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1.1 Introduction 

Gene expression analysis making use of DNA microarray and RNA-seq experiments 

had always played an important role to explain complex biological interactions at the 

cellular level of different organisms [1,2]. In this regard, the substantial regulations 

involved can be defended with synergized role of genes and modular proteins in a 

particular genome experimented under different conditions or environments. This helps 

in instigating the effective causal reaction of genes in cancerous and normal states of a 

cell. A comprehensive picture of the dissimilar regulatory association of genes under 

varied metabolic conditions can be developed through Transcription Factor (TF), 

promoter DNA binding, protein-protein interaction (PPI) and protein-translational 

modification (PTM) [3]. Accordingly, differential regulation has emerged as a premier 

research module to interpret dynamic changes in Gene Regulation Networks (GRNs). In 

other words, the rewiring of GRNs in response to different environmental conditions 

can be made possible from the fundamental analysis of differential gene co-expression 

networks [4-7]. The differential analysis indicates either up or down regulation of genes 

compared to a control set of conditions. In this connection, the triggering factor or TF 

genes generate protein complexes that may have a direct [8-12] or indirect [13-17] 

causal effect on various target genes. 

Understanding the nature of the target genes is crucial in the process of development of 

gene regulation networks. In this context, the healthy samples are compared with the 

diseased counterparts to interpret the working of the tissues having different gene 

expression levels across conditions. These types of genotypic variations are not only 

important in predicting the extent of disease but are inevitable to apprehend the 

heritable variations, an essential perspective in the evolutionary process. Evolution 

through natural selection motivates ecological changes across phenotypes [18]. 

Maintaining some specific patterns [19], the altered expression levels encountered by 

the differentially expressed genes (DE genes) have been studied across different 

development stages. Various salient methods proposed to infer the extent of differential 

expression are the single slide method [20], multiple slide method [21], Apo-AI and SR-

BI [20], and DEGseq [22] to name a few.  

A particularly challenging issue is to identify the regulatory network responsible for 

above kinds of target gene regulation in a given biological system [23]. In a generic 
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sense any living cell exerts this control through interactions. This process allows limited 

combinations of ubiquitous, signal-specific transcription factors (TFs) binding to 

promoter DNA, to execute an exponentially larger number of regulatory decisions. The 

involvement of different kinds of TF genes in gene regulation makes possible the 

integration of several signalling pathways in the nucleus [24]. It is important to note that 

living cells function following the rules of cell growth and reproduction which highlight 

the orchestrated regulatory actions of genes and proteins [25]. In this context, some 

external factors such as UV rays, harmful chemical substances present in various food 

and beauty products, infiltration of viruses etc. may instigate the generation of 

signalling proteins causing the nucleus to stimulate cell division. These proteins do 

create a signal transduction cascade including a membrane receptor for the signal 

molecule, intermediary proteins that carry the signal through the cytoplasm, and 

transcription factors (TFs) in the nucleus thus activating the genes for cell division [26]. 

In each step of the transduction cascade, one TF gene may generate a protein complex 

influencing another TF gene or may have the capability of inducing the generation of 

multiple types of protein complexes and thus affecting the progress of regulation.   

Extensive research guiding the process of regulatory control mentioned above not only 

requires the presence or importance of differentially expressed (DE) genes but also the 

involvement differential connectivity based on gene correlation or co-expression [27]. 

The amalgamation of these ideas in gene regulatory control can be apprehended in the 

true sense provided the differential co-expression of the participating DE genes or TF 

genes or TF and DE genes gives a better insight compared to standard DE gene 

expression analysis [28]. As given in [9], changes occurring in the coding region of 

some genes and posttranslational modifications (like phosphorylation, acylation, 

methylation, etc.) may lead to modification of protein activity without any significant 

change in the gene expression level but may encounter altered interaction pattern with 

other genes. In this regard, the effect of TF genes can be considered where a number of 

down- stream targets can be regulated by a master gene. Unfortunately, in diseased 

cells, the regulatory mechanism is dysfunctional because of high chance of random or 

unordered coalition of the genes present. Gene modules showing this kind of modified 

association can be detected primarily by the differential co-expression (DC) analysis as 

compared to standard differential expression (DE) analysis [28]. At the backdrop of 

differential expression (DE) and differential co-expression (DC), Transcription factors 
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(TFs) are proteins that bind to specific DNA sequences and play a crucial role in 

regulating gene expression. They are able to activate or repress the transcription of 

target genes, thereby influencing the production of specific proteins within a cell. 

Differential gene regulation networks refer to the complex interactions between TFs and 

their target genes, which determine the specific gene expression patterns observed in 

different cell types, developmental stages, or physiological conditions. These networks 

are responsible for the dynamic and context-specific regulation of gene expression. In a 

differential gene regulation network, the activity of TFs is controlled by various factors, 

including environmental cues, signalling pathways, and interactions with other proteins. 

The binding of a TF to its target gene's regulatory region can either enhance or suppress 

gene expression. The specific DNA sequence recognized by a TF is known as its 

binding site. TFs can form regulatory cascades, where the expression of one TF is 

controlled by another TF. This hierarchical organization allows for precise control of 

gene expression patterns. Additionally, TFs can also form complex regulatory networks 

with feedback loops, feed-forward loops, and cross-regulatory interactions, further 

adding to the complexity of gene regulation. Advancements in high-throughput 

techniques, such as next-generation sequencing and chromatin immune-precipitation, 

have enabled the systematic identification of TF binding sites and the construction of 

genome-wide transcriptional regulatory networks. These networks provide valuable 

insights into the combinatorial interactions and regulatory logic underlying gene 

expression. 

Studying transcription factor-controlled differential gene regulation networks is 

essential for understanding cellular processes, including development, disease 

progression, and response to environmental stimuli. By deciphering these networks, 

researchers can gain insights into the molecular mechanisms governing gene expression 

and identify potential therapeutic targets for various diseases. 

1.2 Understanding DNA Microarray and RNA-seq Experiments 

DNA microarray and RNA-seq are two commonly used experimental techniques for 

studying gene expression profiles on a genome-wide scale. They provide valuable 

insights into the transcriptional activity of genes and allow for the identification of 

differentially expressed genes under various conditions or in different cell types. 
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DNA Microarray: 

A DNA microarray, also known as a gene chip, is a solid surface (such as a glass slide 

or silicon chip) on which thousands of DNA sequences or probes are immobilized in an 

ordered manner. The microarray contains specific probes that are designed to hybridize 

with complementary target sequences, typically cDNA or labelled RNA samples.  

The workflow of a DNA microarray experiment typically involves the following steps, 

as given below. 

Sample preparation: RNA is extracted from the cells or tissues of interest, and the RNA 

is reverse transcribed into complementary DNA (cDNA). If comparing two different 

conditions, two different sets of cDNA samples are prepared and labelled with different 

fluorescent dyes (e.g., Cy3 and Cy5). 

Hybridization: The labelled cDNA samples are mixed and applied to the microarray 

slide. The cDNA binds to the complementary DNA probes on the microarray, forming a 

hybridization complex. 

Scanning and data acquisition: The microarray slide is scanned using a fluorescence 

scanner to measure the intensity of the bound fluorescent dyes. The fluorescence 

intensity represents the relative abundance of the corresponding RNA transcripts in the 

original sample. 

Data analysis: The fluorescence intensity values are processed and normalized to 

correct for technical variations. Statistical methods, such as t-tests or analysis of 

variance (ANOVA), are applied to identify genes that are differentially expressed 

between the compared conditions. 

RNA-seq: 

RNA-seq is a high-throughput sequencing-based technique that allows for the 

quantification of RNA transcripts in a sample. Unlike microarrays, RNA-seq provides a 

more comprehensive and unbiased view of the transcriptome, as it can detect both 

known and novel transcripts. 
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The general workflow of an RNA-seq experiment involves the following steps, as given 

below. 

RNA extraction and purification: Total RNA is isolated from the cells or tissues of 

interest. The RNA may undergo additional purification steps to remove genomic DNA 

and other contaminants. 

Library preparation: The isolated RNA is converted into complementary DNA (cDNA) 

through reverse transcription. The cDNA is then fragmented and sequenced library is 

generated. Different library preparation protocols exist, such as poly(A) enrichment for 

capturing mRNA or total RNA sequencing for capturing all RNA species. 

Sequencing: The RNA-seq library is subjected to high-throughput sequencing using 

platforms like Illumina or Ion Torrent. The sequencing generates millions of short reads 

that represent fragments of the original RNA molecules. 

Read mapping and quantification: The sequenced reads are aligned to a reference 

genome or transcriptome using bioinformatics tools. The aligned reads are then counted 

to determine the abundance of each transcript. 

Data analysis: The read counts are normalized to correct for differences in library size 

and gene length. Statistical analysis, such as the calculation of fold changes or the 

application of specialized algorithms, is performed to identify genes that are 

differentially expressed between conditions. 

It is notable that RNA-seq also allows for additional analyses beyond gene expression, 

such as alternative splicing, detection of novel transcripts, and identification of non-

coding RNAs. 

Both DNA microarray and RNA-seq provide valuable information about gene 

expression patterns. However, RNA-seq is generally considered more versatile and 

sensitive due to its ability to detect novel transcripts and quantify expression levels over 

a wider dynamic range. It has become the preferred choice for many gene expression 

studies in recent years. 
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1.3 Understanding Differentially Expressed Genes 

Differentially expressed (DE) genes refer to genes that exhibit significant changes in 

their expression levels between different conditions or experimental groups. These 

conditions could be, for example, comparing gene expression in diseased versus healthy 

tissues, treated versus untreated samples, or different developmental stages. 

Understanding DE genes is crucial in various areas of biological research, particularly 

in genomics, molecular biology, and biomedical sciences. Identifying DE genes helps 

researchers gain insights into the underlying molecular mechanisms associated with 

specific conditions or treatments. It can also provide valuable information about disease 

progression, biomarker discovery, and potential therapeutic targets. 

Some key steps involved in understanding differentially expressed genes can be 

summarized as given below. 

Experimental Design: A well-controlled experiment need to be designed with 

appropriate sample sizes and statistical power to ensure reliable results. There certain 

design factors such as treatment groups, replicates, and controls are required to be 

incorporated. 

Data Generation: Gene expression data is required to be generated using high-

throughput techniques such as microarrays or next-generation sequencing (RNA-seq). 

These methods quantify the expression levels of thousands of genes simultaneously. 

Pre-processing and Normalization: The raw gene expression data requires pre-

processing to remove technical artefacts and normalize the data across samples. This 

step ensures that the expression values are comparable between samples. 

Statistical Analysis: At this stage, statistical analysis is an essential step to identify the 

DE genes. Various methods such as t-tests, analysis of variance (ANOVA), or more 

advanced techniques like edgeR, DEGseq, or DESeq2 can be used. These methods 

assess the statistical significance of gene expression differences between groups, 

considering factors such as fold change and adjusted p-values. 

Multiple Testing Correction: After exploring the essential statistical analysis there may 

be a requirement of multiple hypotheses testing by adjusting p-values to control the 
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false discovery rate (FDR). This correction helps reduce the chances of false positive 

results. 

Gene Set Enrichment Analysis (GSEA): Applying this enrichment analysis it is possible 

to identify biological pathways, gene ontology terms, or other functional annotations 

that are overrepresented among the DE genes. This analysis helps to understand the 

biological relevance and potential functions of the identified genes. 

Validation: Towards some fine tuning, the expression changes of selected DE genes 

may need to be validated using independent techniques such as quantitative PCR 

(qPCR) or immunohistochemistry. Validation experiments provide additional evidence 

of the differential expression observed in the initial analysis. 

Functional Interpretation: The crux part of any research incorporating the DE genes 

includes interpretation of the biological significance of the DE genes in the context of 

the specific research question or condition under investigation. Available databases, 

literature, and bioinformatics tools are used to explore potential molecular interactions, 

signalling pathways, and biological processes associated with the identified DEGs. 

By following these steps, researchers can gain a deeper understanding of the genes that 

play important roles in various biological processes and disease conditions. The 

identification and functional characterization of DE genes contribute to advancing our 

knowledge of gene regulation, disease mechanisms, and the development of new 

therapeutic interventions. 

1.4 Understanding Differentially Co-expressed Genes 

Differential co-expression analysis is a technique used in genomics to identify genes 

that show consistent changes in their expression levels across different conditions or 

samples. It aims to identify genes that have similar expression patterns, meaning they 

are co-expressed, but their levels of co-expression differ between conditions. These 

genes are referred to as differentially co-expressed genes. 

The step-by-step overview of the process of understanding differentially co-expressed 

genes is given below. 
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Gene Expression Data: The gene expression data is obtained from different conditions 

or samples. This data is typically generated using technologies such as microarrays or 

RNA sequencing (RNA-seq). The data will consist of expression values for each gene 

across the conditions or samples. 

Normalization: The gene expression data is to be normalized to correct for systematic 

biases and variations introduced during the experimental procedures. Common 

normalization methods include quantile normalization or variance stabilizing 

normalization (VSN). 

Co-expression Analysis: The correlation or similarity between gene expression profiles 

across the conditions or samples is being computed. This can be done using various 

methods such as Pearson correlation, Spearman correlation, mutual information, 

polynomial regression, and spline regression. The result is a co-expression matrix that 

represents the pairwise relationships between genes. 

Differential Co-expression Analysis: At this stage it is required to identify genes that 

exhibit differential co-expression patterns between conditions. This is typically done by 

comparing the co-expression values or correlations for each gene pair across conditions 

and identifying significant differences. Statistical tests such as t-tests, linear models, or 

non-parametric tests can be used to assess the significance. 

Multiple Testing Correction: Due to the large number of gene pairs being tested, it is 

important to correct for multiple testing to reduce false positives. Methods like the 

Bonferroni correction, Benjamini-Hochberg procedure, or false discovery rate (FDR) 

control can be applied to adjust the p-values obtained from the statistical tests. 

Functional Interpretation: Once differentially co-expressed genes are identified, it is 

crucial to assess their functional significance. Gene ontology (GO) analysis, pathway 

enrichment analysis, or network analysis can be performed to determine if these genes 

are involved in specific biological processes or pathways. 

Validation: As per requirement, experimental validation of the identified differentially 

co-expressed genes may be necessary to confirm their biological relevance. Techniques 

such as qRT-PCR (quantitative real-time polymerase chain reaction) or independent 

gene expression profiling experiments can be performed to validate the results. 
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By identifying differentially co-expressed genes, researchers can gain insights into 

regulatory mechanisms, identify potential biomarkers, or discover key genes involved in 

specific biological processes or diseases. 

1.5 Understanding the role of Transcription Factor Genes in a Gene Regulatory 

Network 

Transcription factors (TFs) are proteins that play a crucial role in regulating gene 

expression by binding to specific DNA sequences in the promoter region of target 

genes. They act as molecular switches, turning genes on or off by facilitating or 

inhibiting the recruitment of RNA polymerase, which is necessary for gene 

transcription. 

Gene regulatory networks (GRNs) are intricate systems of interacting genes and TFs 

that coordinate the expression of multiple genes, often in a specific spatial or temporal 

pattern. These networks are essential for various biological processes, such as 

development, cell differentiation, and response to environmental cues. The role of TF 

genes in a GRN is to control the activation or repression of target genes. They function 

by binding to DNA sequences called transcription factor binding sites (TFBS) in the 

promoter region of target genes. TF genes themselves can be regulated by other TFs or 

by external signals, forming complex regulatory cascades. Dysregulation of TFs can 

disrupt normal gene expression patterns and lead to abnormal cellular processes or 

developmental defects. For example, mutations in TF genes can be linked to cancer, 

developmental disorders, and metabolic diseases. 

The interactions between TFs and their target genes can be categorized into activation 

and repression. Activator TFs enhance gene expression by recruiting co-activators and 

the RNA polymerase complex, while repressors TFs inhibit gene expression by 

blocking the binding of activators or recruiting co-repressors. TFs can act as master 

regulators that control the expression of multiple downstream target genes. A single TF 

gene can regulate the expression of numerous genes, while individual target genes can 

be regulated by multiple transcription factors. The combinatorial interactions between 

different transcription factors and their target genes form a complex network of gene 

regulation. The behaviour of such GRN depends on the specific TFs present, their 

binding affinities, and the combinatorial interactions between multiple TFs. During 

development, TF genes are often expressed in specific spatial and temporal patterns. 
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They play a vital role in specifying cell fate and guiding the differentiation of different 

cell types. By activating or repressing the expression of specific genes, TFs contribute 

to the establishment of cell identity and the formation of complex tissues and organs.  

Understanding the role of TF genes in a GRN requires experimental techniques such as 

chromatin immune-precipitation (ChIP) to identify TF binding sites, as well as gene 

expression profiling to determine the target genes regulated by specific TFs. 

Additionally, computational modelling and bioinformatics analyses are employed to 

predict and study the dynamics of GRNs. By unravelling the intricate interactions 

between TF genes and target genes in a GRN, researchers can gain insights into the 

underlying mechanisms of complex biological processes. This knowledge is crucial for 

understanding normal development and disease states, and it has implications for fields 

such as synthetic biology and therapeutic interventions. 

1.6 Motivation for the Work 

Reconstruction of Gene Regulation Networks (GRNs) is done through analyzing static 

and time series gene expression data obtained from DNA microarray and/or RNA-seq 

experimental techniques used for studying gene expression profiles on a genome-wide 

scale. Analyzing the above forms of data through computational biology and varied 

types of algorithms in bioinformatics, the goal is to understand the relationships and 

interactions between genes and identify the regulatory mechanisms that control gene 

expression. In a broad perspective, incorporating both types of gene expression data, the 

following techniques are widely applied towards understanding the reconstruction of 

GRNs.  

Data pre-processing: The first step is to pre-process the gene expression data. This 

includes normalizing the data to correct for technical variations, such as batch effects, 

background noise, and platform-specific biases. Common normalization methods that 

may be considered are like log transformation, quantile normalization, or robust z-score 

normalization. 

Differential expression analysis: Differential expression analysis identifies genes that 

show significant changes in expression levels between different experimental conditions 

or sample groups. This step helps identify genes that are potentially regulated by 

specific factors or biological processes of interest. 
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Co-expression analysis: Co-expression analysis aims to identify groups of genes that 

show similar expression patterns across different samples. This approach assumes that 

co-regulated genes tend to have similar expression profiles. Various methods can be 

used for co-expression analysis, such as correlation-based methods (e.g., Pearson 

correlation coefficient) or more advanced approaches like weighted gene co-expression 

network analysis (WGCNA). 

Network inference: Once co-expressed gene modules or clusters are identified with or 

without the differentially expressed (DE) genes, the next step is to infer regulatory 

relationships between genes to reconstruct a GRN. Several computational methods can 

be used for this purpose. Some of these are enlisted below.  

Correlation-based methods- These methods infer regulatory relationships based on the 

correlation between gene expression profiles. For example, if the expression of gene A 

is highly correlated with gene B across samples, it suggests that gene A may regulate 

gene B or vice versa. 

Bayesian networks- Bayesian network algorithms use probabilistic graphical models to 

infer regulatory relationships. These models consider dependencies between genes and 

estimate the probability of a gene being regulated by another gene based on the 

expression data. 

Information theory-based methods- These methods measure the mutual information or 

entropy between genes to infer regulatory relationships. They quantify the amount of 

information shared between gene pairs and identify pairs with high information content, 

indicating potential regulatory interactions. 

Machine learning approaches- Various machine learning algorithms, such as support 

vector machines (SVM), random forests, or neural networks, can be trained on gene 

expression data to predict regulatory relationships. These methods typically require a 

labelled training dataset with known regulatory interactions. 

Network validation and refinement: Once the initial GRN is inferred, it is crucial to 

validate and refine the network. Experimental validation methods, such as ChIP-seq, 

DNase-seq, or reporter assays, can provide additional evidence for the predicted 

regulatory interactions. Integration of varied types of omics data, such as transcription 
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factor binding data or protein-protein interaction data, can also help refine the GRN and 

improve its accuracy. 

In the above forms of reconstruction of gene regulation networks from gene expression 

data, various forms of models prominent in literature primarily include topological 

design perspectives, Bayesian network designs, Boolean network approaches, and 

Hidden Markov and other stochastic models.  

1.6.1 Topological Design: One of the topological methodologies that attracted the 

scientific community is on identification of the differences among the affected regions 

of a progressive neurogenerative disorder [29] involving variation in the transcriptome 

of many genes. In this perspective, the differential topology [4,8] of gene co-expression 

networks helped in apprehending the associations among the regions affected through 

progressive nature and the severity of the disease. The interactive components adopted 

in this view incorporate several node connectivity measures [30-33] that help in 

providing certain empirical evidence important in the prediction of the biological 

significance of a gene. Concepts related to weighted and un-weighted topological 

overlaps got justified [10,34] in search of biologically enriched differentially connective 

gene networks.  

1.6.2 Bayesian Network Design: The Bayesian viewpoint [35] in the reconstruction 

process involves learning the structure and parameters of a Bayesian network from 

microarray data. The structure learning step aims to identify the dependencies and 

interactions between genes, while the parameter learning step estimates the conditional 

probabilities associated with these dependencies. A Bayesian network [21,36] is a 

graphical model that represents joint multivariate probability distributions and captures 

the conditional independence between variables. These models are useful for describing 

complex stochastic processes and provide a clear methodology for learning from noisy 

observations. The benefits of this design had made this a popular and powerful mode of 

reconstructing in silico signalling pathways. The Bayesian network structural learning 

[37-39] yields the provision to generate biologically constrained hierarchical gene 

regulatory pathways or signalling cascades.  

1.6.3 Boolean Network Design: Probabilistic Boolean Networks (PBNs) are a 

modelling framework that combines the rule-based properties of Boolean networks with 

probabilistic considerations to handle uncertainty [40,41]. In PBNs, the state of each 
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node (representing a gene or a variable) is determined by a Boolean function that takes 

into account the states of its parent nodes. However, unlike traditional Boolean 

networks where the transitions between states are deterministic, PBNs introduce 

probabilistic transitions. The dynamics of PBNs can be modelled using Markov chains 

[42,43] which represent a sequence of states where the probability of transitioning from 

one state to another depends only on the current state. By analyzing the transition 

probabilities, one can gain insights into the behaviour of PBNs. Standard Boolean 

networks can be seen as a special case of PBNs where the transition probabilities are 

either 0 or 1, representing deterministic behaviour.  

1.6.4 Comparing Boolean and Bayesian Network Approaches: Bayesian network, 

mentioned earlier, on the other hand, are graphical models that explicitly represent 

probabilistic dependencies between variables. These dependencies are typically 

represented by directed edges between nodes, with each node representing a variable 

and each edge representing a probabilistic influence. In the context of PBNs, one can 

obtain the probabilistic dependencies between genes by considering the Boolean 

functions that determine their states.  

Furthermore, within the framework of PBNs the influence of genes on other genes can 

be analyzed by the transition probabilities and conditional probabilities associated with 

the Boolean functions of the genes. By examining how changes in the state of one gene 

affect the probabilities of other genes transitioning to specific states, we can determine 

the dependencies between genes within the context of PBNs. Hence, PBNs provide a 

robust approach [44-47] to model gene regulatory networks by combining the rule-

based properties of Boolean networks with probabilistic considerations. By studying 

PBNs as Markov chains and relating them to Bayesian networks [48], one can analyze 

the dynamics, probabilistic dependencies, and influence of genes on each other within 

the framework of PBNs. 

1.6.5 Hidden Markov and other Stochastic Designs: In Transcriptional Regulatory 

Networks (TRNs; can be considered a subset of GRNs), the TF genes have the 

capability of regulating the differentially expressed target genes, either in individual or 

collaborative mode [11,12]. In this regard, a set of constraints can be defined to relate 

gene expression patterns to regulatory interaction models making use of Hidden Markov 

modelling [11,12,49-52] via two or more states. Applying such technique large scale 
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TRNs can be effectively developed for complex organisms introducing novel ideas in 

transcriptional dynamics and bio-activation. Deciphering the mechanisms of target gene 

regulation using multiple TF genes in a collaborative mode [12] has been proven to be a 

challenging task in systems biology. In this perspective, an earlier statistical model [53] 

mainly makes use of three key concepts for understanding the gene expression pattern. 

These are using of principal component analysis to suggest gene patterns, nested models 

to group genes in a hierarchical organization exhibiting similar expression patterns at 

different phases of the cell cycle, and compass plot which combines biological 

information (such as previously characterized cell cycle regulated genes) with statistical 

analysis to determine the phase [54] of the cell cycle for the genes of interest.  

The static gene expression data obtained from any living cell mainly consists of 

independent and identically distributed profiles of gene expression. To figure out the 

true dynamicity of gene regulatory or transcriptional regulatory networks, time series 

gene expression profiles with high level of correlation existent between the profiles 

maintain optimum performance. The real dynamicity gets reflected through the 

translation time (protein formation time) of the source gene followed by translocation 

time of the end product (formed protein) binding with target genes at the promoter 

region, thus regulating the transcription of the concerned targets. In this segment of 

gene expression analysis, various forms of research that have accrued importance are 

like differential equation model architectures, dynamic Bayesian architectures, and time 

delayed gene regulatory architectures highlighting first and higher order target gene 

regulations. 

1.6.6 Differential Equation Model based Architectures: One of the initial works 

reconstructs regulatory network based on an iterative reverse engineering approach 

using a minimal linear model [55]. This analysis reveals the steady state change in the 

gene expression obtained from the systematic perturbation of some nodes or genes in a 

regulatory model. This work highlights on the effect of multiple genetic perturbations 

increasing the average change in the gene expression levels without inducing secondary 

compensatory changes and other non-linear effects. Again, a study is there to estimate 

the parameters of a regulatory network, specifically focusing on the Hes1 system [56]. 

Here, the researchers employ Markov chain Monte Carlo (MCMC) methods [57], which 

are statistical techniques used for sampling from probability distributions, to analyze 

experimental data. The Hes1 system is modelled using stochastic differential equations 
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(SDEs), which take into account the inherent randomness and variability observed in 

biological systems. The researchers use rigorous likelihood-based inference methods to 

analyze the data and estimate the parameters of the model. This study specially 

addresses the challenge of sparse data, where the time intervals between observations 

are large; a common issue in biological experiments where data collection may be 

limited or infrequent. Further research in this domain enlightens the usage of ordinary 

differential equations in optimized reconstruction of dynamic gene networks utilizing 

synthetic time series gene expression data with noise and time delay [58]. Hence, this 

work presents an optimization-based approach for inferring gene regulatory networks, 

showcasing its effectiveness and applicability through simulations with synthetic data 

and an experimental case study involving gene expression data from the budding yeast 

cell cycle. In this differential equation model based approach, one of the significant 

research works addresses the decomposition of an N-dimensional biological system into 

N one-dimensional problems [59]. This decomposition allows for a more practical and 

scalable approach to determine candidate network interactions. By applying this 

algorithm to in silico networks based on known biological GRNs, the researchers were 

able to successfully predict candidate network topologies that reproduced the dynamics 

of the original networks. Here, using this algorithm, the computational complexity of 

the network identification process was shown to increase quadratically (N^2) with the 

size of the system. However, a parallel implementation of the algorithm achieved nearly 

linear speedup by utilizing multiple processing cores. This parallelization significantly 

reduced the computational demand required for reverse engineered GRNs. 

Reconstruction of time delayed GRNs are crucial because genes do not respond 

instantaneously to perturbations, and there can be various regulatory mechanisms with 

different delays involved. In this perspective, an algebraic equation [60] based on the 

observed expression changes had been developed to identify the sub-network structure 

around the perturbed gene measuring the overall expression changes resulting from the 

perturbation. This type of experimental setup could provide valuable information about 

the genes that are directly affected by the perturbation, the subsequent downstream 

effects on the gene network and to understand the time delay effects inherent in gene 

regulation. Some recent differential equation based architectures [61,62] incorporating 

the biochemical reaction diffusion aspects of miRNA, mRNA, and proteins have been 

used to define the stability and/or oscillatory properties of TRNs. These properties are 
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primarily judged via the significant effects observed on the transcriptional and 

translational delay factors inherent in the dynamics of gene regulation. 

1.6.7 Dynamic Bayesian Network Architectures: Bayesian network (BN) methods 

have high computational complexity and struggle to handle large-scale networks. 

Information theory-based methods have difficulties in identifying the directions of 

regulatory interactions and are prone to false positive/negative problems. To overcome 

these limitations, the approaches [63-65] followed primarily utilize network 

decomposition strategies and false-positive edge elimination schemes. These networks 

are a type of probabilistic graphical model used to model and analyze dynamic systems 

that evolve over time. These architectures help to capture the temporal dependencies 

and causal relationships among genes, allowing researchers to infer regulatory 

mechanisms and predict gene expression patterns. Among these approaches, the initial 

one [63] was into improving the accuracy and the computational efficiency of Dynamic 

Bayesian Network (DBN) methods for predicting gene regulatory networks. In this 

approach, by focusing on genes that show up- or down-regulation before or at the same 

time as their targets, the search space for potential regulators is reduced, allowing for 

more efficient analysis. However, in the latter half, one of the approaches [64] is 

focussed on developing new scoring functions based on the Bayesian Information 

Criterion (BIC) score, which aim to improve the accuracy of inferring GRNs by 

reducing the number of false positive edges. In this method, a combination of BNs and 

DBNs in the presence of the novel scoring functions helps to identify the optimal graph 

structure required to maximize the proposed scores. These scoring functions, when 

compared to the traditional BIC score, result in networks with fewer spurious edges and 

higher precision. The other method [65] in the latter half is about a framework for 

learning DBNs utilizing multiple groups of samples and comparing the GRNs between 

them. This is particularly valuable, as it can provide insights into the differences and 

similarities in gene regulation across different conditions or cell types instrumental in 

understanding the underlying biological mechanisms and identifying key regulators.  

Here, the selection of the optimal model based on cross-validated predictive accuracy is 

a sound approach, as it helps in preventing overfitting and ensures that the learned 

models generalize well to unseen data. In this context, the various DBN architectures 

which have been compared to understand to the structured learning process are G1DBN 

[66], dbnlearn [67], dbnR [68], ebdbNet [69], and bnstruct [70] respectively.  
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1.6.8 Time Delayed Gene Regulatory Architectures: Inferring time-delayed causal 

gene networks from time-series expression data is a challenging task in bioinformatics 

and systems biology. Several computational approaches [14,15,58,60,71-75] have been 

developed to address this problem. A general overview of the process is given below for 

having a better understanding of this specific area of research. 

Data Collection: Time-series gene expression data is obtained, which typically involves 

measuring the expression levels of genes at multiple time points under different 

conditions or treatments. The data should include information about the expression 

levels of genes across time. 

Pre-processing: The gene expression data need to be cleaned to remove noise, pre-

processed to normalize the expression levels, and handle missing values or outliers. 

This step ensures that the data is suitable for subsequent analysis. 

Time-Delay Embedding: The time-series expression data is transformed into a suitable 

representation for inferring causal relationships. One common approach is to perform 

time-delay embedding, which constructs a higher-dimensional space by incorporating 

previous time points as additional features. This captures the temporal dependencies 

between genes and allows for the detection of time-delayed causal relationships. 

Causal Network Inference: Causal network inference algorithms are applied to the time-

delay embedded data to identify causal relationships among genes. These algorithms 

can be broadly categorized into correlation-based methods, information theory-based 

methods, and machine learning-based methods. Some popular algorithms include 

Dynamic Bayesian Networks (DBN) [63-70], Granger causality [1,76], and Causal 

Entropy [77]. 

Model Selection and Validation: The most appropriate causal network model is selected 

based on statistical measures, such as goodness-of-fit metrics, likelihood ratios, or 

cross-validation techniques. Validation of the inferred network is done using 

experimental evidence or existing biological knowledge to ensure its biological 

relevance. 

Network Analysis: There is a stepping need to analyze and interpret the inferred gene 

network to gain insights into the underlying biological mechanisms. This may involve 

identifying hub genes, functional modules, or key regulators within the network. 
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Several software tools and packages are available for inferring gene networks from 

time-series expression data, such as GeneNet [78], WGCNA [79], TIGRESS [80], and 

GENIE3 [81]. These tools provide implementations of various network inference 

algorithms and can assist in the analysis of gene regulatory networks. 

Though inferring causal relationships solely based on gene expression data is done with 

lots of statistical and biological validations, still there remains ample scope to develop 

the gene regulatory or transcriptional regulatory networks (as the case may be). 

Integrating other types of data, such as protein-protein interactions, transcription factor 

binding data, or gene knockout experiments, can enhance the accuracy and reliability of 

the inferred gene network. 

1.7 Open Research Issues 

Gene Regulatory Networks explore the idea of biological collaborative mechanisms, 

which happens to be one of the most challenging issues of computational systems 

biology because of varied types of information sources (gene expression data, gene-

protein interaction, protein-protein interaction, etc.). Predicting the nature and 

directivity of such collaborative regulations still remains an open source problem 

because of ever changing environmental conditions affecting the growth and 

development of living cells. To date various approaches (mentioned in Motivation for 

the Work) which have been developed to predict the nature of the reconstructed gene 

regulatory networks (GRNs) or transcriptional regulatory networks (TRNs) look toward 

the betterment of gene or transcriptional regulatory statistics following the various 

biological databases and try to find the key factors or therapeutic targets responsible in 

spreading of a particular disease. At this point, some research issues which need to be 

addressed further are enlisted below. 

1.7.1 Research issue #1: It is known that transcription factor (TF) genes can be held 

responsible for altering the gene expression pattern of target genes. In this perspective, 

the target genes which effectively get altered in their gene expression levels to a 

significant extent under varied experimental conditions with or without the influence of 

the TF genes can be termed as the differentially expressed (DE) genes. To date, every 

significant research output focuses on obtaining the DE genes using some statistical 

measure that solely works on the expression level of the concerned gene. However, their 

lies scope to understand the differential pattern of a gene considering the physical trait 
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of any organism. As an example, we can consider humans and chimpanzees; two 

different creatures having lots of dissimilarity in their physical features or traits but 

possessing the same set of genes at the genome level. However, with the renowned 

statistical dissimilarity measures, in most of the cases, we can expect to end up in the 

same set of target DE genes. But incorporating the physical feature information along 

with the gene expression level we can expect to have different sets of target DE genes, 

thus contributing to the different types of physical attributes corresponding to the 

growth and development of the various organs in the respective creatures. 

1.7.2 Research issue #2: At the current point in time, a significant proportion of the 

human race is found to be suffering from various forms of neurodegenerative disorders. 

In this regard, varied types of therapies are getting proposed depending on the nature of 

development of the specific disorder or combination of similar types of disorder. From 

the clinical perspective, it becomes crucial to know the involvement of protein 

complexes (considering the source being the TF genes) along with the target DE genes 

responsible in the interactive structure and hence contributing to the beyond control 

development of any type of neurodegenerative disorder. Apart from the involvement of 

common TF or DE genes, it is equally important to gather knowledge about the 

mutually exclusive sets of DE genes that may contribute to different kinds of 

biomarkers like physiologic, radiographic, or histologic types. 

1.7.3 Research issue #3: Understanding the normal and diseased states of a living cell is 

primarily based on the differential connectivity properties of any GRN or TRN, as the 

case may be.  In this regard, inter and intra module differential co-expression pattern of 

the concerned TF and DE genes play a significant role. To explore this thought, while 

maintaining the level of computational burden and time complexity within reasonable 

limits, some generalized topological overlap measures have widely being used in 

different research articles. However, in most of the works, there is dearth in selection of 

a smart threshold that would help in locating the mutually exclusive gene pairs across 

normal and diseased states of a living cell. The management of this threshold selection 

happens to be crucial because the outcome in the form differentially connective gene 

regulatory pairs should be both statistically and biologically significant. 

1.7.4 Research issue #4: Computational validation of various signalling pathways 

associated with the normal functioning or diseased state of a living cell gives us the 
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opportunity to explore the topological importance of various gene-gene or protein-gene 

or protein-protein interaction structures in any regulatory network. In this regard, the 

ranking of any gene in the context of differential regulation under normal and diseased 

states, carry significant importance. Different algorithms proposed so far either takes up 

a global or a local network biased approach to convey the ranking or the importance of 

any gene in a particular regulatory cascade. Hence, the adopted ranking measures are 

unable to give us a clear and uniform ranking of a regulatory gene owing to varied 

forms of objective functions/measures which may not follow concurrent optimality. In 

this context, some multi-objective approach may deem suitable in order to understand 

the true role of any participating gene in a regulatory cascade. This may also make clear 

the individual or collaborative action of TF genes on target DE genes at every level of 

the reconstructed cascaded or hierarchical network. 

1.7.5 Research issue #5: The individual or collaborative regulatory actions of TF genes 

on the target DE genes mainly stress on the activator or repressor role of any source TF 

gene following the activation sequence of any TF or DE gene obtained from the time 

series gene expression data. In this perspective, there is complete absence of significant 

research that contributes to time varied transcriptional regulation networks. Though the 

factor of time delay inherent in any regulation has widely been explored, contemporary 

research in this regard focuses on TF to DE gene regulation as an activator or repressor 

following time invariant attitude in a certain state or throughout all states of a living 

cell. Time dependent regulatory perspective may be existent at a certain state of the cell 

(provided for instance we look into the cell cycle of any organism guided through 

different stages of development in a time course experiment) indicating activator and/or 

repressor action existent in that state. Further the differential role of activator and 

repressor actions can also be confirmed across the same set of consecutive time points 

in different stages of the cell cycle. Hence, the matter of regulation can guide us more 

into the temporal dynamics of the transcriptional regulatory network which can be of 

prime importance in the design of suitable drugs based on the ever-changing 

environmental conditions, required for therapeutic targets. 

1.7.6 Research issue #6: Following the time varied or temporal transcriptional 

regulatory network design significant research can be conducted to understand the 

major time delay components inherent in any regulation. This has the possibility to 

explore or give us some idea about the time involved in attacking a therapeutic target 
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from a certain protein translated from any source TF gene following a specific 

statistically and biologically significant regulatory pathway. 

1.7.7 Research issue #7: Estimation of hidden causal factors in the context of regulation 

has been put in force just a few years back. This indicates the existence of any hidden 

factor (not any physically existent gene entity or module) that may be there along with 

other genes toward the activation or repression in the transcription process of any target 

gene. Following a time variant and time delayed design of transcriptional regulatory 

network different forms of optimization algorithms can be used to predict the 

expression level of any target gene. In this process, there lies a chance of predicting the 

hidden factors responsible for prediction of the changes, if any, of the target genes. 

1.7.8 Research issue #8: Mostly we refer to the importance of a direct regulatory action 

in a gene regulatory or transcriptional regulatory network. To stress on the fact, 

topologically we are more concerned about the significance of any direct regulation, 

even if there are various computational evidences of indirect regulation via one or more 

physical gene entities. At this background, the physical importance of a direct or semi-

direct regulatory link can be checked in the presence of one or more intermediary 

regulatory genes and thus helping in determining the true specificity and sensitivity of 

any transcriptional network design. In this regard, it is an open challenge to carry the 

statistical estimation of some unknown gene combinations along with the primary 

regulator gene responsible in the regulation of therapeutic targets. 

1.8 Research Objectives  

1.8.1 Research Objective #1: Finding the quantitative trait specific differentially 

expressed (DE) genes. In other words, computation of DE genes considering the 

differential relation between the gene expression and physical trait factors of any 

organism. The statistical and biological significance of these DE genes can be checked 

making use Gene Ontology tools and KEGG pathway analysis.  

1.8.2 Research Objective #2: Designing simple transcriptional regulatory networks 

involving a pair of transcription factor (TF) genes and a target DE gene. Through this 

approach, an initial framework depicting the power of collaborative TF regulations 

corresponding to a target DE gene can be checked making use linear and non-linear 

interactive measures. 
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1.8.3 Research Objective #3: The differential regulation of any gene or transcriptional 

regulatory network under varied conditions have primarily been checked across normal 

and diseased tissues using a widely applicable generalized topological overlap measure. 

In this regard, disjoint regulations highlight on the specific nature of the disease or the 

normal state of any living cell. To find these disjoint sets of regulations the selection a 

proper threshold demands utmost importance. Hence, a smart threshold selection for the 

network is required and accordingly the performance of the gene participation can be 

verified making use gene ontology and KEGG pathway analysis.  

1.8.4 Research Objective #4: Understanding the effective role of differential regulation 

in complex networks under varied experimental conditions, can be thoroughly verified 

exploring through some studies on the nature of growth of different kinds of 

neurodegenerative disorders such as Alzheimer’s disease (AD), Amyotrophic lateral 

sclerosis (ALS), Huntington’s disease (HD), Multiple sclerosis (MS), Schizophrenia 

(SCZ), and Parkinson’s disease (PD). In this regard, it is even more important to 

discover the extreme differential regulations between dissimilar types of disease pairs, 

where a particular disease pair is determined based on the parity of gene expression 

levels.  

1.8.5 Research Objective #5: Multiobjective ranked selection of differentially expressed 

(DE) or transcription factor (TF) genes across different optimal fronts applying the 

concept of ranking the DE or the TF genes based on certain conflicting objectives. The 

optimal decisions in this regard are taken in the presence of trade-offs between two or 

more conflicting objectives. This step is vital to understand the true power of a TF or 

DE gene in the development of TF to DE gene regulatory networks in a signalling 

cascade. 

1.8.6 Research Objective #6: Time delayed transcriptional or gene regulatory networks 

are inherent issues present in the process of formation of any biological network. Hence, 

in this regard, analyzing the functional effect (activation or repression) of regulation can 

be strengthened understanding the logical view (sufficient or necessary) of the same. 

Appreciating both the above ends, time varied transcriptional regulations (individual or 

collaborative) at any condition can be developed obtaining differential transcriptional 

regulations across conditions for the same set of time points in the different conditions 

of interest. The entire time regulation can be made more meaningful observing the 
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periodicity of the transcription factor (TF) and differentially expressed (DE) gene 

expression levels. 

1.8.7 Research Objective #7: The existence of unknown transcriptional regulators 

inevitable in complex regulatory networks can be ascertained by comparing the 

statistical significance of known direct transcriptional regulatory links of differential 

type with the same in the indirect presence other transcription factor genes through a 

fused least absolute shrinkage and selection operator with a topological overlap measure 

as the interaction structure. This approach can throw new light in gene regulation 

statistics, thus helping us to develop further time critical collaborative or individual 

transcription factor to differentially expressed gene regulation.  

1.9 Research Scope 

This work embodies the development of transcription factor gene regulatory networks 

for differentially expressed genes via certain statistically significant methodologies 

which include the following as per the organization of the thesis chapters, mentioned 

below. 

