisms from the coronavirus family
is calculated using the GO information, resulting in high-quality interactions for retrieving
vulnerable human prey for coronavirus hosts.
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Figure 1. Schematic diagram of our proposed model. The coronavirus and human proteins’ interac-
tion affinities are determined by the model using gene ontology information of the proteins. Three
different GO-relationship graphs, CC, MF, and BP, are used to evaluate all GO pair-wise interaction
affinities. A protein pair’s fuzzy interaction affinity is calculated using the three pair-wise scores of
all GO-pair affinities.

2.2. Dataset Preparation

Alpha-, Beta-, Gamma-, and Delta-CoV are the four genera that comprise the enormous
family of enveloped positive-strand RNA viruses known as coronaviruses (CoVs). Among
all the 44 organisms of coronavirus, here in this work, only 11 organisms have been
considered based on the available GO-annotated proteins. The human is considered the
host, and the work mainly suggests the affinity of host–pathogen interaction for different
coronavirus organisms. Below, a brief description of all selected organisms is given.

2.2.1. Human Protein

All potential interactions between human proteins that have been experimentally
verified in humans make up the dataset [71,72]. The proteins in the Human organism are
represented by nodes, whereas the edges represent the respective interactions between
the organism. The proteins and their GO annotations are collected from UniProt, the
protein repository [73]. UniProt contains 20,386 reviewed human proteins, among which
19,283 proteins are associated with GO annotations.
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2.2.2. SARS-CoV-2 Proteins

SARS-CoV-2 is a biological member of the Coronaviridae, which belongs to the genus
Beta coronavirus. The virus contains four structural proteins, namely envelop(E) pro-
tein, membrane(M) protein, nucleocapsid(N) protein, and spike(S) protein, which helps
in binding with receptors after entering the human body and has a crucial function in
spreading the disease [5]. Here the work is carried out by collecting the dataset of available
SARS-CoV-2 protein from UniProtKB. The repository includes 16 reviewed SARS-CoV-2
proteins as of date.

2.2.3. SARS-CoV Proteins

SARS-CoV is a highly pathogenic and zoonotic virus that causes severe respiratory
illness, gastrointestinal, neurological, and fatalities among humans [74–76]. The 2002-2003
severe acute respiratory syndrome (SARS) pandemic showed how susceptible humans are
to CoV epidemics [77]. However, the dataset is collected from UniProtKB, which holds
15 reviewed SARS-CoV proteins.

2.2.4. MERS-CoV Proteins

MERS-CoV is also a member of Beta-Coronavirus. It is an even more pathogenic and
zoonotic virus in comparison to SARS-CoV. MERS-CoV immerged around 2012 in the Ara-
bian Peninsula with very high transmissibility by affecting more than 2000 people [78]. The
dataset has been retrieved from UniProtKB, which holds around 10 MERS-CoV proteins.

2.2.5. Bat coronavirus HKU3 Proteins

Surveillance research in Hong Kong among non-caged animals from wild regions
found that a closely similar bat coronavirus, SARS-related Rhinolophus bat coronavirus
HKU3, was the natural animal host [79]. We have retrieved a protein set of Bat coronavirus
HKU3 from UniProtKB, having 12 proteins.

2.2.6. Bat coronavirus RP3/2004 Proteins

With the high geographic spread and species variety, bats represent an order with
significant evolutionary success. Bats are the natural reservoirs of several viruses closely
related to SARS-CoV [80]. A search for ACE2 sequence similarities in domestic and wild
animals in Italy revealed domestic (horses, cats, cattle, and sheep) and wild (European
rabbits and grizzly bears) animal species as potential SARS-CoV-2 secondary reservoirs.
Molecular docking of these species’ ACE2 against the S protein of the Bat coronavirus (Bt-
CoV/Rp3/2004) suggests that the primary reservoir Rhinolophus ferrumequinum may infect
secondary reservoirs, domestic and animals living in Italy [81].

2.2.7. Bat coronavirus HKU5 Proteins

An enclosed, positive-sense single-stranded RNA mammalian Group 2 Betacoron-
avirus called bat coronavirus HKU5 (Bat-CoV HKU5) was found in Japanese Pipistrellus
in Hong Kong. This coronavirus strain is closely related to the recently discovered novel
MERS-CoV, which is to blame for the coronavirus outbreaks linked to the Middle East
respiratory illness in 2012 [31,82].

2.2.8. Bat coronavirus HKU4 Proteins

Tylonycteris bat coronavirus HKU4 (Bat-CoV HKU4), a member of Betacoronavirus,
is an enveloped, single-stranded virus having a genetical similarity with MERS-CoV or
HCoV-EMC. The main difference between HCoV-EMC and Bat-CoV HKU4 lies in between
the spike protein (S) and envelop (E) protein, where HCoV-EMC have five ORFs instead
of four with low amino acid identities to Bat-CoV HKU4 [83]. The human CD26 (hCD26)
receptor is engaged explicitly by a receptor binding domain (RBD) in the MERS-CoV
envelope-embedded spike protein to start viral entry. Due to the viral spike protein’s great
sequence identity, we looked into whether or not HKU4 and HKU5 can detect hCD26 for
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cell entrance. We discovered that HKU4-RBD binds to hCD26, but not HKU5-RBD, and
that pseudotyped viruses incorporating HKU4 spike can infect cells by recognizing hCD26.
The overall hCD26-binding mechanism of the HKU4-RBD/hCD26 complex was identical
to that of the MERS-RBD, according to the structure. However, HKU4-RBD has a lower
affinity for receptor binding than MERS-RBD because it is less suited to hCD26 [84].

2.2.9. Bat coronavirus 133/2005

The spike (S1) and RNA-dependent RNA polymerase proteins of MERS-CoV were
subjected to phylogenetic analysis, which indicated that the virus is linked to bat viruses.
Coronavirus surveillance investigations in several populations of bats have shown that
they are potential reservoirs for this unique virus [85]. Different phylogenetic studies
reveal that MERS-CoV was grouped with the Betacoronavirus genus, particularly near
BtCoV/133/2005 and BtCoV HKU4-2, which had the most significant S1 amino acid
sequence similarity (60%) with MERS-CoV [86].

2.2.10. Murine coronavirus

Murine coronavirus (M-CoV), a member of the Betacoronavirus family having Emba-
covirus subgenus, is mainly found responsible for infecting rats [87,88]. Enterotropic and
Polytropic are the two strains of M-CoV. Mouse hepatitis virus (MHV) strains D, Y, RI, and
DVIM are examples of enterotropic strains. In contrast, hepatitis, enteritis, and encephalitis
are the leading causes of illness caused by polytropic strains like JHM and A59 [89]. Murine
coronaviruses come in over 25 distinct strains. These viruses, which spread by the fecal-oral
or respiratory routes and infect mice’s livers, have been utilized as an animal disease
model for hepatitis [90]. The strains MHV-D, MHV-DVIM, MHV-Y, and MHV-RI, which
are transmitted in fecal matter, primarily affect the digestive tract. However, they can
occasionally affect the spleen, liver, and lymphatic tissue [91].

2.2.11. Bovine coronavirus

Bovine coronavirus (BCoV) is a member of Betacoronavirus 1, and it can infect both cattle
and humans [92,93]. It is also an enveloped single-stranded RNA virus that enters the host
cell by binding itself with the N-acetyl-9-O-acetylneuraminic acid receptor [94,95]. BCov
is mainly responsible for causing gastroenteritis in calves resulting in massive economic
damage [96]. BCoV consisted of five structural proteins, namely (S) spike glycoprotein; (M)
integral membrane protein; (HE) hemagglutinin-esterase glycoprotein; (E) small membrane
protein, and (N) nucleocapsid phosphoprotein [97]. A phosphoprotein with a high content
of essential amino acids, the N protein joins the genomic RNA directly to create a helicoidal
nucleocapsid. The N protein carries out numerous activities related to viral pathogenicity,
transcription, and replication. Because it is a highly conserved protein expressed in signifi-
cant amounts during viral replication, it is frequently employed for molecular diagnosis of
BCoV [98].

2.2.12. Rat coronavirus

Rat coronavirus (RCoV), subset of Murine coronavirus, is also a single stranded RNA
virus belonging to Betacoronavirus family which is responsioble for infecting rats [99]. The
respiratory disease in adult rats is caused by RCoV in adult rats, which is characterized
by an early Polymorphonuclear neutrophils (PMN) response, viral multiplication, inflam-
matory lung lesions, modest weight loss, and efficient infection resolution [100]. When a
virus is present, PMN in the respiratory tract is typically associated with severe disease
pathology [101–104].