Chapter 2: In this chapter, at the initial level, the significance of finding differentially 

expressed (DE) genes considering the physical traits of an organism helps us to define 

the evolutionary process. This also contributes to have a better understanding of the DE 

genes present across different stages of growth of any diseased cell. This is followed by 

development of paired transcription factor (TF) regulatory networks for DE genes 

obtained via normal statistical techniques and the technique employing the physical 

characteristics using linear correlative and non-linear interactive measures such as 

mutual information, polynomial regression, and spline regression. In the above context, 

finding individual differential regulatory links, explicitly indicating the presence or 

absence of a gene link under different conditions is unveiled using a smart threshold 

selection of statistically enriched topological overlap score metric. 

Chapter 3: In this chapter, the application of a topological overlap score on the 

differentially expressed (DE) genes is initially checked in the context of Alzheimer’s 

disease that progresses through incipient, moderate, and severe stages. As the disease 

moves from mild or moderate to severe stage, the developed topological overlap metric 

show some form (weighted and un-weighted counterparts) of disjoint regulation with 
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respect to each DE gene and thus segregating the mild from the severe stage. The 

significant participation of the DE genes having dissimilar regulation is also checked 

via KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway analysis revealing 

the importance of the DE genes under consideration. This work led to thought of further 

understanding different types of neurogenerative disorders, their similarity level and 

extent of dissimilarity that may be present. In this context, a probabilistic differential 

regulatory score metric is developed that helps to find the extreme level of topologically 

disjoint regulations prevalent in between similar neurodegenerative disease pairs.  

Chapter 4: The differentially expressed (DE) genes participating in various signalling 

cascades can be classified based on their nature of differential regulation scores. 

However, maintaining the individual regulation score as an objective function, multiple 

such conflicting objectives are considered for development of network paths consisting 

of DE genes placed in different optimal fronts. In each such front, the DE genes present 

are non-dominant to each other based on the considered objectives. This idea helps us to 

extend the concept to build up composite entropy minimized transcription factor (TF) 

regulatory networks following a hierarchical strategy in the process of development. In 

the latter case, the network is built up using TF genes of varied types (pure TFs, TF 

genes that are differentially expressed, i.e. TF-DE, and TF genes that are differentially 

co-expressed, i.e. TF-DC) across different optimal fronts with the presence of the DE 

genes at the last front, indicating the final target gene in the regulatory cascade. 

Chapter 5: Using temporal gene expression profiles (time-series information), 

composite mode differential transcriptional regulatory networks for differentially 

expressed (DE) genes are developed incorporating the inherent presence of time varied 

regulatory effect (functional and logical roles of regulation are considered) in a certain 

condition and the periodicity property of any transcription factor (TF) or differentially 

expressed (DE) gene expression profile. The performance has been checked over 

individual as well as collaborative TF to DE gene regulatory networks showing 

significant statistical improvement in recognition of biological regulations along with 

adding a factor related to the type of composite mode differential regulation that may be 

present in a temporal perspective. 

Chapter 6: Transcriptional factor (TF) regulatory networks may be of individual or 

collaborative interaction nature. Here, it has been verified through topologically 
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overlapped fused least absolute shrinkage and selection operator approach that, there is 

a high chance of the inevitable presence of unknown TF regulatory modules working 

along with the primary TF gene in regulating a target differentially expressed (DE) 

gene. In other words, the direct interaction structure depicted in biological databases 

between a TF and target DE gene may involve additional unknown TF gene regulators 

working in tandem with the primary TF gene mentioned earlier. 

Chapter 7:  This is the concluding portion of this thesis highlighting the crucial 

thoughts and benefits from the experimental outcomes discussed in the various chapters, 

starting from chapter no. 2 to chapter no. 6. In other words, this portion states the way 

the research has been conducted to understand the process of development of 

transcription factor (TF) network architectures for differentially expressed (DE) genes. 

In addition to the above, this chapter also points out some significant areas in the TF 

network architectural domain where further contribution can benefit therapeutic drug 

modelling on diseased tissues.  
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2.1 Introduction 

The initial focus of this chapter is to introduce the concept of quantitative trait specific 

differentially expressed (DE) genes. DE genes can be obtained from the gene expression 

level (static or time series data) of any organism considering varied conditions of 

experimentation or the genotypic variations present across the phenotypes of the 

concerned subject. In this perspective, different forms of algorithms which have gained 

importance in understanding DE genes are [1-4]. However, in this chapter, the concern 

is about finding DE genes checking the differentially co-expressed [5] dependence 

between the gene expression level and some physical trait of an organism.  

At the next stage, the matter of investigation lie on the reconstruction of paired 

transcription factor (TF) regulatory networks for the DE genes. A particularly 

challenging demand in this regard is to identify the gene regulatory network in a given 

biological system [6]. Here, through the involvement of different kinds of TF genes it is 

possible to integrate various forms of signalling pathways in the nucleus of a cell [7]. In 

a eukaryotic cell, there is the presence of multiple types of TF genes acting as regulators 

for different kinds of target genes. Here, the regulation of the target genes participating 

in the process of cell cycle division demands proper attention of the regulating TF genes 

because a number of such target genes show a possibility of transcription even before it 

is required [8]. Again the DE genes are physical entities that differ in the transcription 

level across conditions/ phases of the cell cycle mentioned above. Hence, it is important 

to study the basic nature of TF regulatory networks regulating target DE genes in such a 

way that maintains significant control over the level of differential expression of the 

target DE genes. The basic nature of the TF regulatory networks can be explored 

through reconstruction of paired TF networks for target DE genes making use of linear 

interaction or regulation measure like Pearson correlation [9], and non-linear interaction 

measures like mutual information [9-15], polynomial regression [16], and spline 

regression [17].  

Though the involvement of significant regulators can be understood from the basic 

network architecture mentioned above, the crucial differences in regulatory architecture 

across conditions or states of the cell cycle, as the case may be, are dependent on the 

selection of a proper threshold level in a topological overlap measure. This demands 

attention because the differential functioning of a cell in varied conditions can be based 
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on disjoint sets of inherent regulations. In this regard, it is worth mentioning that the 

study of differential co-expression yields a better understanding compared to 

differential expression analysis [18]. In diseased cells, having abnormal regulations the 

expression of the gene modules will be unordered or random. Gene modules showing 

this kind of pattern can be detected primarily by the differential co-expression approach. 

Hence, amalgamating the differential co-expression or connectivity along with 

differential expression can be used to develop the topological overlap measure [19] 

required for defining a smart threshold. 

2.2 Finding Differentially Expressed Genes using Quantitative Traits 

Here, the concept of differential dependencies between quantitative trait and gene 

expression profiles is explored to stress on natural selection based evolutionary growth 

driving ecological changes across phenotypes [20]. Existence of algorithms [21] prove 

the presence of cluster based segregation of genes via physical or quantitative traits 

through linear correlation strategies.  

2.2.1 The basic findings: In this study, the focus is on identifying the differentially 

expressed (DE) genes based on traits using two types of significance measures: linear 

correlation and non-linear mutual information and polynomial regression. The purpose 

is to find DE genes specific to traits, referred to as qtDE (quantitative trait-specific 

differential expression).  

To determine DE genes in the entire dataset, a statistical significance test is performed, 

specifically the Student T-test. Additionally, a well-known DE gene analysis tool called 

DEGseq [4] is utilized to compare the results obtained by qtDE with those from 

DEGseq. The results of the study demonstrates that the qtDE method to be promising 

compared to DEGseq, not only in terms of the number of DE genes identified (qtDE 

identified more genes than DEGseq) but also in the biological enrichment of the 

additional DE genes found by qtDE, as determined by KEGG pathway analysis. 

Furthermore, the number of DE genes involved in biologically enriched pathways, as 

well as the number of significant pathways themselves, is significantly higher when 

using the mutual information and polynomial regression-based trait-specific measures 

compared to the linear correlation-based measure. Overall, the study suggests that the 

qtDE method using non-linear mutual information and polynomial regression is more 
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effective in identifying DE genes and biologically enriched pathways related to specific 

traits when compared to DEGseq and linear correlation-based approaches. 

2.2.2 Methodology: An algorithm is devised to compute the gene significance values 

across two phenotypes using three different measures: linear correlation, non-linear 

mutual information, and non-linear polynomial regression. The algorithm calculates 

these gene significance values for each gene in order to determine differentially 

expressed (DE) genes between the two phenotypes. 

In the algorithm, the gene expression matrices for phenotype 1 and phenotype 2 are 

represented by ExV1 and ExV2, respectively. The quantitative trait vectors for 

phenotype 1 and phenotype 2 are represented by T1 and T2, respectively. The algorithm 

also uses a soft threshold parameter denoted as β. The steps of the algorithm can be 

explained as follows: 

Step 1: Computing gene significance values 

The LinCor function is used to calculate the linear gene significance by computing the 

correlation between the expression profile of each gene and the quantitative trait. The 

NLinMI function is used to calculate the non-linear gene significance by computing the 

mutual information based uncertainty between the expression profile of each gene and 

the quantitative trait. The NLinPR function is used to calculate the non-linear gene 

significance by fitting a polynomial regression model between the expression profile of 

each gene and the quantitative trait. In each case, the obtained gene significance values 

are stored for phenotype 1 in GS1 matrix and for phenotype 2 in GS2 matrix.  

Hence, at this stage, the algorithm calculates these gene significance values separately 

for both phenotypes. 

Step 2: Difference Calculation 

In this step, the algorithm computes the difference between the gene significance values 

obtained in Step 1 across the different phenotypes. This step quantifies the variation in 

significance between the phenotypes for each gene. The differences are stored in a 

variable called GS. 
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Step 3: T-Statistics Probability Distribution 

In this step, the algorithm performs a T-statistics probability distribution of the gene 

significance difference values obtained in Step 2. This distribution allows for the 

calculation of cumulative distribution function (CDF) values across the entire set of 

genes. Each gene will have a corresponding CDF value based on its significance 

difference. 

Step 4: Threshold Computation 

Here, the algorithm computes the mean of the T-statistics CDF values obtained in Step 

3. This mean value is used to determine a threshold level. The threshold level serves as 

a criterion for determining which genes are considered differentially expressed. It is 

important to note that the specific method for computing the threshold may vary 

depending on the algorithm or statistical approach used. 

Step 5: Differential Expression Identification 

In this final step, the T-statistics CDF (TcdV) values obtained in Step 3 are compared 

with the threshold value computed in Step 4. If the TcdV value of a particular gene is 

greater than the threshold, it suggests that there is a significant difference in the gene's 

significance values between the phenotypes. This indicates that the gene is differentially 

expressed.  

The Algorithm described above is outlined below. 

ALGORITHM: Quantitative Trait Specific Differential Gene Significance 

 

Input: ExV1, ExV2, T1, T2, GN, β    1 

Output: GS1, GS2, GS, TcdV, DE 

 

Step1. s     choose mode of computation 

for i in 1 : N do 

      r1     rbind (ExV1[i,],T1)  

      nr1     transpose (r1)  

      r2     rbind (ExV2[i,],T2)  

      nr2     transpose (r2) 
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   if s = = 1 then 

   GS1[i]    LinCor (nr1, β) 

   GS2[i]    LinCor (nr2, β) 

   else if s = = 2 then 

   GS1[i]    NLinMI (nr1, β)  

   GS2[i]    NLinMI (nr2, β)  

   else 

   GS1[i]    NLinPR (nr1, β)  

   GS2[i]    NLinPR (nr2, β) 

   end if 

end for 

Step2. GS      GS1 - GS2 

Step3. TcdV     qt ((GS), set degree of freedom) 

Step4. ThV     mean (TcdV) 

Step5. for i in 1 : N do 

                  if TcdV[i] > ThV then 

                  s     s+1 

                  DE[s]     GN[i] 

                  end if 

            end for 

%%%%%%%% End of Main Program %%%%%%%% 

LinCor     function (nr, β) ….. Subroutine 1 corresponding to function call LinCor 

V     cor (nr, set correlation method) ^ β  

NLinMI     function (nr, β) ….. Subroutine 2 corresponding to function call NLinMI 

V    mutualInfoAdjacency (nr, discretize columns, set entropy estimation method, set 

the number of discretization bins) ^ β 

NLinPR     function (nr, β) ….. Subroutine 3 corresponding to function call NLinPR 

V  adjacency.polyreg (nr, set the degree of polynomial, specify the method to 

symmetrise the pairwise model fitting index matrices) ^ β 

 

2.2.3 Results: The dataset used [22,23] in this analysis consists of gene expression 

values for male and female mice across four different types of tissues: brain, muscle, 

liver, and adipose. This dataset contains a total of 3600 genes in each tissue. 
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At first, the mice weights have been segregated based on the male and female 

phenotypes, indicating the existence of separate weight values for male mice and female 

mice. Next, the mice weights are redistributed among the four tissues for both male and 

female mice, based on the mice ID and strain. This step involves assigning the weight 

values to each tissue sample according to the corresponding mouse ID and strain 

information. Once the data is properly organized, the analysis identifies genes that are 

differentially expressed across all four tissue types in male and female phenotypes. This 

is achieved using the algorithm mentioned above setting the value of β to 1. 

2.2.3.1 Linear Correlation method: In this analysis, LinCor function, given in the 

algorithm, is followed. This user defined function as mentioned in the algorithm 

invokes another function cor associated with the R package named WGCNA [24] to 

compute the linear gene significance by correlative measure. The function cor 

corresponds to the Pearson correlation operation being performed between each gene of 

a particular tissue and the redistributed mice weight of that tissue for both phenotypes. 

In this segment, linear gene significance (GS1 for male and GS2 for female) is hence 

getting considered. Thereafter, going through the remaining steps of the algorithm the 

prediction of DE genes is done. In this context, 837,856, 1132 and 579 qtDE genes have 

been found in liver, adipose, muscle and brain respectively along with 213 common 

qtDE genes amongst these tissues. So, it can be assumed that with respect to weight, 

these genes are responsible for the evolution of two different sexes (male and female). 

2.2.3.2 Non Linear Mutual Information method: In this segment, a user-defined 

function called NLinMI is used to compute the non-linear gene significance. The 

NLinMI function utilizes the mutualInfoAdjacency function from the R package 

WGCNA [24] to compute a symmetric uncertainty-based mutual information adjacency 

measure. The mutualInfoAdjacency function estimates entropy using maximum 

likelihood estimators with Miller-Madow bias correction. This operation is performed 

on each gene using the redistributed mice weight pair of the tissue being considered for 

both phenotypes. The result of this operation provides the non-linear gene significance 

(GS1 for males and GS2 for females). Continuing with the remaining sequence of 

operations, there are 1,479 qtDE genes in the liver, 1,236 in adipose tissue, 2,503 in 

muscle, and 1,499 in the brain. Additionally, there is a common set of 705 qtDE genes 

among these tissues. 
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2.2.3.3 Non Linear Polynomial Regression method: Here, the NLinPR function, 

which computes non-linear gene significance through polynomial regression, utilizes 

the adjacency.polyReg operation from the R package WGCNA [24]. This calculates a 

network adjacency matrix by fitting polynomial regression models to pairs of variables. 

In this case, the operation is applied between each gene of a particular tissue and the 

redistributed mice weight of the same for both phenotypes. This process results in two 

non-linear gene significance measures: GS1 for males and GS2 for females. Based on 

the analysis carried out in this segment, a total of 1395, 938, 1163, and 675 qtDE genes 

have been identified in the liver, adipose, muscle, and brain tissues respectively. 

Additionally, there are 364 common qtDE genes among these tissues. 

On the over whole, KEGG Pathway analysis [25] has shown that non-linear 

methodologies outperform linear methods in terms of both p-value [26] and the number 

of participating genes. This suggests that non-linear approaches may be more effective 

in identifying biologically enriched pathways. In this analysis, a significant threshold of 

a p-value of at least 1E-03 and a minimum of 2 genes for a pathway has been set to be 

considered significant. This means that pathways meeting these criteria are considered 

to have a meaningful enrichment of genes and are worth further investigation.  

Table 2.1, given below, highlights the significant pathways by the common qtDE genes 

among brain, muscle, liver, and adipose tissues for the linear (213 common qtDE genes) 

and non-linear (705 common qtDE genes by mutual information and 364 by polynomial 

regression) processes. 

Table 2.2, given below, shows the significant biological pathway enrichment enlisting 

those genes which are not only common among all the three methods but also among 

the four tissues. Through this analysis, 9 common qtDE genes have been found and the 

significance of a crucial pathway has also been highlighted. From the table, it can be 

suggested that Ether Lipid Metabolism is the only notable pathway observed among the 

above mentioned common qtDE genes, but it only involves two such genes, namely 

pla2g7 and pld2. Additionally, it has also been observed that other KEGG pathways 

lacking these two genes show better biological enrichment compared to Ether Lipid 

Metabolism. 

Table 2.3, shown below, depicts that the exclusion of these 9 common qtDE genes leads 

to improved biological enrichment of pathways through non-linear interactions. This 
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suggests that by considering mutual information based differential dependency, it is 

possible to identify crucial KEGG pathways formed by qtDE genes more effectively 

compared to polynomial regression and correlative measures. Thus by excluding these 9 

common qtDE genes and leveraging mutual information-based differential dependency, 

the research has demonstrated improved biological enrichment of pathways across 

different tissues. Hence, this finding highlights the importance of considering non-linear 

interactions and the potential limitations of linear regression and correlative measures in 

capturing complex biological processes. 

Table 2.4, shown below, enlists the significant KEGG pathways formed by the  DE 

genes excluding the 59 common ones found across the four tissues via DEGseq, the 

statistical technique used for comparing the effectiveness of the proposed method. It is 

notable to mention, that through DEGseq 732, 373, 424, 301 DE genes have been 

observed in adipose, brain, liver and muscle tissues respectively. DEGseq is an R 

package specifically designed for identifying DE genes using gene expression profiles 

from RNA-seq data. It does not consider any sample traits or any other additional 

information. DEGseq uses a statistical approach to compare gene expression levels 

between different samples or time points. It calculates p-values or q-values (adjusted p-

values) to assess the statistical significance of differential expression. By setting a 

specific threshold for p-value or q-value, DEGseq determines which genes are 

differentially expressed.  

Table 2.5, shown below, depicts the comparative results of KEGG pathway analysis 

considering the common and mutually exclusive sets of DE genes found from qtDE and 

DEGseq approaches. In adipose tissue, out of 856 qtDE genes identified by the 

correlative measure, 584 genes are common with the 732 DE genes found by DEGseq. 

Similarly, out of 938 qtDE genes identified by the polynomial regression measure, 498 

genes are common with the 732 DE genes found by DEGseq. However, all these 732 

DE genes are encompassed within the 1236 qtDE genes identified by the mutual 

information-based measure. In brain tissue, all 373 DE genes discovered by DEGseq are 

common in the qtDE gene sets identified by the correlative measure (579 genes), mutual 

information-based measure (1409 genes), and polynomial regression measure (675 

genes). In liver tissue, out of 424 DE genes, 379 genes are common with the 837 qtDE 

genes identified by the correlative measure. Similarly, out of 424 DE genes, 392 genes 

are common with the 1395 qtDE genes identified by the polynomial regression measure. 
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However, all 424 DE genes are included in the 1479 qtDE genes identified by the 

mutual information-based approach. In muscle tissue, out of 1132 qtDE genes identified 

by the correlative measure, 283 genes are common with the 301 DE genes found by 

DEGseq. Similarly, out of 301 DE genes, 275 genes are common with the 1163 qtDE 

genes identified by the polynomial regression measure. In this case as well, all 301 DE 

genes are within the set of 2503 qtDE genes discovered by the mutual information-

based measure. Comparing the results, as depicted in table 5, in some cases, no 

significant improvement is observed in the p-value after adding the disjoint set of DE 

genes (mutually exclusive to qtDE and DEGseq) to the common DE gene set found 

between qtDE and DEGseq. In this regard, there is null refinement in Drug metabolism 

cytochrome P450 in case of mutual information based differential interaction in brain, 

Proteasome in case of polynomial regression based differential interaction in muscle 

and Metabolism of xenobiotic by cytochrome P450 in case of mutual information based 

differential interaction in brain. Again, in Autoimmune thyroid disease (earned from 

correlative based differential interaction in adipose) the results rather deteriorate after 

adding an extra gene from DEGseq. Thus a promising role of qtDE over DEGseq can be 

claimed in the context of phenotypic variations. 

 

 

 

Table 2.1: Significant pathways through linear correlative, nonlinear mutual informative and polynomial 
regression measure by the common qtDE genes across all tissues 

 
Nonlinear Method              Linear Method 

   Mutual Information    Polynomial Regression                Correlation 
Pathways    p-value genes Pathways    p-value genes Pathways   p-value  genes 

Olfactory    6.6E-08 
transduction 

    7 Metabolic 
pathways 

   1.8E-04 26 Cell cycle   1.1E-03 6 

Leukocyte                1.9E-05 
Transendothelial  
 migration 

   14 Nucleotide 
excision repair 

   2.3E-04        4 Chronic 
myeloid 
leukemia 

  2.8E-03 3 

Complement and   2.1E-03 
coagulation  
cascades 

    8 Glutathione 
metabolism 

   4.6E-04 4 Ether 
Lipid 
metabo
lism 

  6.2E-03 2 

Ether Lipid    3.4E-03 
metabolism 

    5 Ether Lipid 
metabolism 

   8.2E-04     3 
-- -- -- 

Glycerolipid    4.4E-03 
metabolism 

    6 DNA replication    9.7E-04 3 
-- -- -- 
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Mutual Information            Polynomial Regression Correlation 

Pathways                    p-value   genes Pathways   p-value genes     Pathways    p-value     genes 

Glycero phospholipid 9.6E-03 
metabolism 

   7 Long Term 
Depression 

  1.1E-03 4 

-- -- -- 

--                               -- -- Mismatch repair   3.1E-03 2 -- -- -- 

--                               -- -- 
Vascular smooth 
muscle contraction 

  6.2E-03 4 
-- -- -- 

 

 

Table 2.2: Significant pathways by the 9 common qtDE genes found between linear and nonlinear 
methods across all tissues 

 

Pathway                    p-value Gene names 
Ether Lipid metabolism         1.6E-03 
 

2(pla2g7,pld2) 

 

Table 2.3: Significant pathways across different tissues through correlation, mutual information and 
polynomial regression based approach excluding the common DE genes in qtDE approach 

 
 

Correlation Mutual Information Polynomial Regression 

ADIPOSE 

Pathways  p-value        genes   Pathways    p-value      genes   Pathways p-value     genes 
Olfactory transduction  1.31E-06       12   Olfactory transduction    2.22E-11       9   Olfactory 2.27E-17    12 

  transduction 
Cell cycle  7.2E-05        24   Leukocyte                     2.82E-03      13 

  transendothelial migration 
 
  Amoebiasis            9.15E-04     8 

Cytokine-cytokine      1.5E-03        2 
receptor interaction 

  Leishmaniasis   9.17E-03       8   Cytokine-cytokine 9.16E-04     9     
        receptor interaction                

Fc gamma R-mediated  1.8E-03        18 
phagocytosis 

  Glutathione metabolism  9.3E-03       7 

 

  Steroid biosynthesis 9.16E-04   7 

Chagas disease   6.4E-03       17   Cell adhesion molecules   9.7E-03     7   Arginine and  8.8E-03     3     
       proline metabolism 

    Nitrogen metabolism 8.8E-03   7 

BRAIN 

Pathways        p-value   genes    Pathways     p-value     genes    Pathways  p-value     genes 

Olfactory transduction     2.29E-09     6    Olfactory transduction   2.41E-15    12   Olfactory   1.2E-09      9 
  transduction 

Pyruvate metabolism       7.9E-03       4    Amoebiasis      3.36E-05    28   Metabolic            6.3E-05     34 
  pathways 

Metabolic pathways         9.6E-03       3 
 

   Leishmaniasis      2.73E-05    14 
     

  Maturity onset      3.6E-04      8 
  diabetes of the young 

Complement and        9.97E-03      4 
coagulation cascades 

    Focal adhesion      2.89E-04    49   Amino sugar and   1.2E-03    10 
  nucleotide sugar  
  metabolism 

--                                       --                -- 
    Cytokine-cytokine       3.23E-04   43 
    receptor interaction 

  Fc gamma            4.7E-03    13      
      R-mediated phagocytosis 

--                                       --                -- --                                       --                -- 
  Insulin signaling   5.5E-03     8 
  pathway 

--                                       --                -- --                                       --                --   Focal adhesion  7.9E-03     23 
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LIVER 

Pathways        p-value     genes    Pathways      p-value     genes    Pathways     p-value  genes 
Olfactory transduction    7.23E-07     8    Leishmaniasis      2.51E-04     12    Cytokine-cytokine    8.1E-05   31 

    receptor interaction 
Cytokine-cytokine        2.84E-05    32 
receptor interaction 

   Focal adhesion 4.05E-04         25    Chagas disease 2.4E-04    14 

Complement and        9.1E-03      13 
coagulation cascades 

   Amoebiasis              1.6E-03           16    Focal adhesion 2.47E-04  27 

Hematopoietic cell        9.11E-03    14 
lineage 

   ECM- receptor 4.1E-03           12 
   interaction 

   Hematopoietic cell  1.34E-03   13     
           lineage 

--                                --                 -- 
 

   Malaria 4.1E-03           10    Glutathione  4.2E-03    10    
            metabolism 

--                                --                 -- --                                --                 -- 
   Arginine                 4.8E-03    18 
   and  
    proline metabolism 

MUSCLE 
Pathways         p-value    genes    Pathways                      p-value    genes    Pathways               p-value     genes 
Olfactory transduction     8.7E-11        4    Olfactory transduction   3.61E-21   19    Olfactory                8.58E-12     8 

   transduction 
Focal adhesion            3.7E-07       37 Cytokine-cytokine         7.4E-07     50 

   receptor interaction 
   Focal adhesion       1.4E-05      12      

Metabolic pathways     1.3E-03       48 Focal adhesion               8.9E-06     48          Amoebiasis           1.01E-04     23 

   Nitrogen metabolism         7.3E-03        8 Amoebiasis                    7.6E-04     24                           Arginine and                                  1.6E-03      13 
   proline metabolism 

Type-II diabetes mellitus  7.34E-03     12    Hematopoietic             6.3E-03     21 
   cell  lineage 

   Cell cycle               1.64E-03    23   

--                                --                 -- --                                --                 --    Chagas disease       1.64E-03    20  
 

Table 2.4: Significant pathways through DEGseq excluding the 59 common DE genes obtained among 
the four tissues 

 

Region Pathways p-value Genes 

 
Leishmaniasis 1.05E-05 9 

 Amoebiasis 4.7E-04 11 

ADIPOSE TGF-beta signalling pathway 1.07E-03 9 
 Olfactory transduction 5.46E-03 16 
 Jak-Stat signalling pathway 5.8E-03 11 
 Fc gamma R-mediated 

phagocytosis 
8.8E-03 8 

 
Tight junction 7.43E-05 9 

 p53 signalling pathway 1.5E-05 4 

BRAIN Fc gamma R mediated 
phagocytosis 

1.6E-03 4 

 Glycerolipid metabolism 1.6E-03 4 

 Maturity onset diabetes of the 
young 

6.03E-06   3 

 Galactose metabolism 4.033E-05   5 

     LIVER Olfactory transduction 7.43E-04   6 
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 Cytokine-cytokine receptor 
interaction 

1.01E-03   9 

 Focal adhesion 3.03E-03   7 

 TGF-beta signaling pathway 4.25E-03   4 

 Galactose metabolism 2.48E-04 
   
  3 

 Focal adhesion 3.92E-04   7 

     MUSCLE Olfactory transduction 8.4E-04   3 

             Glycosaminoglycan        
            biosynthesis –keratin sulfate   

9.1E-04   3 

            Fc gamma R-mediated     
             phagocytosis 

1.81E-03   4 

 Chagas disease 1.64E-03                     7 

 

Table 2.5: Significant diseases formed by the common DE genes between our method (qtDE) and 
DEGseq along with the mutually exclusive sets of DE genes with respect to qtDE (Case1) and DEGseq 

(Case2) (the mutually exclusive sets of DE genes are given in bold) 

Pathways Method & Organ Case1 
(Common DE + mutually 

exclusive qtDE) 

Case2 
(Common DE + mutually 

exclusive DEGseq) 
 

 
 
 

Autoimmune thyroid 
disease 

    p-value  Genes p-value Genes 

Correlation 
ADIPOSE 

2.01E-03 5(Cd86, H2-DMa, 
H2- T10, H2-Ab1, 
H2- DMb1) 

1.3E-02 6(H2-Aa, H2-Q8, 
Cd86, H2-DMa, H2-
T10, H2- Ab1) 

Correlation 
MUSCLE 

3.43E-02 4 (H2-Ab1, Tnf, H2-
Aa, H2-Eb1) 

6.3E-03 8(H2-Eb1, Cd86, 
H2- Aa, H2-Q8, H2-
DMa, H2-DMb1, 
H2-Ab1, 
Tnf) 

Polynomial 
Regression 
ADIPOSE 

2.3E-03 6(H2-DMa,Tnf, H2-
DMb1,Cd86, H2-Aa, 
H2-Eb1) 

5.8E-03 8(Ifng, H2-T10, H2- 
DMa, Tnf, H2-
DMb1, Cd86, H2-
Aa, H2-Eb1) 

Cardiac muscle 
contraction 

Polynomial 
Regression 
MUSCLE 

    1.06E-03 10(Tpm3,Cacnb1,              
Myl3,Slc8a1, 
Cox6a2,Actc1, 
Cacna2d1,Tpm1, 
Cox7a1, Cox7a2) 

7.9E-04 12(Cox7b, Myh7, 
Tpm3, Cacnb1, Myl3, 
Slc8a1,Cox6a2,Actc1,
Cacna2d1,Tpm1,Cox7
a1, Cox7a2) 

Dilated 
cardiomyopathy 

Polynomial 
Regression 
MUSCLE 

    1.7E-02 8(Tpm3, Cacnb1, 
Myl3,Slc8a1,Actc1, 
Cacna2d1,Tpm1, 
Actb) 

4.08e-03 11(Itga8, Myh7, Tnf, 
Tpm3,Cacnb1,Myl3,Sl
c8a1,Actc1,Cacna2d1, 
Tpm1, Actb) 

Graft-versus-host 
disease 

Correlation 
ADIPOSE 

     2.01E-03 5(Cd86, H2-DMa, 
H2- T10, H2-Ab1, 
H2- DMb1) 

3.3E-03 7(H2-Aa, H2-Q8, 
Il1b, Cd86, H2-DMa, 
H2- T10, H2-Ab1) 

Correlation 
MUSCLE 

    1.4E-02 6(H2-Aa, H2-Q8, 
H2- DMa, H2-DMb1, 
H2-Ab1, Tnf) 

6.9E-03 8(H2-Eb1, Cd86, H2- 
Aa, H2-Q8, H2-DMa, 
H2-DMb1, H2-Ab1, 
Tnf) 

Drug metabolism 
cytochrome P450 

Correlation 
LIVER 

    4.14E-03 6(Cyp2c40,Gstm2,
Mgst2,Cyp2d10, 
Ugt1a9, Mgst3) 

1.7E-03 9(Fmo3,Cyp2d22, 
Gsta2, Cyp2c40, 
Gstm2, 
Mgst2,Cyp2d10, 
Ugt1a9, Mgst3) 
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Mutual 
Information 
BRAIN 

     1.3E-02 3(Cyp2b9,Cyp2c55, 
Gstm1) 

1.3E-02 3(Cyp2b9,Cyp2c55, 
Gstm1) 

Polynomial 
Regression 
LIVER 

     6.8E-03 9(Gsta2,Cyp2d22, 
Cyp2c40,Gstm2, 
Mgst2,Cyp2d10,Mg
st3, Cyp2c54, Fmo3) 

2.1E-02 10(Ugt1a9, Gsta2, 
Cyp2d22, Cyp2c40, 
Gstm2,Mgst2,Cyp2d10, 
Mgst3, Cyp2c54,Fmo3) 

Proteasome 

Polynomial 
Regression 
MUSCLE 

     6.3E-03 6(Psma4, Ifng, 
Psmb3, Psmc6, 
Psmb9, Psma2) 

2.3E-02 6(Psma4, Ifng, Psmb3, 
Psmc6, Psmb9, Psma2) 

Viral myocarditis 

Correlation 
ADIPOSE 

     1.4E-02 5(Cd86, H2-DMa, 
H2- T10, H2-Ab1, 
H2- DMb1) 

3.3E-03 9(Rac2, H2-Aa, H2-
Q8,Itgal, Casp3, Cd86, 
H2- DMa, H2-T10, H2-
Ab1) 

Correlation 
MUSCLE 

     1.3E-02 8(H2-Aa, H2-Q8, 
Myh7, H2-DMa,H2-
DMb1,H2-Ab1, Fyn, 
Itgal) 

5.1E-03 11(Rac2, H2-Eb1, 
Cd86, H2-Aa, H2-Q8, 
Myh7, H2-DMa,  
H2- DMb1, 
H2-Ab1,Fyn,Itgal) 

Polynomial 
Regression 
ADIPOSE 

   2.1E-02 6(H2-DMa, H2-
DMb1, Cd86, H2-
Aa, H2-Eb1, 
Myh2) 

9.03E-03 9(Casp3, H2-T10, 
Itgal, H2-DMa, H2-
DMb1, Cd86, H2-Aa, 
H2-Eb1,Myh2) 

Metabolism of 
xenobiotic by 
cytochrome P450 

Correlation 
LIVER 

   1.06E-02 5(Cyp2c40,Gstm2, 
Mgst2, Ugt1a9, 
Mgst3) 

3.4E-02 6(Gsta2,Cyp2c40,Gst
m2,Mgst2, Ugt1a9, 
Mgst3) 

Mutual 
Information 
BRAIN 

    1.4E-02 3(Cyp2b9,Cyp2c55, 
Gstm1) 

1.4E-02 3(Cyp2b9,Cyp2c55, 
Gstm1) 

 

2.2.4 Discussion: Ether lipid metabolism is the only notable pathway identified from 

the common differentially expressed genes (qtDE genes) among four tissues and 

between linear and non-linear interactions based on phenotypic traits. This observation 

is supported by both Tables 2.1 and 2.2. Additionally, the importance of this pathway in 

mice and related primates has been discussed in [27], which highlights its significant 

role in various biological processes such as tumour cell invasiveness, energy storage, 

signalling molecules, and cardiovascular disease.  

Another significant pathway, i.e. Olfactory transduction has been found from Tables 

2.1, 2.3, and 2.4. In this regard, there are observations confirming the significant 

contribution disjoint set of differentially expressed (DE) genes in four tissues. [28] 

discusses the role of this pathway in relation to obesity development in both adipose and 

muscle tissues of mice. It provides further insight into the association between this 

pathway and the development of obesity in these specific tissues. Additionally, [28] 

mentions the functioning of the rodent olfactory epithelium in connection with the liver. 

On the other hand, [29] explores the role of this pathway in the functioning of olfactory 

sensory neurons (OSN) in the septal tissue. 
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The use of mutual information-based qtDE allows for the identification of various 

important pathways (like Leukocyte transendothelial migration, Amoebiasis, Focal 

adhesion, and Complement and coagulation cascades) and their potential contributions 

to different diseases and biological processes [29-36]. In this regard, some other notable 

pathways are Leishmaniasis (present in all tissues under study), and Cytokine-cytokine 

receptor interaction (present in muscle and brain). Significance of these pathways across 

different tissues are discussed thoroughly in [37,38]. From Table 2.4 we can have an 

idea of equivalent significance of these pathways using DEGseq model. 

First column of Table 2.3 gives us some enriched KEGG pathways formed by the qtDE 

exclusive DE genes through linear correlative method. These are Cell cycle (present in 

the adipose tissue), Pyruvate metabolism (present in the brain tissue), Metabolic 

pathways (present in brain tissue), and Nitrogen metabolism (present in muscle tissue). 

Significance of these pathways is discussed in [39-42]. 

Third column of  Table 2.3 exclusively shows some eloquent KEGG pathways by qtDE 

polynomial regression based method. The notable ones are Chagas disease (present in 

liver, also seen in table 4 but related to muscle), Arginine and proline metabolism 

(present in adipose, liver and muscle) and Cytokine-cytokine receptor interaction 

(present in liver and adipose). Importance of these pathways has been discussed in 

[43,44]. In this regard, another notable pathway present in Table 2.3 as well as in table 

2.4 is Fc gamma R-mediated phagocytosis, the application of which has been discussed 

in [45].  

Finally, the biological significance and differential roles of different disease related 

pathways enlisted in Table 2.5 are discussed in [46-51].  

2.3 Reconstructing Paired Transcription Factor Regulatory Networks 

Here, the matter of investigation is related to the formation of gene regulatory network 

(GRN) that may use gene-gene or gene-protein interaction patterns [52]. In this context, 

transcriptional regulators, which are proteins, play a crucial role in modulating gene 

expression levels during different stages of development. As a contributory step in this 

regard, the developed procedure helps to identify the pair or pairs of transcription 

factors (TFs) that have the potential to regulate a target gene in a linear or non-linear 

manner.  
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2.3.1 The basic findings: The target genes considered are the differentially expressed 

(DE) genes which are controlled by a pair or pairs of TF genes following a certain 

algorithm based on interaction measures defined by Pearson correlation, mutual 

information, and spline regression. In this regard, the Pearson correlation interactive 

approach is of linear nature, while mutual information and spline regression depict 

nonlinear relationships capable of capturing complex interactions between the TFs and 

the target DE gene. In this segment, corresponding to each target DE gene, the best 

pair/pairs of regulating TF genes is/are obtained through each of the three approaches 

mentioned above.  

2.3.2 Methodology: The algorithm that has been followed to find the best possible 

combination of TF gene pairs for a target DE gene is outlined below. 

ALGORITHM: Best Possible Combination of TF gene pairs 
 

Input: gEmtx1, gEmtx2, TF1, TF2, TFg1, TFg2, β      1 
Output: NLM1, NLM2, Mv1, Mv2, Mv, bTFp1, bTFp2, TFp1, TFp2 

 
Step1. DE     DEGexp (gEmtx1, set expression columns for conditition1, 
gEmtx2, set expression columns for condition2) 

Step2.  C      choose mode of operation 
 for i in 1 : X do  

for j in 1:Y do 
r1       rbind(DE1[i,],TF1[j,])  
nr1      transpose(r1) 
r2      rbind(DE2[i,],TF2[j,])  
nr2       transpose(r2) 

            if c = =1  
NLM1 [i,j]     NonLinMI(nr1, β) 
NLM2 [i,j]     NonLinMI(nr2, β) 

     else if c= =2  
NLM1 [i,j]     NonLinSP (DE1[i,],TF1[j,]) 
NLM2 [i,j]     NonLinSP (DE2[i,],TF2[j,]) 

            else 

   NLM1 [i,j]     LinCor(nr1, β) 
         NLM2 [i,j]     LinCor(nr2, β) 

      end if  
      end for  
end for 

      Step 3.  for i in 1:X do 

     m      0 
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     for j in 1:Y-1 do  
for k in j+1:Y do  
     m      m+1 

     Mv1[i,m]      NLM1[i,k]*NLM1[i,j] 
     Mv2[i,m]       NLM2[i,k]*NLM2[i,j] 
end for  

                                            end for 
                             end for 
      Step 4. Mv     Mv1-Mv2 

for i in 1:X do  
M[i]     min(Mv[i,])  
n      0 
   for j in 1:Y-1 do  
        for k in j+1:Y do 

                                                   n     n+1 
                                                   if (M[i,1]==Mv[i,n]) 
                                                   Indx1      j 
                                                   Indx2      k 
                                                   bTFp1[i]     TFg1[Indx1]  
                                                   bTFp2[i]     TFg2[Indx2] 
                                                   end if 
                                             end for  
                                        end for  
                                     end for 

      Step 5.        M      Yେమ
 

 for i in 1 : X do  
     for l in 1: M do 

                                               TFp1[i,l]      0 
                                               TFp2[i,l]      0  
                                         end for  
                                         V[i]     M[i]+ Δv 
                                          n      0, s      0  
                                         for j in 1:Y-1 do  
                                               for k in j+1:Y do 
                                                      n     n+1 
                                                      if MV[i,n] < V[i,1]  
                                                      s     s+1  
                                                      TFp1[i,s]     TFg1[k,1] 
                                                      TFp2[i,s]     TFg2[j,1] 
                                                      end if  
                                       end for  
                                  end for 
                             end for 
             %%%% End of main routine %%%%%% 
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   NonLinMI       function (nr, β) .. Subroutine 1 for function call NonLinMI 
                mutualInfoAdjacency (nr, discretize columns, set entropy estimation method, 
                the number of discretization beans) ^ β                                      

    NonLinSP      function (DE,TF) .. Subroutine 2 for function call NonLinSP 
                sm.spline (DE, TF, set the order of spline function) 
                LinCor        function (nr, β) .. Subroutine 3 for function call LinCor 
                cor (nr, set correlation method) ^ β 

 

In the above outline, the stepwise details are given below. 

Step 1: Identifying DE genes 

Here, the DE genes are found initially making use an R package DEGseq. The analysis 

is carried out based on the expression values of genes under different time points or 

conditions. A specific threshold is set that can be a "p-value," a "z-score," or a "q-

value." Comparing the expression values of genes using this this threshold, the genes 

which show significant changes in expression are considered the DE genes. 

Step 2: Finding the individual level of linear and non-linear association 

At this stage, the goal is to calculate the linear and nonlinear association between DE 

genes and TF genes across two conditions. The methods involved in the process are 

Pearson correlation, mutual information and spline regression. Initially, there are X DE 

genes identified in Step 1, and Y TFs. The gene expression matrix for the DE genes 

under condition 1 is denoted as DE1, and DE2 corresponds to condition 2. Similarly, 

TF1 represents the gene expression matrix of TFs under condition 1, and TF2 represents 

condition 2. The X DE genes are considered as the target genes for analysis. In addition 

to LinCor (invokes the correlation function in R package WGCNA), the algorithm uses 

two other functions; one is called NonLinMI to calculate the mutual information (MI) 

adjacency measure based on symmetric uncertainty between each TF and the target 

gene in each condition and the other is NonLinSP used to determine the nonlinear 

association between DE genes and TF genes through spline regression. In this particular 

work, a cubic spline with an order of 3 has been chosen. The result of these 

computations is the creation of two matrices: NLM1 and NLM2. 
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Step 3: Computing the pairwise values of linear and non-linear association 

In this step, all possible pairs of row elements of each matrix separately are multiplied, 

indicating the multiplication between every pair of linear and nonlinear association 

values obtained between TF genes and the target DE gene. The multiplication results 

are stored in the set of matrices Mv1 and Mv2, respectively. Hence, multiplying each 

possible pair, for a given number of columns (in this case Y because Y TF genes have 

been found), there will be Yc2 number of combinations. Therefore, the matrices Mv1 

and Mv2 will have X number of rows and Yc2 number of columns. In this regard, a high 

multiplication result suggests that the dependency of the target DE gene on two TF 

genes is high, indicating a strong regulatory action. On the other hand, a low 

multiplication result suggests a low dependency and weak regulation. In other words, 

the higher the value, the stronger the regulatory influence, and the lower the value, the 

weaker the regulatory influence between the TF genes and the target DE gene. 

Step 4: Finding the best possible pair of TF genes for a certain target DE gene 

At this level, subtraction of the two matrices, i.e. Mv1 and Mv2, is done. This 

subtraction is done to compare the regulation of a target DE gene by these TF genes in 

each condition. If the subtraction result is small, it suggests that the regulation of the 

target DE gene by both TF genes in each condition is approximately the same. On the 

other hand, if the subtraction value is relatively large, it indicates that the regulation of 

the target DE gene by both TF genes between conditions is not equal, highlighting a 

differential effect. As per the algorithm, to filter and select TF gene pairs with small 

subtraction values, the subtraction results between the two conditions are compared. 

The best TF pair is determined by finding the pair with the minimum subtraction value. 

These selected TF gene pairs are stored in the variables bTFp1 and bTFp2, representing 

the best TF gene pairs for a specific target DE gene. 

Step 5: Finding TF gene pairs having almost similar level of association compared to 

the best TF gene pair 

In this final step, the results from Step 4 are investigated a bit further. A limit is defined 

and a range of values are considered within that limit. The reference value is the 

subtracted result of the best TF pair found in Step 4. Let's say for a target DE gene, TF 

pair x and y have the minimum subtraction value, denoted as M [1]. Setting the limit as 
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Δv, it is easy to select TF pairs whose subtracted outcomes fall within the range of M 

[1] + Δv. In this regard, comparison of the differences between each TF pair's 

subtracted value and M [1] is conducted. If the subtracted value of a TF pair falls within 

the range M [1] + Δv, it is considered a candidate for biological interpretation. 

2.3.3 Results: At the very initial stage, the gene expression matrix considered, may 

have zero and/or missing values at one or more profile measurements. In other words, a 

sparse expression matrix may be present. To resolve this issue, the zero value (wherever 

observed) is replaced by a very small number (in this case 10^30) and the missing value 

(wherever observed) is replaced using a value obtained through KNNimpute [53] 

method. The work here has involved two datasets, one being yeast information, i.e. 

budding yeast Saccharomyces Cerevisiae cell cycle data [54] containing expression 

matrix of 6178 genes across four conditions and the other being Affymetrix expression 

data of colon cancer tissues corresponding to human subjects containing 22,278 genes 

in two conditions, where 49 tissues are non-cancerous and 48 are of cancerous nature 

[55].  

Among the four conditions depicted above for the Yeast data, the DE genes obtained via 

DEGseq gives us at the maximum 285 significant DE genes across the first and fourth 

condition, considering all possible pairs of conditions. On the other hand, for the colon 

cancer data from human subjects, 56 significant DE genes are observed via the same 

DEGseq approach. Coming to the identification of TF genes in Yeast, the same has 

been done making use of TF binding site, mutant, ChIP-chip, and the basic cell cycle 

expression data with a stringent p-value threshold (≤0.001) to determine TF promoter 

binding [56,57]. Accordingly, 17 TF genes are discovered in the context of Yeast cell 

cycle data. However, for the human colon cancer data the TF genes are found using 

[58]. By matching the IPI ids provided by [58] with the IPI ids of the referred colon 

cancer data, 1065 TF genes get effectively discovered.  

Following the proposed algorithm, the best TF gene pairs significant for a target DE 

gene regulation is found in both the cases of yeast and human colon cancer data. The 

relevant tables in this regard are given below. Tables 2.6 and 2.7 depict the above 

significant findings with respect to mutual information and spline regression on one 

hand and linear correlation on the other for Yeast cell cycle data. Validation of the 
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obtained interactions have been checked using a web based regulatory tool called 

YEASTRACT [59].  

Table 2.6: Best Combination of TF gene pairs corresponding to target DE genes through nonlinear 
mutual information and spline regression methods for Yeast cell cycle data 

Mutual Information Spline Regression 
Target (DE) TF pair Target (DE) TF pair 

PRM5, BUL2 ACE2, FKH2 GRX7, PRB1, CNB1 ACE2, FKH1 
YDR124W, YER010C ACE2, MCM1 FUS3, SPI1, STF2, MOD5 ACE2, SWI5 
PGM2 ACE2, CST6 UGA2, RTC3, SRP40, KTI12, 

YKL044W, AFR1, PRM10, COS9 
MCM1, SWI4 

STE2, TIF1, RSA1, YMR111C ACE2, ASH1 LEU2 SWI5, ASH1 

YPC1, BSC1, MCT1, YML119W MCM1, ASH1 RCR1, YNL146W, YJR154W CIN5, CST6 

PRB1 STE12, SWI6 FIG2, NMA1, GSF2, HCH1, AFI1 TEC1, CST6 
DSE12, RIM21, GPD1, BAP2 RLM1, STP1 YPR142C, YBR144C, CCT4, GUD1, 

ECM18, GGA1, YGL117W, 
YGR149W, DSE2, ERG24, HXT10, 
PIR3, BUR2, PGM2, IMA2, FMP21, 
KCC4, YDR249C, YML131W, 
OM14, SDH4, YIL108W, YJL068C 

STE12, ASH1 

YJL160C, MOG1, LTV1, 
YKL044W, MFG1, GYP7, 
SRB7, PCM1, IME4, LSB1, 
DIA4, YSC84, HXT4, AYR1, 
YJR026W, PSO2, MRPS18, 
IMA2, YOR029W, YOR053W, 
MKK1, 
YPL039W, YPL062W 

TEC1, STB1 YBR144C, KCC4, FMP21, HXT10, 
GSY1, MST27, HXT4, AYR1, 
GUD1, YJR026W, YKL151C, CIK1, 
ERG24, ATO2, RPL25, YOR053W 

STE12, STB1 

GLK1, TDP1, ERG24, ESC8 SWI4, TEC1 PAM1, DIA4, SMD2, PAM16 STE12, RLM1 

ATO2, DIP2, PIR3 CST6, SWI4 STP4, YET3, GYP7, YJL052W, 
SLT2, HXT6, HXT9, MYO3, 
YLR253W, PSO2, YNL043C, 
YMR317W, FDH2 

TEC1, STB1 

YBR225W, KCC4, DOT5, 
YJL068C, CYC2, YPK2, 
YIL108W 

TEC1, RLM1 IME4, APE1, DIP2, YOR121C, 
MKK1, VPS38, FSH1, CAP2, GIP3, 
MF(alpha)1 

ASH1, TEC1 

OM14, DIA3, YET3, PAM1, 
ATP17, GSY1, YGL052W, 
YHR097C, PRM10, SMD2, 
VPS38, YML131W, SIP5, 
CIK1, BOR1, BSC6, GDH1, 
NTO1 

ASH1, TEC1 TDP1, YBR225W, FUS1, YCR007C, 
ATP17, BCY1, BAP2, POR2AGA2, 
YSC84, TFA2, MCM5, NIT3, SIP5, 
VTI1, BOR1, ESC8, NTO1 

ASH1, STP1 

FMP30 ACE2, STE12 
FUS1, ECM4, YBR138C CIN5, CST6 
MFA1, SSU1, FDH2 TEC1, CST6 

 

Table 2.7: Best Combination of TF gene pairs corresponding to target DE genes through linear correlative 
method for Yeast cell cycle data 

Linear Correlation 

Target (DE) TF pair 

OLE1,YBR144C,HXT4 ACE2, SWI5 
YCL076W,YKL044W,VPS38 SWI5, MCM1 
PRM2,SLF1,YIL080W,ASK1,GSF2,AGP2 ACE2, CST6 
GLK1,YJL068C NDD1,CST6 

AYR1,PSO2 SWI4, ASH1 

TOR1,FIG2,ATG34 STE12, ACE2 
YDL038C,CLK1 FKH1,STE12 
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ESC8,YHR138C TEC1, MBP1 

BAP2,GGA1 CST6, MBP1 
RTC3,HCH1 SWI4,RLM1 

SOV1,YCR007C,CCT4 SWI5,ASH1 
NMA1,PRB1,YGR066C,ADI1 SWI6,CIN5 
GDH1,GDP1,MFG1 SWI6,ASH1 
FRA1,YGL052W,FSH1,GIP3,NTO1 CST6,ASH1 
GUD1,GSY1,YJR026W ASH1,STP1 
PMC1,PRM8,SPC29,ECM18,HXT10,MST27,IME4,YKL151C,YPK2 RLM1,STE12 
YSC84,SMD2,GPD2,YOR029W,YOR053W,RIM15,YPL062W CIN5,STE12 
SSB2,APE4,TAX4 CST6,STE12 
YHR097C,FUS3,SST4,SDH4,BCY3,ECM4,YLR253W,CPA1 ASH1,STE12 
RVS161,YNL146W,  MCM1,ASH1 
RCR1,YET3,COQ6,LTV1 CIN5,STP1 
YCL023C,OM14,PCL1,BUL2,ATG2,MKK1,YGR149W,YCL042W,YML131W,Y
MR111C 

TEC1,CST6 

BSC1,YPC1,AFI1,MOD5,SDS24,YMR317W,ZSP1,CAP2,RUP1 ASH1,TEC1 

 

Some of the validated outcomes obtained through YEASTRACT are given in the form 

of TF regulatory networks shown in Figures 2.1 (mutual information based), 2.2 (spline 

regression based) and 2.3 (linear correlation based) respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Corresponding to Yeast cell cycle data, biological validation of some TF pairs for DE genes 

obtained through Mutual Information (5 cases are shown) 
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Figure 2.2: Corresponding to Yeast cell cycle data, biological validation of some TF pairs for DE genes 

obtained through Spline Regression (5 cases are shown) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Corresponding to Yeast cell cycle data, biological validation of some TF pairs for DE genes 

obtained through Linear Correlation (4 cases are shown) 
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Similarly, in the case of human colon cancer data, Table 2.8 denotes the mutual 

information and spline regression based outcomes following the proposed approach. 

The validation of the corresponding interactions has been checked using two web based 

tools namely TFactS (https://www.tfacts.org/) and PRISM [60]. In TFactS, The p-value, 

e-value, q-value and FDR (Benjamini-Hochberg) thresholds are set as 0.01. They are 

given to control the rate of false positives for multiple testing conditions [61]. 

Remaining parameters are left at the default levels. In PRISM, a validated interaction 

shows additionally the ontology, biological context, e-value, p-value, fold enrichment, 

genes hit and binding sites as output. In this regard, Tables 2.9 and 2.10 show the 

validated examples from PRISM tool that tally with the outputs obtained from the 

proposed algorithm via mutual information and spline regression approaches 

respectively.  

Table 2.8: Best Combination of TF gene pairs corresponding to target DE genes through nonlinear mutual 
information and spline regression methods for Human colon cancer data 

Mutual Information Spline Regression 
Target (DE) TF pairs Target (DE) TF pairs 

CA1 CDX2, PAX2 CA1 CRX, PAX2,PAX5, SP140 
SEMA4A 

GCG CREB1,FOXA1,HOXC8, ST18 
AHCTF1,STAT1 

GCG PAX2,POU6F2,ZNF236,NKX6-1, 
ZNF638,ZC3H10,FOXA1,CREB1 

INHBA ATF1,CREB1,NFYA,MEF2B,HIVEP3 INHBA ATF1,CREB1,DHX57 
CHGA ATF1,CREB1,EGR1,ETS2,JUN,HOXC 4, 

TFAP2A, STAT1 
CHGA NR2E3,MYF6,ZNF236,NEUROD6, 

ZSCAN12,ZNF155,LASS6,ZNF638, 
CBX2,EGR1,TFAP2A,ATF1 

SPP1 TP53, FOXJ3 DEPDC6,EST1,GLI1, JUN, 
HOXC8 

SPP1 HOXA9,MYB,SMAD1,KLF10,ETV4, 
ZNF750,ZSCAN16,ID4,POU5F1,TP5, 
DLX5,CTNNB1,ETS1,GLI1,HOXC8, 

IL8 TP53,HSF2,LHX3,SOX21,IRF9, 
GATAD1,ZFR2,NFKB2,JUN,RELA, 
ZNF33B 

IL8 TP53, NFE2L3,SMAD5,MSX2, 
ZNF444,STAT2,VENTX, 
BACH2,TCF20,MET, 
RORA,CDX1,TEAD4,ZNF257, TOX3, 
MET 

ADH1C TCF3,NFYA,ELF5,NFIC,TBP,DBP ADH1C CEBPB,NFYA,ELF5,SMARCA1,TBP,D 
BP 

CHI3L1 SP4,MAX, PARP12 CHI3L1 ELF4,BACH2,SPI1,MLLT3,YEATS2, 
GTF3A,JRKL,USF1 

ADH1B ATF4,DBP,FOXC1,MTA1,CEBPB SLC26A2 TFAP2C,CTNNB1,RBPJL,SP1,EMX1, 
ZNF257,NEUROG2,PLEKHA4, 

MUC4 RCOR1,STAT5A,ZNF43,ZNF764,SM AD4 ADH1B CEBPA,CEBPB,BACH2,HHEX, 
HOXB2,ZNF155,WNT8B 

PDE9A LHX6,ZNF665,ATXN7,DSP,GLI1 MUC4 ZNF236,ST18,HOXC10,ZNF750, 
SMAD7, TFAP2B 

ANPEP HOXD1,NFYA,NR2F1,ANKZF1,ETS2 PDE9A ELF4,GLI1,TFAP2A,FOXJ3,BMP2 

UGT1A1,UGT1A2, 
UGT1A3,UGT1A4, 
UGT1A5,UGT1A6, 
UGT1A7,UGT1A8, 
UGT1A9 

TBX21,NEUROD1,H1F0,HNF1A,RAR 
A,SP1, RESTKLF2, NEUROD1, IRF7, 
ZMAT4, RBM22,SLC22A4,PPARG 

CEACM7 EZH2,PLAGL2,SRY,RERE,HMGB3, 
MBNL2,GLI2,NFAT5,HOXB6, 
BCL11B,PBX1,ZNF177 
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UGT1A1,UGT1A2, 
UGT1A3,UGT1A4, 
UGT1A5,UGT1A6, 
UGT1A7,UGT1A8, 
UGT1A9,IL8 

IRF7,ZMAT4 ANPEP ELF4,PHOX2B,IRF8,ESRRA,HLF, 
TSC22D2,CUL3,EST1,EST2 

CLCA1 NR1H3,LHX6,RELA,GLI1 UGT1A1,UGT1A2, 
UGT1A3,UGT1A4, 
UGT1A5,UGT1A6, 
UGT1A7,UGT1A8, 
UGT1A9 

RARA,CDX1,GATA6,HOXD12, 
CHD7,HNF1A,PPARG,HHEX, NPAS2, 
MNX1,ZBTB3,TOX3,RAPGEF 

SST ZNF287,FOXJ3,RNF113A,PAX6,CEB PE, 
ATF1,ATF2,ATF4,CREM 

CLCA1 HOXA9,ATF2,HOXC13,GLI1,BMP2, 
ZC3H7B, 

  SST GATA1,DLX2,NR4A3,SRY, 
NEUROD4,C11orf9,PLEKHA4, 
CREB1,CEBPA,CEBPG 

  HSD17B2 RBPJL,PGR,HOXC6,EN1,FBN1, 
CTNNB1, 

 

Table 2.9: Validating some Mutual Information based TF genes corresponding to target DE genes using 
PRISM with certain significant scores 

Target DE gene TF gene E-value P-value Fold enrichment 

MUC4 STAT5A 
(Similar Protein 

to STAT1) 

0.000 1.07E-16 2.16 

IL8 JUN 0.116 2.71E-11 2.12 
SPP1 JUN 

(Similar Protein 
to JPD2) 

0.000 1.25E-42 2.02 

GCG STAT1 0.116 1.43E-22 2.57 
SST PAX6 0.349 6.21E-09 2.12 

 

Table 2.10: Validating some Spline Regression based TF genes corresponding to target DE genes using 
PRISM with certain significant scores 

Target DE gene TF gene E-value P-value Fold enrichment 

MUC4 TFAP2B 0.697 7.16E-06 2.62 
CA1 CRX, PAX2, and PAX5  0.697 2.78E-13 3.25 
IL8 BACH2 0.116 4.29E-25 2.06 
SST DLX2 

(Similar Protein to BARHL2) 
0.349 5.99E-08 2.14 

 

2.3.4 Discussion: In the context of Yeast cell cycle data, the obtained results can be 

biologically justified from the various gene interaction pathways involving TF and DE 

genes in [62-69]. For the human colon cancer information the two web tools that have 

been used to biologically validate the interaction outcomes obtained from the non-linear 

approaches similar protein generating TF gene names get suggested. For example, 

observing the TF gene entry in the first row of table 2.9, STAT5A is the actual TF gene 

that takes part in pairwise interactive regulation for MUC4 (target DE gene) through 

mutual information based adjacency measure. However, PRISM depicts STAT1 to be 
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the interactive TF gene for the same target. The tool also clarifies that STAT1 and 

STAT5A are able to produce the similar kind of protein complex (hence can be 

considered alias of one another) required for the regulated transcription of the DE gene, 

MUC4.  

The interactive regulatory associations involving datasets incorporating huge number of 

gene expression profiles are more likely to be nonlinear type rather than linear [70]. To 

explore this idea further, a part of this research is focused on investigating how TF 

genes nonlinearly regulate their target DE genes. The employed measures such as 

mutual information and spline regression are used to analyze these nonlinear regulatory 

interactions. The choice of the human colon cancer dataset was motivated by its high 

dimensionality, meaning it contained a large number of samples. This high 

dimensionality allowed the research to accurately capture the impact of nonlinear 

regulations on a large-scale dataset. To ensure that true regulatory relationships between 

TF and target DE genes are not missed, a pair of TF genes has been selected with the 

intention of minimizing false negatives [56]. 

2.4 Smart Threshold selection for reconstructing Gene Regulations 

Proper identification of genes responsible in spreading complex diseases is always a 

matter of stringent investigation. In this context, in addition to the gene expression 

pattern the network connectivity across different states or conditions is also of prime 

importance. Some of the crucial network designs [71,72] that have marked a significant 

step in the understanding and development of the dynamicity involved also guides to 

explore the selection of suitable drug targets relevant to a certain pattern of a disease. 

Extending further, the significance of differential connectivity across different states or 

conditions of a living cell can be judged through the existence of the same on the basis 

of some defined threshold. The process of this threshold selection in network link 

determination can be done considering global or local perspective. Understanding the 

development of a regulatory network that may comprise of TF to target DE gene 

regulations at different stages require an optimistic approach toward selection of this 

threshold because network regulations can have the undoubted presence of both direct 

and indirect controls. Hence, investigating the differential connectivity having the 

inevitable presence of both such controls can be done through the selection of some 
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smart threshold in a global (overall network) or local (certain well researched portion of 

a network to study the effects of any environmental or some external perturbation).   

2.4.1 The basic findings: The concept of generalized topological overlap measure 

(GTOM) [19,73] applying linear correlative dependency among genes have been 

utilized to find the gene to gene interaction in every possible state of the gene regulatory 

network in the course of development of any disease. This measure has the capability of 

incorporating the importance of direct regulatory interactions in the presence of one or 

more indirect gene associations. To understand the significant difference in the 

topological connectivity of a certain gene (here referring to a DE gene), un-weighted 

TO (Topological Overlap) measure is resorted, which demands a smart threshold 

selection. This in turn helps in discovering the DE genes having minimal overlap 

between the regulatory networks across varied states or conditions. Accordingly, such 

DE genes can be marked as the biomarker genes or the significant hub genes 

responsible for the exclusive development of a particular diseased state or condition. 

2.4.2 Methodology: The work has been executed in two different forms of gene 

regulatory network. In the first case, the alteration in interaction structure or the 

differential interaction has been explored between the control or normal state and the 

initial stage or the severe stage of influenza, as the case may be. In the latter one, the 

differential interactions have been studied between the initial and severe stages of 

influenza. For the earlier study, the DE genes between the control and initial or severe 

stages are taken into consideration. However for the latter, the effect of the common DE 

genes between those obtained above, are studied.  

 In the process, the intelligent or smart threshold selection algorithm that has been 

applied in the two different cases, mentioned above, is given next. 

ALGORITHM 

First Case: The Intelligent Threshold Selection for First/Second Network 

Step1. Find DE genes between the conditions control and day0/day6 of influenza. 
Step2. Evaluation of GTOM measure corresponding to DE genes in each condition 
using equation 
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Second Case: The Intelligent Threshold Selection for Common Network 

Step1.  Find the common DE genes between network 1 and network 2. 
Step2.  Rest follows step 2 through 7 under First Case. 

 

As per the algorithm, in the first case, two regulatory configurations involving DE genes 

are considered each in Network 1 and Network 2. Under Network 1, the two gene 

association networks considered are reconstructed in the control and initial or day 0 

stage of influenza. Similarly in Network 2, the two gene association networks 

considered involve control and severe or day 6 stage of influenza. However, in the 

second case of Common Network, the two regulatory configurations involve initial (day 

0) and severe (day 6) stages of influenza. The stepwise discussion of the above 

algorithm is as follows. 

Step 1: Initially, in the first case, the DE genes are computed using the DEGseq package 

between control and day 0 and control and day 6 respectively. This gives two sets of DE 

genes, namely DE1 and DE2. Thereafter, in the second case, the common DE genes are 

found between DE1 and DE2. This yields the gene set cDE.  
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Step3. Go for the Fisher transformation of GTOM matrix and find the maximum 
value. 
Step4. Choose the condition specific threshold value th and set maximum 
threshold thmax= |Fisher transformed GTOM values|max 
Step5. n=1 
Step6. while(n× th ≤ thmax) 
Begin 
 Find the specific interactions for each and every threshold th in each 

condition. 
 Evaluation of TO by equation ),max(/)( iiiii YXYXTO   
 Go for significance testing and evaluation of TOP by

2/)( iii pvalueTOTOPavg    
 Calculation of cumulative TOP or cTOP scores for each threshold. 
 n = n+1. 

End 
Step7. Selection of best threshold pairs through comparison of cTOP values for all 
thresholds. 
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Step 2: The GTOM technique is utilized to check the gene to gene associations between 

each pair of DE genes (in both the cases). In other words, computation of the 

generalized topological overlap measure is conducted for each DE gene, be it an 

element of set DE 1 or DE2 or cDE for all the 6 regulatory configurations using the 

Pearson’s correlation component value of the concerned gene with others. In this 

regard, aij is the correlation dependence between genes ‘i’ and ‘j’, Nm(i) represents the 

neighbours of node ‘i’ excluding ‘i’ itself indicating no self-regulation, and Nm(i)

Nm(j)  means the set of common neighbours shared by genes ‘i’ and ‘j’, for an m order 

GTOM adjacency technique (suggesting the common node is reachable from node ‘i’ 

and node ‘j’ within m steps). In any case, as there are two conditions, calculation of 

GTOM is done between every pair of DE genes in both the conditions. In the 

implementation of this step, the order m is considered equal to 1. To compute the 

neighbours cited above with m=1, the concept of PCIT (Partial Correlation and Data 

Processing Inequality) is executed for each every DE gene. Through the application of 

PCIT, the importance of direct connectivity is highlighted in the presence of other 

necessary factors or physical entities or DE genes considered here, excluding the source 

and target DE genes.   

Step 3: From this stage, the interest is in initiating the reconstruction of gene regulatory 

associations in the two conditions of interest corresponding to each of the two cases, 

outlined in the algorithm. To capture the idea, Fisher’s transformation of the GTOM 

interaction matrix obtained in each of two conditions is done using 

q
ij

q
ij

ij GTOM

GTOM
z






1

1
*5.0  [18], where q=1 and the maximum zij value (zmax) in each 

condition is noted. 

Step 4: At this point, 100 different thresholds are generated, and the best threshold is 

chosen amongst them. In order to obtain a specific threshold, it is chosen from the set of 

thresholds T (series of 100 equidistant values between 0 and zmax, defined in step3 

above). Thus the minimum threshold (i.e. the difference between two thresholds) can be 

written as
100

maxz
th  . So, denoting the series of thresholds as T = {T1, T2, T3,............., 

T100}, the individual thresholds will be T1= th  , T2= T1+ th , 

,.......................,T100=T1+99 th . 



                                                                        Chapter 2: Nature of DE Gene and TF Regulatory Networks 
 

 Page 65 
 

Steps 5 and 6: Here, the actual reconstruction of the DE gene regulatory associations are 

conducted in each condition of interest (control/day 0/day 6, as the case may be) based 

on a certain threshold selected from set T defined in step 4 above. If the zij value of a 

DE-DE GTOM based interaction is higher than the selected threshold, the adjacency 

value, Aij, between the concerned pair is considered equal to 1. Otherwise, there is no 

interaction in between these two DE genes. Followed by this operation, the topological 

overlap (TO) of a certain interacting DE gene in the two conditions is found using the 

intersecting equation given in the algorithm. Here, Xi and Yi indicate number of 

significant interactions (based on threshold level) respectively in the two conditions. In 

this regard, lower the TO value for a particular interacting DE gene, better is the disjoint 

condition specific regulatory property highlighted. The significance of the disjoint 

interacting property of any DE gene, i.e. the TO value obtained, is tested using a 

permutation test. In this context, random shuffling of the expression profiles is 

conducted between the two conditions followed by the computation of the GTOM value 

of the referred DE gene with every other DE gene and the corresponding TO attainment 

of the referred DE gene. This shuffling is conducted 1000 times. In the shuffled 

versions, the TO value obtained each time is compared with the actual TO value of the 

referred DE gene. The more number of times the shuffled TO values happen to be 

higher compared to the actual TO value, better is the statistical significance of the TO 

attainment of the referred DE gene. In short this is the p-value of the TO attainment. 

Combining the two scores, TO and its p-value, is one of the ultimate objectives in this 

segment, i.e. TOP as defined in the algorithm. Hence, corresponding to a selected 

threshold level, defined earlier, with N interacting DE genes, N TOP values are 

obtained in a particular case (i.e. states control and day0 resembling Network 1 

conditions or control and day 6 resembling Network 2 conditions or day 0 and day 6 

resembling Common Network conditions). In any case, First case or Second case, as 

highlighted in the algorithm as well clarified in the earlier statement, the N TOP values 

are added to find the cumulative TOP score (cTOP). Accordingly, for 100 defined 

threshold pairs (as per step 4; threshold defined is condition specific), 100 cTOP values 

are found. 

Step 7: Finally, the best threshold pair is selected for a network structure (Network 

1/Network 2/Common Network) corresponding to the minimum cTOP score. Thus the 

algorithm is able to clarify the selection of an intelligent threshold helping in 
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discovering and hence understanding the disjoint or differential connectivity of the DE 

genes across conditions. 

2.4.3 Results: Before implementing the algorithm as per discussion provided above, it 

is important to carry out the pre-processing, if any, is required for the publicly available 

gene expression data. Here, the experimentation is conducted on a peripheral blood data 

set [74] which shows the temporal analysis of patients having severe pdm (H1N1) 

influenza. The data consists of the expression profiles of 7 control (healthy) and 14 

patient samples. The information shows patient samples are equally distributed across 

two kinds of conditions; condition1 pertains to the first day (i.e. day0, initial stage of 

influenza) and condition2 pertains to the seventh day (i.e. day6, severe stage of 

influenza) of peripheral blood expression profiles. Hence, there is the presence of 3×7= 

21 time instants or gene expression profiles with 33,297 genes. On conducting some 

necessary pre-processing the data is reduced to have the 10,000 most variant genes. The 

pre-processing is done to understand the effect of the most variant genes (in this context 

the DE genes) in the identification and spreading of a certain stage of the influenza 

which in turn also help in the reduction of space and time complexity issues inherent in 

this approach.  

The necessary pre-processing involves conducting log normal distribution of the given 

gene expression data or matrix followed by finding the standard deviation of the gene 

expression profiles pertaining to a gene. The average of the set of standard deviation 

levels can be decided to be a threshold for selection of the most variant genes. Those 

genes are selected which maintain standard deviation values higher than the threshold. 

Post pre-processing the actual implementation is done. On the application of DEGseq to 

find the DE genes in Network 1 (comprising control and day 0 samples), Network 2 

(comprising control and day 6 samples), and Common Network yields 73 (DE1 genes), 

82 (DE2 genes), and 42 (cDE genes) respectively. The rest of the algorithm works on 

these sets of DE genes only depending on the type of network (Network 1/ Network 2/ 

Common Network) in consideration. 

In Figure 2.4, the distribution of the cTOP values over the 100 equidistant threshold 

levels (based on z-score of GTOM mapping) are given for all the three kinds of 

networks, mentioned above. From this figure it can be seen that the best threshold 

values neither reside on the extreme left (minimum) nor toward the extreme right 
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(maximum) side of the distribution; rather tends to be an intermediate value that is 

slightly skewed toward the right hand side of the distributions. For the first network or 

Network 1, the threshold values are distributed within 0.002 to 0.0236 and within 0.003 

to 0.0273 in the two conditions respectively. The graphical bar plot depicts 0.0170 and 

0.0197 to be the best intelligent threshold pair for the first network or Network 1 

comprising samples from control and day o stage of influenza. Similarly, for the second 

network or Network 2, the threshold values are distributed from 0.002 to 0.0215 and 

from 0.002 to 0.0248 in control and day 6 stage of influenza respectively. The proposed 

algorithm in this case yields 0.0131 and 0.0151 to be the best intelligent threshold pair 

for this network. Following this thought, in the Common Network, the algorithm finds 

0.0145 to be the best for both the conditions, where the thresholds are distributed from 

0.002 to 0.0204 in both day 0 and day 6 stages of the gene expression profiles. 

In Figure 2.5, corresponding to the best threshold pair (found above), the gene specific 

TOP score is depicted for each DE gene associated in developing the differential 

interactive structure across conditions in every network type. From here, it is also 

evident that the number of DE genes possessing statistically significant differential 

connectivity is much higher in the Common Network compared to the first network or 

Network 1. The same interpretation is applicable for the first network or Network 1 

compared to the second network or Network 2.  

To validate the graphical results obtained above, physical network wise validation has 

been done making use of BioLayout tool [75]. The same has been shown in Figures 2.6, 

2.7, and 2.8 respectively for first network or Network 1, second network or Network 2, 

and Common Network. From these figures, it is clear that the DE genes with altered 

connectivity across conditions exhibit low TO values, while genes with consistent 

connectivity possess high TO values. In figure 2.6, the different connectivity properties 

are quite clear considering the DE1 genes namely ELL2, IGLV6-57, IGKC, HIST1H3J, 

DTL, and Chr2:89629867-89630178 from the first network or Network 1 possessing 

TOP values of 0, 0, 0, 0, 0, and 0.05, respectively. Similarly, in figure 2.7, the variation 

of connectivity is pretty evident considering the DE2 genes namely CEACAM6, 

SUCNR1, MPO, GGH, MS4A3, TDRD9, CLEC5A, LCORL, and ANLN possessing 

TOP values of 0.051, 0.293, 0.056, 0.316, 0.267, 0.131, 0.043, 0, and 0.17, respectively 

from the second network or Network 2. In the second network the DE2 genes HBZ, 

RAB13, and ANKRD22 have weak connectivity in both conditions and possess 
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comparatively higher TOP values of 0.423, 0.56, and 0.47, respectively. In the context 

of the Common Network, as shown in Figure 2.8, the cDE genes C19orf59, 

HIST1H2AB, BUB1, HIST1H1B, and CD177 exhibit stringent differential connectivity 

across conditions possessing TOP value equal to 0. 

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4: Plot of normalized cTOP value corresponding to each threshold pair in first network, second 

network, and common network 
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Figure 2.5: Plot of TOP score for each DE gene using the best threshold pairs across first 

network, second network, and common network  
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Figure 2.6: Physical realization of first network in                                                                                      
control (top panel) and diseased (bottom panel) conditions 

 

 

 

 



                                                                        Chapter 2: Nature of DE Gene and TF Regulatory Networks 
 

 Page 71 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Physical realization of second network in                                                                            

control (top panel) and diseased (bottom panel) conditions 
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Figure 2.8: Physical realization of common network in                                                                              

day 0 (top panel) and day 6 (bottom panel) of influenza 
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2.4.4 Discussion: The search for DE genes possessing significantly strong differential 

connectivity across conditions guided by the topological overlap approach was 

primarily based on direct gene to gene interaction pattern, a concept which got extended 

in this work making use of an additional metric, GTOM. Through this metric, not only 

the direct interactions are being highlighted but the interactions involving shared 

neighbour genes are also taken into consideration. Hence, the differential connectivity 

pattern can be studied on a wider perspective. In this work, a two phase filtering 

strategy has been utilized. The first phase of filtering is executed framing the Fisher 

transformed GTOM interaction outcomes considering a series of equidistant thresholds. 

Here, among the 100 equidistant thresholds which have been considered, the best 

threshold value (as shown in Figure 2.4) is of the order of 10-4. It is crucial to mention 

that further significant improvement in the best threshold value by considering greater 

than 100 thresholds is less likely to occur and inevitably will increase the time and 

space complexity of the proposed algorithm. Accordingly, a maximal restriction of 100 

equidistant thresholds is considered. Computation of the TO measure corresponding to 

each such threshold defines the second phase of filtering. Based upon this TO result a 

significance testing is conducted, and finally by taking an average of the TO and p-

value, TOP is calculated for each gene.  

The change in network topology figured out by this approach can be attributed to the 

change in co-expression across different conditions. Thus it can be claimed that 

Differential Co-Expression (DCE) based analysis, applied on network topology based 

problems can help to identify biologically important genes. In this regard, it is beneficial 

to take help of some statistical properties like specificity and reproducibility [18] which 

could be very handful while comparing various algorithms depicting the point of 

differential connectivity in gene regulations. 

2.5 Conclusion 

The basis of this chapter lies on finding the DE genes from the most variant gene 

expression profiles of any given microarray/RNA-seq data. These DE genes can be 

found making use of statistically popular techniques like DEGseq or via some technique 

(here qtDE) which additionally incorporates the physical traits of an organism for 

attaining this objective. Next issue of importance is the regulation of these DE genes by 

the TF genes which are the responsible factors for protein complex generation binding 
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to the promoter region of the target DE genes. However, this regulation demands some 

specific architecture, i.e. either individual or collaborative regulation, addressing the 

specific need of any living cell, as per the environmental constraint or any other external 

perturbation. Hence, the matter stands dynamic and involvement of linear as well non-

linear regulatory controls may be of importance to understand the significance of the 

number of regulatory TF genes and nature of such regulatory aspects (direct or indirect 

regulation). The apprehension of the true dynamicity in TF to DE gene regulatory 

control depends on the extent of differential regulation across multiple states of any 

living cell. In this regard, the significance or importance of any source TF or target DE 

gene can be explored further along with development of different forms of regulatory 

measures (via linear / non-linear techniques), effectively helping in the development of 

TF to DE gene regulatory networks.  
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3.1 Introduction 

Differential gene regulation under varied constraints can predict the causal factors in 

any diseased cell compared to the normal condition through identification of certain 

target genes showing dysfunctional regulatory control in the presence of protein 

generating complex genes or transcription factor (TF) genes. These targets mostly 

exhibit significant differential expression (DE) profiles possessing extreme dissimilar 

type of regulations. Hence, the control of such target DE genes is being guided through 

the concept of differential co-expression. In this perspective, understanding the 

extremeness of differential regulation as well as the crucial role of the concerned DE 

genes at the onset and subsequent spreading of any disease can be utilized to identify 

the therapeutic targets. In this regard, experimenting on various types of 

neurodegenerative disorders is helpful to predict the form of treatment applicable at 

different stages of growth of one or more such disorders. 

Alzheimer’s disease is one of the most common forms of neurodegenerative disorders. 

It is indeed a medically popular form of dementia characterized by the progressive 

degeneration of brain cells. While the exact cause of Alzheimer's disease is still under 

investigation, various research contents have identified certain pathological features, 

such as the accumulation of amyloid plaques and neurofibrillary tangles, which are 

believed to contribute to the development and progression of the disease. The 

development of amyloid plaques, composed of abnormal protein fragments called beta-

amyloid, and neurofibrillary tangles, formed by twisted fibers of a protein called tau, 

disrupts the normal functioning of neurons and leads to their eventual death. These 

changes result in the loss of connections between nerve cells and the subsequent 

impairment of cognitive functions, including memory, thinking, and behaviour. While 

aging is considered a significant risk factor for Alzheimer's disease, it is important to 

note that the onset of the disease typically occurs in people over the age of 65 [1,2]. 

However, there is also a less common early-onset form of Alzheimer's disease that can 

manifest between the ages of 30 and 60. The exact causes of Alzheimer's disease are 

still being investigated, and researchers have proposed various factors that may 

contribute to its development. Some studies have suggested a potential involvement of 

calcium-dependent potassium (K+) channels in platelets [3] and ryanodine receptors 

(RyRs), which are intracellular calcium release channels [4], as possible underlying 

mechanisms. Additionally, dietary factors, such as proteins, and hormones have also 
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been implicated in the disease process. It is important to note that while these factors 

have been proposed as potential contributors to Alzheimer's disease, the disease is 

complex, and its development is likely influenced by a combination of genetic [5-8], 

environmental, and lifestyle[9,10] factors. The research output in this chapter aims to 

better understand the risk factors in relation to the nature of differential regulatory links 

associated with the DE genes involved in the development of Alzheimer's disease 

considering a combination of genetic and environmental constraints.  

There are in effect other forms of neurodegenerative disorders in addition Alzheimer’s 

disease. Though these other forms are not generally observed on a wide scale, 

functionally these maintain both similar and dissimilar regulatory properties compared 

to the widely popular Alzheimer’s disease. The other forms are like Huntington’s 

disease, Amyotrophic lateral sclerosis, multiple sclerosis, Schizophrenia, and 

Parkinson’s disease. In this regard, pairing up these disorders based on some level of 

similarity [11-17] does help in validating the distinct gene regulatory properties specific 

to a disorder or a pair of disorders. In other words, identification of significantly paired 

gene networks possessing extremely different regulatory actions across multiple types 

of neurodegenerative disorders may help in revealing the biologically pivotal role of DE 

genes holding dynamic association in these disorders.  

3.2 Assessing differential regulation in Alzheimer’s disease 

Alzheimer’s disease (AD) normally progresses in the brain through incipient (Braak 

stages III-IV), mild or moderate (Braak stages IV-V), and severe (Braak stages V-VI) 

stages [18]. Focussed research in this domain handles differential topology prediction in 

gene regulation networks across varied regions of the brain [19]. This does help in 

understanding the severity of the disease in an elderly individual because AD is most 

commonly observed in senior citizens. However, it is equally important to explore the 

mode of progress of this disease through the various stages depicted above and take or 

propose corrective measures as per need. Here, the progression issue is addressed 

apprehending the role of the DE genes and their connectivity through the different 

stages of development. 
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3.2.1 The basic findings: Unveiling the inter dependency of all concerned DE genes in 

a regulatory network through a weighted topological overlapped (TO) approach helps in 

understanding the role of the DE genes in the generation and spreading of AD. The TO 

score of each DE gene goes through a significance testing phase comprising a 

permutation/T-test (yields p-value) followed by ranking the genes based on lower TO 

score as well as p-value. The biological significance of the highest ranked genes when 

compared with a popular technique [20] involved in ranking differential hubs in gene 

regulations shows better performance in the identification of DE genes participating in 

the crucial pathways pertaining to the progress of AD. For example, this work is 

capable of discovering DE genes responsible for modulation of the membrane potential 

involved in the movement of neurological signals. Again, there are DE genes which 

have been found responsible for facilitating the movement of extracellular fluids to and 

from tissues within a multicellular organism. This research output validates the 

hypothesis that the expansion of the Cerebral Spinal Fluid (CSF) space reduces the 

turnover rate of CSF, which in turn compromises its ability to act as a sink for clearing 

harmful metabolites, such as amyloid, from the Central Nervous System (CNS). This 

compromised CSF dynamics can have a significant negative impact on the interstitial 

environment of neurons [21], particularly as individuals age. 

3.2.2 Methodology: The explicit flowchart given in Figure 3.1 below indicates both 

weighted and un-weighted TO dynamics incorporated in this differential regulatory 

approach. 

Figure 3.1: Flowchart of weighted and un-weighted TO analysis 
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Equation (1):  TOi =
Xi∩Yi

max (Xi , Yi)
    Equation (2):  TOi =

min (A)

max (Bi ,Ci)
 

In the above figure, depicting the flowchart of the proposed process, the right wing 

starting from TIER I to TIER V is about the weighted TO analysis towards differential 

regulation. Similar comment is applicable to the left wing, but corresponding to un-

weighted TO analysis. 

In this implementation extended versions of the algorithms followed in [19,22] is gone 

through. The un-weighted approach is primarily dealing with the some significant DE-

DE gene interactions, accordingly handling with a sparse differential dependency or 

regulatory matrix. However, the weighted counterpart is more into exploring all the DE-

DE gene interactions, and thus bringing to limelight the importance of all differential 

connectivities present in a gene regulatory network. In this regard, the various TIERs of 

the flowchart can be explained as follows. 

TIER I: From the Alzheimer’s data present across three conditions, namely control, 

moderate, and severe, the DE genes between control and moderate in one hand and 

control and severe on the other can be computed making use of the suitable R package, 

DEGseq. These two sets of DE genes can be used to define two different regulatory 

networks depicting the variation in the state of growth of the disease. 

TIER II: The weighted and un-weighted analysis both have been carried out on the 

common set of DE genes. Hence, it stands crucial to find the intersection of DE gene 

sets obtained above and have the common DE genes.  

TIER III: At this stage, the differential co-expression of these common DE genes is 

computed in each network stated above. This means the difference of the linear 

correlated dependence between control and moderate states (thus forming the elements 

of the adjacency matrix for Network 1) OR control and severe states (thus forming the 

elements of the adjacency matrix for Network 2) corresponding to any pair of the 

common DE genes is found. Post this operation it is required to decide which wing of 

the flowchart is to be followed. 

If the left wing is taken, then it is about un-weighted TO analysis. Hence, at this step, 

for moving forward with un-weighted approach, the PCIT technique [23] is followed to 

understand the significant gene-gene direct interactions in the presence of any third 
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gene entity. The outcome of PCIT leads to the formation of a sparse adjacency matrix 

individually for Network 1 and Network 2 with an element value or the interaction 

weightage equalling 1 to convey significant interaction between the two concerned DE 

genes; otherwise the interaction weightage component equals 0.  

On the other hand, following the right wing of the flowchart, the weighted analysis at 

this stage is all about the initial differential correlation or adjacency matrix formation 

for each of the networks, Network 1 and Network 2.  

TIERs IV and V: In the un-weighted counterpart of the proposed approach, as per the 

left wing of the flowchart, the TO score is computed making use of equation (1). 