3. Results

Our developed in-silico model contains the protein interaction affinity between hu-
mans and different organisms from the coronavirus family. The in-silico model is validated
by identifying the overlapped edges with reference to the state-of-the-art datasets. Any
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computational model must always consider the input and output source, and our suggested
model is no exception.

3.1. Identification of Host–Pathogen Protein Interactions for the Different Organisms of the
Coronavirus Family

Three different forms of GO hierarchical connection graphs can be used to use the
GO information to infer the binding affinity of each pair of interacting proteins (CC, MF,
and BP) [64]. Our proposed GO-based in-silico model is applied to find the interaction
affinity between the host protein and different organisms of the coronavirus family. Among
44 different organisms of the coronavirus family, based on the availability of the proteins,
11 organisms are considered. Our model is created from the ontological relationship graphs
by comparing the affinities of all potential GO pairings that may be annotated from any
target protein pair. Finally, the score of interaction affinity of protein pair based on their
annotated GO pair-wise interaction is computed within a range of [0, 1]. Table 1 gives
a detailed description of the number of proteins available for the respective coronavirus
organism and the number of possible host–pathogen interaction networks that can be
generated for each organism.

Table 1. Detailed description of proteins and host–pathogen interaction for all organisms from the
coronavirus family.

Organism No. of Proteins No. of Host–Pathogen Interaction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 14 205,140
Severe acute respiratory syndrome coronavirus (SARS-CoV) 15 233,411

Bat coronavirus HKU3 12 125,904
Bat coronavirus Rp3/2004 13 125,904

Murine coronavirus 40 425,162
Middle East respiratory syndrome-related coronavirus (MERS-CoV) 10 174,136

Bovine coronavirus 94 688,115
Bat coronavirus HKU5 10 117,090

Rat coronavirus 12 92,508
Bat coronavirus HKU4 10 117,090

Bat coronavirus 133/2005 10 98,494

3.2. Detailed Description of Human–nCoV Protein Interaction Network

The 2019 coronavirus disease pandemic was brought on by the novel coronavirus
known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/nCoV). It affected
over 12 million people and caused over 560,000 fatalities in 213 nations [105]. To infect a
host, the nCoV protein, like other virus proteins, must interact with the host protein and
replicate the genome. Detailed descriptions for all types of possible interactions are given in
Table 2. At the time of our experiment, UniProt [106] holds around 19,283 human proteins
and 16 nCoV proteins (Table 3) having GO annotations. Here, through our proposed
in-silico model, we compute all the possible protein interactions between human-nCoV
for all the proteins having GO annotations (Table 4). Here ‘Total Dataset’ refers to the
total number of possible interactions generated from the in-silico model. This includes;
Human-Human interactions, Human-nCoV interactions, and nCoV-nCoV interactions.

Table 2. Detailed statistics of Human–nCoV protein interactions computed by our proposed model.

Intersection Type Organism Proteins Interactions

All Total Dataset 19,297 164,701,415
Host–Pathogen Human–nCoV 19,297 206,516

Pathogen—Pathogen nCoV–nCoV 14 83
Host–Host Human–Human 19,283 164,494,816
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Table 3. Details of nCoV proteins collected from UniProt [106].

Entry Entry Name Gene Names Protein Names

P0DTD1 R1AB_SARS2 rep 1a–1b Replicase polyprotein 1ab, pp1ab (ORF1ab polyprotein)
P0DTC1 R1A_SARS2 Replicase polyprotein 1a, pp1a (ORF1a polyprotein)
P0DTC2 SPIKE_SARS2 S 2 Spike glycoprotein, S glycoprotein (E2) (Peplomer protein)
P0DTD8 NS7B_SARS2 7b ORF7b protein, ORF7b (Accessory protein 7b)
P0DTC6 NS6_SARS2 6 ORF6 protein, ORF6 (Accessory protein 6)
P0DTC8 NS8_SARS2 8 ORF8 protein, ORF8 (Non-structural protein 8, ns8)
P0DTF1 ORF3B_SARS2 Putative ORF3b protein, ORF3b
P0DTC5 VME1_SARS2 M Membrane protein, M (E1 glycoprotein
P0DTD3 ORF9C_SARS2 9c Putative ORF9c protein, ORF9c
P0DTC3 AP3A_SARS2 3a ORF3a protein, ORF3a
P0DTG0 ORF3D_SARS2 Putative ORF3d protein
P0DTG1 ORF3C_SARS2 ORF3c protein, ORF3c (ORF3h protein, ORF3h)
P0DTC7 NS7A_SARS2 7a ORF7a protein, ORF7a
P0DTD2 ORF9B_SARS2 9b ORF9b protein, ORF9b
P0DTC9 NCAP_SARS2 N Nucleoprotein, N (Nucleocapsid protein, NC, Protein N)
P0DTC4 VEMP_SARS2 E 4 Envelope small membrane protein, E, sM protein

Table 4. Details of Human–nCov Interactions at different threshold values.

Interaction
Type Organism Threshold Nodes Edges Human nCoV

Host–Pathogen Human–nCoV

0.2 109 592 10 12
0.15 245 1174 128 13
0.1 886 2909 768 13
0.09 1193 3586 1075 13
0.08 1754 4619 1636 13
0.05 7397 16,209 7278 13
0.02 15,551 74,560 15,431 13

0.001 18,936 166,382 18,816 14

3.3. Validation through the State-of-the-Art Dataset

Gordon et al. [105] proposed a host–pathogen interaction dataset physically connected
with the human cell by cloning, tagging, and expressing 27 out of 29 proteins using affinity-
purification mass spectrometry. Up to 14 open-reading frames can be encoded by a 30-kb
genome (ORFs). In order to create the 16 non-structural proteins (NSP1-NSP16) that make
up the replicase transcriptase complex, ORF1a and ORF1ab encode polyproteins. This
produces a dataset of 332 high-confidence host–pathogen protein–protein interaction net-
works. However, while validating our computational model, we discovered that the protein
sequences provided by Gordon et al. do not have any mapping with the corresponding
UniProt id. In our situation, we have exclusively focused on the SARS-CoV-2 proteins
published on UniProt. We have used a mathematical model to determine the binding
affinities of a portion of the evaluated human proteins listed on UniProt. Because SARS-
CoV-2 proteins could not be directly mapped into corresponding UniProt accession ids,
direct comparison and validation concerning Gordon et al. were impossible. Thus, the
nCoV proteins from Gordon et al. were mapped to the corresponding UniProt ids. As our
research heavily depends on the underlying GO network of the host–pathogen protein in-
teraction network, those proteins are selected with all three GO annotations. To validate our
proposed method, all possible interactions are computed in our proposed computational
environment, which gives 57,615 possible interactions, which are their respective fuzzy
score from 27 bait and 332 prey. Among these interactions, 129 existing host–pathogen
from high confidence dataset proposed by Gordon et al. whose scores are calculated.

Apart from the high-confidence host–pathogen protein interaction network dataset,
Gordon et al. also provided a host–pathogen interaction dataset that contains a human-
nCoV protein interaction network without any threshold. This mainly contains scoring
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results of all bait and all prey proteins showing spectral counts of experimental samples.
The dataset contains 22,153 interactions, including 27 bait and 2753 host proteins. Our
proposed model generates an interaction network with the said protein, which generates all-
vs-all interactions. Among those 22,153 interactions, there are 7866 existing host–pathogen
interactions whose scores are calculated. Table 5 gives detailed information regarding the
host–pathogen interaction for the high-confidence human–nCoV dataset and the generic
human–nCoV dataset proposed by Gordon et al.

Table 5. Overall statistics for interaction affinity score of High confidence Human–nCov dataset and
all Human–nCov Dataset proposed by Gordon et al. computed by our proposed model.

Dataset No. of
Interactions No. of Bait No. of Prey Total Interaction

Score Computed

High Confidence
Host–Pathogen PPI 332 27 332 57,615

All Host–Pathogen PPI 22,153 27 2,753 2,156,507

3.3.1. Comparison with Gordon et al.

To validate our computational model, we compare our data set with that proposed by
Gordon et al. [107]. To experiment with our proposed computational model, we construct
a dataset of human and SARS-CoV-2/nCoV proteins retrieved from the UniProt protein
repository, as discussed above. The computation results in fuzzy scoring of the protein
pair (viz. human–human ppin, human–nCoV ppin, and nCoV–nCoV ppin). The edge-
overlapping has shown the validation of our computational model between two datasets at
different threshold values set on the fuzzy score. Edge overlapping signifies the common
edges present in both datasets. For our experiment, we have kept the fuzzy score threshold
ranging from 0.1–0.001. At first, we compare our network with the high-confidence human–
nCoV network proposed by Gordon et al. The dataset contains 332 host proteins and 27
viral proteins. Table 6 compares two datasets at different threshold values and produces
the intersected nodes and edges between the two datasets, along with the common host
and viral proteins.