Through this it is possible to yield the common set of differentially interacting DE 

genes as well as the disjoint interacting capacity (considering Network 1 and Network 

2) of the referred DE gene. Higher the disjoint interacting capacity or lower the TO 

score is, the better the DE gene contributes to differential connectivity required for the 

process of growth of the disease. 

In the weighted segment of the proposed flowchart, as per the right wing, to design the 

TO score following equation (2), element wise multiplication of the adjacency matrices 

obtained for Networks 1 and 2 is conducted followed by addition of the row elements of 

the resultant matrix. Hence, for n common DE genes (obtained initially at TIER I), the 

addition stated above yields a matrix is of size [n×1]. From equation (2), as per the need 

of the design, it is clear to have the minimum value from the above [n×1] matrix, A. 

Again, the element wise addition following the ith row of the initially obtained 

adjacency matrices yields the values Bi and Ci from the two networks. Hence, for a 

referred DE gene, the TO score, as proposed in the equation, is primarily dependent on 

the level of differential correlation or adjacency or control of the concerned common 

DE gene with respect to all the other (n-1) DE genes, thus signifying its topological 

weightage in each network. 

3.2.3 Results:  The data [24] taken for this research comprises of 54, 675 genes 

distributed over 30 time profiles. The information contains control, incipient, moderate, 

and severe stages of growth of Alzheimer’s disease. However, the difference in 

expression level following the time profiles is not at all significant between control and 

incipient versions. Therefore, the gene expression matrices on which the DEGseq 

operation has been applied comprises of conditions control and moderate on one hand 
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whereas control and severe on the other. Before finding the DE genes using the above 

procedure for the two networks (Network 1 and Network 2), necessary pre-processing 

of the initial data has been done yielding a resultant source gene expression matrix of 

10,000 gene entries on which differential expression analysis is being conducted using 

the R package DEGseq. This matrix corrects the skewed representation of the original 

matrix following a log-normal distribution and removes the gene expression entries 

across all time profiles for gene vectors maintaining standard deviations below a certain 

threshold. 

Following TIER II of the proposed flowchart given Figure 3.1, 66 common DE genes 

are obtained. After having the TO score for each DE gene, the statistical significance is 

analyzed using random permutation/’t’-test. Post significance treatment, 15 top ranked 

DE genes (close to 25% of 66) are considered for biological enrichment analysis (Gene 

Ontology or GO and Kyoto Encyclopaedia of Genes and Genomes or KEGG pathway 

analysis) [25,26]. These top 15 DE genes are not only having low TO score but are 

statistically significant (low p-value) as well. In the perspective of Alzheimer’s disease, 

the betterment of the proposed approach with respect to a standard differential hub 

ranking scheme called Diffrank [20] can be understood from the outcomes of the 

biological enrichment analysis enlisted in Tables 3.1, 3.2, 3.3, and 3.4.  

Table 3.1: Significant GO terms in proposed method Vs. Diffrank by Weighted TO measure 

Proposed 
Algorithm 

Diffrank 

GO-Terms p-value Genes GO-Terms p-value Genes 

GO:0046885 0.0346 2 
trerf1, kynu 

GO:0006569 0.0348 3 
mmp10, kynu, kcne1 

GO:0032350 0.0346 3 
kynu, usp28, itgb3 

G0:0046218 0.0348 2 
kynu, jak1 

GO:0006569 0.0349 2 
jak1, efcab2 

GO:0002070 0.0352 2 
cog3, ciao1 

GO:0046218 0.0349 2 
cog3, efcab2 

GO:0005131 0.0359 1 
efcab2 

GO:0004718 0.0352 1 
fancd2 

GO:0002064 0.0359 1 
arhgap24 

 

Table 3.2: Significant GO terms in proposed method Vs. Diffrank by Un-weighted TO measure 

Proposed 
Algorithm 

Diffrank 

GO-Terms p-value Genes GO-Terms p-value Genes 

GO:0015459 0.00095 2 
kcne1, mmp10 

GO:0030303 0.019 2 
ciao1, mmp10 

GO:0016247 0.00162 2 
tp73, kcnmb2 

GO:0018676 0.019 2 
cyp2c9, itgb3 
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GO:0015457 0.00162 3 
ciao1, kcne1, 
mmp10 

GO:0036767 0.019 2 
kcnmb2, mmp10 

GO:0030303 0.0093 3 
trim14, tp73, 
cdc20b 

GO:0019113 0.0271 2 
kcnmb2, plxnd1 

GO:0008076 0.0093 2 
mmp10, kcnmb2 

GO:0018675 0.0274 3 
vsp53, tp73, itgb3 

 

Table 3.3: Significant KEGG pathways in proposed method Vs. Diffrank by Weighted TO measure 

Proposed Algorithm Diffrank 

KEGG Pathways p-value Genes KEGG Pathways p-value Genes 

Tryptophan metabolism 0.0220 3 
kynu, cog3, 
efcab2 

Jak-STAT signalling 
pathway 

0.0212 3 
jak1, kcne1, trdv3 

Pancreatic 
cancer 

0.0383 3 
jak1, itgb3, 
usp28 

Tryptophan 
metabolism 

0.0220 3 
csh1, kynu, 
mmp10 

Leishmaniasis 0.0399 2 
usp28, efcab2 

Pancreatic cancer 0.0383 2 
ciao1, cog3 

Arrhythmogenic 
right ventricular 
cardiomyopathy 

0.0416 2 
efcab2, cog3 

Leishmaniasis 0.0399 1 
efcab2 

ECM-receptor 
interaction 

0.0459 2 
trerf1, mgc3771 

   

Hypertrophic 
cardiomyopathy 
(HCM) 

0.0464 1 
c20orf78 

Hematopoietic cell 
lineage 

0.0488 1 
fancd2 

 

Table 3.4: Significant KEGG pathways in proposed method Vs. Diffrank by Un-weighted TO measure 

Proposed Algorithm Diffrank 

KEGG Pathways p-value Genes KEGG Pathways p-value Genes 

p53 signaling pathway 0.0253 3 
tp73, cdc20b, 
mmp10 

Linoleic 
acid 
metabolism 

0.0212 2 
cyp2c9, plxnd1 

Vascular smooth 
muscle contraction 

0.0424 2 
kcnmb2, efcab2 

Arachidonic 
acid 
Metabolism 

0.0422 2 
itgb3, ciao1 

Neurotrophin 
signaling pathway 

0.0460 2 
kcnmb2, trim14 

Retinol metabolism 0.0472 1 
kcnmb2 

 

In each of the Tables (3.1, 3.2, 3.3, 3.4) given above, the number and ORF names of the 

participating DE genes in the various biologically enriched analyses are mentioned in 

the column titled ‘Genes’. It is important to mention that the enlisted enrichment of the 

top 15 genes from both the approaches (proposed vs. Diffrank) is far better than the 

remaining DE genes which are not a part of the top 15. From the above information, it is 

also to be noted that the proposed methodology works better compared to Diffrank from 

the point of KEGG pathway enrichment related to Alzheimer’s disease.  
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3.2.4 Discussion: The proposed method shows better result because the existing 

method, Diffrank [20], focuses on local (differential connectivity which is the local 

difference between two networks calculated by the number of genes associated with a 

particular gene) as well as on global concept (between centrality: which calculate the 

change in the expression levels of central genes). But as given in [19] AD does not 

affect all the brain regions simultaneously but there are differences in severity of AD 

across different regions of the brain. Hence, more of localized phenomena than the 

global one are observed. In general, most of the genetic diseases show this kind of 

pattern. It [20] also shows a problem of controlling the value of a trade-off parameter 

(λ), thus trying to maintain a balance between local and global connectivity. So the 

optimality of the result is solely dependent on this parameter, making the problem more 

parameter driven. Thus the proposed method which does not possess such constraint 

performs better in recognizing AD through the participation of significant DE genes.  

In Tables 3.1 and 3.2 some significant GO terms have been enlisted. Some of the GO 

terms found by the proposed method are responsible for generation and spreading of 

AD in human and other primates. The biological verification is present in some 

literatures like : GO:0046885(regulation of hormone biosynthetic process) [27], 

GO:0032350 (regulation of hormone metabolic process) [28], GO:0006569 (tryptophan 

catabolic process) [29], GO:0046218 (indolalkylamine catabolic process) [30], 

GO:0004718 (protein tyrosine kinase activity) [31], GO:0015459 (potassium channel 

regulator activity) [32], GO:0016247 (channel regulator activity) [33], 

GO:0015457 (Transport) [34], GO:0008076 (voltage-gated potassium channel complex) 

[35].  

Again in Tables 3.3 and 3.4 some of the significant KEGG pathways have been enlisted. 

The relation of these pathways responsible for generation and spreading of AD are 

available in literatures like: Tryptophan metabolism and Leishmaniasis [36], 

Arrhythmogenic right Ventricular cardiomyopathy [37], ECM-receptor interaction [38], 

Hypertrophic cardiomyopathy [39], Hematopoietic cell lineage [40], p53 signalling 

pathway [41], Neurotrophin signalling pathway [42], Retinol metabolism [43]. 
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3.3 Extreme Differential regulations between Neurodegenerative Disease pairs 

Similar forms of neurodegenerative diseases can be paired to understand the exclusive 

regulations associated in a certain pair that may be completely absent or presence may 

be quite insignificant in a different pair. In this regard, explicit importance of 

differential regulatory links in different forms of neurodegenerative diseases can be 

explored. The investigation gets even more interesting testing the impact of not only 

common (among multiple disease sets; a disease set here comprises of two pairs of 

neurodegenerative disorders) DE genes but the revealing role of mutually exclusive 

disease specific gene sets in the spreading of diseases. Thus the research work in this 

direction may turn fruitful scrutinizing the various disease specific problems and thus 

identifying the therapeutic targets involved. 

3.3.1 The basic findings: Discovering the gene sets having extreme differential 

regulation between dissimilar disease pairs is the primary objective of this research. To 

unearth the differential co-expression characteristics between gene pairs an existing 

architecture based on development of a probabilistic score to detect differentially co-

expressed gene modules has been implemented. Fundamentally a two tier analysis has 

been conducted where at first a probabilistic score [44] to select gene pairs possessing 

significant differential co-expression in at least one condition is executed. At the next 

tier, a non probabilistic differential regulatory structure is implemented for both 

common and uncommon (disease pair specific) DE genes. At the last part of the 

research output the pivotal role of the uncommon DE genes to illustrate the dynamic 

association of different neurodegenerative diseases has been revealed through a 

complete biological significance analysis. The various forms of neurodegenerative 

diseases [45] on which the proposed algorithm has worked are Alzheimer’s disease 

(AD), Amyotrophic lateral sclerosis (ALS), Huntington’s disease (HD), Multiple 

sclerosis (MS), Schizophrenia (SCZ), and Parkinson’s disease (PD). These have been 

paired up based on their proximities and then further pairing up of such different disease 

pairs form disease sets. Hence, the output of this research is able to figure out the onset 

and the growth process of any regulatory pathway specific to certain disease or disease 

pairs.  

3.3.2 Methodology: The algorithm given below and its discussion primarily relies on 

the computation of probabilistic (LLR) and non-probabilistic (T) differential regulatory 
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scores at different stages of implementation. This helps in revealing the participation of 

common and uncommon DE genes possessing extreme differential T scores across 

conditions or disease pairs. 

ALGORITHM: Differentially Co-expressed Gene Set selection based on 

combination of Probabilistic and Non-Probabilistic frameworks 

Step1: Finding DE genes between the conditions control and disease individually 
for different diseases 
Step2: Formation of multiple disease pairs based on proximity of different diseases 
Step3: Further combination of disease pairs in order to form a disease set di, 
yielding a total of D disease sets 
Step4: While (each and every di is considered; i=1, 2, 3,….., D) 
           Begin 

 Evaluation of T score for a particular pair by Equation (1) 
 Disease pair specific TOVA calculation by comparison of T scores 

by Equation (2) 
 Computation of LLR score, having both positive (LP) and negative 

(LN) values from TOVA using Equation (3) 
                   While (all possible LP_LP, LP_LN, LN_LP combinations across disease 
                              pairs in a disease set di are taken into consideration)            
                  Begin 

 Extraction of significant gene pairs in terms of 
possessing extreme LLR values across both disease 
pairs 

 Filtering of common genes showing dysfunctional 
regulation with that gene pair across disease pairs 

 Further extraction of disease pair specific exclusive 
genes showing dissimilar regulations 

                  End 
           End  

 

Equation (1): Tେଵ,େଶ
୳,୴ =

(ୖిమ
౫,౬ିୖిభ

౫,౬)ି(ஜమିஜభ)

ඥ஢మ
మା஢భ

మమ  

Equation (2): T୓୚୅ = sign ൫Tେଵ,େଶ
୳,୴ ൯min |Tେଵ,େଶ

୳,୴ | 

Equation (3):  LLRଵ,଴(x) 

= log 
pf(x/μଵ, σଵ)

(1 − p)f(x/μ଴, σ଴)
 = log

pσ଴

(1 − p)σଵ
+

(x − μ଴)ଶ

2σ଴
ଶ

− 
(x − μଵ)ଶ

2σଵ
ଶ

 

Equation (4): p = Pr୘ో౒ఽ
౨౛౗ౢ  (x ≥  μ୘ో౒ఽ

౨౗౤ౚ౥ౣ + kσ୘ో౒ఽ
౨౗౤ౚ౥ౣ) 
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The various steps of the algorithm are elucidated below. 

Step1: The initiation comes up with finding the DE genes for each form 

neurodegenerative disorder mentioned earlier. For this the dataset in each disorder does 

contain two states, namely control and disease. The set of DE genes in each case is 

computed making use of the renowned R package DEGseq [46]. 

Step2: Following the earlier step, the next course of action is finding the similar pairs of 

neurodegenerative disorders. In this regard, a proximity survey is conducted between 

every pair of disorder. 

In this regard, considering two disorders/diseases A and B containing n and m profiles 

under the control state (n≤m), simple correlation is studied between every profile of one 

disease and each one from the other. In other words, profile 1 of A is correlated with 

each of the profiles, 1 to m, of B. Likewise the same is continued for all the other (n-1) 

profiles of A. Through this a [n×m] correlated matrix gets generated post which a 

threshold factor is formed equal to the average value of all the elements of this [n×m] 

matrix. This is followed by the selection of the top ‘n’ samples from pairs which exceed 

the threshold to yield a common control state. In this process, at least ‘n’ samples are 

required so that the disease pair (A,B) gets considered for further execution. If the 

above constraint is not satisfied by any disease pair, the same is not considered in the 

rest part of the proposed algorithm.  

Step3: On completion of the previous step performed over the 6 experimental 

neurodegenerative diseases yields 5 possible disease pairs. After this, independent 

combination of these pairs is done producing 10 disease sets. The purpose of forming 

these individual sets is to study the strong differential regulation (up/down) of genes 

across different disease pairs. 

Step4: At this step, the computation of T score followed by the LLR (Log-Likelihood 

Ratio; a probabilistic measure) metric is the major point of concern. Hence, obtaining 

the above measurement parameters and understanding the crucial roles of these in the 

process of execution is depicted below. 

 The T score for a DE gene pair (u,v) is computed following Equation (1) under 

the presence of a common control state C1 (obtained from Step 2 above) and 



                                          Chapter 3: Differential Gene Regulation in Neurodegenerative Disorders 
 

 Page 94 
 

diseased states C21 and C22. Here, the T score is obtained for every pair of 

common DE genes between diseases A and B. 

 The overall T score, TOVA, is then found for the pair (u,v) following Equation 

(2). If the differential regulation of the pair (u,v) following Equation (1), show 

uniqueness (up/down regulation with respect to C1) in the sign of regulation, i.e. 

the regulatory differences considering state pairs C21-C1 and C22-C1 both follow 

the same sign (up indicating positive sign, down indicating negative sign) with 

respect to C1, then the DE gene pair (u,v) is taken forward for LLR significance 

analysis; otherwise it is not considered for the same. 

 Considering the LLR (Log-Likelihood Ratio) framework given in [44], 

comparison of this unique TOVA score for the DE gene pair (u,v) is done on real 

and random data sets. Assuming both the distributions (real and random) are 

normal (represented as f(x/μ1,σ1) and f(x/μ0,σ0)), ‘p’ is the probability that the 

TOVA score belongs to the first distribution. Given the mean and standard 

deviation of f(x/μ0,σ0) and f(x/μ1,σ1) are μ0, μ1 and σ0, σ1, the LLR score for 

the T score (x=TOVA) is computed using Equations (3) and (4). Here, 100 

shuffled versions of the parent gene expression matrix with respect C1, C21, and 

C22 are considered to generate the random matrices. From each random matrix, 

all relevant TOVA scores are found along with the corresponding μ
୘ో౒ఽ

౨౗౤ౚ౥ౣ and 

σ
୘ో౒ఽ

౨౗౤ౚ౥ౣ  values. Considering 100 such shuffled distributions, the number of 

times the TOVA score of the pair (u,v) is greater than or equal to μ
୘ో౒ఽ

౨౗౤ౚ౥ౣ +

kσ
୘ో౒ఽ

౨౗౤ౚ౥ౣ , where k equals 2 following [44], defines the probabilistic value ‘p’ 

mentioned above. Ultimately, a positive value of LLR for the pair (u,v) defines 

it as statistically significant, else not. In this regard, a statistically significant 

LLR is symbolized as LP and an insignificant one or negative LLR pair is 

symbolized as LN. 

 The next challenge lies in finding DE gene pairs possessing extremely dissimilar 

LLR metric between two disease pairs of a disease set (obtained from Step 3 

above) followed by the discovery of DE genes associated with the above gene 

pairs maintaining disjoint regulations between disease pairs in terms of T score. 

In this perspective, the types of LLR metric defined pairs taken in consideration 

are LP_LP, LP_LN, and LN_LP. If it is LP_LN or LN_LP kind of DE gene pair, then 

the pair is retaining highly positive LLR in one disease pair and minimum 
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negative LLR (close to zero) in the other disease pair. However, LN_LN is not 

considered because it indicates insignificant DE gene interaction in both the 

disease pairs. 

 The discovery of DE genes associated with the DE gene pair (u,v) maintaining 

either LP_LP or LP_LN or LN_LP kind of significance between disease pairs in a 

disease set, is based on the fact that a DE gene is having positive TOVA score in 

one disease pair and negative TOVA score in the other with the gene ‘u’ and vice-

versa for the gene ‘v’ of (u,v). Thus extreme differential regulations for both 

common and uncommon DE genes with respect to disease pairs can be 

discovered to an optimum extent. 

3.3.3 Results: The research uses the gene expression data (Accession No.26927) [46] 

for Alzheimer’s disease (AD), Amyotrophic lateral sclerosis (ALS), Huntington’s 

disease (HD), Multiple sclerosis (MS), Schizophrenia (SCHIZ), and Parkinson’s disease 

(PD) sampled from an extensive cohort of well characterized post-mortem CNS tissues. 

In all the 6 forms of neurodegenerative diseases mentioned above, there are 20,859 

genes, each containing 118 samples, distributed across normal or control and diseased 

states.  

Initial requirement of DE genes yield 6236 for AD, 10831 for ALS, 9382 for HD, 9384 

for MS, 9695 for SCHIZ, and 8892 for PD. Guided by the extensive clinical survey [11-

17] and through the devised approach, the proximal disease pairs happen to be AD_HD, 

AD_SCHIZ, ALS_MS, MS_SCHIZ, and PD_SCHIZ, with 2794, 1937, 3749, 3403, and 

2556 DE genes respectively. Followed by this output, the generated disease sets and the 

number of common DE genes associated with each disease set are:  

AD_HD with AD_SCHIZ (AD_HD_AD_SCHIZ) having 1061 DE genes 

AD_HD with ALS_MS (AD_HD_ALS_MS) having 856 DE genes 

AD_HD with MS_SCHIZ (AD_HD_MS_SCHIZ) having 1023 DE genes 

AD_HD with PD_SCHIZ (AD_HD_PD_SCHIZ) having 872 DE genes 

AD_SCHIZ with ALS_MS (AD_SCHIZ_ALS_MS) having 1139 DE genes 

AD_SCHIZ with MS_SCHIZ (AD_SCHIZ_MS_SCHIZ) having 785 DE genes 
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AD_SCHIZ with PD_SCHIZ (AD_SCHIZ_PD_SCHIZ) having 1147 DE genes 

ALS_MS with MS_SCHIZ (ALS_MS_MS_SCHIZ) having 804 DE genes 

ALS_MS with PD_SCHIZ (ALS_MS_PD_SCHIZ) having 1027 DE genes 

MS_SCHIZ with PD_SCHIZ (MS_SCHIZ_PD_SCHIZ) having 1291 DE genes 

This is followed by some significant differential regulation pair formations showing 

LP_LP / LP_LN / LN_LP under two conditions or disease pairs in any one of the disease 

sets given above. Considering one such regulation pair (u,v), the set of common DE 

genes which show extremely dissimilar regulatory pattern (for example less than 1059 

DE genes for the disease set AD_HD_AD_SCHIZ discarding the remaining two genes 

because these together have formed the LLR pair (u,v)) can be divided into two subsets. 

One of the subsets shall comprise of DE genes having positive TOVA score with gene ‘u’ 

in say AD_HD and negative TOVA score with gene ‘u’ in AD_SCHIZ. The other subset 

shall have just the reverse order with respect to gene ‘v’ , i.e. negative TOVA score with 

gene ‘v’ in say AD_HD and positive TOVA score with gene ‘v’ in AD_SCHIZ. This kind 

of situation is depicted in second column of both Tables 3.5 and 3.6 as p1np-n2pn / 

n1pn-p2np / n1np-p2pn / p1pn-p2np / p1np-p2pn. Considering p1np-n2pn as a case, 

indicates LP for gene pair (u,v) in first disease pair and LN in the second disease pair. 

The other terms in the above nomenclature highlights the positive and negative TOVA 

scores with respect to genes ‘u’ and ‘v’ at the corresponding disease pairs. On the other 

hand for the uncommon DE genes, i.e. subtracting disease set specific common DE 

genes from the disease pair specific DE genes, four disjoint subsets of DE genes are 

found interacting with the pair (u,v) following the proposed algorithm. In this case, two 

sets interact with gene ‘u’ and the other two sets interact with gene ‘v’ for a particular 

disease set.  

The KEGG pathway [47] enrichment analysis given in Tables 3.5 and 3.6 depict the 

number and significance of DE genes participating in biological pathways relevant to 

the these neurological or neurodegenerative diseases used in this research. Explicitly 

handling the entry given in the first row of Table 3.5 shows the presence of 41 common 

and uncommon DE genes with respect to the first common DE gene pair index  
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Table 3.5: Some significant pathways in terms of enrichment score/number of participating genes, along with the specific disease combination set, LLR and T metric 
combination, common gene pair index (among multiple gene pairs found common between two LLR combinations), and common DE genes association

Disease set LLR and 
T   metric 
combination 

Common 
gene pair 
index 

Pathway Enrichment 
_FDR score 

Total number of 
participating genes 

Participating number of 
common DE genes 

AD_HD_AD_SCHIZ n1np-p2pn 1 Parkinson’s disease 8.42E−07 41 1 → 5, 2 → 3 

Huntington’s disease 1.62E−04 46 1 → 4, 2 → 2 

p1np-p2pn 1 Oxidative phosphorylation 6.13E−04 36 1 → 2, 2 → 4 

Alzheimer’s disease 1.33E−03 41 1 → 3, 2 → 3 

p1pn-p2np 1 Parkinson’s disease 5.25E−03 36 1 → 2, 2 → 3 

Oxidative phosphorylation 7.7E−03 36 1 → 3, 2 → 2 

AD_HD_ALS_MS n1np-p2pn 3 Huntington’s disease 3.5E−02 36 1 → 12, 2 → 6 

n1pn-p2np 1 Ribosome 3.24E−02 21 1 → 11, 2 → 3 

p1pn-p2np 2 Ribosome 5.3E−03 22 1 → 8 

AD_HD_PD_SCHIZ n1pn-p2np 1 Huntington’s disease 3.9E−02 35 1 → 2, 2 → 4 

Oxidative phosphorylation 4.7E−02 28 1 → 2, 2 → 3 

Parkinson’s disease 9.7E−02 27 1 → 3, 2 → 2 
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Table 3.5 (Continued) 

Disease set LLR and T 
metric 
combination 

Common 
gene pair 
index 

Pathway Enrichment 
_FDR score 

Total number of 
participating genes 

Participating number of 
common DE genes 

AD_SCHIZ_MS_SCHIZ p1np-n2pn 2 Oxidative phosphorylation 1.67E−02 32 1 → 4, 2 → 9 

Alzheimer’s disease 5.3E−02 36 1 → 3, 2 → 10 

AD_SCHIZ_PD_SCHIZ n1np-p2pn 1 Ribosome 4.43E−03 26 1 → 5, 2 → 3 

3 Ribosome 1.3E−03 21 1 → 4, 2 → 3 

n1pn-p2np 3 Ribosome 5.63E−05 28 1 → 4, 2 → 4 

p1np-n2pn 2 Ribosome 3.4E−03 24 1 → 4, 2 → 3 

7 Ribosome 8.45E−08 33 1 → 4, 2 → 4 

p1pn-n2np 4 Ribosome 7.31E−02 21 1 → 2, 2 → 5 

5 Ribosome 1.53E−02 24 1 → 3, 2 → 4 

6 Ribosome 5.37E−05 28 1 → 3, 2 → 4 

7 Ribosome 3.27E−02 23 1 → 4, 2 → 3 

p1pn-p2np 1 Ribosome 1.7E−04 26 1 → 5, 2 → 4 

2 Ribosome 7.5E−06 28 1 → 5, 2 → 3 

3 Ribosome 1.73E−04 27 1 → 3, 2 → 5 

4 Ribosome 2.4E−06 23 1 → 3, 2 → 5 

5 Ribosome 2.26E−04 27 1 → 6, 2 → 3 

6 Ribosome 9.91E−08 32 1 → 3, 2 → 7 

ALS_MS_MS_SCHIZ p1np-p2pn 8 Long-term potentiation 3.13E−03 22 1 → 1, 2 → 2 

 
 
 
 



                                          Chapter 3: Differential Gene Regulation in Neurodegenerative Disorders 
 

 Page 99 
 

Table 3.6: Enrichment analysis of certain pathways without the significant common genes in first and second condition independently across gene pairs                              
(here C1 stands for condition 1 and C2 stands for condition 2) 

Pathways Disease set with LLR, T metric combination for a 
gene pair index (mentioned in brackets) 

No. of significant genes Enrichment score excluding 
significant genes 

1st gene 
specific 

2nd gene 
specific 

1st gene specific 2nd gene specific 

C1 C2 C1 C2 C1 C2 C1 C2 

Parkinson’s 
disease 

AD_HD_AD_SCHIZ 
n1np-p2pn (1) 

Nil 3 1 Nil 8.42E−07 3.4E−05 3E−06 8.42E−07 

Huntington’s 
disease 

AD_HD_ALS_MS 
n1np-p2pn (3) 

3 4 2 2 2.8 5.12 0.77 0.77 

Ribosome AD_HD_ALS_MS 
n1pn-p2np (1) 

7 4 2 Nil 6.4 1.16 0.22 3.24E−02 

Oxidative 
phosphorylation 

AD_SCHIZ_MS_SCHIZ 
p1np-n2pn (2) 

1 1 4 3 4E−02 4E−02 0.61 0.46 

Alzheimer’s 
disease 

AD_SCHIZ_MS_SCHIZ 
p1np-n2pn (2) 

Nil Nil 2 4 5.3E−02 5.3E−02 0.26 1.2 

Ribosome AD_SCHIZ_PD_SCHIZ 
n1pn-p2np (3) 

1 Nil Nil Nil 2.3E−04 5.63E−05 5.63E−05 5.63E−05 

Ribosome AD_SCHIZ_PD_SCHIZ 
p1np-n2pn (2) 

3 3 Nil Nil 0.123 0.123 3.4E−03 3.4E−03 

Ribosome AD_SCHIZ_PD_SCHIZ 
p1np-n2pn (7) 

1 Nil 3 Nil 4.1E−07 8.45E−08 8E−06 8.45E−08 

Ribosome AD_SCHIZ_PD_SCHIZ 
p1pn-p2np (6) 

Nil Nil 3 Nil 9.91E−08 9.91E−08 2.3E−06 9.91E−08 
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(any such DE gene pair can also be termed as the central controlling DE gene pair) in 

the context of AD_HD_AD_SCHIZ. Here, the LLR metric and T score combination, 

n1np-p2pn, satisfying the regulatory constraints of the 41 participating DE genes in the 

central presence of the first common DE gene pair index is observed in the pathway, 

Parkinson’s disease, with a false discovery rate enrichment score of 8.42×10-7. Again 

from here, it is observed that 5 common DE genes are associated with the first gene and 

3 common DE genes are regulated by the second gene of the central controlling DE 

gene pair. Elucidating further, these 5 common DE genes maintain negative and 

positive TOVA scores with the first gene of the central controlling DE gene pair in the 

first (AD_HD) and second (AD_SCHIZ) disease pairs respectively. Similar comments 

are applicable for the 3 common DE genes regulated by the second gene of the central 

controlling DE gene pair, but in the reverse order of TOVA scores. 

In order to gain a better insight on the functionalities of the common DE genes 

significance testing of the common genes (present in a pathway) individually across the 

disease pairs (genes having positive TOVA to negative TOVA, and negative TOVA to 

positive TOVA transitions from first to second pair) is conducted. Significance testing has 

been completed through random shuffling of the sample labels between the control and 

diseased states followed by computation and comparison of TOVA scores. Table 3.6 

shown above gives a detailed view of the significance testing of some selected 

pathways. In this table, the effect of removing significant genes over the enrichment of 

a pathway is of prime importance. In those cases where no significant gene is found, the 

original enrichment score (shown italicized) is retained. Continuing with the earlier 

elucidated example of Parkinson’s disease (disease set in consideration being the same 

as cited above, AD_HD_AD_SCHIZ) out of the 5 common DE genes none has been 

found significantly associated with the first gene of the central controlling DE gene pair 

in first condition (C1), where as in second condition (C2), 3 genes are discovered 

significant. Removal of these 3 common DE genes worsens the FDR enrichment score 

to 3.4×10-5. On the other hand, among 3 common DE genes, 1 gene is found 

significantly associated with the second gene of the central controlling DE gene pair in 

C1, but none has been found to be significant in C2. Here removal of the significant 

gene has given the enrichment score 3×10-6. Hereafter, first and second condition 

suggests first and second disease pair of the disease set. 
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Rechecking the enrichment of the pathways (given in Table 3.6) only in the presence of 

the significant DE genes across conditions is one more major point of concern. This 

aspect has been worked on those pathways where this enrichment is far better compared 

to the context having all other DE genes excluding significant participants (given in 

Table 3.6). In Huntington’s disease, corresponding to the first gene of the central 

controlling DE gene pair, in the second condition, 4 significant DE genes is obtained. 

These have Illumina IDs ILMN_4450, ILMN_10087, ILMN_13178, and ILMN_16327. 

Together, these have formed the same pathway with enrichment score of 3.03×10-2 

against 5.12 as listed in Table 3.6. A similar situation is observed in Ribosome 

(obtained from AD_HD_ALS_MS), where corresponding to the first gene of the central 

controlling DE gene pair, in the first condition, there are 7 significant DE genes. These 

are ILMN_138835, ILMN_137528, ILMN_10289, ILMN_137046, ILMN_138635, 

ILMN_138392, and ILMN_13487. A combination of these genes did enrich the same 

pathway with a score of 7.99×10-6 compared to 6.4, given in Table 3.6. For the first 

gene of the central controlling DE gene pair with the same pathway in second condition, 

there are 4 significant DE genes, which are ILMN_137046, ILMN_138635, 

ILMN_139337 and ILMN_137876. Together these have given an FDR score of 

4.84×10-4, much better than 1.16, given in Table 3.6. Similar observations are present in 

the case of Oxidative Phosphorylation where enrichments corresponding to the second 

gene of the central controlling DE gene pair in first and second condition found for the 

DE genes namely ILMN_20286, ILMN_2295, ILMN_19166, ILMN_137342 and 

ILMN_20286, ILMN_19166, ILMN_16064 respectively, are far better compared to the 

enrichments excluding them. From Table 3.6, the FDR scores excluding these 

significant DE genes are 0.61 and 0.46, whereas simple combination of these significant 

DE genes yields FDR scores equal to 8.42×10-3 and 0.28 respectively. Significant genes 

obtained from Alzheimer’s disease in connection to second condition of 2nd gene of the 

central controlling DE gene pair are ILMN_1351, ILMN_20286, ILMN_5679, and 

ILMN_19166. Collectively only these 4 DE genes have given an enrichment score of 

3.1×10-2 compared to 1.2 excluding them. Finally, in the Ribosome pathway obtained 

from AD_SCHIZ_PD_SCHIZ with a LLR and T score combination of p1np-n2pn 

across first gene of the central controlling DE gene pair, 3 significant DE genes has 

been obtained in both conditions. These are ILMN_21554, ILMN_16945, and 

ILMN_16298 respectively. Combination of these genes only has given an enrichment 

score of 2.89×10-2 as compared to 0.123, except those. 
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However, there are some cases where the exclusive analysis of biological enrichment of 

pathways comprising of the significant DE genes are not fruitful compared to the 

situation excluding the significant DE genes. Hence, the biological contribution of the 

corresponding DE genes in the various pathways is further looked into. Like, from 

Table 3.6, in Parkinson’s disease, specific significant DE genes associated with the first 

gene of the central controlling DE gene pair under second condition are ILMN_11281, 

ILMN_1167 and ILMN_17626. Here, first 2 genes are involved/activated in encoding 

of ubiquitin activated enzyme E1, and NADH dehydrogenase (ubiquinone) Fe-S protein 

4, whereas the third gene is a cytochrome c oxidase subunit VIIc (COX7C) one. 

Involvement of them in activation/spreading of Parkinson’s disease in different 

organisms are given in [48,49]. In the same disease, across second gene of the central 

controlling DE gene pair only 1 significant DE gene (ILMN_10929) under first 

condition experiences the same fate but is known to be involved in encoding of 

ubiquinol-cytochrome c reductase core protein II (UQCRC2). Now as given in [50] this 

protein actively participates in this diseased pathway. Again, from Table 3.6, for 

Huntington’s disease, across first gene of the central controlling DE gene pair, in the 

first condition, 3 significant DE genes have been found which are respectively 

ILMN_22085, ILMN_10087, and ILMN_1167. Among these evidence of active 

participation in this disease is there for the latter two genes only. As given in [51,52] 

these DE genes participate in this diseased pathway via the encoding of cytochrome c, 

somatic (CYCS), nuclear gene encoding mitochondrial protein and Homo sapiens 

NADH dehydrogenase (ubiquinone) Fe-S protein 4. This is the same way through 

which ILMN_20348 (found across 2nd gene of the central controlling DE gene pair in 

both conditions) participates in this pathway [52]. Another gene found here is 

ILMN_138125, but surprisingly no existing literature describes its role in Huntington’s 

disease. In Ribosome (by AD_HD_ALS_MS shown in Table 3.6), 2 significant DE 

genes across second gene of the central controlling DE gene pair in condition 1 are 

found, namely ILMN_137810 and ILMN_138613. These two are involved in encoding 

of different ribosomal proteins. In Oxidative Phosphorylation (OP), as per Table 3.6, 

ILMN_17626 is the only significant DE gene present across both conditions of the first 

gene of the central controlling DE gene pair. ILMN_17626 is a cytochrome c oxidase 

subunit VIIc (COX7C) gene, whose effect on OP is given in [53]. From Table 3.6 again 

only in Alzheimer’s disease (AD) across first condition of second gene of the central 

controlling DE gene pair two significant genes are present, namely ILMN_1351, and 
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ILMN_20286. Individual assessment of these genes over AD via mitogen-activated 

protein kinase 1 (MAPK1) and NADH dehydrogenase (ubiquinone) 1 beta sub complex 

encoding is described in [54-56]. ILMN_21554 is the only significant DE gene found in 

Ribosome (obtained from AD_SCHIZ_PD_SCHIZ with a LLR and T score 

combination of n1pn_p2np and is third gene pair specific), and has got significant 

involvement in ribosomal protein formation whereas there are all total 3 significant DE 

genes obtained from another Ribosome pathway (this case is also from the same disease 

set and same LLR combination as the previous one but from seventh gene pair). These 

are ILMN_2271 (found with both the genes of the central controlling DE gene pair), 

ILMN_2500, and ILMN_1815 (last two are found exclusively with the second gene of 

the central controlling DE gene pair). Finally, the last combination is the group of 3 

significant genes ILMN_11712, ILMN_15150, and ILMN_138613 (this time also the 

pathway is Ribosome, with the same disease set combination having the LLR and T 

score combination as p1pn_p2np, with sixth gene pair).  

3.3.4 Discussion: Varieties of diseased pathways shown in Tables 3.5 and 3.6 are 

obtained feeding the required DE gene set into DAVID [57,58]. From the tables it can 

be seen that most of these pathways are mainly connected to neurodegenerative or 

neurological diseases. Only the three pathways, which do not bear any disease name, 

are Oxidative phosphorylation, Ribosome, and Long term potentiation. In order to 

check whether any/all of them have a role in such diseases an exhaustive clinical survey 

was done.  

Oxidative phosphorylation basically regulates the neuronal actions via the help of 

Mitochondria (abbreviated as Mt). As given in [59] oxygen takes part in glucose break 

down in Mt through oxidative phosphorylation and generates ATP, which works as 

energy currency of the cell. Any form of mutation of Mt DNA (works as molecular 

machinery) enforces impaired ATP generation and perturbed oxidative phosphorylation 

cascade, further locking the neuronal function, which specifically leads to AD [59,60]. 

Again in Ribosome, absence of some binding partners (for an example GTPBP2) of the 

ribosome recycling protein may cause ribosome stalling and widespread neuro-

degeneration [61]. Finally, some literatures suggest the role of Long term potentiation in 

different neurodegenerative or neurological disorders occurring due to synaptic 

dysfunctions [62]. 
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It is also important to understand the bridging effect some KEGG pathways observed in 

Table 3.5 or 3.6 over different diseases of a corresponding disease set. For the pathway, 

Parkinson’s disease (PD), under the disease set AD_HD_AD_SCHIZ, thorough study 

reveals TRANSGLUTAMINE (TG) kind of enzymes affecting (act as a common factor) 

different neurodegenerative disorders like PD and AD/HD [63]. As given in [63] for 

different kinds of TGs activated in AD and HD, CSF (Cerebrospinal Fluid) also 

contribute to the formation of proteinaceous deposits in PD. It is important to note that 

both PD and SCHIZ have a common originating link. As stated in [64] these are the 

results of the redox process (i.e. joint activity of Reactive Oxygen Species (ROS) and 

Oxidative Stress (OS)). This redox process also works as a common link between HD 

and AD, ALS, MS. In [64] a common redox association can be found between AD and 

MS. Apart from having a common chemically reactive baseline, all these different 

neurodegenerative diseases happen to be a subset of Neurodegenerative Misfolding 

Diseases (NMD) triggered by the misfolding of one or two proteins and their 

accumulation in the aggregated species toxic to neurons [65], especially due to the 

effect of protein disulphide isomers (PDI). 

3.4 Conclusion 

The contributions made in this chapter towards formation of topologically differential 

DE gene architectures instigate the research to get explored in the domain of 

Transcription Factor (TF) gene regulatory networks. The biological involvement of the 

DE genes in the process of reconstruction of differential gene regulation networks can 

be understood from the contribution of the DE genes in growth and spread of a disease 

across various stages as well as their involvement in different interlinked diseases. This 

contribution gets highlighted through the presence of extreme dissimilar regulatory 

controls executed in the progressive stages of any disease or in different kinds of 

biologically proximal interlinked disease pairs.    
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4.1 Introduction 

Formation of a gene regulatory network can be biologically validated by the existence 

of significant KEGG pathways. In such pathways, individual or multiple collaborative 

interactions made by one or more genes or proteins over some target genes can be 

computationally verified. However, considering the differential networking perspective 

under varied environmental situations or perturbation characteristics, the importance of 

such pathways or regulatory cascades might show altering statistical enrichments. In 

this regard, to statistically validate a regulatory cascade, requires strong computational 

background to understand the crucial role (single or collaborative) and the level of 

existence of any particular gene present in the regulatory pathway. To meet these 

requirements, in the differential networking paradigm, the significant importance of any 

gene can be developed based on its differential regulatory capabilities and the dynamic 

stability of the same.  

This chapter addresses the above need through the development of significant 

regulatory cascades comprising of Differentially Expressed (DE) genes and/or 

Transcription Factor (TF) genes. The differential regulatory scores of these genes can 

maintain conflicting objectives or in other words the regulatory objectives may not be at 

par with one another. Hence, a multi-objective optimized approach may be useful in 

designing the non-dominated sets of participating DE genes or TF genes at various 

levels of any regulatory network. Thus a hierarchical architecture comprising TF and/or 

DE genes can be developed with the provision of dynamically handling the regulations 

in certain environmental or externally perturbed situations. This development can 

possibly validate any regulatory network or cascade designing composite entropy 

minimized regulatory architectures containing single or collaborative differential 

interactions between TF and DE genes or between TF and Differentially Coexpressed 

(DC) genes.  

4.2 Ranking Differentially Expressed Genes in a Multiobjective Framework 

The initial challenge in developing gene regulatory cascades or pathways is to find the 

significant role of TF and/or DE genes at various stages of this hierarchical structure. 

Developing such structures can be guided by the differential regulatory capabilities of 

the participating TF and/or DE genes. Many existent methodologies judge the 

differential regulatory actions of any gene in a complex regulatory network. However in 
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this context, the gene ranking obtained via such different methodologies according to 

their significance, is quite dissimilar to one another making regulatory assessment of 

genes very difficult. Hence, the challenge comes in determining the contributory role of 

genes in a complex gene regulatory network when different methods yield separate sets 

of significant genes. Thus, it can be difficult to reconcile the different results and 

identify the specific genes that play a role in a network's differential functionality. One 

possible approach to address this challenge is to perform a comprehensive analysis that 

takes into account the results from multiple methodologies. By integrating the results 

and prioritizing genes known to have connections to the biological processes or 

pathways relevant to the network under study, it is possible to identify common genes 

or gene sets (obtained by evaluating multi-objective constraints or ranking measures 

defined by the separate methodologies) consistent and robust enough to indulge in 

specific biological investigations. As this work is centred on the differential regulatory 

controls of TF and/or DE genes, the prima facie of this research followed by the next in 

this chapter lies in finding the significant ranking of the TF (may be DE too) and/or DE 

genes through non-dominance analysis applying multi-objective approach on the 

different ranking measures. 

Application of multi-objective evolutionary algorithms has got an extensive research in 

the domain of gene classification [1] by clustering [2-5]. In this context, most of the 

works try to optimize clustering indices in a multi-objective paradigm. The commonly 

used algorithms have been GA-II, NSGA-II, PESA-II [6], to name a few. Extensively it 

focuses on methods to improve clustering via number of clusters present in a 

chromosome, intra-cluster compactness, inter-cluster separation, and cluster size [7]. 