Table 6. Detailed validation of our model compared to High confidence human–nCoV proposed by
Gordon et al.

HQ Data
(Gordon et al.) Our Dataset

Number of Host No. of
Bait Threshold Number of

Host
No. of

Bait
No. of Intersected

Nodes
No. of Intersected

Edges

2753 27 0.1 17,875 13 88 149
2753 27 0.09 18,064 13 104 176
2753 27 0.08 18,218 13 128 214
2753 27 0.05 19,838 14 381 626
2753 27 0.02 19,123 14 1129 2513
2753 27 0.001 19,193 14 1817 6634

The high-confidence dataset and the other dataset proposed by Gordon et al., which
contains scoring results of all bait and all prey proteins showing spectral counts of experi-
mental samples, are also being compared in the same manner discussed above with varying
threshold values imposed on fuzzy interaction affinity score. The threshold ranges from
0.1–0.001. The dataset proposed by Gordon et al. contains 2753 host proteins and 27 viral
proteins. Table 7 represents the comparison between the two datasets at different threshold
values and produces the intersected nodes and intersected edges between the two datasets.
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Table 7. Detailed validation of our model compared to all Human–nCov Datasets proposed by
Gordon et al.

HQ Data
(Gordon et al.) Our Dataset

Number of Host No. of
Bait Threshold Number of

Host
No. of

Bait
No. of Intersected

Nodes
No. of Intersected

Edges

332 27 0.1 768 13 8 5
332 27 0.09 1075 13 8 5
332 27 0.08 1636 13 8 5
332 27 0.05 7278 13 20 14
332 27 0.02 15,431 13 60 51
332 27 0.001 18,816 14 109 99

3.3.2. Comparison with Dick et al.

Protein-protein Interaction Prediction Engine (PIPE) is a sequence-based PPI prediction
approach that looks at sequence windows on each query protein proposed by Dick et al. [108].
The evidence for the putative PPI is strengthened if the two sequence windows have a lot
in common with other pairs of proteins that have been found to interact. Normalization is
used in a similarity-weighted (SW) scoring system to consider common sequences unrelated
to PPIs. A PPI is anticipated, given enough supporting data [109–111]. For understudied
species, the Protein-protein Interaction Prediction Engine (PIPE4) iteration has recently been
modified [112].

Like PIPE, the SPRINT predictor gathers data from previously reported PPI interac-
tions based on window similarity with the query protein pair to determine its prediction
scores [113]. SPRINT uses a spaced seed method to compare the sequences of protein
windows, where only certain places in the two windows must match, as determined by
the bits of the spaced seeds. Additionally, because proteins are encoded with five bits per
amino acid, it is possible to quickly compute protein window similarities and, consequently,
forecast scores using very efficient (SIMD) bitwise operations [113].

Here, the two datasets produced by Dick et al. [108] are being compared, and an
interaction affinity pair is being generated by using our proposed method. Table 8 shows
the details of the comparison with both datasets. The table shows that PIPE4 contains
702 interactions, among which our proposed model identifies 575 interactions, and the
score has been generated. On the other hand, the SPRINT dataset contains 510 interactions,
among which 413 are identified by our proposed method.

Table 8. Detailed validation of our model compared to all Human–nCov Datasets proposed by Dick et al.

Dataset (Dick et al.) No. of
Interactions No. of Bait No. of Prey Total Interaction

Score Computed

PIPE4 702 13 518 575

SPRINT 510 15 368 413

3.4. Vulnerable Host Protein

One of the main focuses of our research is to identify the common vulnerable host
proteins at different threshold values. As discussed in Section 3.1, our computational model
efficiently computes the interaction affinity and can generate a fuzzy score for any host–
pathogen interaction pair for any organism from the corona family. We have experimented
with the host–pathogen network for the entire corona family (with the selected organism,
as mentioned in Section 2.2) and retrieved the network at different threshold values ranging
from 0.1–0.001 at each threshold score, we segregate the network for each covid organism
and construct their respective networks. Thus, for each threshold score, we obtained a
separate host–pathogen network for each coronavirus organism. So, for each threshold
score, some common host protein interacts with all the coronavirus organisms. As the
value of the score decreases from a high threshold to a low threshold value, the number
of common host proteins increases. These host proteins are the level one spreader nodes.
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These spreader nodes are identified by fuzzy thresholding, and these host proteins are
vulnerable to the propagation or contamination of the diseases caused by the viral proteins.
Table 9 represents the number of vulnerable host proteins at different fuzzy threshold
scores. Figures 2 and 3 represent the Venn diagram of the vulnerable host proteins at
0.1 and 0.001 threshold values, respectively. For simplicity and ease of the process, we
divide the viral organism into three subsets. SARS-CoV-2, SARS-CoV and MERS-CoV
forms one group, all the different organism from BAT-CoV (viz., Bat coronavirus HKU3,
Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Bat coronavirus HKU4, Bat coronavirus
133/2005) forms one group, and Murine-CoV, Bovine-CoV and Rat Coronavirus forms the
third group. Then we identified the common host proteins from all three groups separately.
Intersected host protein sets from all three groups are identified and again intersected.
This results in the common vulnerable host proteins at the specified threshold value. For
visualization, we only arbitrarily select a threshold value of 0.1 for constructing the Venn
diagram, 0.1 threshold value gives 191 vulnerable host proteins interacting with all selected
coronavirus organisms.

Table 9. Number of Vulnerable host proteins identified from the host–pathogen network for all
selected coronavirus organisms at a different fuzzy threshold score.

Threshold No. of Vulnerable Human Proteins

0.001 14,297
0.005 11,208
0.03 3889
0.05 526
0.07 351
0.1 191
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interaction for all selected coronavirus organisms at 0.001 fuzzy threshold value. (A). Intersection
of host protein identified from SARS-CoV-2, SARS-CoV, and MER-CoV. (B). The intersected host
proteins from Murine-CoV, Bovine-CoV, and Rat Coronavirus. (C). Intersected host proteins from
different viral organisms of Bat Coronavirus.

3.5. Identification of Potential Candidate FDA Drugs concerning Vulnerable Host-Proteins Using
Human–Coronavirus Family Interaction Network Analysis

All level one human proteins of the coronavirus family are mapped with their matching
medicines from DrugBank once the coronavirus family–human PIN has been created [114].
DrugBank is an online database that offers extensive information on medicines, drug-
protein targets, and drug metabolism [115]. Most in-silico approaches used in drug design,
drug docking, and drug interaction prediction use DrugBank as their most frequently used
database because of its high-quality annotation.

It has around 60% of FDA-approved medications and 10% of investigational drugs. It has
been determined through adequate analysis that some spreader nodes in COVID19-human
PPIN are the protein targets of possible COVID-19 FDA-listed medicines [116]: hydroxy-
chloroquine [117], azithromycin [117], lopinavir [118], remdesivir [119,120], etc. Not only the
list of drugs for COVID-19, but we have obtained a list of FDA-approved drugs from level
1 vulnerable host proteins for the entire coronavirus family by using Drug Consensus Score
algorithm (DCS). The algorithm is defined as the number of times a drug occurs at a specific
PPIN level. Each human protein is mapped with the appropriate related medicines in this
level 1 PPIN.

The DCS, or frequency of each drug, is therefore calculated. Table 9 represents the
top-5 FDA-approved drug at different fuzzy threshold values and the number of vulnerable
host proteins at that corresponding threshold value, Drug ID, and corresponding DCS
score for each drug. Fostamatinib is thought to be a promising medication for the target
nCoV protein in the randomly created COVID-19 human PPI since it has the highest DCS
in most cases.

4. Discussion

The number of vulnerable host proteins at different threshold values is represented in
Table 10, and the list of the top five drugs, along with their drug-id based on the DCS score,
are listed. This leads us to the analysis with the application of the lowest threshold values
(i.e., 0.001), based on which the possible repurposed drugs are proposed.
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Table 10. Top 5 target drugs with their respective DCS score at different threshold value.

Threshold Vulnerable Human Proteins Drug ID DCS Score Drug Name

0.001 14,297

DB12010 181 Fostamatinib
DB09130 47 Copper
DB14533 45 Zinc chloride
DB14487 45 Zinc acetate
DB01593 45 Zinc

0.005 11,208

DB12010 173 Fostamatinib
DB01069 45 Promethazine
DB01593 39 Zinc
DB09130 39 Copper
DB14487 39 Zinc acetate

0.03 3889

DB12010 25 Fostamatinib
DB09130 6 Copper
DB04464 5 N-Formylmethionine
DB14487 5 Zinc acetate
DB11638 5 Artenimol

0.05 526

DB12010 7 Fostamatinib
DB12267 2 Brigatinib
DB00041 2 Aldesleukin
DB00074 2 Basiliximab
DB09130 2 Copper

0.07 351

DB00041 2 Aldesleukin
DB12010 2 Fostamatinib
DB11638 2 Artenimol
DB00004 2 Denileukin diftitox
DB02240 1 Quinacrine mustard

0.1 191

DB12267 1 Brigatinib
DB00111 1 Daclizumab
DB11942 1 Selinexor
DB08804 1 Nandrolone decanoate
DB00047 1 Insulin glargine

Drug repurposing is a powerful strategy that gives new therapeutic alternatives by
identifying other uses for already-approved medications, as vaccine and drug development
can take years [121]. The traditional conservative drug development approach, which is
restricted to “one drug, one target” paradigms, does not take into account or assess the
off-target effects or the likelihood of numerous drug indications, even though some of
them have since been confirmed to exist [122]. Upon the formation of the coronavirus–
human PPIN, all level one Coronavirus human proteins are mapped with the appropriate
medications via DrugBank [114]. DrugBank is an online database that provides detailed
information on pharmaceuticals, drug-protein targets, and drug metabolism. DrugBank is
the most often utilized database in practically all in silico approaches used in drug design,
drug docking, and drug interaction prediction because of the high-quality annotation in the
database. It includes 10% and 60% of FDA-approved and investigational medications [114].
It is observed that the above list of drugs at the threshold value 0.001, listed in Table 9,
when compared to the remaining human protein-associated medications, fostamatinib has
the highest frequency of occurrence in the entire PPIN and has a sizable overlap of target
proteins in the human–coronavirus PPIN with highest Drug Consensus Score of 181. It was
already discussed and proposed in [115] that Fostamatinib has the highest DCS score with
reference to level one and level two human spreader proteins. Thus, our drug of concern
shifted to the one with the next highest score, copper. Copper has an enormous effect in
defeating COVID-19, which helps it to dominate with a high DCS score. The study proposed
in [120] aims to investigate the effects of a highly specialized drug, “Hinokitiol Copper
Chelate”, on enormous quantities of 2019-nCoV Spike Glycoprotein with a single receptor
binding domain. This investigation offers a superior version of Hinokitiol Copper Chelate
for in vitro testing against 2019-nCoV Main Protease. The authors suggest combining
copper, NAC, colchicine, NO, and the experimental antivirals remdesivir or EIDD-2801 as
a potential treatment for SARS-COV-2 [123]. In-silico docking study of copper complexes
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with SARS-CoV-2 viruses shows a steady binding with SARS-CoV-2 main protease (Mpro)
active-site region [124].

Zinc supplements also play a crucial role in combating different organisms of coron-
avirus. The essentiality of Zinc lies in the preservation of natural tissue barriers such as the
respiratory epithelium, preventing pathogen entry for a balanced functioning of the human
immune system. The deficiency of Zinc can probably lead to the infection and detrimental
progression of COVID-19 [125]. The body’s tissue barriers, which contain cilia, mucus,
anti-microbial peptides like lysozymes, and interferons, stop infectious organisms from
entering. The primary mechanisms for SARS-CoV-2 entering cells are the cellular protease
TMPRSS2 and the angiotensin-converting enzyme 2 (ACE2) [126]. People with COVID-19
are accompanied by ciliated epithelium destruction and ciliary dyskinesia, which limit
mucociliary clearance [127]. The quantity and length of bronchial cilia increased after Zinc
supplementation in Zinc-deficient rats [128].

In COVID-19, Zinc supplementation was hypothesized to reduce mortality. Sup-
plementing with Zinc had no positive effects on how the illness progressed. The Zinc-
supplemented group’s hospital stay was lengthier. There is no evidence to back up regular
Zinc supplementation in COVID-19 [129]. The confounding variables impacting Zinc’s
bioavailability may be avoided by administering Zinc intravenously, enabling Zinc to fulfill
its medicinal potential. If effective, intravenous Zinc might be quickly incorporated into
clinical practice due to benefits such as lack of toxicity, cheap cost, and accessibility of
supply [130].

Promethazine, an antipsychotic agent showing clathrin-mediated endocytosis, is
one most effective drugs for SARS-CoV and MERS-CoV, which has been repurposed for
the treatment of COVID-19 as there is almost 89% genetic similarity with SARS-CoV-2
and SARS-CoV [131]. Two pills were offered as an intervention, one with Aspirin and
Promethazine and the other with vitamins D3, C, and B3, together with Zinc and selenium
supplements [132]. A randomized clinical trial has been conducted to recover mildly to
moderate COVID-19 patients.

Based on this validation, further research on the repurposed drug, docking study,
and other symptomatic analyses will help to identify the potential drug for the entire
coronavirus family. A clinical study on Promethazine and Fostamatinib [115,132] is also
in progress. Even though the research is in its early stages, it in some way partially
corroborates our findings.

5. Conclusions

Finding spreader nodes in any network of host–pathogen interactions is essential for
predicting the course of a disease. However, not every protein in a network of interactions
is highly capable of transmitting illness. In this work, we used the host–pathogen protein
interaction network between humans and different coronavirus family organisms. Based
on the available GO annotations of the proteins, a fuzzy interaction affinity score has been
proposed for all the host–pathogen interactions. Our proposed model was validated with
the state-of-the-art dataset. It has been noticed from this assessment that the chosen human
spreader nodes, indicated by our suggested model, emerge as the possible protein targets
for the different organisms of coronavirus medications authorized by the FDA, which
highlights the significance of this proposed work.

The basic hypothesis of the work is listed as follows: (1) Between SARS-CoV and
SARS-CoV-2, there is a genetic overlap of around 89%, which also results in a substan-
tial overlap in spreader proteins between human–SARS-COV and human–SARS-COV2
protein-interaction networks [79]. Moreover, we have considered the viral proteins of 11
different coronavirus organisms based on the available GO notations. (2) A fuzzy scoring
approach for finding a protein’s interaction affinity with another protein helped build
the host–pathogen network. (3) The proposed in-silico can effectively identify the host–
pathogen protein–protein interaction network for identifying potential candidate FDA
drugs concerning vulnerable host–proteins.
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Our proposed in-silico method for identifying host–pathogen protein interaction
networks has been validated through different state-of-the-art datasets. According to recent
research by Gordon et al., who focused on the sequence analysis of SARS-CoV-2 isolates, 332
high-confidence SARS-CoV-2–human protein–protein interactions have been discovered.
Using affinity-purification mass spectrometry, they determined the human proteins that
were physically linked to each of the 26 of the 29 SARS-CoV-2 proteins after they had
been cloned, tagged, and produced in human cells [107]. While validating our work
with Gordon et al., we discovered that the SARS-CoV-2 protein sequences employed by
Gordon et al. do not exactly correspond to the accessible UniProt accession ids when
comparing their foundational work with ours. In our situation, we exclusively focused on
the SARS-CoV-2 proteins published on UniProt. We used a mathematical model to analyze
the binding affinities of a subset of the human proteins available on UniProt. Because
SARS-CoV-2 proteins could not be directly mapped into matching UniProt accession ids,
direct comparison and validation concerning Gordon et al. were impossible. However,
using the COVID-19 UniProtKB reference database, an attempt has been made to map the
UniProt ids of Gordon et al. SARS-CoV-2 proteins [120].

In addition, our approach is not directly deal with the classification problem and
does not require prior knowledge of positive and negative interaction. Further, several
experiments show that Gordon et al. do not detect all the significant human–nCoV inter-
actions [133,134]. For example, the essential protein for entry into the human host, ACE2
and TMPRSS2, are surprisingly not found in Gordon et al. However, in most of the covid
related studies, Gordon et al. are considered one of the gold standards in human–nCoV in-
teractions. When we quantitatively compared our findings with Gordon et al., we primarily
focused on estimating TPR (higher is better) and FNR (lower is better) over node and edge
overlaps between the two networks using multiple fuzzy thresholds. In this assessment,
we observed that the optimal TPR (0.71) and FNR (0.29) are obtained around the fuzzy
threshold 0.01 for node intersections while comparing with Gordon et al. Likewise, optimal
TPR (0.86) and FNR (0.14) for edge intersection are observed at 0.001.