However, one of the major drawbacks of clustering approach is time complexity, 

irrespective of optimization techniques such as GA [8], PSO [9], BPNN [10], ACO [11] 

etc. This aspect occurs mainly due to clustering with generation and validation of new 

populations in different iterations [4,5]. This time challenging constraint does not arise 

in this research as the differential regulatory problem is throughout managed with the 

parent physically existent population of genes only. The intention is to find the best 

possible combination of DE genes from the existing ones on the basis of ranking and 

not to generate any new set of solutions with predicted gene expression levels. 
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4.2.1 The basic findings: In this research, a novel procedure for computing significant 

DE genes by utilizing multiple ranking strategies is presented. The concept is based on 

the creation of multiple non-dominated sets consisting of solutions from different Pareto 

optimal fronts. The main goal of this specific research is to identify a set of non-

dominated DE genes in the primary Pareto optimal front, where each DE gene possesses 

an optimal combination of significance rankings across various ranking algorithms. The 

main goal of this research has been extended in the next research output (i.e. developing 

entropy minimized transcriptional regulatory networks) presented in this chapter.  

The results of this research demonstrate that the majority of KEGG pathways [12] based 

on the defined set of differentially expressed (DE) genes contain a maximum of two DE 

genes from the non-dominated primary Pareto optimal set. This finding aids in 

understanding the independent regulatory function of a gene from this non-dominated 

set compared to the set of dominated genes. In other words, the presence of enriched 

control pathways with significantly ranked DE genes that are non-dominant to each 

other is nearly absent. This indicates that the identified non-dominated genes, with their 

optimal combination of rankings, play distinct roles in the regulatory processes and are 

not redundant or overlapping with each other.  

4.2.2 Methodology: The objective of this research is to find non-dominated DE genes 

residing in the primary Pareto optimal front. To achieve this, the different ranking 

algorithms like rank sum statistics [13], gene significance based enrichment analysis, 

GSEA [14], activity score (AS) [15], and TOP based gene significance [16] have been 

utilized as the four objective functions. Considering a minimization problem with these 

four conflicting objectives (these are either maximization or minimization problems), a 

feasible DE gene pair (u,v) can have the gene ‘u’ dominating gene ‘v’, provided z i (u) ≤  

z i (v) for i = 1,2,3,4 with at least one z i (u) < z i (v) for the objective function ‘z i’ [6]. In 

other words, the DE gene ‘u’ will possess a higher rank or lower score with the paired 

DE gene ‘v’ in one, two, three or four objectives with equal score in the other three, 

two, one or zero objectives respectively. If the gene pair (u,v) does not meet any of the 

above criteria, then the DE genes ‘u’ and ‘v’ can be termed non-dominant to one 

another.  

The flowchart of the proposed algorithm is shown in Figure 4.1 and elucidated 

thereafter. 
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Figure 4.1: Flowchart for evaluating significantly non-dominated DE genes 

Elucidation of the above steps present in the flowchart is depicted below. 

 Initially, as per the flowchart, any gene expression matrix is required containing 

more than one condition of interest. 

 The interest is on finding any DE gene which possesses the property of 

differential connectivity when paired with other DE genes for the purpose of 

developing differentially connective regulatory pathways. For this DE genes are 

computed making use of the same statistical technique (used in earlier research 

works present in the previous chapters), DEGseq [17], and the quantitative trait 

specific DE approach, qtDE [18], discussed in detail in chapter 2.  

 The interaction analysis under different conditions in both sets of DE genes (DE 

genes are computed using two measures) are done using the renowned GTOM 

technique [19] followed by finding the DE genes which maintain significant 

direct connectivity in the presence of other DE genes using the PCIT [20] 

approach. 
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 The next operation happens to be computing the differentially significant genes 

that can participate in a regulatory pathway based on the four multi-objective 

ranking functions or strategies given in the flowchart (Ranksum, AS, GSEA, and 

TOP). The brief discussion of each of these functions is given later. 

 In the above multi-objective approach, the primary intention lies in finding the 

non-dominated set of DE genes that fall on the primary Pareto-optimal front. In 

order to do this, any of these corresponding genes should have better ranking (or 

lower score) in any one, two, or three of the four objective functions in 

comparison with all other DE genes. In other words, it indicates, a particular DE 

gene residing in the primary Pareto-optimal front can have either equal or higher 

score (worse ranking) compared to all other DE genes in three, two, or one of 

the four objectives respectively. Thus, the number of possible combinations to 

look through for discovering the non-dominated set of DE genes placed in the 

primary Pareto-optimal front equals 4େభ
+ 4େమ

+  4େయ
 , i.e. 14 combinations. 

 At the final step, significantly non-dominated DE genes (found above) are 

computed conducting permutation test [21] on the PCIT filtered GTOM 

matrices. Thereafter, through KEGG analysis, this helps in understanding the 

solo participation of these DE genes acting as primary controllers in one or more 

regulatory pathways, dominating the other DE genes (not a part of the primary 

Pareto-optimal front). 

The necessary details of the four objective functions utilized in the above computation 

are as follows: 

Ranksum: In this context, Wilcoxon Ranksum test [13] is conducted on the PCIT  

filtered weighted [16] GTOM matrices obtained from two or more  conditions of  

interest. If two conditions are considered, then it leads to the formation of two matrices, 

A and B.  

This is a non-parametric test of the null hypothesis where the two populations are same 

against an alternative hypothesis, where a particular population puts up a skewed effect 

to the combined distribution. In general considering two populations C and D with 

independent random samples c1,c2,….,cm and d1,d2,…...,dn are merged and the 

measurements are ranked from lowest to highest values. Here, the mean (μ) and 
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standard deviation (σ) of the merged data can be found as μ = m(m+n+1)/2 and σ = 

ඥmn(m + n + 1) 12⁄మ  .  

Now based on the merged data two kinds of hypothesis are checked. First one being the 

null hypothesis H0: C = D, which means the distribution of X measurements in 

population C is same as that of D or in other words the ranked distribution pattern in the 

merged data happens to be an association of samples taken at random from the 

individual distributions. In this case, the differential pattern of the data vectors (here, the 

filtered GTOM vectors for each gene) cannot be predicted. On the other hand, the 

alternative hypothesis is of two kinds. First one being H1: C > D, which means in the 

ranked merged distribution, samples from C is right shifted compared to D, and the 

second one being H2: C < D, suggesting the samples from C is left shifted compared to 

D. In both of the cases, it is possible to ascertain the differential pattern of the filtered 

GTOM vectors highlighting the differential contribution of the concerned gene. 

Here, the application of PCIT [20] yields filtered GTOM matrices. In this connection, 

two matrices (one for each condition) are obtained with entries 1 and 0. As a next step, 

common set of interactions are searched for every gene across both conditions 

indicating the search for those entries possessing 1 at the same location in both matrices 

for each individual gene. Finally, these 1’s get replaced by the original filtered GTOM 

values in both conditions and each other entry (uncommon 1’s as well as 0’s) is made 

equal to 0. At this stage, the Wilcoxon-rank-sum test is applied over these modified 

versions of the filtered weighted GTOM matrices A and B. 

Activity Score: Like the Ranksum test here also at first the common set of interactions 

between two conditions is considered followed by replacing the (common) 1’s by the 

filtered GTOM values in both conditions and other fields by 0. 

Next, as per [15], the activity score (AS) score is calculated. Here, corresponding to any 

row (i.e. a gene) of the filtered GTOM matrix, Xi means the genes having a non-zero 

entry. Zj is the Z score of the differential expression of any such gene using Ranksum 

test. Following the equations w୧ = ∑ rank൫Z୨൯,   u୧ =  
୧(୒ାଵ)

ଶ
, σ୧ =  ට

୧(୒ି୧)(୒ାଵ)

ଵଶ

మ

୨∈ଡ଼౟
   

from [15] calculations of wi, ui, and σi are done, where N is the total number of genes 

used in the analysis. Thus utilising the values produced by w୧ = ∑ rank൫Z୨൯,   u୧ =୨∈ଡ଼౟
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୧(୒ାଵ)

ଶ
, σ୧ =  ට

୧(୒ି୧)(୒ାଵ)

ଵଶ

మ
 the AS score is computed as per the equation AS =

 (−1)∝ ×  max୧∈୬ୣ୧୥୦ୠ୭୳୰(
୵౟ି୳౟

஢౟
×

୵౟ି୳౟

୵ౣ౗౮ି୳౟
)  of [15], provided α = 0 if 

୵౟ି୳౟

஢౟
> 0 ; 

otherwise α=1. This is followed by the ranking of the DE genes using the AS scores 

obtained from the above technique. 

GSEA: Starting with PCIT filtered weighted GTOM matrices obtained in the two 

conditions maintaining non-zero entries for the significant set of interactions, here 

comes finding the Z scores and ranking the genes accordingly.  

At first, corresponding to every gene, separately in each condition, ranking of the gene 

interaction values from lowest to highest level is followed by assigning rank labels for 

every significant interaction. At the next step a random vector is generated for every 

gene comprising of values meant to index locations of the significant GTOM matrix. In 

each case, the rank of the indexed gene interaction is checked followed up by addition 

of the weights (filtered GTOM value) of the genes having less rank than the indexed 

gene interaction. This concept follows the method of enrichment score calculation [14] 

and is framed as per the pair of equations given below: 

P୦୧୲(S, i) =  ෍
r୨

୮

Nୖ
୉ౠ∈ୗ,୨ஸ୧

  where Nୖ =  ෍ r୨
୮

୉ౠ∈ୗ

 

and  

P୫୧ୱୱ(S, i) =  ෍
1

N − Nୌ
୉ౠ∈ୗ,୨ஸ୧

 

Above, where ‘i’ is the indexed rank and ‘j’ are those genes possessing lower rank with 

‘S’ being the neighbourhood of significant interactions for a gene. The term ‘N’ in the 

above pair of equations represents the total number of genes and NH is the number of 

significant gene interactions corresponding to a gene. From this, the enrichment score 

for every indexed gene interaction is calculated as 𝐸𝑆(𝑆, 𝑖) =  𝑃௛௜௧(𝑆, 𝑖) − 𝑃௠௜௦௦(𝑆, 𝑖) 

and accordingly the ES matrices are formed in each condition.  

The differential attitude of the generated ES vectors is calculated via Ranksum test 

yielding the rES vector. As a next step, the permuted ES and rES scores are found 

considering 200 cases of random shuffling of the parent GTOM matrices. For each gene 
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the average (rES′) and the standard deviation (S′) of the permuted rES scores is obtained 

and accordingly the final Z score that helps in ranking the genes is computed using the 

equation 𝐙 =  
𝐫𝐄𝐒ି𝐫𝐄𝐒ᇲ

𝐒ᇲ
. 

TOP: This analysis can be performed using two approaches: un-weighted and weighted 

[22] (developed and discussed in detail in the last two chapters). However as discussed 

in [16] results obtained by un-weighted measure being better than weighted counterpart, 

here the TOP score has been computed via the un-weighted measure only.  

At the practical end, it is simply a combination of TO value [22] with its significance 

using T test [21]. Assuming A1 and A2 to be the PCIT filtered GTOM matrices with 

entries 1 and 0 corresponding to significant and insignificant gene to gene interactions 

in the two different conditions, it is possible to find the TO of gene ‘i’ using the 

equation TO୧ =  (X୧ ∩ Y୧)/max (X୧, Y୧) where for gene i in condition 1, Xi no. of 

interaction(s) is/are significant, and in condition 2 it is Yi. Next as in [16] the average of 

TO measure and the p-value (using permutation/t test [21]) is used as the ranking 

measure. It is calculated for a particular gene ‘i’ as TOP୧ = (TO୧ + pvalue୧)/2. 

4.2.3 Results: The algorithm has been tested on mice data set containing gene 

expression levels of male and female phenotypes across four tissues, namely adipose, 

brain, liver, muscle. Details of the data set along with required pre-processing [23,24] 

proved useful to initiate the projected analysis.  

Applying qtDE and DEGseq, the number of DE genes obtained at each phase of the 

proposed algorithm is given below in Tables 4.1 and 4.2 respectively. Here, the three 

different phases at which the DE genes have been computed are as follows: 

1. Initial number of DE genes  

2. Number of DE genes in the primary Pareto optimal front (i.e. the non-dominated 

set of  DE genes extracted from the entire bunch) 

3. Number of significant DE genes in the primary Pareto optimal front (i.e. the 

non-dominated DE genes which have been proved statistically significant) 
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Table 4.1: Number of DE genes obtained using qtDE based on the three different methods at each phase 

 

Table 4.2: Number of DE genes obtained using DEGseq at each phase 

 

 

 

 

 

 

An important observation or exception comes from Table 4.2 above. Through DEGseq 

technique of computing DE genes no significant non-dominated DE gene is found in 

muscle. 

In Tables 4.3, 4.4, 4.5 and 4.6, the detailed KEGG pathway analysis on the total DE 

genes detected via qtDE and DEGseq are presented. In these tables, genes from basic 

non-dominated set or in other words the DE genes participating from primary Pareto 

optimal front are highlighted in bold characters, and the significantly non-dominated 

DE genes are given in bold and italics.  

Apart from the information portrayed in Tables 4.3 to 4.6, there are some more 

significant KEGG pathways which have not shown any contribution or participation of 

DE genes from the primary Pareto optimal front. These are depicted across the three 

tissues (adipose, brain, and liver) corresponding to the qtDE approach in Table 4.7. 

Mice 
Tissue 

Linear Correlation Mutual Information Polynomial Regression 

Initial 
number 
of DE 
genes 

Number 
of DE 

genes in 
the 

primary 
Pareto 

optimal 
front 

Number of 
significant 
DE genes 

in the 
primary 
Pareto-
optimal 

front  

Initial 
number 
of DE 
genes 

Number 
of DE 

genes in 
the 

primary 
Pareto 

optimal 
front 

Number of 
significant 
DE genes 

in the 
primary 
Pareto-
optimal 

front  

Initial 
number 
of DE 
genes 

Number 
of DE 

genes in 
the 

primary 
Pareto 
optimal 

front 

Number of 
significant 
DE genes 

in the 
primary 
Pareto-
optimal 

front  
Adipose 856 77 12 1236 28 6 938 20 7 

Brain 579 105 91 1499 21 5 675 112 67 

Liver 837 8 6 1479 8 2 1395 33 9 

Muscle 1132 114 99 2503 99 33 1163 160 124 

Mice 
Tissue 

DEGseq 

Initial 
number 
of DE 
genes 

Number 
of DE 

genes in 
the 

primary 
Pareto 

optimal 
front 

Number of 
significant 
DE genes 

in the 
primary 
Pareto-
optimal 

front  
Adipose 732 9 3 

Brain 373 21 9 

Liver 424 7 3 

Muscle 301 3 0 
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Table 4.3: Significant KEGG pathways based on DE genes obtained from linear qtDE approach 

Pathways p values Genes 

Tissue: ADIPOSE 
Olfactory transduction 3.49E−07 Olfr584, Olfr599, Olfr957, Clca1 

Leishmaniasis 5.51E−03 Jun, H2-Aa, Mapk1, Prkcb, Jak2, Tgfb3, Il1b, H2-
DMa, H2-Ab1 

ErbB signalling pathway 8.31E−02 Jun, Rps6kb2, Mapk1, Stat5a, Erbb3, Prkcb, 
Cdkn1b, Areg 

Graft versus host disease 8.31E−02 H2-Aa, H2-Q8, Il1b, Cd86, H2-DMa, H2-T10, H2-
Ab1 

Malaria 8.31E−02 Itgal, Tgfb3, Il1b, Ccl2, Hgf, Vcam1 

Type I diabetes mellitus 8.31E−02 H2-Aa, H2-Q8, Il1b, Cd86, H2-DMa, H2-T10, H2-
Ab1 

Viral myocarditis 8.31E−02 Rac2, H2-Aa, H2-Q8, Itgal, Casp3, Cd86, 
H2-DMa, H2-T10, H2-Ab1 

Cell adhesion 
molecules (CAMs) 

8.31E−02 H2-Aa, H2-Q8, Itgal, Cdh2, Cntnap2, Cd86, H2-
DMa, H2-T10, Jam2, H2-Ab1, Vcam1 

Ribosome 0.10 Rpl15, Rps3a, Rps3, Rps8, Rpl3l, Rpl29, Rpl6, 
Rps14, Rpl35 

Tissue: BRAIN 
Olfactory transduction 6.69E−04 Olfr1226, Olfr206, Olfr380, Olfr599, Olfr1234 

Leukocyte transendothelial 
migration 

4.03E−02 Txk, Jam2, Itgal, Vegfb 

Galactose metabolism 8.79E−02 Gck, Galt, Gaa, Ugp2 

Tissue: LIVER 
Olfactory transduction 4.27E−07 Clca1, Olfr535, Olfr380, Olfr599, Olfr1234, Clca2 

Drug metabolism— 
cytochrome P450 

3.59E−02 Fmo3, Cyp2d22, Gsta2, Cyp2c40, Gstm2, Mgst2, 
Cyp2d10, Ugt1a9, Mgst3 

Glutathione metabolism 3.59E−02 Ggt1, Gsta2, Gstm2, Mgst2, Pgd, Gclm, Mgst3 

Chagas disease 6.39E−02 C1qb, Cd3g, Car, Jun, Cd3d, Tgfb3, Il1b, Pik3r1, Tlr2, 
Tnf 

Tissue: MUSCLE 
Olfactory transduction 6.96E−09 Olfr571, Olfr957, Olfr380, Clca2, Olfr584, 

Olfr1234, Olfr535, Clca1 
Asthma 4.3E−02 H2-Eb1, H2-Aa, H2-DMa, H2-DMb1, H2-Ab1, 

Tnf 

Cell adhesion 
molecules (CAMs) 

4.3E−02 Pvrl2, Jam2, H2-Eb1, Cd86, Cd22, Cntnap2, 
H2-Aa, H2-Q8, H2-DMa, H2-DMb1, H2-Ab1, 
Cdh2, Itga8, Ptprc, Itgal 

Complement and 
coagulation 
cascades 

4.3E−02 Vwf, F11, Masp1, C1qa, Thbd, Cd59a, Serpine1, 
C8b, F5 

Focal adhesion 4.3E−02 Parva, Vwf, Chad, Rac2, Rap1a, Pdgfrb, Col5a3, 
Vegfb, Pik3r1, Vtn, Hgf, Ccnd2, Fyn, Myl2, Itga8, 
Pak7, Kdr, Flnb 

 

 

 

 

 

 

 

Glutathione metabolism 4.3E−02 Gstm1, Gclm, Pgd, Gstm2, Gpx7, Ggt1, Gpx4, 
Gsta2 

Intestinal immune 
network for IgA 
production 

4.3E−02 H2-Eb1, Cd86, H2-Aa, H2-DMa, Pigr, H2-DMb1, 
H2-Ab1, Tnfsf13b 

Renal cell carcinoma 4.3E−02 Slc2a1, Rap1a, Tceb1, Vegfb, Pik3r1, Hgf, Pak7, 
Ets1, Cul2 

Type I diabetes mellitus 4.3E−02 H2-Eb1, Cd86, H2-Aa, H2-Q8, H2-DMa, 
H2-DMb1, H2-Ab1, Tnf, Ins1, Hspd1 

Viral myocarditis 5.8E−02 Rac2, H2-Eb1, Cd86, H2-Aa, H2-Q8, Myh7, H2-
DMa, H2-DMb1, H2-Ab1, Fyn, Itgal 

Allograft rejection 6.3E−02 H2-Eb1, Cd86, H2-Aa, H2-Q8, H2-DMa, H2-
DMb1, H2-Ab1, Tnf 

Graft-versus-host 
disease 

6.3E−02 H2-Eb1, Cd86, H2-Aa, H2-Q8, H2-DMa, H2-
DMb1, H2-Ab1, Tnf 
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Table 4.4: Significant KEGG pathways based on DE genes obtained from polynomial regression guided 
qtDE approach 

Pathways p values Genes 

Tissue: ADIPOSE 
Olfactory transduction 7.23E−11 Olfr584, Olfr380, Olfr1234, Clca1, Olfr957 
Cytokine-cytokine 
receptor interaction 

2.88E−03 Ifng, Bmp2, Tnfsf13b, Hgf, Ccl5, Ccl2, Ccr5, 
Ccl7, Il7r, Csf3r, Cxcl14, Cxcl5, Tnfrsf18, Tgfb3, 
Tnf, Kitl, Il10rb, Tnfsf8, Inhbb, Il22ra2, 
Tnfrsf12a, Csf2rb2, Ltbr, Kdr 

TGF-beta signaling 
pathway 

2.73E−02 Ifng, Bmp2, Rbl1, Bmp5, Dcn, Tgfb3, 
Rps6kb2, Tnf, Inhbb, Bmp8b, Ltbp1 

Malaria 4.17E−02 Ifng, Hgf, Ccl2, Lrp1, Itgal, Tgfb3, Tnf, Tlr2 

Leishmaniasis 7.55E−02 Ifng, Tgfb3, H2-DMa, Tnf, H2-DMb1, H2-
Aa, H2-Eb1, Tlr2 

Allograft rejection 7.9E−02 Ifng, H2-T10, H2-DMa, Tnf, H2-DMb1, 
Cd86, H2-Aa, H2-Eb1 

Graft versus host disease 7.9E−02 Ifng, H2-T10, H2-DMa, Tnf, H2-DMb1, 
Cd86, H2-Aa, H2-Eb1 

Amino sugar and 
nucleotide sugar 
metabolism 

9.19E−02 Hexa, Gnpnat1, Gne, Gck, Galt, Hexb 

Tissue: BRAIN 
Olfactory transduction 3.21E−07 Olfr1226, Olfr1234, Olfr894, Olfr380 

Steroid biosynthesis 5.73E−02 Sc4mol, Dhcr7, Sqle, Nsdhl 
Glycerolipid metabolism 7.31E−02 Akr1b8, Ppap2b, Gpam, Lpl, Agpat2, Gyk 

Tissue: LIVER 
Olfactory transduction 6.46E−15 Olfr1234, Olfr599, Olfr584, Clca1, 

Olfr535, Olfr380, Olfr957, Olfr894 

Leishmaniasis 3.07E−03 Tlr2, Ncf2, H2-Ab1, Il1b, H2-Eb1, Jun, Ifng, 
H2-Aa, Tgfb3, Prkcb, Tnf, Jak2, H2-DMa 

Focal adhesion 3.06E−02 Vtn, Rac2, Jun, Tnc, Col1a2, Pdgfc, Chad, Fyn, 
Rap1a, Pik3r1, Kdr, Pdgfrb, Parva, Col5a3, Vwf, 
Itga8, Lamb3, Prkca, Mylpf, Flnb, Actn2, 
Prkcb, Hgf 

Amoebiasis 4.3E−02 Tlr2, Il1b, Serpinb6a, Ifng, Col1a2, Casp3, Pik3r1, 
C8b, Col5a3, Tgfb3, Lamb3, Prkca, Actn2, Prkcb, 
Tnf 

Hematopoietic cell 
lineage 

4.3E−02 Il1b, H2-Eb1, Cd2, Cd22, Il7r, Csf3r, Cd59a, Mme, 
Kitl, Cd3d, Kit, Tnf 

Type I diabetes mellitus 4.3E−02 Cd86, H2-Ab1, Ins1, Il1b, H2-Eb1, Ifng, H2-Q8, 
H2-Aa, Tnf, H2-DMa, H2-T10 

Graft-versus-host disease 5.61E−02 Cd86, H2-Ab1, Il1b, H2-Eb1, Ifng, H2-Q8, H2-Aa, 
Tnf, H2-DMa, H2-T10 

Malaria 5.61E−02 Tlr2, Il1b, Ifng, Itgal, Lrp1, Tgfb3, Tnf, Hgf, Ccl2 

TGF-beta signaling 
pathway 

5.61E−02 Bmp8b, Rps6kb2, Rbl1, Ifng, Inhbb, Bmp2, Bmp5, 
Dcn, Ltbp1, Tgfb3, Tnf, Gdf5 

Galactose metabolism 9.14E−02 Pfkp, Gaa, Galt, Akr1b8, Gck 

Tissue: MUSCLE 
Olfactory transduction 1.76E−04 Olfr957, Olfr894, Olfr535, Olfr571, 

Olfr599, Clca1, Clca2, Olfr893, Olfr584 

Cardiac muscle 
contraction 

3.86E−02 Cox7b, Myh7, Tpm3, Cacnb1, Myl3, Slc8a1, 
Cox6a2, Actc1, Cacna2d1, Tpm1, Cox7a1, Cox7a2 

Cytokine-cytokine 
receptor interaction 

3.86E−02 Kdr, Tnf, Cxcl14, Il10ra, Bmp2, Vegfb, Csf1r, 
Il7r, Flt4, Inhbb, Tnfrsf12a, Tnfsf13b, Gdf5, Ifng, 
Cxcr3, Egfr, Tnfrsf21, Kitl, Tnfrsf18, Ccl6, Ccr5, 
Il1b, Ccl4, Cxcl1 

Hematopoietic cell 
lineage 

5.87E−02 Cd22, Tnf, H2-Eb1, Csf1r, Il7r, Cd14, Mme, 
Kitl, Cd2, Il1b, Cd34 
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Table 4.4 (continued) 
Pathways p values Genes 

Tissue: MUSCLE 
Olfactory transduction 1.76E−04 Olfr957, Olfr894, Olfr535, Olfr571, 

Olfr599, Clca1, Clca2, Olfr893, Olfr584 

Cardiac muscle 
contraction 

3.86E−02 Cox7b, Myh7, Tpm3, Cacnb1, Myl3, Slc8a1, 
Cox6a2, Actc1, Cacna2d1, Tpm1, Cox7a1, Cox7a2 

Cytokine-cytokine 
receptor interaction 

3.86E−02 Kdr, Tnf, Cxcl14, Il10ra, Bmp2, Vegfb, Csf1r, 
Il7r, Flt4, Inhbb, Tnfrsf12a, Tnfsf13b, Gdf5, Ifng, 
Cxcr3, Egfr, Tnfrsf21, Kitl, Tnfrsf18, Ccl6, Ccr5, 
Il1b, Ccl4, Cxcl1 

Hematopoietic cell 
lineage 

5.87E−02 Cd22, Tnf, H2-Eb1, Csf1r, Il7r, Cd14, Mme, 
Kitl, Cd2, Il1b, Cd34 

Hypertrophic 
cardiomyopathy (HCM) 

5.87E−02 Itga8, Myh7, Tnf, Tpm3, Cacnb1, Myl3, 
Slc8a1, Actc1, Cacna2d1, Tpm1, Actb 

Dilated cardiomyopathy 9.92E−02 Itga8, Myh7, Tnf, Tpm3, Cacnb1, Myl3, 
Slc8a1, Actc1, Cacna2d1, Tpm1, Actb 

 
 

Table 4.5: Significant KEGG pathways based on DE genes obtained from mutual information guided 
qtDE approach 

Pathways p values Genes 

Tissue: ADIPOSE 
Selenoamino acid metabolism 3.76E−02 Ahcy, Mat1a 
Cysteine and methionine metabolism 4.46E−02 Ahcy, Mat1a 
Intestinal immune network for IgA 
production 

4.46E−02 Pigr, H2-Aa 

Ribosome 8.14E−02 Rpl3 l, Rps3a 
Tissue: LIVER 

Ubiquitin mediated proteolysis 2.37E−03 Tceb1, Ube2m, Aco2 
Tissue: MUSCLE 

Olfactory transductions 1.838E−06 Olfr837, Olfr918, Olfr1450, 
Olfr307 

 

Table 4.6: Significant KEGG pathways based on DE genes obtained from DEGseq 

Pathways p values Genes 

Tissue: ADIPOSE 
Amoebiasis 2.75E−02 Serpinb6a, Prkcb, Serpinb9e, Tlr4, 

Casp3, Rab5a, Tfgb3, Adcy1, Il1b, Prkca 

Leishmaniasis 3.59E−02 Mapk1, Tlr4, H2-DMa, Tgfb3, Il1b, 
Prkcb, Jak2 

ErbB signaling pathway 3.68E−02 Mapk1, Nck1, Crk, Prkcb, Rps6kb1, 
Areg, Prkca, Pak7 

Fc gamma R-mediated 
phagocytosis 

5.34E−02 Mapk1, Arpc3, Myo10, Crk, Prkcb, 
Rps6kb1, Prkca, Pla2g6 

Amino sugar and nucleotide 
sugar metabolism 

7.2E−02 Hk1, Ugdh, Gpi1, Ugp2, Galt 

Renal cell carcinoma 9.12E−02 Mapk1, Rap1a, Tgfb3, Crk, Tceb1, Pak7 

Tissue: BRAIN 
Tight junction 3.57E−03 Myh7, Jam2, Myh2, Mylpf, Jam3, 

Prkcd, Ash1 l, Csnk2a1 

Tissue: LIVER 
Galactose metabolism 3.07E−03 Hk2, Gaa, Galt, Pfkp, Akr1b8 
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Table 4.7: Significant KEGG pathways having NIL contribution of non-dominated DE genes       

(observed in qtDE approach) 

 

4.2.4 Discussion: From Tables 4.3, 4.4, 4.5, and 4.6 it is observed that the significant 

KEGG pathways have one or at most two genes from the non-dominated DE gene set. 

In other words, the outputs portrayed in these tables signify a rare probability of 

grouping more than one significant non-dominated gene in a single pathway. Exceptions 

are Renal cell carcinoma (present in muscle using linear qtDE), Steroid Biosynthesis 

(present in brain using polynomial regression), and Olfactory Transduction (present in 

muscle using linear qtDE and mutual information guided qtDE). 

It is to be noted that the permutation test [21] conducted on the non-dominated DE gene 

set present in the primary Pareto optimal front yields the significant non-dominated DE 

genes with p-value less than 0.2 (the threshold). In the case of the above exceptions, 

apart from a single DE gene the other DE gene present in the significant non-dominated 

set possess high p value very close to the cut-off level, i.e. 0.2. From Table 4.3 it can be 

seen that for Olfactory Transduction the significantly non-dominated genes are Olfr571 

Mice 
Tissue 

Linear Correlation Mutual Information Polynomial Regression 

KEGG pathway P value KEGG pathway P value KEGG pathway P value 

Adipose 

-- -- Axon guidance 4.46E−02 
Complement and 

coagulation cascades 
2.73E−02 

-- -- 
Cytosolic DNA-sensing 

pathway 
4.46E−02 Asthma 4.17E−02 

-- -- -- -- 
Hematopoietic cell 

lineage 
4.17E−02 

-- -- -- -- 

Intestinal immune 

network for IgA 

production 

8.9E−02 

Brain Leishmaniasis 3.07E−02 -- -- 
Fc gamma R-mediated 

phagocytosis 
9.11E−02 

Liver 

Leishmaniasis 2.83E−02 -- -- 
Cytokine-cytokine 

receptor interaction 
3.07E−03 

Focal Adhesion 3.59E−02 -- -- 
Complement and 

coagulation cascades 
3.06E−02 

Hematopoietic 

cell lineage 
3.59E−02 -- -- 

Maturity onset diabetes of 

the  young 
4.3E−02 

Asthma 7.27E−02 -- -- 
Cell adhesion molecules 

(CAMs) 
5.61E−02 
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and Clca1. These are having p-values 0.07, and 0.188; for Renal Cell Carcinoma the 

significant non-dominant DE genes are Tceb1 and Cul2 with p-values of 0.084 and 

0.147. This shows us an appreciable difference between the p-values of Olfr571 and 

Clca1 in one case and between Tceb1 and Cul2 in the other. In both the cases, based the 

p-value threshold selection (i.e. 0.2), the second gene is on the verge of elimination 

from the significantly non-dominated set. A similar pattern is observed for Steroid 

Biosynthesis from Table 4.4 and in Olfactory Transduction from Table 4.5. The 

participating non-dominated significant DE genes from the primary Pareto optimal front 

are Sc4mol and Nsdhl in the previous one and Olfr1450 and Olfr307 in the latter. 

Significance analysis for non-dominated DE genes yields p-values 0.185 and 0.084 for 

Sc4mol and Nsdhl followed by 0.108 and 0.179 for Olfr1450 and Olfr307 respectively. 

Most of the above pathways enlisted in the various tables are associated with the 

differential evolution of mice. Examples are like Olfactory Transduction [25,26], 

Leishmaniasis and Cell adhesion molecules (CAMs) [27,28], Graft versus Host disease 

and Allograft rejection [29]. Some other significant pathways (like Hematopoietic cell 

lineage, TGF-beta signalling pathway, Complement and coagulation cascade, Cytokine-

cytokine receptor interaction, Ubiquitin mediated proteolysis, and Fc gamma R-

mediated phagocytosis) also work on the differential development like gastrulation, axis 

symmetry of the body, organ morphogenesis, liver development and tissue homeostasis 

in adults of mice/other mammals across different sex [30-35]. 

4.3 Developing Entropy minimized Transcriptional Regulatory Networks  

Transcriptional Regulatory Networks (TRNs) are essentially complex biological 

regulatory systems involving various kinds of genes and modular proteins where some 

of the genes act differently under varied types of environmental conditions or external 

perturbations. This dissimilar attitude of the genes (in other words the phenomenon of 

differentially expressed or differentially co-expressed properties in genes) is mostly 

contributed by the effect of molecular interactions like Transcription Factor (TF) 

promoter DNA binding, protein-protein interaction and protein translational 

modification [36].   

In the above context, the regulatory design through association of TF genes mostly 

comes up in significant research outcomes; thus playing a pivotal role in differentially 

regulating genes across varied types of conditions.  In this regard, the kinds of TF 
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regulatory networks or TRNs for differentially expressed (DE) or differentially co-

expressed (DC) genes that have been studied or developed are mostly of individual or 

collaborative forms of regulation. Though some important contribution in this 

perspective is present in this thesis work (the forms of network developed and validated 

in the previous chapters), the variety of significant research already done in this domain 

are mainly into understanding stepwise TF gene collaborations towards gene regulation 

[37,38].   

To contribute in the step regulatory architecture present across various biological 

pathways incorporating TF, DC, and DE genes, active research is required to develop 

multiple serial TF regulatory paths to any target gene maintaining a stable architecture 

portraying the inherent differential regulations under varied states or conditions. The 

stability of the developed network can be adjusted putting in force information theoretic 

approach such as entropy minimization [39]. A significant research [40] in which a 

novel concept of generating stable gene regulatory architectures between direct 

interacting source and target genes using the concept of entropy is helpful in 

apprehending the non-redundant existence of regulator genes. This thought has been 

extended in this research work through realizing the undoubted role of multiple types of 

TF genes in disjoint serial regulatory pathways; thus recreating a hierarchical structure 

in line with complex biological regulations.  

4.3.1 The basic findings: Various kinds of regulatory measures which have proven to 

be of significant importance to assess the differential regulation capacity of genes are 

like RIF I and II [41], TED and TDD [42], TFactS [43], dCSA_t2t, and dCSA_r2t [44]. 

Among these seven network-based regulatory algorithms TED, TDD, and TFactS deal 

with the number of DE/ DC genes targeted by a TF gene. At a later stage, the proposed 

algorithm demands random shuffling of gene expression levels in order to calculate the 

significance of the formed pathways. In this context, at any instance, with a different set 

of altered gene expression profiles there is need to recompute the new set of DC genes, 

DE genes, and Differentially Coexpressed Links (DCLs). As this operation increases the 

space and time complexity of the proposed algorithm, hence TED, TDD and TFactS 

have not been considered as probable objectives of gene score evaluation. On the 

contrary, the other four algorithms work on the expression levels of TF genes/targets; 

hence these regulatory measures are vulnerable to changes in expression profiles. As the 

alterations in the expression profiles directly helps in the computing the evaluation 
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scores, this set comprising of RIF II, dCSA_t2t, and dCSA_r2t are considered as 

probable objectives. RIF-I does not work on self-regulated genes (TFs which are DE 

too). As the intention of this research work highlights interactions involving DE and DC 

TFs (can also be termed TF_DE and TF_DC genes), hence RIF-I does not suit the need. 

Thus, the objective functions applied here are Regulatory Impact Factor II (RIF-II), 

Differential Correlation Set Analysis between Regulatees (dCSA_t2t), and Differential 

Correlation Set Analysis between Regulator and Regulatees (dCSA_r2t). These three 

objective functions or evaluation scores are utilized to initiate with the multi-objective 

approach designed to develop the serial TF regulatory networks. 

Apart from this above finding which happens to be the significant initiation of this 

research problem, the ultimate hierarchical regulatory structure based on placing the 

various kinds of TF genes across multiple Pareto optimal fronts is an open challenge in 

the context of biological regulations.  In this regard, the research done here portrays a 

novel idea of formation of TRNs for a target DE gene maintaining entropy minimized 

stable regulatory structures compositely throughout the network, i.e. reconstructing 

stabilized network pathways starting from one or more source TF genes (should be TF 

genes that are neither TF_DE nor TF_DC type), mediating through TF_DC and/or 

TF_DE genes, and finally ending with a target DE gene. In the process of this 

reconstruction, the genuine significance (both statistically and biologically) of TF, 

TF_DC, and TF_DE genes taking part in the regulation at any stage of the hierarchical 

network is also being judged keeping in account various biological regulatory databases 

[42,45]. Here, TF_DC genes indicate those TF genes which are significantly 

differentially co-expressed with other genes. On the other hand, TF_DE genes indicate 

those TF genes which are significantly differentially expressed between various 

experimental conditions or external perturbations under consideration. 

4.3.2 Methodology: The brief outline of the algorithm that has been used to build up 

composite entropy minimized TF regulatory paths for target DE genes is given below. 

The specific inputs required are the gene expression matrices under different conditions 

and the biological databases supporting TF to other gene interactions. Using these two 

informational inputs, single or collaborative non-redundant regulations can be found or 

ascertained maintaining minimal entropy as the network design progresses forward 

from one or more source TF genes. 
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ALGORITHM: Composite Entropy minimized TF regulatory network reconstruction 

 

Inputs:   
I. Genes from GEO database.  
II. TF to target database. 

Outputs:  
I. Set of differentially expressed (DE) and co-expressed (DC) genes comprising of TF 
as well as non-TF genes. 
II. The transcription factor (TF) genes across multi-objective fronts. 
III. Statistically enriched composite entropy minimized TF regulatory paths to a target 
non-TF differentially expressed (DE) gene. 

 
Step1: Computation of DE and DC genes using DEGseq and DCGLv2 R packages 
respectively. 
Step2: Computation of network regulatory measures (e.g. RIF II, dCSA_r2t, dCSA_t2t) 
for each and every TF using the TF to target database. 
Step3: Placing the TFs across various optimal fronts based on the multi-objective 
network regulatory measures defined in step 2. 
Step4: Computation of PCIT paths to target DE genes comprising of TFs obtained from 
the various optimal fronts. 
Step5: Starting with TFs from the non-dominated Pareto optimal front, formation of 
minimal composite entropy regulatory structures targeting a DE gene. 
Step6: Verifying that the minimal entropy regulatory paths are either a subset or set of 
PCIT paths.

 
 

The elucidation of the above algorithm following the given steps is the matter of 

concern in the next half of this module, mentioned hereafter. 

Estimation of DE and DC genes: Step1 of the algorithm is concerned with the 

estimation of DE and DC genes from the TF and target DE genes. The estimation of the 

DE genes has been done using the R package DEGseq [17]. On the other hand, the R 

package DCGL (version 2) has been utilized to identify the DC genes. The functions 

DEGexp from DEGseq and DCp from DCGLv2 are used for finding the above kinds of 

genes.  

The basic formation of TF regulatory paths: Steps 2 and 3 of the algorithm are involved 

in this segment. Here, the regulatory scores are computed for each and every TF gene 

followed by placing the TF genes at the various Pareto optimal fronts, based on the 

multi-objective approach, depicted in the earlier research work present in this chapter.  

In this regard, the three regulatory scores acting as conflicting objectives in a multi-
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objective framework are RIF II, dCSA_r2t, and dCSA_t2t. The equations involved to 

compute these scores are: 

RIF2(TFi ) =
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In the above equations, gene with index ‘i’ refers to the TF gene in consideration. Three 

different scores are hence obtained for a particular TF gene ‘i’. Again, genes with 

indices ‘j’ and ‘k’ are the direct regulatees of the TF gene index ‘i’ and the same is 

found from the TF2target database [42] present as an essential input to the devised 

algorithm. Apart from these notations, e1j, e2j, r1ij, r2ij, ni, nde denote the average log 

gene expression levels of DE gene ‘j’ in conditions 1 and 2, the interaction scores or 

dependency scores between TF gene ‘i’ and DE gene ‘j’ under the two conditions, the 

total number of targets regulated by TF gene ‘i’ as per the TF2target database or any 

other biological database (depends on the experimented organism), and the total number 

of DE genes obtained respectively. From the equations, it is clear that every regulatory 

score is about understanding the power of differential regulation of a TF gene 

considering all published targets of the concerned TF gene from the databases 

mentioned above. Hence, it can be claimed that TF genes giving high objective scores 

shall be having more controlling capability for a given set of targets. 

Here comes the challenge of rearranging the TF genes according to their regulation 

strength by these three objectives yielding almost three dissimilar TF orderings. In other 

words, it suggests independent TF regulatory assessment based on the above three 

objectives and hence making difficult to understand the contributory role of TF genes in 

gene regulatory networks. To solve this issue, the multi-objective technique discussed in 

the earlier research is used to find out the non-dominated TF gene sets distributed across 

multiple Pareto optimal fronts. Now while framing the serial regulatory architectures, 

(involving single or collaborative regulations) maintaining dominance of TF genes 
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present in the upper fronts over the lower ones, the following constraints are being 

applied. 

 A pure TF (i.e. neither TF_DC nor TF_DE) gene can control TF_DE genes as 

well as TF_DC genes. [41,42] 

 A TF_DC gene can control another TF_DC gene as clarified in [42]. Again from 

the TF2target database [42] a a TF_DE gene getting controlled by a  TF_DC 

gene can be verified. 

 A TF_DE gene can be executing control over another TF_DE gene [41]. 

Due to lack of proper biological evidences, any other form of controlling action is 

disregarded. In this perspective comes a pure TF gene being regulated by any TF_DC or 

TF_DE gene and a TF_DC gene getting controlled by any TF_DE gene.  

Based on the above constraints, prior to the finalizing the basic TF regulatory paths 

incorporating a TF gene from every possible Pareto optimal front, pure TF genes that 

are placed at lower fronts with respect TF_DC or TF_DE genes are removed from 

further analysis. Similarly, removal of TF_DC gene is executed if found getting 

dominated by a TF_DE gene present in an upper front. Hence, after such removals, a 

significance analysis is carried out by shuffling the expression profiles of the existent 

TF genes (pure, TF_DC, and TF_DE types) and the three objective scores are re-

evaluated in each shuffled context. Higher significances of the existence of the basic TF 

regulatory paths are ascertained provided less number of shuffled paths match with the 

actual ones obtained at this stage of the algorithm.  