The target proteins of the possible FDA medications for the coronavirus family coin-
cide with the spreader nodes of the hypothesized human–coronavirus protein interaction
network, which may highlight one of the study’s major findings. Based on the DCS score
applied on vulnerable host proteins identified at different threshold values, we have pro-
posed a list of FDA-approved drugs such as Fostamatinib, Copper, Zinc Acetate, Zinc
Chloride, etc. Our previous research has proposed Fostamatinib as a potential drug for
COVID-19. This analysis demonstrates that these spreader nodes have biological im-
portance in transmitting illness. Additionally, it spurs us to do medication repurposing
research which focuses on the fact that apart from Fostamatinib, Promethazine can also
be one of the potential drug candidates for coronavirus-related diseases under clinical
trials. In a nutshell, the proposed methodology forms a complete PPIN for humans and
different coronavirus organisms and adds much more relevant biological information about
existing drugs against SARS-CoV-2 through a drug-repurposing study done with proper
assessment and in-depth computational study.
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Abstract: S-palmitoylation is a reversible covalent post-translational modification of cysteine thiol
side chain by palmitic acid. S-palmitoylation plays a critical role in a variety of biological processes
and is engaged in several human diseases. Therefore, identifying specific sites of this modification is
crucial for understanding their functional consequences in physiology and pathology. We present a
random forest (RF) classifier-based consensus strategy (RFCM-PALM) for predicting the palmitoy-
lated cysteine sites on synaptic proteins from male/female mouse data. To design the prediction
model, we have introduced a heuristic strategy for selection of the optimum set of physicochemical
features from the AAIndex dataset using (a) K-Best (KB) features, (b) genetic algorithm (GA), and
(c) a union (UN) of KB and GA based features. Furthermore, decisions from best-trained models
of the KB, GA, and UN-based classifiers are combined by designing a three-star quality consensus
strategy to further refine and enhance the scores of the individual models. The experiment is carried
out on three categorized synaptic protein datasets of a male mouse, female mouse, and combined
(male + female), whereas in each group, weighted data is used as training, and knock-out is used as
the hold-out set for performance evaluation and comparison. RFCM-PALM shows ~80% area under
curve (AUC) score in all three categories of datasets and achieve 10% average accuracy (male—15%,
female—15%, and combined—7%) improvements on the hold-out set compared to the state-of-the-art
approaches. To summarize, our method with efficient feature selection and novel consensus strategy
shows significant performance gains in the prediction of S-palmitoylation sites in mouse datasets.

Keywords: S-palmitoylation; post-translational modifications; feature selection; genetic algorithm;
random-forest; consensus; knock-out; amino acid index; propensity; synaptic protein

1. Introduction

Brain functions strictly depend on precise regulation of structural and functional
synaptic integrity. Among the mechanisms governing synaptic protein functions, post-
translational modifications (PTM) [1,2] play a pivotal role. PTMs may influence synaptic
protein activity and turnover, localization at the synapse, and signaling cascades [3–6].
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One of the PTMs is protein S-palmitoylation (S-PALM) involving covalent attachment
of palmitic acid (C16:0) to cysteine residue(s) via a thioester bond. Recent studies showed
that S-palmitoylation can modulate protein localization, stability, activities, and trafficking
and play an essential role in various biological processes, including synaptic plasticity [7,8],
cell signaling, cellular differentiation [9], and apoptosis [10].

Unlike other fatty acid modifications, S-palmitoylation is a reversible process, tightly
regulated by two groups of enzymes: palmitoyl acyltransferases (PATs, palmitoylating
enzymes) and palmitoyl thioesterases (depalmitoylating enzyme). It is widely accepted
that repeated cycles of palmitoylation/depalmitoylation are critically involved in regu-
lating multiple protein functions. The molecular mechanisms that lie behind site-specific
protein S-palmitoylation remain largely unknown. Several human diseases are often
associated with the atypical activity of PATs together with changes in the pattern of S-
palmitoylation. S-PALM has been implicated in a wide range of human disease states
such as cancer [11], Alzheimer’s disease [12], Parkinson’s disease, cardiovascular dis-
ease, schizophrenia [13], or major depressive disorder MDD [14]. Therefore, identifying
substrates that undergo S-PALM and specific sites of these modifications may provide
candidates for targeted therapy.

Twenty-three PATs have been identified in mammalian cells, which mediate the ma-
jority of protein S-palmitoylation. One of the known PATs is a zinc finger DHHC domain-
containing protein 7 (Zdhhc7, abbreviated ZDHHC7). This enzyme palmitoylates various
synaptic proteins involved in the regulation of cellular polarity and proliferation [15,16].
Moreover, Zdhhc7 is responsible for S-palmitoylation of sex steroid receptors such as estro-
gen and progesterone receptors [16–18]. Importantly, Zdhhc7-/- mice developed symptoms
characteristic of human Bartter syndrome (BS) type IV because ZDHHC7 protein may
affect ClC-K-barttin channel activation [19]. Thus, targeting ZDHHC7 activity may offer
a potential therapeutic strategy in certain brain pathophysiological states. Most recently,
using the mass spectrometry approach, we have identified sex-dependent differences in
the S-PALM of synaptic proteins potentially involved in the regulation of membrane ex-
citability and synaptic transmission as well as in the signaling of proteins involved in the
structural plasticity of dendritic spines in the mice brain [18]. Our data showed for the
first time sex-dependent action of ZDHHC7 acyltransferase. Furthermore, we revealed
that different S-PALM proteins control the same biological processes in male and female
synapses [18,19].

Several methods have been developed for the identification of S-palmitoylation target
proteins. However, site-specific identification of S-palmitoylation is less studied. Large-
scale identification of S-palmitoylation sites mainly relies on mass spectrometry-based
methods such as PANIMoni developed in our lab [20] or PALMPiscs or ssABE [21]. These
methods have been successfully used to identify a large number of S-palmitoylated proteins
in different species, such as rats, mice, or humans. For instance, PANIMoni has been
used to describe endogenous S-palmitoylation and S-nitrosylation of proteins in the rat
brain excitatory synapses at the level of specific single cysteine in a mouse model of
depression [20]. In recent years, results of large-scale proteome databases obtained with
PANIMoni, PALMPiscs, or ssABE methods were used to develop tools to predict sites of
specific S-palmitoylation in other biological complexes. Several machine learning-based
algorithms [22–25] have been developed for predictions of S-palmitoylation sites such as;
NBA-PALM [26] and CSS-PALM [25], but their accuracy is uncertain. Therefore, with the
growing number of publicly available large-scale proteome databases of the brain and
somatic tissues, there is a need for the development of reliable and accurate computational
tools to process them.

Considering the growing recognition for the importance of post-translational modifi-
cations of proteins in cell physiology, this study aims to develop a computational tool for
predicting S-palmitoylation sites using proteomic data obtained by the mass spectrometry-
based method PANIMoni [20]. Most recently, we have successfully used this approach to
create a detailed ZDHHC subtype-specific and sex-mouse S-palmitoylome [18,19]. Here,
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we have used this protein database for validation of the computational tool described in
this study.

Our tool is focused on a random forest (RF) [27] classifier-based consensus strategy,
which can predict the palmitoylated cysteine sites on synaptic proteins of the male/female
mouse dataset. Different heuristic selection strategies have been applied on the physic-
ochemical features from the AAIndex feature database [28] along with position-specific
amino acid (AA) propensity information, which eventually generates three different sets
of features: (a) K-Best (KB) features, (b) genetic algorithm (GA) based features [29], and
(c) a union (UN) of K-Best and GA based features. The experiment has been carried out
on three categorized synaptic protein datasets originally described in our previous pub-
lications [18,19]; viz., male, female, and combined (male + female). In each experimental
group, the weighted data is used as the training set, and the knock-out is used as the
hold-out test set for performance evaluation and comparison. A novel RF-driven consen-
sus strategy with efficient feature selection shows significant performance in predicting
S-palmitoylation sites in mouse data.