Formation of DE gene specific paths using PCIT: This is about Step 4 of the designed 

algorithm. The realization of the connectivity from the source TF gene to any target DE 

gene via intermediate TF genes (maintaining the constraints stated above) present at 

almost every non-primary Pareto optimal front, is executed taking help of the basic 

PCIT [20] concept. However, with DE and DC genes forming the underlying pillars for 

further analysis, instead of applying simple Pearson’s correlation measure in PCIT the T 

score [46] measure designed using the differential correlation between TFs genes is 

utilized. In this regard, the equations followed are 
( ) ( )22,

11 yzxz

yzxzxy
zxy

rr

rrr
r

--

-
=  computing 

the correlation dependency between x and y in the presence of z, 
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dependency pattern between x and y in the presence of z, but replacing the correlation 

component by T score across conditions. Now via the application of PCIT, in any trio 

combination of genes (x,y,z), a direct connectivity between a pair of genes, for example 

(x,y), is not considered significant if with 







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r ,,,

3

1 , the dependence rxy 

satisfies the relations xzxy rr ´   and yzxy rr ´  .  Thus to check the strength of 

direct regulation over indirect ones, this procedure is repeated via all other indirect 

genes for the pair (x,y). In this context, if direct association (x,y) satisfies the relations 

xzxy rr ´ 
  
and  yzxy rr ´   for a higher proportion of indirect genes (like ‘z’), the 

direct connectivity or dependency path between x and y is considered insignificant and 

hence neglected. 

A synthetic example to explain the above phenomenon in relation to the formation of 

DE gene specific regulatory pathways is given in Figure 4.2. This figure depicts the 

application of PCIT to form the DE gene specific paths for the DE gene ‘X’ with ‘A’, 

‘B’, ‘C’, and ‘D’ as the TF genes present at the different Pareto optimal fronts. Here the 

direct connectivities, AX, AD, and BX turn out to be insignificant and hence are 

marked for deletion (shown as dashed lines in the figure) in the presence of the trio of 

genes that can be seen in each case from the figure. To be more specific, considering 

one of these probable deletions, AX is insignificant and is marked for deletion 

considering the network trios ABX, ACX and ADX. After deleting the 

insignificant paths, for DE gene ‘X’, the different paths of interaction following the 

Pareto optimal fronts are ABCX, ABDX, ABCDX and 

ACX, and ACDX. Among these, the path showing the maximum average 

weight is chosen for the target DE gene ‘X’. In other words, the path possessing the 

maximum average weight among W1avg = 1/3*(w1+w6+w7), W2avg = 

1/3*(w1+w4+w10), W3avg = 1/4*(w1+w7+w8+w10), W4avg = 1/2*(w2+w6) and 

W5avg = 1/3*(w2+w8+w10) is considered to be the regulatory path for DE gene ‘X’. 
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Figure 4.2: Stepwise analysis using PCIT for a target DE gene X with A, B, C, D as front wise TF genes 

Developing entropy minimized regulatory network: In this segment, step 5 of the 

proposed algorithm is discussed in detail followed by simple verification of the 

condition stated in step 6; thus validating the entropy minimized TF regulatory network 

formation from a multi-objective perspective.  

Initiating with the conditional entropy based network formation process given in [40], 

composite conditional entropy technique has been proposed and implemented in this 

research work involving TF genes from multiple Pareto optimal fronts. As per the 

algorithm, the one or more TF genes placed at an upper front is/are dominating one or 

more TF genes at the immediate lower front and likewise the dominating or regulation 

capability of all the TF genes involved in DE gene specific pathways can be optimally 

structured using the novel concept composite conditional entropy followed by 

application of steepest descent technique [40] to remove redundant TF gene regulators 

across the various Pareto optimal fronts.  

Here, all real valued expression vectors 𝑐̅  present in a certain gene expression profile 

can be converted to a defined Boolean vector 𝑏ത with a probability function,
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expressed as )/(
1

)( å


=
profilesc

j

j

cbp
n

bP . Considering all possible 𝑏ത vectors, the basic 

entropy considering the distribution of real valued entities can be described as 𝐻 =

 ∑ 𝑃൫𝑏ത൯ log  [1/𝑃(𝑏ത)]௔௟௟ ௣௢௦௦௜௕௟௘ ௖௢௠௕௜௡௔௧௜௢௡௦ ௢௙  ௕ ഥ . This basic entropy between a 

regulatee TF gene placed at a lower front with immediate upper front TF genes acting as 

regulators is computed in two different contexts. In one case, considering the regulatee 

gene ‘x’ with set of regulators ‘Yx’, the entropy component HC (Yx, x) is calculated and 

in the other only considering the regulator genes ‘Yx’, the entropy component HC (Yx) is 

found. From these two findings, the conditional entropy comprising the gene ‘x’ and its 

regulators ‘Yx’ gets defined as )(),()/( x
C

x
C

x
C YHYxHYxH -=  [40]. This process is 

explained using the sample network given in Figure 4.3 with Tables 4.8 and 4.9.  

Table 4.8: Initial Boolean TF to target regulatory vectors (column wise) 

B 0 0 1 1 

A2 0 1 0 1 

A3 0 1 0 1 

 

Table 4.9: Revised Boolean TF to target regulatory vectors (column wise) 

B 0 0 1 1 

A1 0 1 0 1 

A2 0 1 0 1 

A3 0 1 0 1 

 

 

 

 

 

Figure 4.3: Initial portion of a composite TRN showing reported interactions from biological databases 

From the reported set of interactions obtained from various biological databases, it is 

being assumed that Yx comprises initially of TF genes A2 and A3, i.e. Yx = {A2,A3} 

and the regulated TF gene at the immediate lower front is B. Applying the Boolean 

vectors (column wise) from each of the Tables 4.8 and 4.9 individually on the gene 
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expression profiles, the initial and revised conditional entropies are computed. Here, the 

initial conditional entropy works on the combination (x=B, Yx= {A2, A3}) and the 

revised one with the supposed inclusion (not present in the reported biological 

databases) of TF gene, A1, i.e. (x=B, Yx= {A1, A2, A3}) defines the revised 

combination. As per the Figure 4.3, the other six combinations of TF genes that may 

work at the immediate upper front are {A2, A3, A4}, {A2, A3, A5}, {A1, A2, A3, A4}, 

{A1, A2, A3, A5}, {A2, A3, A4, A5}, and {A1, A2, A3, A4, A5}. Thus in total as per 

the figure, 1(initial) and 7 (revised) TF combinations are possible in the regulation 

process. It is evident that with more inclusions the conditional entropy for all these 

revised combinations will be better than the initial one, i.e. HC (x/Yx). Hence, to devise a 

concrete regulation only those revised combinations are chosen for which the 

improvement is greater than the average by three standard deviations; finally choosing 

the combination with minimal conditional entropy. If no such revised combination 

comes out then the initial ‘Yx’ retains the regulation of ‘x’. 

The extension of this concept is going to add the regulations present at all the other 

fronts and thus the situation does not remain restricted to two levels only and helps in 

developing a composite regulatory network. Developing the composite regulatory 

network through composite conditional entropy can be discussed using Figure 4.4 with 

Tables 4.10 and 4.11. Here, the solid lined interactions shown in Figure 4.4 indicate the 

reported interactions present in the various biological databases and the dashed lined 

interactions have been added maintaining minimal conditional entropy in between the 

regulatee and the combination of regulators. From the figure, this has been shown for 

the combinations, (x=B1, Yx= {A1, A2, A5}) and (x=C2, Yx= {B1, B2, B3}). The 

extension of the initial conditional entropy with the inclusion of additional layers of TF 

genes has been made composite using, )/()/,()//(
xxx Yx

C
Yx

C
Yx

C YYHYYxHYYxH -= . 

Table 4.10: Initial composite Boolean TF to target regulatory vectors (column wise) 

C2 0 0 0 0 1 1 1 1 

B2 1 1 1 1 1 1 1 1 

B3 1 1 1 1 1 1 1 1 

A2 0 0 1 1 0 0 1 1 

A3 0 0 1 1 0 0 1 1 

A2 0 1 0 1 0 1 0 1 

A3 0 1 0 1 0 1 0 1 

A4 0 1 0 1 0 1 0 1 
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Table 4.11: Revised composite Boolean TF to target regulatory vectors (column wise) 

C2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

B1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

B2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

B3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

A1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

A2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

A5 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

A2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

A3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

A2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

A3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

A4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

 

 

 

 

  

 

 

 

 

Figure 4.4: The entropy minimized composite TRN showing all sorts of gene interactions 

In this equation, considering x=C2 would have Yx = {B1, B2, B3} and the regulators of 

Yx as {A1, A2}, {A2, A3}, {A2, A3, A4}. In other words, 𝐻஼(𝑌௫/𝑌௒ೣ )  computes the 

conditional entropy considering the involvement of TF genes from the layers A and B, 

and  𝐻஼(𝑥, 𝑌௫/𝑌௒ೣ )  considering the involvement of all the concerned genes from layers 

A, B, and C, i.e. (x=C2, Yx= {B1, B2, B3}, Yଢ଼౮
= {A1, A2}, {A2, A3}, {A2, A3, A4}) 

combination. From these two conditional entropy components, the composite 

conditional entropy is calculated as 𝐻஼(x/𝑌௫/𝑌௒ೣ ) . While generating the Boolean 

vectors it has been considered that the target or the source TF gene can either be in on 

or off state (1/0), but in order to pass the required message to the destination the channel 
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must always be in on condition. Investigating through the various Boolean matrices 

given in the relevant tables, 0/1 parallel regulatory control executed by the source 

Pareto-optimal nodes gets clarified. All the intermediary nodes apart from those in the 

last front are assigned 1 irrespective of individual or parallel control. In the last revised 

matrix, given in Table 4.11, there are 3 intermediate nodes. Thus for any particular 

condition of gene C2 (i.e., 0/1) there are 23 combinations of [{A1, A2, A5},{A2, 

A3},{A2, A3, A4}]. This is similarly followed by checking the improvement in entropy 

as discussed earlier to select the best regulator set for composite regulations. Now while 

checking the improvement in entropy, if the addition of gene B1 is worthy enough to be 

included as a part of the composite regulatory path for gene C2, then it is being 

considered to take part in further regulation. Otherwise, the current regulatory structure 

excluding B1 is retained (which has not happened in this structure). Another case as 

shown in Figure 4.4 is the inclusion of A5 with reported regulators A1 and A2 for B1. 

In a similar way it is possible to form the regulatory architectures for C1 and D shown 

in Figure 4.4.  

The final challenge after the creation of the above composite entropy minimized 

regulatory network is to check redundancies in the interactions between TF genes at 

various Pareto optimal fronts. In other words, it is about understanding the significant 

role of every TF gene in an upper front regulating another TF gene present at the 

immediate lower front. For example, considering the combination (x=B3, Yx= {A2, A3, 

A4}), the gene expression values of any one of the regulator genes is altered across all 

profiles/samples using the formula, -= oldnew xx , where newx indicates the altered or 

new expression level and oldx being the old value. Here,   is the partial derivative of 

the conditional entropy, )/( x
C YxH , with respect to cij (expression value of ith gene in 

jth profile), i.e. = )/( x
C

ij

YxH
c
 . The alteration of expression levels is conducted till 

some steady state entropy value gets attained. This operation is conducted for each TF 

gene acting as regulator, i.e. A2, A3, A4, one at a time in the above example. The 

number of iterations through which the steady state conditional entropy is attained is the 

deciding factor of existence of the TF gene acting as a regulator in a collaborative 

framework. In the above context,   =1 to reflect the effect on the stability of the 

network due to the actual change in entropy contributed by the factor,  .  
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4.3.3 Results: The implementation of the proposed algorithm has been carried on one 

synthetic dataset followed by three real expression matrices. In very case, the 

information is contained across more than one condition. The purpose of taking such 

varied information is to check the robustness of the algorithm in forming stable TRNs. 

In the synthetic context, a dataset is generated using the tool, SynTREN [47]. Here, an 

expression matrix is generated for 200 genes defined over 100 samples. NMF [48] 

analysis on the samples classifies 56 from condition 1 and the remaining 44 from 

condition 2. Total number of TF genes found from the tool is 20, out of which 3 are 

TF_DE and 7 are TF_DC. From the remaining 180 genes, there are 36 DE genes and 37 

DC genes. 

The first real data used is budding yeast, Saccharomyces cerevisiae, cell cycle data 

consisting of 6,178 genes across four conditions. From this set, 17 TF genes are found. 

The necessary details of this data is available at [49]. While comparing every pair of 

conditions it gets revealed that conditions 1 and 4 give maximum number of DE genes 

with 6 TF and 235 non-TF genes. Again, 9TF and 320 non-TF genes are found through 

DC analysis of the dataset.  

The second real data used is mice embryonic testis development dataset comprising of 

12,488 genes for both male and female phenotypes (GSE 1358) [50]. Here, 90 TF genes 

are found, out of which 37 are TF_DE and 23 are TF_DC genes. From the remaining 

non-TF genes, 3,320 are DE in nature and 734 of DC type. 

The third and final real data used for this research is the RMA expression data of liver 

samples from human subjects with HCV cirrhosis with and without concomitant HCC 

(GSE 17967) [42]. In total there are 22,277 genes, among which 131 are TF genes, 260 

are DE genes, and 598 are DC genes. Again, out of 131 TF genes, 8 are DE and 57 are 

DC in nature.  

After discovering the initial inputs (the physically existent TF, TF_DE, TF_DC, DE 

genes) in each of the above cases, the differential regulatory power of the TF, TF_DC, 

and TF_DE genes are assessed through multi-objective analysis based on the three 

regulatory scores, namely RIF II, dCSA_r2t, and dCSA_t2t. In the context of yeast and 

synthetic data the TF to target gene information required for assessing the regulatory 

powers is fetched from the web based tool, YEASTRACT [45]. However, the same 
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operation is conducted for mice and human data utilizing the information present in 

TF2target database [42] and TRRUST [51]. Post this, sequence of results following the 

proposed algorithm is given next for each of the above experimentations (here unless 

specified, TF genes mean pure TF or TF_DC or TF_DE genes). 

Phase 1: 

 7 TF genes distributed across 5 Pareto optimal fronts for the synthetic dataset, 

containing 1, 1, 1, 1, 3 TF genes in the respective fronts starting from primary 

non-dominated optimal front. 

 12 TF genes distributed across 3 Pareto optimal fronts for yeast data, containing 

5, 6, 1 TF genes in the respective fronts starting from primary non-dominated 

optimal front. 

 64 TF genes distributed across 4 Pareto optimal fronts for mice data, containing 

57, 4, 1, 2 TF genes in the respective fronts starting from primary non-

dominated optimal front. 

 18 TF genes distributed across 8 Pareto optimal fronts for human data, 

containing 3, 3, 6, 2, 1, 1, 1, 1 TF genes in the respective fronts starting from 

primary non-dominated optimal front. 

Phase 2: 

 The number of TF regulatory paths corresponding to synthetic, yeast, mice, and 

human data is 3, 30, 456, and 108 respectively after application of TF gene 

regulation constraints through PCIT analysis discussed earlier followed by 

significance assessment. In this regard, the number of DE gene specific 

pathways for the respective cases happen to be 3×36=108, 30×235=7,050, 

456×3320 = 15,13,920, 108×260=28,080. 

 For mice, because of having a humongous number of regulatory pathways, only 

the first 100 significant DE genes are considered for further analysis. This point 

will be clarified at a later phase for each of the cases.  

 Apart from a single instance in yeast for all the other datasets there is no 

biological evidence of regulation skipping intermediate front TFs. In other 

words, the TF genes involved in different biological (KEGG) pathways strictly 

follow the sequence of regulation devised through this algorithm.  
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Phase 3:  

 Composite entropy validation of these regulatory paths obtained for each case 

yields the stable entropy minimized networks given in Figure 4.5. 

 In the entropy stabilized networks, the assessment of parallel redundant 

regulatory paths in the collaborative regulations between consecutive front pairs, 

based on the number of iterations following the steepest descent approach, is 

given Figures 4.6(A), 4.6(B), 4.6(C), 4.6(D) respectively. In this context, the 

grey bars correspond to those TF gene regulators possessing consistent stable 

regulatory action with the regulatee and black bars highlight regulators having 

far less stable regulatory control over the regulatee and hence neglected for 

further composite entropy analysis. 

 The number of common and different TF genes for each regulatee between 

entropy validated networks and corresponding databases [42,45,51] is given 

Figure 4.7. Here, the grey bars indicate the database reported interactions within 

which the black portions signify the number of overlapped TF genes. 

Phase 4: 

 The statistical enrichment of these entropy minimized regulatory pathways is 

done which yields p-value = 0 for the synthetic data TF gene regulatory paths, 

with the p-value enrichments for yeast, mice and humans enlisted in Tables 4.12, 

4.13, and 4.14 respectively. 

 It is also noticed that final pruned TF regulatory networks obtained for all the 

datasets are mostly identical or subsets of the corresponding regulatory 

structures devised through PCIT in the proposed algorithm. 

 As per the entropy minimized structure, only synthetic and mice data yields two 

or more TF genes at the last Pareto optimal front. For both yeast and human 

data, only one TF gene is found significantly existent at the last Pareto optimal 

front. Hence, understanding the importance of the TF regulators in controlling 

the DE genes that come next, is relevant for synthetic and mice data only.  

 In case of the synthetic data, all the 3 TF genes lying at the last front are equally 

important in controlling each of the 30 target DE genes. However, in case of 

mice, considering the first 100 significant DE genes (reason stated in Phase 2 

above), only 1 target DE gene has a single controller TF gene, 102671_at. 
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Figure 4.5: Entropy based TF Regulatory Architectures in the Multiobjective Framework 
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(In between 4th and 5th Pareto optimal fronts) 

Figure 4.6 (A): Assessing the redundant regulatory paths between consecutive front pairs 

SYNTHETIC Network 

 

 

 

 

 

 

 

 

 

 

 

(In between 1st and 2nd Pareto optimal fronts) 

 

 

 

 

 

 

 

 

 

 

(In between 2nd and 3rd Pareto optimal fronts) 

Figure 4.6 (B): Assessing the redundant regulatory paths between consecutive front pairs 

YEAST Network 
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(In between 1st and 2nd Pareto optimal fronts) 

 

 

 

 

 

 

 

 

 

 

 

 

(In between 2nd and 3rd Pareto optimal fronts) 

 

 

 

 

 

 

 

 

 

 

(In between 3rd and 4th Pareto optimal fronts) 

Figure 4.6 (C): Assessing the redundant regulatory paths between consecutive front pairs 

MICE Network 
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(In between 1st and 2nd Pareto optimal fronts) 

 

 

(In between 2nd and 3rd Pareto optimal fronts) 

 

Figure 4.6 (D): Assessing the redundant regulatory paths between consecutive front pairs 

HUMAN Network (Continued) 
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(In between 3rd and 4th Pareto optimal fronts) 

 

 

(In between 4th and 5th Pareto optimal fronts) 

Figure 4.6 (D): Assessing the redundant regulatory paths between consecutive front pairs 

HUMAN Network  
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Corresponding to YEAST Network 

 

 

Corresponding to MICE network 
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Figure 4.7: The number of common and different TF genes for each regulatee between 

entropy validated networks and corresponding databases. 
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Table 4.12: Statistical enrichment scores of entropy minimized TF gene regulatory pathways 

(YEAST) 

Yeast TF genes 
Front1 Front2 Front3 p-value 

YOR372C YLR131C - 0.504 
YDR146C YIL131C - 0.444 
YDR146C YKL185W YER111C 0.01556009 
YLR182W YIL131C - 0.468 
YLR182W YNL068C - 0.288 
YLR182W YKL185W YER111C 0.01825004 
YLR182W YDR463W YER111C 0.00796159 
YIL036W YIL131C - 0.656 
YIL036W YMR043W YER111C 0.02232027 
YIL036W YKL185W YER111C 0.02486027 
YPL089C YIL131C - 0.596 
YPL089C YMR043W YER111C 0.01988202 
YPL089C YKL185W YER111C 0.02211508 
YPL089C YDR463W YER111C 0.00879171 

 

Table 4.13: Statistical enrichment scores of entropy minimized TF gene regulatory pathways 

(MICE) 

Mice TF genes 
Front1 Front2 Front3 Front4 p-value 

102986_at 100697_at 102363_r_at 102088_at 0.000038 
102986_at 100697_at 102363_r_at 102671_at 0.000116 
103013_at 100697_at 102363_r_at 102088_at 0.000038 
103013_at 100697_at 102363_r_at 102671_at 0.000116 
160483_at 100697_at 102363_r_at 102088_at 0.000038 
160483_at 100697_at 102363_r_at 102671_at 0.000116 
160535_at 100697_at 102363_r_at 102088_at 0.000038 
160535_at 100697_at 102363_r_at 102671_at 0.000116 
92271_at 100697_at 102363_r_at 102088_at 0.000038 
92271_at 100697_at 102363_r_at 102671_at 0.000116 

92305_s_at 100697_at 102363_r_at 102088_at 0.000038 
92305_s_at 100697_at 102363_r_at 102671_at 0.000116 
92529_s_at 100697_at 102363_r_at 102088_at 0.000038 
92529_s_at 100697_at 102363_r_at 102671_at 0.000116 
92745_at 100697_at 102363_r_at 102088_at 0.000038 
92745_at 100697_at 102363_r_at 102671_at 0.000116 
92766_at 100697_at 102363_r_at 102088_at 0.000038 
92766_at 100697_at 102363_r_at 102671_at 0.000116 

93546_s_at 100697_at 102363_r_at 102088_at 0.000038 
93546_s_at 100697_at 102363_r_at 102671_at 0.000116 
94331_at 100697_at 102363_r_at 102088_at 0.000038 
94331_at 100697_at 102363_r_at 102671_at 0.000116 
96987_at 100697_at 102363_r_at 102088_at 0.000038 
96987_at 100697_at 102363_r_at 102671_at 0.000116 
96993_at 100697_at 102363_r_at 102088_at 0.000038 
96993_at 100697_at 102363_r_at 102671_at 0.000116 
97185_at 100697_at 102363_r_at 102088_at 0.000038 
97185_at 100697_at 102363_r_at 102671_at 0.000116 
97679_at 100697_at 102363_r_at 102088_at 0.000038 
97679_at 100697_at 102363_r_at 102671_at 0.000116 
97813_at 100697_at 102363_r_at 102088_at 0.000038 
97813_at 100697_at 102363_r_at 102671_at 0.000116 
98040_at 100697_at 102363_r_at 102088_at 0.000038 
98040_at 100697_at 102363_r_at 102671_at 0.000116 
98767_at 100697_at 102363_r_at 102088_at 0.000038 
98767_at 100697_at 102363_r_at 102671_at 0.000116 
99095_at 100697_at 102363_r_at 102088_at 0.000038 
99095_at 100697_at 102363_r_at 102671_at 0.000116 

102986_at 100924_at 102363_r_at 102088_at 0.000046 
102986_at 100924_at 102363_r_at 102671_at 0.000148 
103013_at 100924_at 102363_r_at 102088_at 0.000046 
103013_at 100924_at 102363_r_at 102671_at 0.000148 
160483_at 100924_at 102363_r_at 102088_at 0.000046 
160483_at 100924_at 102363_r_at 102671_at 0.000148 
160535_at 100924_at 102363_r_at 102088_at 0.000046 
160535_at 100924_at 102363_r_at 102671_at 0.000148 
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Mice TF genes 
Front1 Front2 Front3 Front4 p-value 

92305_s_at 100924_at 102363_r_at 102088_at 0.000046 
92305_s_at 100924_at 102363_r_at 102671_at 0.000148 
92529_s_at 100924_at 102363_r_at 102088_at 0.000046 
92529_s_at 100924_at 102363_r_at 102671_at 0.000148 
92745_at 100924_at 102363_r_at 102088_at 0.000046 
92745_at 100924_at 102363_r_at 102671_at 0.000148 
92766_at 100924_at 102363_r_at 102088_at 0.000046 
92766_at 100924_at 102363_r_at 102671_at 0.000148 

93546_s_at 100924_at 102363_r_at 102088_at 0.000046 
93546_s_at 100924_at 102363_r_at 102671_at 0.000148 
94331_at 100924_at 102363_r_at 102088_at 0.000046 
94331_at 100924_at 102363_r_at 102671_at 0.000148 
96987_at 100924_at 102363_r_at 102088_at 0.000046 
96987_at 100924_at 102363_r_at 102671_at 0.000148 
96993_at 100924_at 102363_r_at 102088_at 0.000046 
96993_at 100924_at 102363_r_at 102671_at 0.000148 
97679_at 100924_at 102363_r_at 102088_at 0.000046 
97679_at 100924_at 102363_r_at 102671_at 0.000148 
97813_at 100924_at 102363_r_at 102088_at 0.000046 
97813_at 100924_at 102363_r_at 102671_at 0.000148 
98040_at 100924_at 102363_r_at 102088_at 0.000046 
98040_at 100924_at 102363_r_at 102671_at 0.000148 
98767_at 100924_at 102363_r_at 102088_at 0.000046 
98767_at 100924_at 102363_r_at 102671_at 0.000148 
99095_at 100924_at 102363_r_at 102088_at 0.000046 
99095_at 100924_at 102363_r_at 102671_at 0.000148 

102986_at 101429_at 102363_r_at 102088_at 0.000048 
102986_at 101429_at 102363_r_at 102671_at 0.000163 
103013_at 101429_at 102363_r_at 102088_at 0.000048 
103013_at 101429_at 102363_r_at 102671_at 0.000163 
160483_at 101429_at 102363_r_at 102088_at 0.000048 
160483_at 101429_at 102363_r_at 102671_at 0.000163 
160535_at 101429_at 102363_r_at 102088_at 0.000048 
160535_at 101429_at 102363_r_at 102671_at 0.000163 
92305_s_at 101429_at 102363_r_at 102088_at 0.000048 
92305_s_at 101429_at 102363_r_at 102671_at 0.000163 
92529_s_at 101429_at 102363_r_at 102088_at 0.000048 
92529_s_at 101429_at 102363_r_at 102671_at 0.000163 
92745_at 101429_at 102363_r_at 102088_at 0.000048 
92745_at 101429_at 102363_r_at 102671_at 0.000163 
92766_at 101429_at 102363_r_at 102088_at 0.000048 
92766_at 101429_at 102363_r_at 102671_at 0.000163 

93546_s_at 101429_at 102363_r_at 102088_at 0.000048 
93546_s_at 101429_at 102363_r_at 102671_at 0.000163 
94331_at 101429_at 102363_r_at 102088_at 0.000048 
94331_at 101429_at 102363_r_at 102671_at 0.000163 
96987_at 101429_at 102363_r_at 102088_at 0.000048 
96987_at 101429_at 102363_r_at 102671_at 0.000163 
96993_at 101429_at 102363_r_at 102088_at 0.000048 
96993_at 101429_at 102363_r_at 102671_at 0.000163 
97679_at 101429_at 102363_r_at 102088_at 0.000048 
97679_at 101429_at 102363_r_at 102671_at 0.000163 
97813_at 101429_at 102363_r_at 102088_at 0.000048 
97813_at 101429_at 102363_r_at 102671_at 0.000163 
98040_at 101429_at 102363_r_at 102088_at 0.000048 
98040_at 101429_at 102363_r_at 102671_at 0.000163 
98767_at 101429_at 102363_r_at 102088_at 0.000048 
98767_at 101429_at 102363_r_at 102671_at 0.000163 
99095_at 101429_at 102363_r_at 102088_at 0.000048 
99095_at 101429_at 102363_r_at 102671_at 0.000163 

102986_at 102364_at 102363_r_at 102088_at 0.000102 
102986_at 102364_at 102363_r_at 102671_at 0.000374 
103013_at 102364_at 102363_r_at 102088_at 0.000102 
103013_at 102364_at 102363_r_at 102671_at 0.000374 
160483_at 102364_at 102363_r_at 102088_at 0.000102 
160483_at 102364_at 102363_r_at 102671_at 0.000374 
160535_at 102364_at 102363_r_at 102088_at 0.000102 
160535_at 102364_at 102363_r_at 102671_at 0.000374 
92529_s_at 102364_at 102363_r_at 102088_at 0.000102 
92529_s_at 102364_at 102363_r_at 102671_at 0.000374 
92766_at 102364_at 102363_r_at 102088_at 0.000102 
92766_at 102364_at 102363_r_at 102671_at 0.000374 
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Mice TF genes 
Front1 Front2 Front3 Front4 p-value 

93546_s_at 102364_at 102363_r_at 102088_at 0.000102 
93546_s_at 102364_at 102363_r_at 102671_at 0.000374 
94331_at 102364_at 102363_r_at 102088_at 0.000102 
94331_at 102364_at 102363_r_at 102671_at 0.000374 
96987_at 102364_at 102363_r_at 102088_at 0.000102 
96987_at 102364_at 102363_r_at 102671_at 0.000374 
97813_at 102364_at 102363_r_at 102088_at 0.000102 
97813_at 102364_at 102363_r_at 102671_at 0.000374 
98040_at 102364_at 102363_r_at 102088_at 0.000102 
98040_at 102364_at 102363_r_at 102671_at 0.000374 
98767_at 102364_at 102363_r_at 102088_at 0.000102 
98767_at 102364_at 102363_r_at 102671_at 0.000374 
99095_at 102364_at 102363_r_at 102088_at 0.000102 
99095_at 102364_at 102363_r_at 102671_at 0.000374 

 

Table 4.14: Statistical enrichment scores of entropy minimized TF gene regulatory pathways 

(HUMANs) 

Human TF genes 
Front1 Front2 Front3 Front4 Front5 Front6 Front7 Front8 p-value 

217399_s_at 208500_x_at 202431_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 208500_x_at 202431_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 208500_x_at 204108_at - - - - - 5.56E-05 
217399_s_at 208500_x_at 206789_s_at - - - - - 2.95E-04 
217399_s_at 218221_at 205479_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 218221_at 205479_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 218221_at 206657_s_at - - - - - 5.56E-05 
217399_s_at 218221_at 209056_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 218221_at 209056_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 205479_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 205479_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 209056_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 209056_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 202431_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 202431_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
217399_s_at 203135_at 206657_s_at - - - - - 1.11E-04 
211660_at 208500_x_at 202431_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 208500_x_at 202431_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 208500_x_at 206789_s_at - - - - - 0 
211660_at 208500_x_at 204108_at - - - - - 7.79E-05 
211660_at 203135_at 209056_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 209056_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 202431_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 202431_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 205479_s_at 206115_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 205479_s_at 202370_s_at 204039_at 222146_s_at 208345_s_at 206307_s_at 0 
211660_at 203135_at 206657_s_at - - - - - 4.67E-04 

 

4.3.4 Discussion: The outcomes of this research either fully match with the biological 

databases [42,45,51] or add some significant regulations in a biologically existent single 

or collaborative framework or delete some existing regulations present in the biological 

databases based on the weakness of regulations revealed through the steepest descent 

technique applied in the proposed algorithm. Thus this composite entropy minimized 

approach highlights new interactions which can be studied or analyzed further or predict 

deletions of some existent interactions reported in the databases. This will definitely 

help the biological community in the true understanding of the differential role of any 
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TF or DE gene. Some of the major cases where additions and deletions have been 

reported by this implementation are given below. 

Significant Additions:  

 The regulation of YMR043W in yeast can be taken as an example. According to 

YEASTRACT, it is regulated by only YIL036W, but the composite entropy 

minimized algorithm shows us another TF gene, YPL089C along with YIL036W 

regulating YMR043W in parallel. 

 Another example is the regulation of 100697_at in mice. Formal database shows 

102986_at, 160483_at, 93546_s_at, 92305_s_at, and 98040_at to be its 

potential regulators. Through the application of composite entropy minimized 

algorithm, TF genes such as 103013_at, 160535_at, 92745_at, 92766_at, 

94331_at, 96987_at, 96993_at, 97185_at, 97679_at, 97813_at, 98767_at, 

92271_at, 92529_a_at, and 99095_at are also added to be its potential 

collaborative regulators in the TRN. 

Significant Deletion: 

 Here an example can be the regulation of YLR131C in yeast. From the database 

YOR372C, YDR146C and YIL036W are its possible regulators. However with 

the application of composite entropy, YIL036W and YDR146C gets knocked out 

due to weak regulation, yielding YOR372C as the sole regulator of YLR131C. 

Significant Deletions and Addition:  

 In this context, the regulation of 204108_at in humans can be considered as an 

example. Reported interactions from the database show 203135_at and 

218221_at to be its potential regulators. However, the composite entropy 

approach predicts both as weak regulators, compared to 208500_x_at, absent in 

the database corresponding to this regulation. Hence, the traditional regulators 

are better to be ignored and 208500_x_at can be considered to be the sole 

regulator for further biological study.  

Apart from these types of alterations, there are some interactions in mice and human 

composite entropy minimized networks which report bidirectional regulation in the 
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biological database, TRRUST [51]. The important examples in this regard are given 

below. 

 The interactive regulation between 206789_s_at and 208500_x_at in humans is 

one example. Here, both the TF genes are DC in nature. Hence, any one is 

capable of controlling the other. But as per the composite entropy minimized 

network, 208500_x_at is the controller of 206789_s_at, but not vice-versa.  

 A similar interactive case is present between 208500_x_at and 211660_at in 

humans. Here, the first one is a TF_DC gene and the second is a pure TF gene. 

Thus, as per the composite entropy minimized approach, regulation of 

211660_at by 208500_x_at  has not been observed. 

 A collaborative exception found in mice network can be treated as another 

example in this regard. Here, as per TRRUST, 92305_s_at, 97185_at, 96993_at, 

98767_at act as interactive TF genes with 100924_at. Among these TF genes 

97185_at, 96993_at, and 100924_at all are TF_DC in nature. Hence, theoretical 

bidirectional regulation is possible within these TF genes. On the contrary, 

92305_s_at and 98767_at are identified as pure TF genes making the regulation 

unidirectional with respect to the regulatee TF gene, 100924_at. However, as 

per the composite entropy minimized network in mice, all the four regulator TF 

genes collaboratively control the regulatee TF gene, 100924_at.  

4.4 Conclusion 

In this chapter, the concept of single and collaborative gene regulations has been 

brought to limelight through minimization of multi-objective constraints which help to 

determine the differential regulatory power of a TF or DE gene. In this regard, obtaining 

various types of genes across multiple Pareto optimal fronts and their differential 

regulatory properties helps in understanding the formation of regulatory pathways in 

any complex biological network.  

Here, the challenge in reconstruction of TRNs is dependent on the initiator or source 

regulator in any pathway. The pure TF genes (neither TF_DC nor TF_DE types) have 

been considered as the source of the various regulatory cascades present in the 

composite entropy minimized network. In this regard, a number of regulatory cascades 

or pathways could have started from a pure TF gene placed at a lower Pareto optimal 

front. But with the presence of TF_DC and/or TF_DE genes placed at higher Pareto 
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optimal fronts according to the outcome of the minimization of conflicting differential 

regulatory scores in a multi-objective paradigm, a significant number of pure TF genes 

placed at the lower fronts got discarded from further analysis. Due to this an appreciable 

number of TF gene regulatory pathways could not be studied. This aspect has primarily 

affected the composite entropy minimized network design with respect to human liver 

expression data with HCV cirrhosis. Hence, to understand the regulatory statistics, 

formation of the network is expected to incorporate pure TF genes from the lower 

Pareto optimal fronts as well.  
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5.1 Introduction 

Transcriptional Regulatory Networks (TRNs) are essential complex biological 

interaction mechanisms used to monitor the differential gene activities across various 

cell lines and conditions [1]. In this perspective, the differential gene analyses in cell 

division cycles [2] carry optimum importance to monitor the reasons behind different 

types of malignant and neural diseases and to find suitable drug targets [3] in 

therapeutic investigations. One of the primary ways to study the differential gene 

activity is investigating the differential expression (DE) capability of genes followed by 

the topological differences of interconnectivity among these DE genes under some 

defined cell lines and conditions (extensively researched and documented in the 

previous chapters). Another way to look into the differential gene activity in complex 

interactive networks is about understanding the role of any specific type of regulator 

gene responsible for the alterations in gene network functionalities. This has also been 

looked into in the previous chapter, but disregarding any specific time properties 

involved in the regulatory process. The transcription factor (TF) genes that are mostly 

responsible for such regulations happens to create regulatory proteins that govern and 

control the cell cycle across various stages or conditions [4]. Moving into the scope of 

time dependent regulations, it is expected that TF genes can control any target gene 

activity within a certain timeline (a matter of extensive research) maintaining unique 

regulatory effects following a delay characteristic which mainly addresses translation 

time of one or more TF genes, corresponding protein folding time, translocation time, 

promoter binding time, and transcription time of the target gene.  

This form of time dependent regulation exhibited by the TF genes can be of two types, 

such as time invariant and time variant categories. The time invariant category 

(referenced later) considers the entire time course of gene expression activity to 

understand the dominating regulatory effect in a certain state of the cell cycle governed 

by environmental stimulus or different forms of external perturbation factors. Thus 

either activator or repressor actions (i.e. the dominating regulatory effect mentioned 

above) on the target genes get defined in a certain state with specific delay properties. 

On the other hand, the time variant category (the matter of research presented in this 

chapter) considers the activation or repression of the target genes by the TF genes at 

some specific activation points [5,6] of the entire time course information. Hence, in the 

latter case, the dominating regulatory effect considering time delay characteristics, if 
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any, may alter within a certain state or condition of the cell cycle. Thus the differentially 

regulatory effect (between a TF and DE gene for example) under different stages or 

conditions, considering the importance of the time course data, can also portray 

significant alteration in the time variant architecture; an occurrence not possible to 

observe and study further through time invariant regulation at certain state or condition. 

Hence, the matter of research indulged in this chapter is related to design of time variant 

TF regulatory networks; thus contributing to the development dynamic TF regulatory 

architectures for the DE genes. 

5.2 Time Variant Transcriptional Regulatory Networks 

In any Transcriptional Regulatory Network (TRN), be it designed on a dataset 

consisting of independent and identical sample profiles or highly correlative time course 

profiles, the TF genes can act individually or may possess a collaborative action to 

control one or more target DE genes. Fundamental aspects of time regulation based on 

highly correlative time course profiles given in Table 5.1 are discussed in [5,7]. Here, 

the regulatory action of a TF gene on any target gene is classified based on the TF 

gene’s functional role as an activator or repressor on one hand and its logical role as 

necessary or sufficient on the other. The inference on TF to target gene association in 

TRNs can be framed as per the prominent regulatory aspects shared in [8-12]. However 

most of these are associated with certain significant shortcomings. Among them the cost 

and time complexity to check for all possible combinations of higher order gene 

knockout [5] cannot be ignored. One possible solution to this problem is considering 

those TF genes having proper biological evidence to bring phenotypic changes and the 

other can be restricting TF gene inclusion to form a higher order group, provided their 

interaction pattern with target genes are found significant at an individual level or in 

groups of lower order [5]. Another significant limitation, highlighted earlier as well, is 

the usage of the entire time course information in a certain condition for studying the 

regulatory control of TFs on the target DE genes. This, as mentioned earlier, can be 

resolved checking the importance of the TF to DE gene interaction at some specific 

time points depicting a particular type of temporal expression pattern. 

The onset of the specific time course analysis is about recording the significant changes 

in the expression pattern of all concerned genes (here the interest is concentrated on TF 

and DE genes corresponding to the development of any TRN) as the time course profile 
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is surpassed at a certain state or condition. In this context, the significant up-expression 

or down-expression of any gene with respect to consecutive time points of interest helps 

in understanding the combinations of functional and logical roles of regulation within a 

specific time frame. The combination or mode of regulation that can be defined in a 

particular context at a certain time point is shared in Table 5.2. 

Table 5.1: Different regulatory interactions of a time course TRN design 

Role Regulatory Interaction Function 

Functional 
Activator Expression change of target gene is homogenous with its TF gene 

Repressor Expression change of target gene is heterogeneous with its TF gene 

Logical  

or 

Directional 

Necessary Down expression of TF genes leads to the response opposite of the functional role 

Sufficient Up expression of TF genes leads to the response analogous to the functional role 

Necessary and Sufficient 
Up expression of TF genes leads to the response analogous to the functional role 

and down expression initiates to the response just opposite of the functional role 

 

Table 5.2: Different modes based on expression change of TF and target gene at any time point 

TF  

gene 

Target 

gene Mode 

    

Yes -- Yes -- AS 

Yes -- -- Yes RS 

-- Yes -- Yes AN 

-- Yes Yes -- RN 

 

From Table 5.2, the interaction between the up/ down expression level of TF gene and 

target gene yields a one to one association between the two logical and functional roles 

extracting four independent sets of dependence, namely Activator Sufficient (AS), 

Repressor Sufficient (RS), Activator Necessary (AN), and Repressor Necessary (RN). 

The interaction study involving the above sets of dependence or modes of regulation did 

get its significance through the seminal research works [5,7,13,14]. In these seminal 

works the model TRIM followed mTRIM got realized. TRIM works on hidden Markov 

modelling which can at the most develop regulatory network involving a maximum of 2 

TF genes. As the biological pathways are complex in nature, this happens to be a trivial 

approach. Hence, the extended framework mTRIM which incorporates the enhanced 

expectation maximization based Bayesian Inference approach was implemented to 

handle multiple TF genes (up to the order of 6) regulatory interactions. 
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However, none of these methods did investigate the inherent periodicity of gene 

expression data or quantitatively estimated the strength of regulation involved in the 

temporal or time regulatory interaction process. These algorithms primarily rely on the 

fraction of time instants or activation points where the various modes function in a TF 

to target interaction model. The possible solution of this limitation can be addressed 

using the algorithms developed in [15], which incorporate the change of correlation 

between TF and DE genes between conditions while searching for significant TF genes. 

But, the later phase of algorithms [15] consider the entire time sequence of TF genes 

and target genes in the course of regulation and hence time-dependent or time variant 

models cannot be realized. Inspired by these ideas, a novel concept of computing the TF 

to target gene regulation strength has been shown in this research chapter using linear 

correlation at the specific activation time instants depending on the mode of regulation. 

In this regard, it is noteworthy to mention that non-linear regulation architectures exist 

in collaborative networks [16-19] utilizing the entire time course information under 

different states or conditions. But the regulation being limited to certain activation time 

instants and not over the entire time course of the time series sequence, the assumption 

of linear regulatory effect in single as well as collaborative TF models is expected to 

highlight true biological regulations in complex interactive TRNs. 

5.2.1 The basic findings: This experimentation has brought two new ideas in the 

formation of TRNs. One of these is about the quantification of the differential 

regulation in TF to target DE gene interaction within the same specific activation time 

sequence present in different conditions followed by checking the consistency of this 

temporal differential regulation with respect to some control or reference state. The 

other novel concept is focussed on understanding the modes (AS/RS/AN/RN) of this 

temporal differential regulation between periodic and aperiodic combinations of TF and 

target DE genes. In the latter perspective, the significance of the research is exemplified 

through single and collaborative TF to target DE gene direct regulations. In other words, 

as described in the methodology segment, single interactions modes of temporal 

differential regulations can be like AS-RS-AS and AS-RN-AS in periodic TF-aperiodic 

DE gene and aperiodic TF-periodic DE gene regulatory combinations respectively. 

Again in multi TF regulations or collaborative interactions, the modes of temporal 

differential regulation that may work together can be like RS-RN-RS and AS-AN-AS in 

2 TF genes regulatory combination for a target DE gene in aperiodic TF-aperiodic DE 
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pairs. Thus the stringency of this novel dynamic network reconstruction process is not 

only limited to checking the consistency of the temporal differential regulatory context 

across varied conditions with a reference condition in existence but also includes 

multiple TF genes in a collaborative context where specific time activation sequences 

gets shorter corresponding to particular temporal patterns of the target DE gene’s 

variation (i.e. up or down expressed) present across different conditions (though this is a 

true novelty highlighting the actual regulatory pattern in a time series experiment). 

Hence, the number of regulatory TF genes that may be present in a collaborative 

architecture is lower than renowned architectures like mTRIM [5]. This particular 

observational difference signifies the importance of any TF to DE gene regulation 

(present in single or collaborative gene networks) in a temporal perspective on the 

application of the proposed research work. This indicates the apprehension followed by 

necessary removal of redundant regulator genes in further analysis, specifically in a 

collaborative biological interaction environment. 

5.2.2 Methodology: The prime novelty introduced in this research chapter is about the 

underneath logic and framework of the proposed differential regulatory score, RIFT or 

the Regulatory Impact Factor with T score, based on the temporal differential pattern of 

TF and target DE genes at some specific consecutive time instants similar to one 

another across different time frames of the cell cycle process. The algorithm in this 

regard starts off with finding the TF and DE genes present in the cell cycle database 

along with the discovery of periodicity of these genes from the temporal differential 

expression patterns.  

The RIFT score is judged by the contribution of Affinity score as a mere weightage 

factor of differential regulatory power exhibited on a target DE gene by one or more TF 

genes. Prior to this research, the concept of Affinity score (discussed later) was the crux 

part in the qualitative analysis (i.e. just understanding the probabilistic attitude of time 

course regulations with respect to any of combinational modes involving functional and 

logical attributes: AS, RS, AN and RN) of regulatory interactions between TF and target 

genes. In this research contribution, the presence of Affinity score as a weightage factor 

in the RIFT score design does turn important in understanding the significance of any 

regulation occurrence in a single or collaborative TF to DE gene regulatory framework. 

In this regard, the proposed algorithm for devising time variant TRNs is given next. 
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ALGORITHM: Forming time variant temporal differential regulatory networks 

 

Input: 
I. Time series HeLa Cancer data. 
II. TF2target and TRRUST database. 

Output: 
Significant TF to target DE gene composite interactions in single and collaborative 
mode. 

 
Step1:  Time series data of TF genes is extracted from the HeLa cancer data. 
Step2: Time series data of DE genes are extracted from HeLa cancer data using R 
package maSigPro. 
Step3:  R package GeneCycle is utilized to search for periodically expressed TF and DE 
genes which yield 4 sets of expression patterns (given in Figure 5.1) across the 3 
different stages of the periodic cell cycle. 
Step4: Differential values are computed between the consecutive time instant 
expression levels in every phase of the HeLa cancer cell cycle data (in total 3 phases or 
conditions). 
Step5: The pattern of significant expression change per gene from one time instant to 
the next is depicted as      (up expression),    (down expression) or       (no change). 
Step6: Based on step 5, various TF to target DE gene differential regulatory modes are 
computed (an example given in Figure 5.1 for illustration purpose). 
Step7: A novel interactive score RIFT (given in Equations 2 and 3) is devised between 
TF and target DE gene utilising the differential valued gene vectors (obtained in Step 4) 
between phase 1 and 2 (yields  RIFT21) and phase 2 and 3 (yields RIFT23), where phase 
2 is considered to be the control state. 
Step8: If RIFT21 and RIFT23 depict the same mode of differential regulation (similar 
sign) for a TF gene to target DE gene combination, such a pair is reserved for 
significance analysis (single TF gene regulatory significance). 
Step9: All qualified combinations (obtained from Step 8) for a target DE gene are 
checked for significant collaborative architectures (multiple TF genes regulatory 
significance). 

 
The various equations in relevance to the RIFT framework are given below: 

Equation (1A): 
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Equation (1B): AfnScore(RS) = [(Number of time points where the TF gene is up-

expressed and target is down-expressed /total number of time points) × (Number of time 

points where target is down-expressed /total number of time points)] / [(Number of time 

points where TF gene is up-expressed / total number of time points)] 
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Equation (1C): AfnScore(RS_multi-TF) = [(Number of time points where 

TF1,TF2,....,TFm genes are up-expressed and target is down-expressed / total number of 

time points) × (Number of time points where target is down-expressed / total number of 

time points)] / [(Number of time points where TF1,TF2,....,TFm genes are up-expressed / 

total number of time points)] 

Equation (2): RIFT score formation 

…………………………………………part(A) 

)(

)()(
2

1
2
2

1212








 ijij II

T …………………………………………….part(B) 

 

where, 
vu
ccoverall ji

TTsignT ,
,min)(  

)(

)()(
2

1
2
2

1122








 ijij II

T ………………………………………….part(C) 

2
2

2
1

2
11

2
1

2
22

2
2 )()(








 ijjijj IeIe

RIFT …………………………………………..part(D) 

Equation (3): RIFT score utilizing the concept of Affinity score between conditions 
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The differential regulatory pattern for different combinations of TF and DE genes is 

given in Figure 5.1.  
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Figure 5.1: Different temporal combinations across conditions depicting differential regulatory patterns 

Elucidation of each step followed in the design of the proposed algorithm is given next. 

Step 1: The TF gene information of HeLa cancer data is obtained from the TF2target 

and TRRUST databases [9,20], post which the time series information of all the TF 

genes are extracted from the HeLa dataset.  

Step 2: The R package maSigPro [21] is utilized to extract the time series profiles of the 

DE genes. Essentially the function utilized here is a regression based phenomenon used 

to find genes which show significant expression profile difference between 

experimental groups, especially in time course data. As the HeLa cell cycle information 

consists of three different phases, the DE genes are computed between conditions or 

phases 1 and 2 on one side and between phases 2 and 3 on the other side. This is 

followed by extracting the time profiles conducting intersection of the above results, 

yielding the expression profiles of common DE genes that will act as target gene 

expression profiles for further analysis. 
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Step 3: The R package GeneCycle [22] used to find periodically expressed genes from a 

time series experiment, has been utilized to detect the periodic TF and DE genes (from 

common DE genes obtained in step 2). In those cases, where the package fails to detect 

any hidden periodicities are classified as aperiodic TF and aperiodic DE genes. After 

obtaining the periodic information of TF and DE genes, four regulatory combinations 

can be realized, namely periodic TF-aperiodic DE, aperiodic TF-aperiodic DE, 

aperiodic TF-periodic DE, and periodic TF-periodic DE respectively.  

Step 4: The differential values between consecutive pairs of time instants are calculated 

in every phase of the cell cycle information to obtain the differential gene vector at each 

phase for every TF and DE gene.  

Step 5: The pattern of significant change of expression level between consecutive time 

instants gets depicted with the notations    for up-expression,    for down expression, and 

for no significant change in expression level it is     . 

Step 6: In continuation with step 3, looking into the four types of TF to DE gene 

regulatory combinations shown in Figure 5.1, it is understandable that the temporal 

pattern of up or down expression in the same set of consecutive time points (in the 

figure two consecutive time points have been assumed) across conditions are expected 

to be similar for both periodic TF and DE genes respectively.  

However, for the aperiodic context, there may be the existence of different types of 

temporal patterns of up and down expression in the same set of consecutive time points 

across conditions. In this regard, the situations depicting the expression sequence across 

conditions are (up-expression)-(down-expression)-(up-expression), (down-expression)-

(up-expression)-(down-expression), (up-expression)-(down-expression)-(down-

expression), (down-expression)-(up-expression)-(up-expression), (up-expression)-(up-

expression)-(down-expression), and (down-expression)-(down-expression)-(up-

expression) respectively. As per Figure 5.1, to maintain uniformity in the representation 

process across all the four regulatory combinations, the first two types of expression 

sequence has been considered for studying the aperiodic TF gene and aperiodic DE 

gene time course profiles. Considering the last four types of expression sequence, stated 

above, in periodic TF-aperiodic DE or aperiodic TF-periodic DE mode twelve temporal 

regulatory combinations having six each per periodic TF or periodic DE representation 

can be obtained. Again, in aperiodic TF-aperiodic DE mode thirty-six temporal 
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regulatory combinations can be realized having six each per aperiodic TF and aperiodic 

DE representation. However, for periodic TF-periodic DE, only four temporal modes 

with two each per periodic TF representation can exist. Hence, the objective of two each 

per periodic or aperiodic TF representation leads to four temporal regulatory 

combinations as shown in each row wise segment of Figure 5.1. It is also important to 

note that a differential temporal pattern in periodic TF-aperiodic DE and aperiodic TF-

periodic DE modes (from the point of view of functional role across the 3 stages: 

activator-repressor-activator or repressor-activator-repressor) and in aperiodic TF-

aperiodic DE mode (from the point of view of logical role across the 3 stages: 

necessary-sufficient-necessary or sufficient-necessary-sufficient) are observed keeping 

in account the first two types of expression sequence only for aperiodic TF and 

aperiodic DE genes. This unique property is not observed in case any of the rest four 

temporal regulatory combinations is considered. 

Last but not the least, as an alma mater of this step, it is crucial to mention that though 

periodic TF-periodic DE mode does not show a differential temporal pattern, it works 

through the differential regulation utilizing the concept of RIFT just like the other 

periodic and aperiodic combinations of TF and DE genes shown in Figure 5.1. 

The relevant details pertaining to next step, i.e. Step 7, of the algorithm are divided in 

two parts, Step 7(A) and Step 7(B) respectively. The same is given below. 

Step 7A: Here, two RIFT scores are computed. One is between first and second phase 

and the other between second and third phase of the cell cycle information. The 

formation of the RIFT score utilizes two differential regulatory concepts together. In 

this regard, there is the quantitative measurement of differential regulation through the 

concept of RIF (i.e. the Regulatory Impact Factor) as depicted in Equation (2)-part(A) 

and the quanti-qualitative measurement of differential regulation via T score depicted in 

Equation (2)-part(B)&(C).  

In the RIF score, the differential regulatory power (a quantitative aspect) of any TF gene 

can be computed knowing the set of target DE genes under its control. This score does 

not have any role played by a specific section of time points (the background on which 

the RIFT scores are designed). From Equation (2)-part(A), the various factors of 

importance are the ‘e’ and ‘I’ components in addition to nDE, the number of DE genes. 

In this equation, ‘e’ components indicate the mean expression level of the target DE 
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genes and ‘I’ components indicate the regulatory level of the TF to DE gene interactions 

under two different conditions. However, the T score (both quantitative as well as 

qualitative) depicts the change in the actual differential interaction in between two 

genes with respect to mean differential interaction considering all pairs of genes in 

presence of the distributions of all differential interaction values under two conditions 

of interest. This is followed by checking the similarity in sign or consistency of the 

differential scores obtained across two pairs of conditions within which one condition is 

treated or assumed to be in the reference or control state. The first part of the T score 

analysis is quantitative and the latter part verifies the consistency of the quantitative 

score, i.e. a qualitative assessment. In this regard, the T scores across condition pairs 

showing similarity in sign (either positive or negative in both pairs) are considered for 

further evaluations. This perspective of T score can be seen from Equation (2)-part(B). 

A simple modification or rearrangement of the involved parameters present in the above 

equation leads to the formation of Equation (2)-part(C).  

The basic RIFT score assessing the differential regulatory power between conditions is 

given in Equation (2)-part(D). This can be seen to be a justified combination of the two 

different types of regulatory scores, RIF and T depicted in Equation (2)-part(A) and 

Equation (2)-part(C) respectively.  

Step 7B: In this segment the assessment of the differential regulation in between TF and 

DE genes is done using a modified version of the above RIFT score computed in the 

two pairs of conditions (in this case in between phase 1 and phase 2 & phase 2 and 

phase 3 of the cell cycle data). This modification incorporates the concept of Affinity 

Score defined in Equation (1A). The affinity perspective addresses the temporal patterns 

of regulation, i.e. AS or RS or AN or RN, present in between periodic and aperiodic 

combinations of TF and DE genes (discussed earlier) at different time zones, each 

comprising of a set of consecutive time points, in a certain phase or state of the cell 

cycle example considered for this research. The relevant description of the parameters 

involved in Equation (1A) is clearly given in the examples for the case of RS, i.e. 

Repressor Sufficient, interactions shown in Equation (1B) in between a TF and DE gene 

and in Equation (1C) in between more than one TF (i.e. multi-TF) and DE gene. 

The importance of the affinity in the differential regulation perspective under the two 

sets of conditions or phases of the cell cycle can be understood from Equation (3)-
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part(A) and Equation (3)-part(B) respectively. To be more specific, the Affinity Score 

in a certain phase acts as a factor of weightage for the co-expression level of interaction 

between a TF and possible target DE gene. For example, considering a temporal 

regulatory combination such as AS_RS_AS (found in periodic TF-aperiodic DE 

combination shown in Figure 5.1), the similar set of consecutive time points at the three 

different phases are checked for AS in phase 1, RS in phase 2, and AS in phase 3. The 

Affinity scores in each phase corresponding to AS, RS, and AS are found to put up as 

the respective weightage factors of regulatory interaction values involved and thus 

computing the necessary RIFT scores, RIFT21 and RIFT23.  

In this regard, it is extremely important to define the basis of computing the co-

expression interactive values (more than one value because there may be the existence 

of more than one temporal regulatory combination) in each phase of the cell cycle. In 

other words, the level of linear correlations computed in these small consecutive sets of 

time instants are based on the values of the differential gene vectors obtained from step 

4 above.  

Step 8: The RIFT21 and RIFT23 scores corresponding to each pair of TF and DE gene, in 

the various periodic and aperiodic combinations obtained from step 3 above, are 

checked for similarity in sign, i.e. either both positive or both negative with respect to 

the control state or phase 2 of the HeLa cell cycle information considered in this 

research. Such TF-DE gene pairs exhibiting similarity in sign on the basis of any one or 

more of the temporal mode combinations (all relevant combinations of AS, RS, AN, RN 

considered in this research are shown in Figure 5.1) are processed for significance 

analysis. Here, shuffling of the expression profiles obtained from the time course 

information of the HeLa cell division cycle is done followed by computation of the 

RIFT scores for every such TF-DE gene pair. Any such TF-DE gene pair is declared 

significant corresponding to one or more temporal mode combination, provided there 

are very less number of shuffled cases showing similarity in sign with respect to RIFT21 

and RIFT23. In this regard, the insignificant pairs can be considered for further pairing 

and significance check, if applicable. The context of further pairing can also consider 

significant and insignificant pair combinations.  

Step 9: This being the final step of the algorithm, it is possible to obtain more than two 

TF genes regulating a DE gene (following the various temporal modes of regulation 



                                       Chapter 5: Developing Time Variant TF Regulatory Networks for DE Genes 
 

 Page 171 
 

existent in the periodic-aperiodic combinations). Thus this step contributes to the 

formation of time variant multi TF to DE gene collaborative networks. The earlier step, 

i.e. step 8, is restricted to the formation of time variant single TF to DE interactive 

networks.  

As an example, considering the second row (aperiodic TF-aperiodic DE combination) 

of Figure 5.1, the various temporal modes can be marked as AS_AN_AS = 1, 

RS_RN_RS = 2, AN_AS_AN = 3, and RN_RS_RN = 4. In order to design 2 TF groups 

from 2 insignificant TF genes or 1 insignificant with 1 significant TF gene, the 

following maximum number of temporal regulatory subsets can be formed {{1 1}, {2 

2}, {3 3}, {4 4}, {1 4}, {4 1}, {2 3}, {3 2}}. Here, the first element in any temporal 

subset shows the logical and functional role of first TF gene and the second element 

shows the same but for the second TF gene. In other words, it is possible to have for an 

aperiodic target DE gene Z, two insignificant aperiodic TF regulators X and Y grouped 

together with individual roles as AS_AN_AS and RN_RS_RN i.e. {1 4} above. This 

paired temporal subset and other similar ones shown above are solely dependent on the 

differential expression pattern sequence of the target DE gene, Z. On assuming t1, t2, 

and t3 as the three set of time points in the three successive stages of the cell cycle 

where the corresponding temporal composite modes are activated across conditions, the 

X-Y grouping for Z can be treated to be a heterogeneous regulatory group based on the 

pattern of change of the TF expression levels in the three successive stages. Next, 

considering another network trio from the first row (periodic TF-aperiodic DE 

combination) of Figure 5.1 where the target Z is aperiodic but the regulator duo (X,Y) is 

periodic, the similar temporal subset = {1 4} portrays the individual roles as 

AS_RS_AS and RN_AN_RN. In this case, X-Y grouping is homogeneous. In this way, 

for 3 TF regulations number of such possible temporal subsets can at the most be 16. 

Generalizing this possibility can yield the number of such temporal subsets for ‘m’ TF 

regulations ≤ 2m+1.  

In all such temporal subsets corresponding to collaborative regulations, significance 

testing can be conducted in the presence of the shuffled cases. However, this 

significance operation is conducted provided all the TF-DE gene pairs in a collaborative 

group show consistency or similarity in sign of RIFT scores. In this regard, as an 

example, Equation (1C) portrays the level of affinity of the RS (Repressor Sufficient) 

mode at any phase of the cell cycle information in a multi TF interaction context. 
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Delving into the contribution of this kind of Affinity Score as a weightage factor may 

bring out an interesting result. Considering an earlier example of 2 TF groups with 

temporal subset {AS_RS_AS , RN_AN_RN}, it may happen that single TF affinity 

weightage applied in the RIFT score for any one element of the subset is not able to 

classify the corresponding element or in other words the concerned TF-DE gene pair 

significant. However, when grouped together, as mentioned above, the Affinity Score of 

AS and RN together in phase 1, RS and AN together in phase 2, and AS and RN 

together in phase 3, acting as the corresponding phase dependent weightage factors in 

the RIFT score analysis may turn fruitful in deciding the above temporal subset to be a 

significant collaborative regulation. Thus the contribution of the Affinity Score is bound 

to vary depending on the type of regulation (single or collaborative). 

5.2.3 Results: The experiment has been conducted on the gene expression data obtained 

from the cell division cycle of HeLa cancer cell line [1,3]. This is time series profile 

information distributed across three different phases, where each phase comprises of 16 

time instants of experimentation and there lies a 1 hour gap between each such 

experimentation conducted in a phase. Hence, in total there are 48 time instants or time 

course profiles distributed over three phases of the cell cycle.  

The fundamental results related to the discovery of TF and DE genes are enlisted below 

in Table 5.3. 

Table 5.3: Number of TF and DE genes 

Category of the 

GENE 
Periodicity Issue Number of genes Any overlap 

TF gene 
Periodic 37 

4 genes are TF as 

well as DE 

Aperiodic 100 

DE gene 
Periodic 496 

Aperiodic 123 

 

Considering phase 2 of the HeLa cancer cell line to be the reference or control state, the 

number of DE genes obtained between phase 1 and phase 2 is 747 and the same 

obtained between phase 2 and phase 3 is 697. Between these 619 common DE genes are 

obtained. These common DE genes are again distributed between periodic and aperiodic 

profiles as shown in Table 5.3. The 496 periodic DE genes are further classified into 8 
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clusters following similar pattern of differential distributions in each cluster with 51, 68, 

48, 60, 61, 62, 74, and 72 genes in the respective clusters. The same operation when 

conducted on aperiodic DE genes yields 2 clusters with 69 and 54 genes respectively. 

The clustering operation [23] is conducted to understand DE genes of almost similar 

distribution and their composite differential regulation pattern through temporal modes 

with one or more TF genes.  

As the seminal work of [5] (called mTRIM) developed a concrete time dependent 

framework considering functional and logical roles of TF to DE gene regulation under 

single and collaborative situations, the research done and presented in this chapter is 

compared with mTRIM to understand the fruitfulness, if any, followed by new 

directions of exploration of further research. The crucial points absent in mTRIM are 

the periodicity of the gene expression profiles getting considered in the regulatory 

assessment process and the time varying differential regulation study considering 

various phases of any cell cycle data. But both of these are of prime importance in the 

proposed research.  

In order to compare these two algorithms, the mTRIM simulation is conducted on the 

four pattern specific (periodic / aperiodic) regulatory combinations considered in the 

presented research. To do so, the mTRIM algorithm is applied on each target DE gene 

present in the respective clusters of aperiodic and periodic DE genes mentioned above.  

A novel exploration in this regard considers the HUB genes present in each aperiodic 

and periodic cluster of DE genes. The selection of HUB genes is justified by the fact 

that any such HUB gene retains maximal regulation in an interconnected network 

corresponding to a cluster. Accordingly, the HUB genes are searched in each periodic 

and aperiodic DE cluster using the R package GSAR [24] based on linear correlative 

measure. As both algorithms (mTRIM and the proposed RIFT architecture) under 

consideration deal with the specific time point regulation of the target DE genes by TF 

genes, instead of measuring linear correlative dependence over a flat time range the 

logical and functional attributes of every regulator-regulatee pair is considered while 

measuring correlation. As an illustration, a cluster with ‘n’ DE genes expressed across 

‘t’ time points can be considered to find the HUB gene. Here, between gene ‘i’ and gene 

‘j’ it can be considered that all the four possible temporal modes (AS, RS, AN, RN) in 

some specific time ranges exist, like 1t  for AS, 2t  for RS, 3t  for AN, and 4t  for 
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RN. This is followed by the measurement of temporal mode specific correlations using 

the differential expression level profiles as retrieved from the proposed algorithm. Thus 

considering the fraction of time points as a weight factor the overall correlation between 

gene ‘i’ and gene ‘j’ can be devised as given in Equation (4) under Methodology, i.e. 

section 5.2.2 of this chapter. This novel form of correlation given in Equation (4) is 

developed only to highlight and incorporate functional and logical regulatory roles in 

any basic correlative model. Hence, instead of simple addition of the correlation values 

at the respective temporal components (highlighting equal significance of functional 

and logical modes obtained from any time series regulatory sequence), the novel 

equation does include true weighted contribution or proportional significance of every 

mode involved.  

Comparison of the two algorithms, as stated earlier, based on TF to target matching 

obtained from TF2target [9] and TRRUST [20] databases considering each and every 

target DE gene as well as the HUB gene in each cluster is one of the crucial outcomes 

of this research. This is followed by the AUROC (Area under Region of Characteristic) 

plots which prove the proposed approach to be better than mTRIM. However, the 

humongous amount of information pertaining to TF-DE gene pairs in single and 

collaborative networks corresponding to all possible differential composite mode 

regulatory combinations are not possible to be documented as a part of this thesis. 

Therefore to have an idea of all such possible combinations, one may refer to the 

appendix of the journal publication associated with this chapter.   

The necessary comparison results related to matching with databases and AUROC plots 

can be represented as shown below. 

In Tables 5.4 and 5.5, the percentage values under each case (mTRIM and the proposed 

RIFT model) indicates the ratio of successful matches considering TF2target database 

and TTRUST to the total number of statistically significant interactions obtained. In this 

context, two categories of investigation have been considered. In Category I, all the DE 

genes present in a cluster are considered. In Category II, only the HUB gene as decided 

via the novel temporal correlative model (discussed earlier) is taken into consideration. 

Extending further, under 2 TF genes, 50% / 100% values report cases where there is 

evidence of 1 TF or 2 TFs matching present. Similarly for 3 TF genes, 33% / 66% / 

100% values report cases where there is evidence of 1 TF or 2 TFs or 3 TFs matching 
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present. Finally for 4 TF genes, 25% / 50% / 75% / 100% report cases where there is 

evidence of 1 TF or 2 TFs or 3 TFs or 4 TFs matching present. 

Table 5.4: Category I_TF to target matching considering all DE genes in a cluster 

2 TFs 
 (50 % / 100%) 

Combinational 
Pattern of TF 
and DE genes 

Cluster 
Index 

mTRIM RIFT  

Aptf_Apde 1 
 

2 

12.99 / 9.14% 
 

12.84 / 0.828% 

41.17 / 0% 
 

13.51 / 0%  
Aptf_Pde 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

13.86 / 1.23 % 
 

13.71 / 1.02 % 
 

16.14 / 1.67 % 
 

19.22 / 1.84 % 
 

15.44 / 1.91 % 
 

8.42 / 0.49 % 
 

11.52 / 0.55 % 
 

5.06 / 0 % 

12.33 / 0% 
 

5.88 / 0% 
 

20 / 0 % 
 

11.76 / 0 % 
 

5.12 / 0% 
 

3.3 / 0% 
 

6 / 0% 
 

13.95 / 2.32 %  
 

Ptf_Apde 1 
 

2 

15.77 / 2.56 % 
 

16.18 / 0.15 % 

5 / 0 % 
 

37.5 / 0 % 

Ptf_Pde 1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

14.08 / 0.15 % 
 

12.65 / 1 % 
 

15.18 / 1.66 % 
 

20.74 / 2.53 % 
 

16.11 / 1.4 % 
 

13.98 / 1 % 
 

16.68 / 1.56 % 
 

17.96 / 1.5 % 

15.38 / 0 % 
 

22.22 / 0 % 
 

0 / 0 % 
 

7.9 / 7.9 % 
 

9.09 / 0 % 
 

4.76 / 0 % 
 

20.68 / 0 % 
 

12.9 / 0 % 

  3 TFs  
          (33 % / 66 % /100%) 

 

Combinational  
Pattern of TF 
and DE gene 

Cluster 
Index 

mTRIM RIFT 

Aptf_Apde 
 
 

1 
 

2 

18.27 / 1.63 / 0 % 
 

14.91 / 1.79 / 0.131 % 

50 / 20 / 0 % 
 

0 / 0 / 0 % 
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Aptf_Pde 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

14.08 / 1.53 / 0.05 % 
 

16.78 / 2.8 / 0.23 % 
 

12.63 / 3.08 / 0.37 % 
 

25.68 / 5.58 / 0.63 % 
 

18.76 / 4.44 / 0.52 % 
 

10.91 / 1.35 / 0.046 % 
 

16.55 / 2 / 0.2 % 

19.8 / 3.17 / 0.19 % 
 

11.15 / 0 / 0 % 
 

8.33 / 8.33 / 0 % 
 

47.36 / 0 / 0 % 
 

0 / 0 / 0 % 
 

14.28 / 0 / 0 % 
 

0 / 0 / 0 % 
 

5 / 0 / 0 % 
 

28.57 / 9.52 / 0 % 

Ptf_Apde 
 
 
 

1 
 

2 

25 / 5.55 / 0.25 % 
 

25.83 / 3.47 / 0.41 % 

0 / 0 / 0 % 
 

0 / 0 / 0 % 
 

Ptf_Pde 1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

20.58 / 0.25 / 0.11 % 
 

16.16 / 1.6 / 0.079 % 
 

21 / 6.12 / 0.67 % 
 

27.5 / 4.18 / 0.16 % 
 

16.8 / 4.24 / 0.48 % 
 

13.9 / 11.5 / 0 % 
 

12.78 / 1.92 / 0.0916 % 
 

19.9 / 3.69 / 0 % 

14.28 / 14.28 / 0 % 
 

20 / 0 / 0 % 
 

0 / 0 / 0 % 
 

0 / 25 / 0 % 
 

12.5 / 0 / 0 % 
 

0 / 0 / 0 % 
 

10 / 0 / 0 % 
 

0 / 0 / 0 % 
 
 
 

  4TFs 
(25 % / 50 % / 75 % / 100%) 

 
 

Combinational 
Pattern of TF 
and DE gene 

Cluster 
Index 

mTRIM RIFT 

Aptf_Apde 1 
 

2 

17.42 / 1.51 / 0 / 0 % 
 

18.31 / 3.01 / 0.2 / 0.01 %  

0 / 100 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

Aptf_Pde 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 

21.53 / 7.69 / 0.51 / 0 % 
 

18.52 / 4.93 / 0.85 / 0.06 % 
 

15.5 / 0.18 / 0.27 / 0 % 
 

28.45 / 8.72 / 1.95 / 0.075 % 
 

20.7 / 5.79 / 1.04 / 0.17 % 
 

12.16 / 1.84 / 0.19 / 0 % 
 

15.81 / 5.32 / 0.24 / 0.08 % 

0 / 0 / 0 / 0 % 
 

0 / 33.33 / 33.33 / 0 % 
 

77.78 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
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8 

 
25.74 / 5.36 / 0.62 / 0 % 

 

 
50 / 0 / 0 / 0 % 

 
Ptf_Apde 

 
 

1 
 

2 

INSIGNIFICANT 
 

20.13 / 0.34 / 0 / 0 % 

 
INSIGNIFICANT 

 
Ptf_Pde 1 

 
2 
 

3 
 

4 
 

5 
 

6 
7 
 

8 

22.6 / 5.36 / 0.69 / 0 % 
 

20.25 / 3.24 / 0.42 / 0 % 
 

24.7 / 6.5 / 2.57 / 0.18 % 
 

31.93 / 6.8 / 0.86 / 0.058 % 
 

19.28 / 6.71 / 1 / 0 % 
 

16.42 / 16.9 / 0 / 0 % 
14.4 / 2.2 / 0.16 / 0 % 

 
0 / 0 / 0 / 0 % 

 

0 / 50 / 0 / 0 % 
 

50 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

INSIGNIFICANT 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
0 / 0 / 0 / 0 % 

 
INSIGNIFICANT 

 

 

Table 5.5: Category II_TF to target gene matching considering the HUB gene in each cluster 

2 TFs 
 (50 % / 100%) 

Combinational 
Pattern of TF 
and DE gene 

Cluster 
Index 

mTRIM RIFT  

Aptf_Apde 1 
 

2 

10.5 / 0.15% 
 

9.91 / 0.22% 

INVALID 
 

0 / 0% 

Aptf_Pde 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

8.1 / 0.088 % 
 

0 / 0 % 
 

6.22 / 0 % 
 

0 / 0 % 
 

6.54 / 0 % 
 

48.11 / 12.85 % 
 

6.65 / 0.0924 % 
 

5.06 / 0 % 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

0 / 0% 
 

INVALID 
 

Ptf_Apde 1 
 

2 

0 / 0 % 
 

27.18 / 9.17 % 

INVALID 
 

50 / 0 % 
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Ptf_Pde 1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

6.49 / 0 % 
 

0 / 0 % 
 

11.07 / 0 % 
 

0 / 0 % 
 

21.77 / 0.81 % 
 

33.96 / 5.6 % 
 

27.67 / 11.1 % 
 

0 / 0 % 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

50 / 0 % 
 

INVALID 

  3 TFs  
          (33 % / 66 % /100%) 

 

Combinational 
Pattern of TF 
and DE gene 

Cluster 
Index 

mTRIM RIFT 

Aptf_Apde 
 
 

1 
 

2 

4 / 0 / 0 % 
 

11.85 / 0 / 0 % 

INVALID 
 

0 / 0 / 0 % 

Aptf_Pde 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

11.11 / 0 / 0 % 
 

0 / 0 / 0 % 
 

0 / 0 / 0 % 
 

0 / 0 / 0 % 
 

13.67 / 0.87 / 0 % 
 

46.55 / 31.76 / 5.15 % 
 

19.63 / 0 / 0 % 

0 / 0 / 0 % 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

0 / 0 / 0 % 
 

INVALID 

Ptf_Apde 
 
 
 

1 
 

2 

0 / 0 / 0 % 
 

5 / 0 / 0 % 

INVALID 
 

0 / 0 / 0 % 
 

Ptf_Pde 1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

20 / 0 / 0 % 
 

0 / 0 / 0 % 
 

17.21 / 0 / 0 % 
 

0 / 0 / 0 % 
 

48.78 / 2.77 / 0 % 
 

41.18 / 0 / 0 % 
 

0 / 0 / 0 % 
 

0 / 0 / 0 % 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

0 / 0 / 0 % 
 

INVALID 
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  4TFs 
(25 % / 50 % / 75 % / 100%) 

 
 

Combinational 
Pattern of TF 
and DE gene 

Cluster 
Index 

mTRIM RIFT 

Aptf_Apde 1 
 

2 

0 / 0 / 0 / 0 % 
 

18.53 / 0 / 0 / 0 % 

INVALID 
 

0 / 0 / 0 / 0 % 
 

Aptf_Pde 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

11.32 / 0.41 / 0 / 0 % 
 

43.78 / 35.75 / 10.86 / 0.45 % 
 

23.81 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

INVALID 
 

0 / 0 / 0 / 0 % 
 

INVALID 
 

Ptf_Apde 
 
 

1 
 

2 

 
INSIGNIFICANT 

 

 
INSIGNIFICANT 

 
Ptf_Pde 1 

 
2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

40.63 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

57.14 / 7.14 / 0 / 0 % 
 

66.67 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

0 / 0 / 0 / 0 % 
 

INVALID 
 

INVALID 
 

INVALID 
 

INSIGNIFICANT 
 

INVALID 
 

INVALID 
 

0 / 0 / 0 / 0 % 
 

INSIGNIFICANT 
 

 

In the above tables, INVALID means that HUB gene is not present as a possible target 

for any set of regulators (TF) and INSIGNIFICANT means unavailability of significant 

TF combinations corresponding to a target DE gene. In a different view, the matching 

perspective on the basis of comparative bar charts between mTRIM and RIFT 

representing the average match under 2, 3 and 4 TF gene regulatory architectures are 

given next in Figure 5.2. Here, the black bar indicates mTRIM and the grey bar 

indicates the proposed RIFT architecture. 



                                       Chapter 5: Developing Time Variant TF Regulatory Networks for DE Genes 
 

 Page 180 
 

  

 

 
 
 
 
 
 
 
 
 
 
 

2 TF regulatory architectures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 TF regulatory architectures 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 TF regulatory architectures 
 

Figure 5.2: Comparative bar charts showing average matching of 2, 3, and 4 TF gene regulatory 

architectures with published databases 
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The fruitfulness of the analysis is depicted on the basis of the AUROC plots dependent 

upon the specificity and sensitivity values of each DE gene present in individual 

clusters. For example, in ApTF_ApDE case, in each cluster of target DE genes, cluster 

specific plots are generated based on the interactions present between a target ApDE 

gene and all ApTFs. That is, for each DE gene, specificity and sensitivity needs to be 

computed. Accordingly, in this example there are two plots to compare the 

performances of mTRIM and RIFT from the AUROC (Area under Region of 

Characteristic).  Similarly, there exist 2 plots for PTF_ApDE and 8 plots in each case of 

ApTF_PDE and PTF_PDE. The AUROC plots for ApTF_ApDE, ApTF_PDE, 

PTF_ApDE and PTF_PDE are given in Figures 5.3, 5.4, 5.5 and 5.6 respectively. In 

each plot, the dashed line corresponds to the proposed RIFT architecture and the solid 

line corresponds to mTRIM approach. In this regard, the specificity and sensitivity of 

any network can be defined as follows: 

Specificity= 1- FPR, Sensitivity= TPR, where TPR stands for True Positive Rate and 

FPR stands for False Positive Rate.  

This TPR and FPR are defined as: 

TPR = TP / (TP+FN) and FPR = FP / (FP+TN) where, 

TP = True Positive or regulations present in the reported databases as well as in the 

obtained results. 

FP = False Positive or regulations absent in the reported databases but present in the 

obtained results. 

TN = True Negative or regulations absent in both the databases as well as in the 

obtained results. 

FN = False Negative or regulations present in the reported databases, but absent in the 

obtained results. 
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Cluster 1 

 

Cluster 2 

Figure 5.3: Area under Region of Characteristic difference between RIFT and mTRIM (ApTF_ApDE) 
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Cluster 1 

Cluster 2 

Figure 5.4: Area under Region of Characteristic difference between RIFT and mTRIM 

(ApTF_PDE)..contd 
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Cluster 3 

Cluster 4 

Figure 5.4: Area under Region of Characteristic difference between RIFT and mTRIM 

(ApTF_PDE)..contd. 
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Cluster 5 

Cluster 6 

Figure 5.4: Area under Region of Characteristic difference between RIFT and mTRIM 

(ApTF_PDE)..contd. 
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Cluster 7 

Cluster 8 

Figure 5.4: Area under Region of Characteristic difference between RIFT and mTRIM (ApTF_PDE) 
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Cluster 1 

Cluster 2 

Figure 5.5: Area under Region of Characteristic difference between RIFT and mTRIM (PTF_ApDE) 
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Cluster 1 

Cluster 2 

Figure 5.6: Area under Region of Characteristic difference between RIFT and mTRIM (PTF_PDE)..contd 
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Cluster 3 

Cluster 4 

Figure 5.6: Area under Region of Characteristic difference between RIFT and mTRIM (PTF_PDE)..contd 
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Cluster 5 

Cluster 6 

Figure 5.6: Area under Region of Characteristic difference between RIFT and mTRIM (PTF_PDE)..contd 
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Cluster 7 

Cluster 8 

Figure 5.6: Area under Region of Characteristic difference between RIFT and mTRIM (PTF_PDE) 

5.2.4 Discussion: From the involved computations, it has been observed that the 

number of TF genes present in a group for controlling a target DE gene is more in the 

simple AfnScore based mTRIM analysis compared to the proposed algorithm based on 

RIFT score. In the mTRIM case, collaborative groups consisting of maximum 5 TF 

genes are found, whereas the RIFT architecture yields groups of maximum 4 TF genes. 

However, this kind of result is not surprising as the proposed RIFT based network 

design follows a very stringent measure in order to choose regulator sets compared to 
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mTRIM. As the temporal differential mode specific regulatory pattern is absent in the 

case of mTRIM, hence all TF genes can be potential regulators of each target DE gene. 

Accordingly, every TF to target DE gene interaction is a valid interaction suitable for 

significance assessment. But this novel RIFT based architecture initially filters out those 

TF-DE gene interactions showing irregularity or inconsistency in the composite 

temporal differential regulation between the phase pairs of HeLa cell cycle data, 

considering the middle phase to be the control or reference phase. This is followed by 

formation of TRN structures using the significantly assessed filtered TF genes. Hence, 

formation of higher order TF gene collaborations gets restricted. But even if lower sized 

groups are formed in this RIFT modelling, the specificity and sensitivity of the network 

designs found in every cluster of DE genes (corresponding to the various periodic and 

aperiodic regulatory combinations) happen to be far better or have outperformed the 

AfnScore based mTRIM analysis. This indicates the true power of the algorithm through 

understanding the specific temporal or time variant role of differential regulation 

present in a TRN. 

Apart from above, there are certain significant observations related to the obtained 

results. One of these (already mentioned in Table 5.3) is about TF genes that are DE as 

well. It has been checked that there are 4 such genes participating in the network 

reconstruction process. Here, the TF to TF interactive regulations (interact amongst 

themselves to control some other targets) are being verified by the TRRUST [20] 

database. A typical example in this regard can be found in aperiodic TF-periodic DE 

gene regulation from the eighth cluster. Among the 72 DE targets present in the cluster, 

the gene E2F1 is identified as a TF gene. Validation done using TRRUST shows TF 

genes EP300, FOXO3, NFYA, NFYB and EGR1 interactively communicating with 

E2F1. In this regard, the result clarifies EP300 is significantly associated with E2F1 via 

single TF regulation in all the four composite temporal modes (AN_RS_AN, 

AS_RN_AS, RN_AS_RN and RS_AN_RS). Similarly FOXO3, NFYA, and NFYB show 

significant single TF gene composite temporal regulation with target E2F1 in 

AS_RN_AS, AN_RS_AN and RN_AS_RN modes respectively. However for the TF 

regulator EGR1, it has been checked through the implementation that its single 

regulatory mechanism is insignificant, but together with other TF genes does interact 

significantly with the target regulatee E2F1. Another significant observation can be 

related to multiple TF based composite regulatory actions. To elucidate, an example 
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considering three TF genes W, X, and Y controlling a target gene Z via a combination 

of composite temporal regulatory modes (A B C) is the matter of concern. Here, 

assuming that W and X are the significant regulators of Z verified through the 

interactive information present in the databases, the novel research architecture using 

the RIFT score confirms their coexistence with Y in the regulation of Z. This also 

clarifies that W and X together is not significant enough to regulate Z with the help of 

some other TF gene/s via other composite temporal mode differential regulations. 

5.3 Conclusion 

Given any time series gene expression data, the regulatory analysis can be done in two 

ways. In one case, instantaneous or first order regulatory system architecture such as 

[25] can be realized and in the latter through higher order regulations [26-28] involving 

time delayed networks. In the biological context it is mostly observed that a gene can 

regulate another gene by its products (RNAs or proteins). In this regard, a finite delay 

does come into existence which may include one or more of the following factors like 

the translation time of the source gene, protein folding time, translocation time, 

promoter binding time, and transcription time of the target gene.  Although some 

significant algorithms [29-31] have been developed to analyze and process time series 

informational sequence verifying the time delayed effects in higher order gene 

regulatory networks, but most of these deal with short time series sequences. However, 

considering the contemporary research trend in this area, such higher order regulatory 

networks have minimal or trivial exploration of the functional and logical regulatory 

aspects at specific activation time points which happens to be the alma mater of this 

research contribution, assuming first order regulatory network. 