2. Results

Our method, RFCM-PALM, predicts the S-palmitoylation sites from the primary se-
quence information of synaptic proteins. In the mouse model experiments, three categories
of data, viz., Male, Female, and Combined, and three different feature sets, viz., KB, GA,
UN, along with the RF classifier, have been used. The rationale behind the choice of the RF
classifier is elaborated in the Supplementary Section S1 and Table S1. Features are extracted
from the sequence motifs of variable length, and detailed experiments are conducted to
select the optimum length of such sequence motif. A summary of these experiments is
discussed in Section 4.3, and detailed results are reported in the Supplementary Table S2.
Finally, the proposed approach presents a three-star consensus model for the final clas-
sification task. The efficacy of PTM prediction depends heavily on selecting appropriate
feature sets, the choice of the classifier, and the underlying evaluation strategy. In this work,
GA-based features show better the area under the curve (AUC) score for male, female,
and combined datasets. The UN features show promising performances for the female
dataset with higher accuracy, whereas KB and GA features achieve the highest accuracy
in male and combined datasets, respectively. Finally, we present a three-star consensus
approach for the final classification task. The consensus model significantly improved the
performance compared to individual feature-specific models. We have further compared
the proposed consensus-based approach, RFCM-PALM, with two state-of-the-art methods.

2.1. Performance Evaluation

The performance of the proposed model has been evaluated with five-fold cross-
validation on three different feature sets (namely KB, GA, UN) using a RF classifier. Five-
fold cross-validation has been introduced to estimate the model’s strength on all three
categories of datasets (Male (M), Female (F), and Combined (M + F)), and the performances
are reported in Table 1. The individual fold-wise performances on all three datasets are
reported in Supplementary Table S3. In all three datasets, the GA-based feature outperforms
the rest two in AUC score. However, in our proposed method, for fold-wise testing, the
GA-based feature shows a ~79% AUC score for both male and combined datasets, and
80% AUC on the female dataset, surpassing the other two features. For female data, the
UN-based feature outperforms KB and GA-based features, having an accuracy score of
71.9% and F1 of 71.3% (see Table 1). The AUC and AUPRC curves from training models
are shown in Figure 1.

The knock-out data has been used as the hold-out test set from three categories of
data (Male, Female, and Combined) individually. In the knock-out hold-out test set, the
GA-based feature shows better performance for all the datasets than other features with an
AUC score of ~66.4% in males, 68.6% in females, and 62.5% in combined datasets (please
see Table 2). Moreover, GA has higher accuracy in all hold-out test data except the males
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set, where the KB-based model achieves 62% accuracy. Furthermore, we have introduced a
consensus strategy for the final classification of S-PALM on the hold-out test set. Initially,
the best models are extracted from the cross-validation strategy for each feature set on the
three categories of data set independently.

Thus, the three best models are identified for classification from each data set (Male/
Female/Combined). Finally, three consensus-based classifications are obtained for the final
classification. The 1*-consensus (1*Con), 2*-consensus (2*Con), and 3*-consensus (3*Con)
represent 1, 2, and 3 model confidence scores, respectively. The detailed consensus mech-
anism is shown in Figure 2, and the results are depicted in Table 2. The 2*Con (2 model
confidence) has significantly improved performance compared to the corresponding indi-
vidual models. Consensus-based performance with different categories of data for hold-out
test sets is shown in Table 2.

Table 1. Performance evaluation of S-palmitoylation prediction from 5-fold cross-validation using three different sets of
features on three data types, Male, Female, and Combined.

Type Feature
5-Fold Cross-Validation

AvgAUC MaxAUC Precision Recall Accuracy F1

Male
KB 0.785 ± 0.013 0.801 0.732 ± 0.02 0.666 ± 0.02 0.711 ± 0.01 0.697 ± 0.016
GA 0.790 ± 0.013 0.812 0.726 ± 0.02 0.675 ± 0.02 0.710 ± 0.02 0.700 ± 0.02
UN 0.786 ± 0.013 0.798 0.726 ± 0.02 0.662 ± 0.01 0.706 ± 0.01 0.693 ± 0.01

Female
KB 0.796 ± 0.02 0.82 0.715 ± 0.02 0.701 ± 0.02 0.708 ± 0.02 0.706 ± 0.02
GA 0.801 ± 0.018 0.827 0.732 ± 0.02 0.69 ± 0.04 0.718 ± 0.02 0.709 ± 0.02
UN 0799 ± 0.018 0.821 0.729 ± 0.02 0.698 ± 0.03 0.719 ± 0.02 0.713 ± 0.02

Combined
KB 0.791 ± 0.02 0.830 0.718 ± 0.04 0.689 ± 0.02 0.708 ± 0.03 0.703 ± 0.03
GA 0.795 ± 0.02 0.830 0.733 ± 0.03 0.684 ± 0.03 0.717 ± 0.02 0.707 ± 0.03
UN 0.793 ± 0.02 0.820 0.734 ± 0.02 0.670 ± 0.01 0.714 ± 0.02 0.701 ± 0.02

Table 2. Performance evaluation using fold-wise and consensus strategy on hold-out test data.

Dataset Feature Precision Recall Accuracy F1 MCC AUC

Male

Fold-wise
KB 0.643 ± 0.01 0.54 ± 0.02 0.620 ± 0.01 0.587 ± 0.01 0.244 ± 0.02 0.661 ± 0.01
GA 0.629 ± 0.01 0.535 ± 0.02 0.609 ± 0.01 0.578 ± 0.01 0.222 ± 0.02 0.664 ± 0.01
UN 0.634 ± 0.02 0.532 ± 0.01 0.612 ± 0.01 0.579 ± 0.01 0.227 ± 0.03 0.661 ± 0.01

Consensus
1*Con 0.585 0.812 0.618 0.68 0.255 0.639
2*Con 0.667 0.713 0.678 0.689 0.357 0.679
3*Con 0.676 0.423 0.610 0.520 0.238 0.628

Female

Fold-wise
KB 0.617 ± 0.01 0.566 ± 0.01 0.608 ± 0.01 0.591 ± 0.01 0.216 ± 0.02 0.667 ± 0.01
GA 0.641 ± 0.01 0.600 ± 0.01 0.632 ± 0.01 0.62 ± 0.01 0.265 ± 0.01 0.686 ± 0.004
UN 0.622 ± 0.01 0.566 ± 0.02 0.611 ± 0.01 0.593 ± 0.01 0.223 ± 0.02 0.684 ± 0.004

Consensus
1*Con 0.593 0.792 0.624 0.678 0.264 0.64
2*Con 0.799 0.706 0.764 0.749 0.532 0.768
3*Con 0.800 0.447 0.668 0.573 0.373 0.708

Combined

Fold-wise
KB 0.586 ± 0.02 0.475 ± 0.01 0.57 ± 0.01 0.525 ± 0.01 0.142 ± 0.02 0.597 ± 0.01
GA 0.608 ± 0.02 0.486 ± 0.02 0.586 ± 0.02 0.54 ± 0.02 0.176 ± 0.03 0.625 ± 0.01
UN 0.605 ± 0.02 0.472 ± 0.02 0.581 ± 0.02 0.53 ± 0.02 0.167 ± 0.03 0.615 ± 0.01

Consensus
1*Con 0.654 0.719 0.669 0.685 0.340 0.671
2*Con 0.679 0.669 0.676 0.674 0.353 0.676
3*Con 0.612 0.374 0.568 0.464 0.148 0.580
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2.2. Comparison with the State-of-the-Art Approaches

To demonstrate the performance of our proposed method, we have compared our
approach with existing PTM prediction models. We have identified three state-of-the-art ap-
proaches for benchmarking purposes, CapsNet [23], MusiteDeep [24,30], and ModPred [31].
The CapsNet [23] is a deep learning-based architecture that provides prediction models for
different PTM sites. MusiteDeep [24,30] is a deep-learning-based system that can predict
general and kinase-specific phosphorylation sites from primary sequence information.
ModPred [31] is a sequence-based PTM prediction tool developed on the structural and
functional signatures of proteins. The CapsNet, provides a 10-fold cross-validation result
on the benchmark dataset of animal species (metazoa), extracted from the NCBI taxonomy
database [32], which has been curated by collecting annotations from Uniprot/Swiss-Prot
(August 2007 release) [33] with less than 30% sequence similarity.

Our approach has also been trained with the similar dataset used in CapsNet [23] for
S-palmitoylated cysteine prediction for comparison purposes. When compared with all three
existing approaches on similar datasets, the performance scores are directly incorporated
from Wang et al. [23]. In the proposed model, we have also presented the class-imbalanced
learning by imposing a positive-negative ratio at 1:2 along with the balanced learning (1:1).
The performance has been compared with the existing approaches concerning the AUC and
AUPRC scores (Table 3). Our proposed method outperforms the state-of-the-art methods in
both metrics. The AUC and AUPRC have improved by 8% in comparison with the earlier best-
performing method. Additionally, the proposed approach has surpassed the prior approaches
by 32% in the AUPRC score, as depicted in Table 3. The detailed fold-wise evaluation scores
are shown in the Supplementary Table S4 (balanced) and Table S5 (imbalanced).

Table 3. Performance comparison with the state-of-the-art methods for S-PALM prediction.

Methods AUC AUPRC Accuracy F1 MCC

CapsNet [23] 0.780 ± 0.02 0.500 ± 0.07 NA NA NA
MusiteDeep [24] 0.771 ± 0.02 0.484 ± 0.05 NA NA NA

ModPred [31] 0.8553 ± 0.01 0.5973 ± 0.04 NA NA NA
Proposed Method (1:1) 0.936 ± 0.01 0.889 ± 0.02 0.824 ± 0.03 0.799 ± 0.04 0.669 ± 0.05
Proposed Method (1:2) 0.928 ± 0.02 0.785 ± 0.04 0.816 ± 0.02 0.645 ± 0.06 0.577 ± 0.06
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To investigate the significance of our proposed model on a novel S-PALM dataset, we
have evaluated and compared the performance with two web servers MusiteDeep [30]
and CSS-Palm [25]. MusiteDeep [24,30] is a web resource with a deep-learning framework
that can predict and visualize different post-translational modification (PTM) sites from
protein sequence information. CSS-Palm [25] is developed based on clustering and scoring
strategy (CSS) algorithm and Group-based Prediction System (GPS) algorithm. CSS-Palm
is evaluated with two high-performing thresholds, as stated by the authors in [25]. The
novel hold-out test data from male, female, and combined sets has been submitted in the
above two web servers, and performances have been recorded for comparison purposes
(see Table 4). The proposed method has achieved a better result in more balanced metrics
F1, and MCC compared to each of these web servers in S-PALM prediction depicting the
efficacy of the proposed method on S-PALM prediction. In all three datasets, male, female,
and combined, the proposed approach has improved the F1 score by 54%, 52%, and 48%,
and MCC score by 7%, 32%, and 13%, respectively.

Table 4. Performance comparison with MusiteDeep [24,30] and CSS-Palm [25] web server with holdout dataset.

Method Type of Data Precision Recall Accuracy F1 MCC

MusiteDeep [30]
Male 0.827 0.088 0.535 0.159 0.155

Female 0.808 0.107 0.51 0.188 0.151
Combined 0.555 0.0719 0.507 0.127 0.029

CSS-Palm [25]

High Threshold
Male 0.857 0.132 0.555 0.229 0.206

Female 0.783 0.147 0.524 0.247 0.168
Combined 0.75 0.129 0.543 0.22 0.153

Medium Threshold
Male 0.768 0.158 0.555 0.262 0.182

Female 0.761 0.177 0.532 0.288 0.173
Combined 0.735 0.179 0.557 0.289 0.176

Proposed Method
Male 0.628 0.539 0.609 0.58 0.222

Female 0.639 0.583 0.627 0.61 0.254
Combined 0.623 0.504 0.599 0.556 0.202

In this novel hold-out data set, both web servers show high precision (0.827 in Musit-
eDeep and 0.857 in CSS-Palm) and very low recall (0.0882 in MusiteDeep and 0.1324 in
CSS-Palm). A high precision score depicts low false positivity, and low recall depicts
the increase in false-negative data, which can be interpreted as a failure for predicting
the positive data. This may lead to a biased classification. Low recall also results in a
low F1 score, which is the harmonic mean of precision and recall. Not only the recall
score, but the MCC score for both the web servers are low, which depicts the failure of
the class imbalance issue [34]. In contrast, our proposed method achieves 0.638 precision,
and 0.583 recall scores on this hold-out dataset, which shows a more balanced scenario of
classification outcome. In addition, our proposed method shows the highest accuracy for
all three categories of the data, which outperforms the other two (accuracy improvement
by 9%, 15%, and 7% in male, female, and the combined dataset).

3. Discussion

Our method, RFCM-PALM, computationally predicts the S-palmitoylation sites using
the primary sequence information of the synaptic group of proteins from three categories
of mouse data, designed as sex-dependent (male, female) and sex-independent (combined)
mode. The computational model has been developed through a rigorous feature selection
strategy and optimal model selection for predicting the S-PALM modification sites in
a given subsequence window. The proposed model has been evaluated with five-fold
cross-validation, and model performances have been compared with the state-of-the-art
approaches using three different feature sets; KB, GA, and UN. Finally, a consensus strategy
is designed based on the feature-specific best models from their cross-validated models.
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The performance of the consensus model improved significantly compared to state-of-the-art
approaches. The significant performance improvement in predicting S-PALM modification
sites portrayed the efficacy of the proposed method.

The performance of the method may further be enhanced by incorporating deep-
learning models. However, the major bottleneck lies with the limitation of adequate
training samples. Furthermore, due to the complex nature of the biological experiments,
scalability of the experimentally validated samples may not be easy. The development of
the RFCM-PALM web server is also in our plans. We also plan to extend the method for
other PTM types to predict protein nitrosylation sites in the synaptic proteins.

4. Materials and Methods
4.1. Dataset Preparation

Experimental S-Palmitoylated datasets are categorized into three groups, male, female,
and combined (includes both male and female), where each category contains two types of
data: weight (WT) and knock-out (KO). Weight data is used for training, and knock-out
data is considered for testing. The dataset was derived using the mass spectrometry-based
PANIMoni method from WT and koZDHHC7 mouse brains. The mass spectrometry
proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD025286.

The benchmark dataset for this experiment is constructed with the data available in the
said repository. In this experiment, all three benchmarking datasets, namely, male, female,
and combined, weight data is considered a train set, and knock-out data is considered
the test set for classification. Both male and female datasets contain peptides, modified
sites, and assigned proteins. All the modified cysteines are labeled. The cysteines which
are labeled with Carbamidomethyl are palmitoylated and are considered as positive data.
The cysteines which are labeled as N-ethylmaleimide are not palmitoylated and they
constitute the negative data. In this approach, to retrieve the high-quality negative samples,
the cysteine positions, which are not within the selected fragments of positive samples,
are considered. However, the cysteine position that belongs to the same protein but not
in the selected fragment is considered as the negative data for the classification. The
cysteine positions with both Carbamidomethyl and N-ethylmaleimide modification create
ambiguity in S-PALM identification and thus are discarded from this experiment. The
number of positive and negative sites for S-PALM prediction is given in Table 5. In all
experiments, the positive and negative ratio is kept as 1:1 for balanced classification. The
details of the three benchmark datasets are shown in Table 5.

Table 5. Dataset details of positive and negative sites for all three benchmark data; Male, Female,
and Combined.

Category Type # Protein # Cysteine Sites

Male
Positive (PD) 1077 1870 (Experimental)

Negative (ND) 1175 9279 (Identified)

Female
Positive (PD) 1036 1773 (Experimental)

Negative (ND) 1131 8934 (Identified)

Combined (Male + Female)
Positive (PD) 1180 2083 (Experimental)

Negative (ND) 1293 10,403 (Identified)

4.2. Features

In this work, we have incorporated amino acid physicochemical properties to design
the features for the classification task [28]. The position-specific amino acid propensity is
computed from the primary sequence of proteins using the physicochemical properties
of each amino acid. We have extracted a λ-length sequence window for each cysteine site
with the cysteine at the center of the subsequence.
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4.2.1. Position-Specific Amino Acid Propensity (PSAAP)

The position-specific feature of amino acid is introduced for feature design. First, the
position-specific amino acid composition is computed for all λ-length sub-sequences in
the positive dataset (say, PD). Initially, the positive data set is divided into five different
non-overlapping subsets. For any subset of positive data, the amino acid composition for

i − th position is defined as,
(

AP
1,i, AP

2,i, AP
3,i, AP

4,i . . . . . . AP
20,i

)T
where, i = 1, 2, 3, . . . λ

and 20 amino acids are ordered alphabetically according to their single letter code. Then,
the position-specific amino acid composition is computed as the position-wise average
over all five subsets, denoted as AP

1,i. Similarly, the negative dataset is partitioned into
five equal partitions where each subset size = |ND| = |PD|. The position-wise amino
acid composition is computed for all negative subsets (as done in the case of PD). The
position-wise amino acid composition for individual negative subsets is calculated as,(

AN
1,i, AN

2,i, AN
3,i, AN

4,i . . . . . . AN
20,i

)T
where, i = 1, 2, 3, . . . λ. The average of amino acid

composition over five negative subsets is represented as AN
1,i.

Finally, the propensity of the j− th amino acid at position i in the cysteine sites is
computed as:

χi,j =
AP

j,i − AN
j,i

σN
j,i

,

where, σ represents the standard deviation of j− th amino acid at position i overall negative
subsets. With these propensity values, final propensity matrix ProP20×λ is constructed as

ProP20×λ =

 χ1,1 · · · χ1,λ
...

. . .
...

χ20,1 · · · χ20,λ


4.2.2. Physicochemical Properties Based PSAAP

In the next level, a physicochemical property-based feature is generated by incorporat-
ing the PSAAP (ProP). Currently, there are 566 physicochemical features in the AAIndex
database [28]. A numeric score is assigned to each amino acid in the AAIndex database rep-
resenting any particular physicochemical property scale. Then, the scores are normalized
by [0, 1] for all amino acids for individual AAIndex using max–min normalization. From
any target subsequence (length = λ), the final feature for any amino acid θ at position ι is
for amino acid property ϕ defined as

τ(θ, ι) = ProP(Ordx(θ), ι)× PHYϕ(θ, ι)

where, Ordx(θ) represent the ordering index of amino acid θ in ProP matrix and PHYϕ(θ, ι).

4.3. Sub-Sequence Length Selection

To prepare the dataset, protein sequences are segmented into equal-length windows
containing the cysteine at the center position. Amino acid sequences before and after
the cysteine position in the sequence window are referred to as backward (BW) and
forward (FW) subsequences, respectively. The window size (λ) is varied from 31 to
41 (i.e., |BW| = |FW| = n is varied from 5 to 20 and λ = (2× n + 1)). Different length-
wise experimental analysis has been carried out to find the optimal subsequence length
(window size). Based on the AUC score, it has been found that the performance is optimum
when n = 19 (window size = 2× 19 + 1) as depicted in Table 6. Thus, the length of the
subsequence in this approach is set to 19 for all consecutive experiments.
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Table 6. Performance with different length of sub-sequences.

Length ( n ) Precision Recall Accuracy F1 AUC

15 0.657 0.792 0.69 0.718 0.765
16 0.701 0.731 0.709 0.715 0.781
17 0.699 0.722 0.706 0.71 0.777
18 0.72 0.731 0.722 0.725 0.788
19 0.724 0.717 0.723 0.72 0.79
20 0.715 0.731 0.719 0.723 0.789

4.4. Feature Selection

In the present work, we have introduced two different types of feature optimization
strategies for predicting the S-palmitoylation sites in mouse protein. The method includes
a K-Best (KB)-based feature optimization strategy and a genetic algorithm (GA)-based
feature optimization strategy. We have employed both strategies on three types of datasets
(discussed above) and recorded their performances, evaluated on the cross-validated test
set, and hold-out test set. A detailed discussion of each feature optimization strategy is
discussed in the following section.

4.4.1. K-Best Feature Selection

We have introduced the K-Best feature selection strategy to identify significant and
non-redundant features from 566 physicochemical property-based PSAAP features. Ini-
tially, individual physicochemical property-wise performance has been evaluated with
different varying subsequence lengths (31 to 41). Based on these performances (AUC
score), physicochemical properties are sorted/ranked for individual subsequence length.
Top-performing K features are extracted from each subsequences length-wise evaluation
with four different thresholds of K (as top 25, 50, 75, and 100). Finally, two sets of features
are constructed by considering the intersection of K-best (IB-K) and union of K-best (UB-K)
features from different length-wise evaluations.

Once retrieving these K-best feature sets, performance has been evaluated with the
merged feature where individual features are concatenated into a single feature vector
for final representation. The concatenated feature is generated for the window length
39 (=2 * n + 1, where n = 19) as it shows superior performance compared to other window
lengths. The Union and Intersection-based performance evaluation with four different
thresholds (25, 50, 75, and 100) are depicted in Table 7. Based on AUC and accuracy
scores, we concluded that at window length 39 with IB25 gives the best result with the
highest AUC score among all (see Table 7), thus constitute the K-best features (KB). Figure 3
shows the detailed workflow for selecting the K-Best feature from the 566 feature set.
Finally, the KB feature results in 19, 20 and 21 features in male, female, and the combined
datasets, respectively.

Table 7. Performance of top K features.

Feature Precision Recall Accuracy F1 AUC

IB25 0.724 0.717 0.722 0.72 0.79
IB50 0.715 0.713 0.715 0.714 0.784
IB75 0.702 0.673 0.694 0.687 0.772

IB100 0.707 0.702 0.705 0.704 0.775

UB25 0.72 0.722 0.72 0.721 0.789
UB50 0.714 0.715 0.714 0.714 0.782
UB75 0.709 0.706 0.708 0.707 0.778

UB100 0.703 0.700 0.702 0.701 0.771
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4.4.2. Genetic Algorithm Based Feature Selection

Genetic algorithm (GA), which is inspired by the natural selection and evolution
process, is a guided random optimized search technique that results in an excellent semi-
optimal solution to the feature selection problem [35]. Under GA, fitter children (chromo-
some) populated from the earlier generation (parents) have a better chance of survival.
The feature subsets are encoded as chromosomes are considered as individual and the
collection of such chromosomes represent the population. Here, the chromosomes are
encoded as a binary string where ‘1’ at any position i of represents the selection of i-th
feature and ‘0’ represents the refusal. Each chromosome representing a subset of features
is given a fitness score, which is obtained as the AUC in predicting the correct S-PALM
modification using this feature subset and RF classifier.

Initially, the 566 physicochemical properties are hierarchically clustered based on
the amino acid properties. Then, the hierarchical cluster tree is partitioned into 331 non-
singleton and 185 singleton clusters using the same splitting strategy proposed in [36]. In
this experiment, GA has used in two steps:

• First, GA is employed over the non-singleton clusters to obtain the best performing
feature among the cluster members.

• Second, GA is applied with the newly identified features from the non-singleton
clusters and with the remaining features from singleton clusters.

In our proposed method, RF is used for classification purposes while evaluating the
performance of feature(s) at each generation. However, the AUC score is incorporated in
fitness/objective computation. In this experiment, roulette wheel selection strategy and
uniform crossover are employed. The crossover probability (p) and uniform mutation
probability (q) is set to 0.7 and 0.01, respectively, to populate the next generation chromo-
some. The positive and negative data ratio is kept as 1:1 for evaluation purposes. The tie
between equally performing chromosomes, the one with the lesser number of features,
is retained. The method results in the globally best chromosomes. Finally, the GA based
approach identified 6 features in male, 7 in female and 21 features in the combined dataset,
respectively, for final classification. The overall workflow of GA-based feature design is
detailed in Figure 4.

In a nutshell, our tool RFCM-PALM has been developed with effective feature selec-
tion and consensus strategy for in silico prediction of S-palmitoylation in mouse protein
and shows significant improvement. Sample datasets, supplementary files, and the pre-
diction tool are available at https://github.com/anupgth/RFCM-PALM (accessed on
10 September 2021).

https://github.com/anupgth/RFCM-PALM
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14. Zaręba-Kozioł, M.; Figiel, I.; Bartkowiak-Kaczmarek, A.; Włodarczyk, J. Insights into protein S-palmitoylation in synaptic
plasticity and neurological disorders: Potential and limitations of methods for detection and analysis. Front. Mol. Neurosci. 2018,
11, 175. [CrossRef] [PubMed]

15. Chen, B.; Zheng, B.; DeRan, M.; Jarugumilli, G.K.; Fu, J.; Brooks, Y.S.; Wu, X. ZDHHC7-mediated S-palmitoylation of Scribble
regulates cell polarity. Nat. Chem. Biol. 2016, 12, 686–693. [CrossRef] [PubMed]

16. De, I.; Sadhukhan, S. Emerging roles of DHHC-mediated protein S-palmitoylation in physiological and pathophysiological
context. Eur. J. Cell Biol. 2018, 97, 319–338. [CrossRef] [PubMed]

17. Greaves, J.; Chamberlain, L.H. DHHC palmitoyl transferases: Substrate interactions and (patho) physiology. Trends Biochem. Sci.
2011, 36, 245–253. [CrossRef]
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