5.4 References 

[1] A. Fujita, P. Severino, K. Kojima, J.R. Sato, A.G. Patriota, S. Miyano, “Functional 
clustering of time series gene expression data by Granger causality”, BMC Systems 
Biology, 6, Article No.137, October 2012, https://doi.org/10.1186/1752-0509-6-137 

[2] Y. Luan and H. Li, “Model-based methods for identifying periodically expressed 
genes based on timecourse microarray gene expression data”, Bioinformatics, 20(3), 
332–339, February 2004, https://doi.org/10.1093/bioinformatics/btg413 

[3] M.L. Whitfield, G. Sherlock, A.J. Saldanha, J.I. Murray, C.A. Ball, K.E. Alexander, 
J.C. Matese, C.M. Perou, M.M. Hurt, P.O. Brown, D. Botstein, “Identification of genes 
periodically expressed in thehuman cell cycle and their expression in tumors”, 



                                       Chapter 5: Developing Time Variant TF Regulatory Networks for DE Genes 
 

 Page 194 
 

Molecular Biology of the Cell, 13(6), 1977–2000, June 2002, 
https://doi.org/10.1091/mbc.02-02-0030 

[4] L.-Y. Lo, K.-S. Leung, and K.-H. Lee, “Inferring time-delayed causal gene network 
using time-series expression data,” IEEE/ACM Transactions on Computational Biology 
and Bioinformatics, 12(5), 1169–1182, September/October 2015, 
https://doi.org/10.1109/tcbb.2015.2394442 

[5] S. Awad and J. Chen, “Inferring transcription factor collaborations in gene 
regulatory networks”, BMC Systems Biology, 8, Article No.S1, January 2014, 
https://doi.org/10.1186/1752-0509-8-S1-S1 

[6] C-H. Yeang and T. Jaakkola, “Modelling the combinational functions of multiple 
transcription factors”, Journal of Computational Biology, 13(2), 463–480, March 2006, 
https://doi.org/10.1089/cmb.2006.13.463  

[7] S. Awad, N. Panchy, S.-K. Ng, and J. Chen, “Inferring the regulatory interaction 
types of transcription factors in transcriptional regulatory networks”, Journal of 
Bioinformatics and Computational Biology, 10(5), Article No.1250012, October 2012, 
https://doi.org/10.1142/s0219720012500126 

[8] A. Majumder and M. Sarkar, “Simple transcriptional networks for differentially 
expressed genes”, In Proceedings of IEEE International Conference on Signal 
Propagation and Computer Technology, Ajmer, India, 642–647, July 2014, 
https://doi.org/10.1109/ICSPCT.2014.6885016 

[9] A. Majumder and M. Sarkar, “Paired transcriptional regulatory system for 
differentially expressed genes”, Lecture Notes on Information Theory, 2(3), 266–272, 
September 2014, doi: 10.12720/lnit.2.3.266-272 

[10] H. Yu, B-H. Liu, Z-Q. Ye, C. Li, Y-X. Li, and Y-Y. Li, “Link-based quantitative 
methods to identify differentially co-expressed genes and gene pairs”, BMC 
Bioinformatics, 12, Article No.315, August 2011, https://doi.org/10.1186/1471-2105-
12-315 

[11] J. Yang,  H. Yu,  B-H. Liu,  Z. Zhao,  L. Liu, L-X. Ma,  Y-X. Li, and Y-Y. Li, 
“DCGL v2.0: An R package for unveiling differential regulation from differential co-
expression”, PloS One, 8(11):e79729, November 2013, 
https://doi.org/10.1371/journal.pone.0079729 

[12] J. Ernst, O. Vainas, C.T. Harbison, I. Simon, and Z. Bar-Joseph, “Reconstructing 
dynamic regulatory maps” Molecular Systems Biology, 3, Article No.74, January 2007, 
https://doi.org/10.1038/msb4100115  

[13] R.O. Duda, P.E. Hart, and D. G. Stork, “Pattern Classifications”, Hoboken, NJ, 
USA: Wiley, vol. 2, 2001. 

[14] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchinson, “Biological Sequence 
Analysis: Probabilistic Models of Proteins and Nucleic Acids”, Cambridge, United 
Kingdom: Cambridge Univ. Press, vol. 1, 1998. 

[15] A. Reverter, N.J. Hudson, S.H. Nagaraj, M. P-Enciso, and B.P. Dalrymple, 
“Regulatory impact factors: Unraveling the transcriptional regulation of complex traits 



                                       Chapter 5: Developing Time Variant TF Regulatory Networks for DE Genes 
 

 Page 195 
 

from expression data”, Bioinformatics, 26(7), 896–904, April 2010, 
https://doi.org/10.1093/bioinformatics/btq051 

[16] F. Xiao, L. Gao, Y. Ye, Y. Hu, and R. He, “Inferring gene regulatory networks 
using conditional regulation pattern to guide candidate genes”, PLoS One, 
11(5):e0154953, May 2016, https://doi.org/10.1371/journal.pone.0154953 

[17] F. Liu, S-W. Zhang, W-F. Guo, Z-G. Wei, and L. Chen, “Inference of gene 
regulatory network based on local Bayesian networks,” PLoS Computational Biology, 
12(8):e1005024, August 2016, https://doi.org/10.1371/journal.pcbi.1005024 

[18] X. Zhang, J. Zhao, J-K. Hao, X-M. Zhao, and L. Chen, “Conditional mutual 
inclusive information enables accurate quantification of associations in gene regulatory 
networks”, Nucleic Acids Research, 43(5):e31, March 2015, 
https://doi.org/10.1093/nar/gku1315 

[19] G. Zheng, Y. Xu, X. Zhang, Z-P. Liu,  Z. Wang,  L. Chen, and X-G. Zhu, “CMIP: 
A software package capable of reconstructing genome-wide regulatory networks using 
gene expression data”, BMC Bioinformatics, 17, Article No.535, December 2016, 
https://doi.org/10.1186/s12859-016-1324-y 

[20] H. Han, H. Shim, D. Shin, J.E. Shim, Y. Ko, J. Shin, H. Kim, A. Cho, E. Kim, T. 
Lee, H. Kim, K. Kim, S. Yang, D. Bae, A. Yun, S. Kim, C. Y. Kim, H. J. Cho, B. Kang, 
S. Shin, and I. Lee, “TRRUST: a reference database of human transcriptional regulatory 
interactions”, Scientific Reports, 5, Article No.11432, June 2015, 
https://doi.org/10.1038/srep11432 

[21] A. Conesa, M. J. Nueda, A. Ferrer, and M. Talon, “maSigPro: A method to identify 
significantly differential expression profiles in time-course microarray experiments”, 
Bioinformatics, 22(9), 1096–1102, May 2006, 
https://doi.org/10.1093/bioinformatics/btl056 

[22] M. Ahdesmaki, K. Fokianos, and K. Strimmer, “GeneCycle: Identification 
Periodically Expressed Genes”, R software: Gene-Cycle_1.1.5, Available online at: 
https://cran.r-project.org/package=GeneCycle 

[23] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel, “e1071: Misc 
Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), 
TU Wien,” R software: e1071_1.7-13, Install the latest version of this package by 
entering the following in R: install.packages("e1071", repos="http://R-Forge.R-
project.org") 

[24] Y. Rahmtallah, F. Emmert-Streib, and G. Glazko, “Gene Sets Net Correlations 
Analysis (GSNCA): A multivariate differential co-expression test for gene sets”, 
Bioinformatics, 30(3), 360–368, February 2014, 
https://doi.org/10.1093/bioinformatics/btt687 

[25] A. Wise and Z. Bar-Joseph, “SMARTS: Reconstructing disease response networks 
from multiple individuals using time series gene expression data”, Bioinformatics, 
31(8), 1250–1257, April 2015, https://doi.org/10.1093/bioinformatics/btu800 

[26] J-R. Kim, S-M. Choo, H-S. Choi, and K-H. Cho, “Identification of gene networks 
with time delayed regulation based on temporal expression profiles”, IEEE/ACM 



                                       Chapter 5: Developing Time Variant TF Regulatory Networks for DE Genes 
 

 Page 196 
 

Transactions on Computational Biology and Bioinformatics, 12(5), 1161–1168, 
September/October 2015, https://doi.org/10.1109/tcbb.2015.2394312 

[27] L-Y. Lo, K-S. Leung, and K-H. Lee,  “Inferring time-delayed causal gene network 
using time-series expression data”, IEEE/ACM Transactions on Computational Biology 
and Bioinformatics, 12(5), 1169–1182, September/October 2015, 
https://doi.org/10.1109/tcbb.2015.2394442 

[28] H. Chen, P.A. Mundra, L.N. Zhao, F. Lin, and J. Zheng, “Highly sensitive 
inference of time-delayed gene regulation by network deconvolution,” BMC Systems 
Biology, 8, Article No. S6, December 2014, https://doi.org/10.1186/1752-0509-8-S4-S6 

[29] S. Dejean, P.G.P. Martin, A. Baccini, and P. Besse, “Clustering time-series gene 
expression data using smoothing spline derivatives”, EURASIP Journal on 
Bioinformatics and Systems Biology, 2007(1), Article No. 70561, May 2007, 
https://doi.org/10.1155/2007/70561 

[30] J. Ernst, and Z. Bar-Joseph, “STEM: A tool for the analysis of short time series 
gene expression data”, BMC Bioinformatics, 7, Article No.191, April 2006, 
https://doi.org/10.1186/1471-2105-7-191 

[31] S. Wichert, K. Fokianos, and K. Strimmer, “Identifying periodically expressed 
transcripts in microarray time series data”, Bioinformatics, 20(1), 5–20, January 2004, 
https://doi.org/10.1093/bioinformatics/btg364 

 

 



 Page 197 
 

 

 

 

 

 

 

 

 

 

 

Chapter 6 

Confirming the Presence of 
Unknown Transcription Factor 

Genes on a Differential Gene 
Regulatory Link 

  

  

  

  

  

  

  

  

Related Publication  

[1] A. Majumder and P. Sharma, “Topologically Overlapped Fused LASSO Measure for 
Reconstructing Gene Regulation Networks”, Published online: 13 Nov 2023, IETE Journal of 
Research, 2023.  
https://doi.org/10.1080/03772063.2023.2280620 



 



                            Chapter 6: Confirming the Presence of Unknown TF Genes on a Differential GRL 
 

 Page 199 
 

6.1 Introduction 

Identifying target genes in Gene Regulation Network (GRN) models has always been an 

open challenge in Systems Biology [1]. Here, the coordinated action of different 

regulatory mechanisms affects either single independent or mutually dependent 

molecular activities. In the previous two chapters, contributions have been made in 

understanding this regulatory mechanism through single and collaborative scenarios via 

static (using identical and independently distributed gene expression profiles) and 

dynamic time variant (using highly auto-correlated time series gene expression profiles 

at specific activation time instants) network architecture formations. In this regard, the 

proposed and validated formations of Transcriptional Regulatory Networks (TRNs) or 

Gene Regulatory Networks (GRNs) which have been undertaken primarily incorporate 

direct causal links. However, in this regard, indirect gene regulatory architectures or 

some form of indirect causal effect on any target gene may be promising enough 

considering varied topological structures and unknown gene regulation factors [2]. Such 

forms of indirect causal regulatory aspects can be investigated, keeping in force all 

perturbation experiments of a dataset. It is noteworthy that contemporary state of 

research primarily highlights direct interaction networks which mostly forego the 

inevitable presence of a third entity, if any, towards varied forms of causal regulations. 

In this chapter, a contribution related to such complex indirect regulatory architecture 

has been discussed that helps in unveiling the genetic wiring through the Fused Least 

Absolute Shrinkage and Selection Operator (Fused-LASSO) technique with a 

Topological Overlap (TO) measure as the interaction structure. In this connection, the 

different statistically significant hierarchical regulation outcomes maintaining parity 

with the direct interaction structures, if any, to the target genes may throw new light on 

gene regulation statistics. 

6.2 A Topological Fused LASSO framework discovering unknown gene regulation 

or transcriptional factors 

In Transcriptional Regulatory Networks (TRNs), considered as a subset of the Gene 

Regulatory Networks (GRNs), the Transcription Factors (TFs) or the protein-building 

causal factors of any target gene generally act as concertmasters of the orchestrated 

biological actions [3]. The inference from any TRN or GRN is primarily based on the 

application of different kinds of similarity measure [4-8] (like correlation, mutual 
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information, spline regression, and polynomial regression) defined direct and indirect 

causal regulations [9-11]. In this regard, most of the direct causal regulatory network 

formations lack the complete co-expression structure and the connectivity pattern 

between genes. 

It is a well-established thought present in existing literature [12,13] that not only 

Differential Expression (DE) but Differential Connectivity (DC) across conditions leads 

to varied functionalities of a gene set. In this regard,  a Topological Overlap (TO) metric 

based on a common set of neighbours had been developed to decide the level of 

connectivity between two genes [12]. From various TO measures, the far less 

investigated Generalized Topological Overlap Measure (GTOM) can be selected to 

portray a complete picture of indirect association among genes. In this regard, the 

flexibility of assessing indirect regulatory architecture depends on the number of 

intermediate nodes/genes. The focus on the indirect regulatory architecture stems from 

the fact that driver genes in carcinogenic studies may bring a phenotypic change in a 

cell considering the overall co-expression pattern and the mutation frequency in some 

sets of localized genes [14-17]. In each localized set or pathway measuring the 

indispensability of the driver gene followed by its distinct mutational change compared 

to neighbouring genes helps in understanding the heterogeneous role of the driver in the 

presence of the associated genes in cancer cells [18]. To understand such localized 

pathways, the above mentioned GTOM measure can be applied on a regression-based 

method to extract one to many associations among genes. In this regard, a regularized 

regression model called least absolute shrinkage and selection operator (LASSO) is 

chosen in this research because of its ability to infer correctly in high dimensional data 

sets [19]. Fundamentally the LASSO operator shrinks some coefficients and makes 

others zero, and thus tries to hold the functional attributes of both subset selection and 

ridge regression [20]. In this specific contribution towards understanding the indirect 

roles of one or more regulator genes, a fused LASSO based framework is developed 

using the Generalized Topological Overlap Measure (GTOM) [21] as the fundamental 

measure in the LASSO structure instead of using the gene expression values [22]. In 

this perspective, mTOM (multiple Topological Overlap Measure) signifying the 

regulatory application in the nth order variant of GTOM [21] maintains a crucial role in 

finding the unknown or hidden factors of regulation. 
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6.2.1 The basic findings: The performance of the proposed topologically overlapped 

fused LASSO measure for reconstructing regulatory networks has been checked in four 

real datasets; YEAST 5 ON/OFF data [23], YEAST 11, YEAST Cell Cycle [24], and 

Human Cancer data (HeLa) [1,25]. In the context of YEAST 5 and YEAST 11 

regulation network, the regulatory performance outcomes has been checked and 

compared with some benchmark algorithms like Time Delay Network De-convolution 

(TD_ND) [26], Time Delay ARACNE [24], Correlation with Lasso (XCorr+Lasso) 

[27], Delay Detection Lasso (DD-Lasso) [28], and Group Lasso [29]. In each case, the 

improvement is judged in terms of precision, recall, and F score. The above 

comparative analysis has been made complete through inclusion of novel interactions 

obtained from YAGM [30] and Regulator DB [31] in addition to available benchmark 

networks given in [24]. An unmitigated investigation has also been carried out 

involving datasets possessing a large number of gene entities like the YEAST cell cycle 

and HeLa. In the context of YEAST cell cycle data, YEASTRACT [32] along with 

YAGM and Regulator DB is utilized to acquire all biologically relevant TF to TF and 

TF to target interaction particulars. In the case of HeLa, the same is done with the help 

of the TF2target [33] and TRRUST [34] database. 

6.2.2 Methodology: The algorithm, mentioned below, is implemented in a LASSO 

framework. It is documented in [20] that LASSO relies on the combination of L2 and 

L1 norms, introducing sparsity by reducing the coefficients to zero. Moreover, the 

fusion in LASSO is meant to deal with problems with a reasonable order of features.  

Another added characteristic of fused LASSO happens to be the successive differences 

of regression coefficients in ordered fashion over and above minimization constraint on 

the regression coefficients.  

The prime requirement of the algorithm is about assimilating information on the 

difference between semi-direct and higher-order indirect connectivities, between the 

target and controller genes. In the cases of YEAST 5 and YEAST 11, every gene is 

considered a target, with all other genes being the candidate regressors or potential 

regulators. However, to indulge and understand some significant portions of the varied 

forms of gene regulations present in complex pathways involving immense gene to gene 

associations, the analysis is conducted verifying the biological regulation performance, 

in the context of the YEAST Cell Cycle and HeLa Cancer Data. 
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ALGORITHM: Gene Regulatory Network using mTOM based LASSO (TO-LASSO) 

 

Input: 
1. Dataset with multiple conditions, having N TF and T target genes. 
2. Known biological database for validation. 

Output: 
Gene regulatory pathways with significant contribution of unknown or hidden 
regulators on multiple differential regulatory links.  

 
Description 
1: Initialize the set of Regulatory Pathways RP =   
2: for each Dataset 
3:   initialize responce vector Y= , predictor matrix X= , weight matrix W=  
4:       for each condition 
5:          for each target t (tT) 
6:             calculate Topological Overlap (TO) between the target gene t and each TF            
7:                 for each reference TF gene n (nN) 
8:                        calculate multiple Topological Overlap Measure (mTOM) between the  
                           reference TF gene n and target gene t considering all possible    
                           combinations of other TF genes                                                         
9:                 end for   
10:         end for 
11:      end for 
12:      for each target t (tT) 
13:           Append the vectors of  (N-1) TO values obtained in each condition to get the       
                single response vector Y 
14:           Append the matrices of mTOM  values obtained in each condition to get the  
                predictor matrix X 
15:           Calculate the matrix comprising probability of differential connectivities  
                (pDC) between the vector of (N-1) TO values and the corresponding mTOM 
                matrix in each condition          
16:      Generate weight matrix W putting in place the pDC matrices in a condition  
                specific manner 
17.         Apply fused LASSO modeling to compute optimized regressor vector (β) 
18.           Use β to find most similar indirect regulatory pathways between a TF and the  
                target gene considering all conditions of interest 
19:           Set of Regulatory Pathways RP is appended with statistically significant  
                indirect regulatory pathways to the target gene 
20:      end for 
21: end for 

 
 
The above algorithm works on any dataset having two or more experimental conditions.  

Lines 4 through 6 along with lines 12 and 13 of the developed algorithm highlight the 

1st order topological overlap (TO) or semi direct connectivity between a target gene ‘t’ 

and all other genes in each experimental condition. In this regard, a TO valued response 
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vector ‘Y’ can be obtained for each target gene ‘t’. Hence, assuming N-1 regulator or 

TF genes, the structure of ‘Y’ in the presence of two experimental conditions will be: 

 

Here, Cn stands for nth condition, and mx,t represents the TO or semi direct connectivity 

between xth regressor and ‘t’. The concept of mx,t can be elucidated as given in [21]: 

𝑚௫,௧ =
|ே(௫,௧)|ା௔ೣ೟

௠௜௡{|ே(௫,ି௧)|,|ே(ି௫,௧)|}ା ൫ೇ
మ൯

   where, ),( txN = 
 xtu

xutu aa
,

 

                                                                       &  ),( txN  =



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txxu aa
 

Above, atu stands for the correlation between t and u. V stands for the number of 

participating nodes required to calculate mTOM between source and target, including 

both. In the above context, two nodes (x and t) are in consideration. Thus, V=2. The 

binomial coefficient given in the denominator gives us the upper bound of axt. In other 

words, only one connection is possible between ‘x’ and ‘t’. The 1st order topological 

overlap states the physical dependence between two genes considering the effect of 

direct and other intermediate genes, one at a time. In other words, the direct dependency 

is considered or studied in the presence of individual involvement of the rest (N-2) 

genes.  Putting n=2, the size of the vector ‘Y’ is [2(N-1)×1]. 

Next thing is to calculate the predictor matrix ‘X’ for each target gene following lines 7 

through 9 and 14 of the designed algorithm. It comprises of mTOM values between a 

target gene ‘t’ and each reference TF or regulator gene considering all possible 

combinations of the other regressors (TFs or regulator genes). In this regard, the 

increasing degree of connectivity in each condition is considered. Hence, with n=2 

experimental conditions, the structure of ‘X’ is: 
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For the xth TF gene acting as source, 1TOM can be written as mx,y,t indicating the overlap 

between x and t via y, i.e. depicting full indirect connectivity of order one. As given in 

[21], the mathematical representation of mTOM is: 
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,,  

 

and      ),,( tyxN  = ytxt
yxu

yuxu aaaa 
 ,  

The case considered in the above expression has three different nodes in alignment (x, 

y, and t). Hence, the value of V= 3. In this context, the complete set of 1TOM can be 

framed considering individually (i.e. y) all the remaining N-2 genes; finally adding the 

individual results. A similar analogy is applicable for all higher order mTOM analysis. 

In the case of higher order mTOM analysis, more than one intermediate TF regressor or 

regulator gene comes in consideration, i.e. delving into indirect connectivity of order 

more than one. In other words, mTOM analysis with m >1 depicts proper indirect 

connectivity to a target gene. Here, the size of is (N-1) × (N-2). Accordingly, 

the dimension of matrix ‘X’ is 2(N-1) × 2 (N-2). 

For large datasets like YEAST cell cycle and HeLa, only those genes are taken in the 

higher orders (greater than one), which have some biological evidence of co-existence 

with the source gene ‘x’. For example, in the context of HeLa, the two databases 
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TF2target [33] and TRRUST [34] are considered to reconstruct TF to target based GRN 

accurately. At the initial stage, these two databases have been used to form a regulatory 

pathway that states the possible number of regulators that may be present in a hierarchy 

(indirect mode of interaction to a target gene) for a reference gene ‘t1’. For example, it 

is assumed that genes 'a1', 'b1', and 'c1' are the first set of regulatees of ‘t1’. Further 

exploration of the database reveals that gene 'a1' controls 'm1' and 'n1';  gene 'b1' 

controls gene 'o1' and gene 'c1' controls gene 'p1' with no additional regulatee for any 

one of 'm1', 'n1', 'o1' or 'p1'. With this assumption, mTOM computation corresponding 

to 't1' in sparse matrix X is completed. However, for small datasets like YEAST 5 or 

YEAST 11, all possible regulator combinations are considered in the mTOM 

computation discussed above.  

After calculating ‘X’ and ‘Y’, the weight matrix W is framed for any pair. It is done by 

calculating the mean probability of differential connectivity between semi-direct and 

higher-order indirect associations, as given in line 15 of algorithm. Finally, as per line 

16 of the same algorithm, the weight matrix is calculated as: 


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Here, above ‘j’ indicates a particular degree of connectivity; effectively counting the 

number of regulators that might be present in the regulation path to the target gene. 

Effect of all possible combination of regulators can be obtained simply by varying the 

degree ‘j’.  In the above equation, W portrays the statistical significance of the 

similarity of differential connectivity between target and regulators, considering semi-

direct and fully indirect perspective with varying degrees of connectivity. In other 

words, corresponding to a degree ‘j’, if any entry of W is quite low, the similarity 

between semi-direct and fully indirect situation with degree ‘j’ is statistically significant 

for the concerned target and the source gene under consideration. Hence, dimensionally 

is 1×(N-2). Thus, for (N-1) regulators, the size of C
jYP ,
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becomes (N-1) × (N-2). Hence, identical to ‘X’, the total dimension of ‘W’ is 

[2(N-1) × 2(N-2)].  

At this point, comes the regression vector  between ‘Y’ and ‘X’ across each condition.  

Fetching the concept from [22], the lasso term  
1

12 CC    is added to ensure that 

the two reconstructed networks are as close as possible. In this regard, the following 

action is taken as per line 17 of the algorithm. 

]min[argˆ
1211

2

2
12 CCWXY     

Here, the best possible estimate of the regression vector is the motto, keeping in frame 

simultaneous optimization of tuning parameters 1  and 2 . R package ‘GLMNET’ 

[35] has been used to obtain the optimized tuning parameters.  Following line 18 of the 

algorithm, the vector  is used to extract out interactions to the target gene from a 

source gene that shows a similar type of connectivity between semi-direct and 

completely indirect connectivity of all possible degrees till (N-2) or as the case may be 

depending on biological pathway evidence. 

At the ultimate level, before carrying any comparison, the values ̂ , 1 and 2 are 

applied in the equation 
1211

2

2
12 CCWXYf    separately in each 

condition. A pair is considered accurate, provided the source gene yields a significantly 

low score in 'f' vector (fused LASSO vector) per condition of interest. This approach 

can suitably be extended to more than two conditions of interest, provided statistical 

significance analysis of the ‘f’ vector shows a low p-score in each condition of interest. 

However, in such a case, higher number of added LASSO terms toward computation of 

the regression vector will come into the application. It means with four conditions of 

interest with C1 indicating the control state, the added lasso terms including the tuning 

parameters will be like  
12

12 CC    ,
1

3 13 CC    , and 
1

4 14 CC   .  

6.2.3 Results: The algorithm discussed above has been applied on four datasets 

(individual application outcomes are shown below) to reconstruct GRNs or TRNs, 

wherever applicable, followed by checking the robustness of the approach through the 

network decisive parameters, namely Precision, Recall, and/or F score. These 

parameters can be defined as follows: 

C
jYP ,
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Precision (i.e. P) = True Positive / (True Positive + False Positive), i.e. TP/(TP+FP) 

Recall (i.e. R) = True Positive / (True Positive + False Negative), i.e. TP/(TP+FN) 

& F score = 2×Precision×Recall / (Precision + Recall), i.e. 2PR/(P+R) 

Above, TP = True Positive or regulations present in the reported databases as well as in 

the obtained results, FP = False Positive or regulations absent in the reported databases 

but present in the obtained results, TN = True Negative or regulations absent in both the 

databases as well as in the obtained results, FN = False Negative or regulations present 

in the reported databases, but absent in the obtained results. 

The various datasets used to prove the robustness of the research work presented in this 

chapter through comparative analysis with standard benchmark algorithms and/or 

checking the level of statistical similarity with biological evidence of hierarchical gene 

regulatory pathways are presented below. Henceforth, the abbreviation TO-LASSO 

(mentioned in the algorithm nomenclature as well) is used to present the research 

conducted with the designed algorithm. 

At first the results from YEAST 5 ON/OFF data:  Here switching between ON and OFF 

states can be done by formulating glucose and galactose in cells. The 5 genes under 

consideration in this process are SWI5, ASH1, CBF1, GAL4, and GAL80. Culturing of 

cells and corresponding detailed mechanisms can be found in [23]. GRN obtained from 

the data by applying TO-LASSO is given in Figure 6.1. In the figure, solid lines 

represent True Positives and dashed lines signify False Positives. 

 

Figure 6.1: TO-LASSO based GRN for YEAST ON/OFF Data 
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The results of Precision, Recall, and F score after implementing TO-LASSO and 

comparing with the standard benchmark algorithms (already mentioned in section 6.2.1) 

are listed in Table 6.1. 

Table 6.1: Comparative results from YEAST ON/OFF data 

Method Dataset Precision Recall F Score 

TO-LASSO 

Yeast 5 0.8 0.727 0.762 

Yeast 5 ON 0.75 0.818 0.78 

Yeast 5 OFF 0.66 0.909 0.77 

DD LASSO 
Yeast 5 ON 0.58 0.63 0.61 

Yeast 5 OFF 0.571 0.6 0.545 

Group LASSO 
Yeast 5 ON 0.308 0.444 0.364 

Yeast 5 OFF 0.371 0.436 0.4 

TD_ND 
Yeast 5 ON 0.643 0.818 0.72 

Yeast 5 OFF 0.625 0.909 0.741 

TD_ARACNE 
Yeast 5 ON 0.667 0.182 0.286 

Yeast 5 OFF 0.5 0.091 0.154 

XCorr+LASSO 
Yeast 5 ON 0.8 0.364 0.5 

Yeast 5 OFF 0.5 0.182 0.267 

 
The existent benchmark algorithms which have worked on this dataset have applied 

reverse engineering methodologies separately in ON and OFF data. In TO-LASSO (an 

extended analysis of the fused lasso framework [22], the result is obtained considering a 

conjoined version of ON and OFF data followed by similarity analysis with the 

benchmark network given in [23]. However, maintaining the line of research followed 

by the benchmark reverse engineered algorithms depicted in Table 6.1, individual 

outcomes of ON and OFF counterparts are given along with the conjoined result stated 

above. It is clear from Table 6.1 that TO-LASSO outperforms all the benchmark 

algorithms in terms of the final F score. The results also depict that the overall scores in 

TD_ND are very close to TO-LASSO. In this regard, it is essential to mention that TO-

LASSO highlights on fully indirect regulation (between a source-target gene pair) 

possessing statistical significant similarity with the semi direct regulatory effect. In 

other words, this depicts the inevitable presence of one or more intermediary entities 

important to be considered in the regulation process for the corresponding source-target 

gene pair. Hence, the same is not similar to direct regulation models explored in 
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TD_ND and other compared algorithms. To date, there is no existent architecture 

following a similar kind of concept.  

Figure 6.1 depicts the reconstructed network showing the TO-LASSO regulations 

between any pair of genes. For example, GAL80 to GAL4 is not a direct regulation. In 

other words, this source-target pair does have the explicit presence of one or more 

intermediary genes as per the proposed algorithm. This interaction happens to yield 

statistically similar causal effect with respect to direct regulation context in between 

GAL80 and GAL4, if any. Thus, the true and false positive outcomes shown in the 

figure relate our predicted outputs to the benchmark network [23]. In this regard, to 

highlight the fully indirect process of order one (could not be higher in the 

implementation because of very few genes under consideration from the parent dataset), 

the most significant indirect pathways are enlisted in Table 6.2 for each target gene. In 

this table, any row gives us the regulatory pathway for each target, shown in the first 

column. The gene present in the second column is the intermediary gene with the source 

gene given in the third or last column of the table.  TO-LASSO analysis elucidates that 

all the other four genes indirectly regulate SWI5, but the best regulation in terms of β 

score is listed here. From the table, it is observed, the best regulator gene of SWI5 is 

GAL80 via intermediary gene GAL4. The same is repeated for each target gene.     

Table 6.2: Best Regulatory Pathways of YEAST ON/OFF Data 

Target Gene Intermediate  (associate) Gene Final Regulator 

CBF1 SWI5 GAL80 

GAL4 CBF1 GAL80 

SWI5 GAL4 GAL80 

GAL80 CBF1 GAL4 

ASH1 SWI5 CBF1 

 

Here, corresponding to a pathway, any italicized or bold pair of genes present in 

adjacent columns indicates the absence of fully indirect regulation as per TO-LASSO 

algorithm. This indicates the gene pair possesses statistically dissimilar fully indirect 

and semi-direct connectivities. A deeper analysis clarifies an italicized pair signifying a 

false negative, i.e. the pair is biologically valid in existing literature like DAVID or 

Gene Trail (depicting by default direct biological connectivity). However, the bold pair 

highlights a true negative connection, i.e. the pair is not biologically validated either. 
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For example, we inspect the regulation of GAL4 by GAL80 via CBF1. In this simple 

hierarchical regulation, neither GAL4 nor CBF1 has been found to possess full indirect 

regulation by CBF1 and GAL80 respectively. As per the findings of TO-LASSO 

approach, CBF1 to GAL4 is a false negative (association can be found in [37]) and 

GAL80 to CBF1 is a true negative connection. Similar true negative connections have 

been discovered between CBF1 to GAL80, GAL4 to CBF1, and SWI5 to ASH1. 

Next, exploring the results from YEAST 11 data: Here, from a total of 6178 genes, a 

subset of 11 genes is extracted as given in [24].  The 11 genes are CLN1, CLN2, CLN3, 

SWI4, SWI6, MBP1, CLB5, CLB6, SIC1, CDC28, and CDC6. 

For this dataset, the performance of TO-LASSO analysis is compared with the same set 

of standard algorithms considered earlier. The comparative results in terms of Precision, 

Recall, and F score are listed in Table 6.3. From this table, it is evident that TO-LASSO 

analysis performs better than any of the state-of-the-art techniques analyzing this 

dataset. In this case of 11 genes extracted from the YEAST Cell Cycle dataset, each of 

the compared benchmark algorithms show the performance level with respect to a 

single gene regulation network corresponding to any one condition of the G1 cycle. 

However, TO-LASSO performs the analysis considering all the four experimental 

conditions (alpha, cdc15, cdc28, and elu) distributed over 18, 24, 17, and 14 time points, 

respectively. In this algorithm, any two of the four time-series information sequences 

are taken at a time. This yields six pairs of differential data from where six gene 

networks are designed. The regulatory links in all these six networks including the 

necessary documentation on the significantly best pathway obtained for each of these 11 

genes, similar to the one depicted for YEAST ON/OFF data, are given in Figures 6.2 to 

6.7 with the corresponding Tables 6.4 to 6.9. In all the above mentioned figures solid 

lines represent True Positives and dashed lines represent False Positives. In each of the 

significant best regulatory pathway matrices presented in the above tables, the first 

column signifies final regulated gene and the last column shows the controller gene able 

to maintain statistically similar semi-direct and fully indirect connectivity to the 

regulated gene, present in the first column, with the intervention of the intermediate 

genes, which state the order of the statistically significant indirect connectivity. Here 

pairs, represented in bold signifies True Negative and by italic signifies False Negative. 
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Table 6.3: Comparative results from Yeast Cell-Cycle Data (11 genes; YEAST 11) 

Method Data Set Precision Recall F Score 

TO-LASSO 

Yeast Cell Cycle 

(alpha-cdc15) 
0.648 0.676 0.662 

Yeast Cell Cycle 

(alpha-cdc28) 
0.606 0.642 0.623 

Yeast Cell Cycle 

(alpha-elu) 
0.591 0.56 0.573 

Yeast Cell Cycle 

(cdc15-cdc28) 
0.732 0.703 0.717 

Yeast Cell Cycle 

(cdc15-elu) 
0.549 0.582 0.565 

Yeast Cell Cycle 

(cdc28-elu) 
0.633 0.662 0.647 

DD LASSO Yeast Cell Cycle 0.309 0.815 0.449 

Group LASSO Yeast Cell Cycle 0.253 0.621 0.36 

TD_ND Yeast Cell Cycle 0.5778 0.3662 0.4483 

TD_ARACNE Yeast Cell Cycle 1 0.239 0.386 

XCorr+LASSO Yeast Cell Cycle 0.714 0.14 0.235 

 

                                                                                                         Table 6.4: Best Regulatory pathways  

                     (YEAST 11 data; alpha_cdc15) 

 

 

Figure 6.2: TO-LASSO based GRN for YEAST 11  

                            (alpha_cdc15) 
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                                                                                                     Table 6.5: Best Regulatory pathways 

                                                                                                        (YEAST 11 data; alpha _cdc28) 

 

Figure 6.3: TO-LASSO based GRN for YEAST 11 

                               (alpha_cdc28) 

                                                                                                    Table 6.6: Best Regulatory pathways 

                                                                                                          (YEAST 11 data; alpha _elu) 

 

Figure 6.4: TO-LASSO based GRN for YEAST 11 

                                 (alpha_elu) 
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                                                                                                           Table 6.7: Best Regulatory pathways 

                                                                                                               (YEAST 11 data; cdc15_cdc28) 

 

 

Figure 6.5: TO-LASSO based GRN for YEAST 11 

                           (cdc15_cdc28) 

                                                                                                             Table 6.8: Best Regulatory pathways   

                                                                                                                    (YEAST 11 data; cdc15_elu) 

 

Figure 6.6: TO-LASSO based GRN for YEAST 11 

                           (cdc15_elu) 
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                                                                                                         Table 6.9: Best Regulatory pathways 

                                                                                                                 (YEAST 11data; cdc28_elu) 

 

Figure 6.7: TO-LASSO based GRN for YEAST 11 

                           (cdc28_elu) 

Presenting the results from YEAST Cell Cycle Data having more than 200 genes:  Here 

the concern is about reconstructing gene regulation networks through framing of TF to 

target regulatory pathways via the TO-LASSO method.  

Initially, the TF and the DE genes are found from the given data comprising of 6178 

genes [24]. This yields 17 TF and 235 DE genes [37] . Here, the DE genes act as final 

targets. The regulation study from YEASTRACT [32], YAGM [30], and Regulator DB 

[31] databases helps to understand that 197 out of 235 DE genes are controlled by at 

least 1 TF. The remaining 38 DE genes are not controlled by any of the TF genes 

obtained above. Hence, the focus is restricted on the 197 DE genes only. 

To understand the problem, the regulation of a DE gene 'd' by 3 TFs, 't1', 't2', and 't3' via 

some intermediate TFs can be taken as an example. Extending the discussion on the 

example of a regulation study given in section 6.2.2 (Methodology section) by assuming 

that ‘d’ is directly regulated via ‘m1’, ‘n1’, ‘o1’ and ‘p1’, it can be stated that  't1' can 

control ‘d’ via 4 hierarchical paths comprising 'a1', 'b1', 'c1', 'm1', 'n1', 'o1', and 'p1' from 

the regulation databases. As a consequence of TO-LASSO application, if it is assumed 

that in the above hierarchical regulation perspective by  't1' for target DE gene 'd', the 
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best regulatory action (both in terms of prediction as well as significance analysis) is 

formed including 'a1', 'b1', 'm1', and 'o1', then the thought can portray the existence of 2 

regulatory paths involving 't1', 'a1', 'm1' and 't1', 'b1', 'o1' working cohesively towards 

the regulation of target DE gene 'd'. A similar analogy can be repeated for 't2' and 't3'. 

The principal regulatory pathway of 'd' is formed by checking the best significance 

level, and F score among the three pathways separately obtained from 't1', 't2', and 't3', 

respectively. Following this thought the number of statistically significant F score  

judged TF gene regulatory pathways for the target DE genes is shown in Figure 6.8. In 

this regard, it is to be noted that the TF gene regulatory pathways are found for every 

DE gene considering all possible pairwise combinations of the four conditions (alpha, 

cdc15, cdc28, and elu) of YEAST Cell Cycle time course information. From the figure 

it is possible to apprehend that the combinational pair of conditions, alpha_cdc28, yields 

on an average better F score judged gene regulatory pathways compared to other 

combinational pairs of conditions. Thus the TF gene regulatory links to target DE genes 

are on an average more significant in the context the combinational pair, alpha_cdc28, 

considering the inherent presence of unknown TF genes computed through the TO-

LASSO technique. The presence of these unknown TF genes of a certain order (order of 

mTOM association present in the TO-LASSO method) hence can be considered as the 

indispensable hidden factors of the so called direct regulatory links. 

 

Figure 6.8: Number of statistically significant F score judged gene regulatory pathways 
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One crucial observation noted in this regard is the indirect association of same average 

number of TF genes corresponding to any F score irrespective of the pair of conditions 

except cases where there is no evidence of any regulatory pathway corresponding to an 

F score. Such examples come in the context of (F score, pair of conditions) 

combinations like (0.941, cdc15_cdc28), (0.294, alpha_cdc28), and (0.294, alpha_elu) 

respectively.  

Finally, coming up with the results from HeLa Cancer Data: Fetching the required data 

from [25] followed by extracting the necessary information from the databases 

(TF2target and TRRUST) and applying the R packages (maSigPro and GeneCycle) 

used in the last chapter, 137 TF and 619 DE genes are obtained. Out of this, as per the 

results presented in the last chapter, 37 TF genes and 496 DE genes happen to be 

periodic in nature. Thus at the very beginning the required combinations taken forward 

for implementation of TO-LASSO are the same as those presented in the last chapter, 

i.e. Aperiodic TF-Aperiodic DE (ApTF_ApDE), Aperiodic TF-Periodic DE 

(ApTF_PDE), Periodic TF-Aperiodic DE (PTF_ApDE), and Periodic TF-Periodic DE 

(PTF_PDE) respectively.  

TO-LASSO is applied on each cluster [38] of DE genes to avoid computational 

complexity and to check the necessary performance of the outputs obtained per cluster. 

In this regard, similar to the last chapter, the 496 periodic DE genes are distributed in 8 

clusters with 51, 68, 48, 60, 61, 62, 74, and 72 genes respectively. The remaining 123 

aperiodic DE genes are accordingly distributed between 2 clusters with 69 and 54 genes 

respectively. Now the information is ready for TO-LASSO execution on the four 

different periodic and aperiodic combinations of TF to DE gene regulations.  

The following results depicted in Figures 6.9 and 6.10 correspond to the number of 

statistically significant F score judged regulatory pathways for the aperiodic DE genes. 

Similar comment is applicable for interpreting the information pertaining to regulatory 

pathways shown in Figures 6.11 and 6.12 in relation to periodic DE genes. In these 

figures, the two conditions of interest are Phase 1 and Phase 2 on one hand and Phase 2 

and Phase 3 on the other. TO-LASSO architecture demands a combinational pair of 

phases/stages for execution. As per the above two conditions following the TO-LASSO 

algorithm, Phase 2 of HeLa data can be treated here as the control state. 
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Figure 6.9: Number of statistically significant F score judged gene regulatory pathways (ApTF_ApDE) 

 

 

Figure 6.10: Number of statistically significant F score judged gene regulatory pathways (PTF_ApDE) 
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Figure 6.11: Number of statistically significant F score judged gene regulatory pathways 
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Figure 6.11: Number of statistically significant F score judged gene regulatory pathways (ApTF_PDE) 
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Figure 6.12: Number of statistically significant F score judged gene regulatory pathways 

(PTF_PDE)…Contd 
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Figure 6.12: Number of statistically significant F score judged gene regulatory pathways (PTF_PDE) 
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larger contribution of periodic TF gene control with respect to higher F score (i.e. for 

0.6<F<0.7 and 0.7<F<0.8) judged pathways. This implies prediction of hidden 

aperiodic TF genes maintaining indirect control over the target aperiodic DE genes in 

Cluster 1 is close to direct regulatory controls maintaining the TO-LASSO framework. 

Similar comment is applicable for a selected set of target aperiodic DE genes present in 

Cluster 2. 

Cluster 1 for Periodic DE genes: The indirect regulatory contribution of aperiodic TF 

genes is definitely on the better side compared to periodic TF genes. In other words, the 

F score of the mTOM based regulatory pathways in the TO-LASSO approach, 

considering every target DE gene, is higher with respect to aperiodic TF gene regulation 

or the hidden effect of indirect aperiodic TF genes is more prominent. 

Cluster 2 for Periodic DE genes: Here too, the contribution of aperiodic TF genes is 

having a slight edge over periodic TF genes, except for the F score segment (0.6<F<0.7) 

in the context of periodic TF gene control. Thus the indirect contribution of unknown 

TF genes (aperiodic or periodic, as the case may be; judged by the F score) can be 

considered close to the almost direct regulatory effect on the target DE genes exerted by 

the reference TF gene (aperiodic or periodic, as the case may be; judged by the F score). 

Cluster 3 for Periodic DE genes: Same comments as given above for Cluster 2 is 

applicable in this context. 

Cluster 4 for Periodic DE genes: Here, the significant observation can be related to the 

F score ranges, 0.6<F<0.7 and 0.7<F<0.8. In the former one, indirect aperiodic TF gene 

control is far more effective. However, for the latter range, it is a bit better 

corresponding to indirect periodic TF gene control with almost nil contribution to the F 

score with respect to aperiodic TF control. Accordingly, the significance of the indirect 

mTOM based pathways controlling the target DE genes in these two cases can be 

clarified.  

Cluster 5 for Periodic DE genes: For the F score range, 0.5<F<0.6, the indirect 

contribution of aperiodic TF genes are far more prominent compared to periodic TF 

genes. For higher F scores, the desired content of any design, the matter is more or less 

similar.   
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Cluster 6 for Periodic DE genes: Aperiodic TF gene indirect contribution on direct 

regulatory links to target DE genes is prominent in the range 0.5<F<0.6 for Phase 1 and 

Phase 2 pair combination.  

Cluster 7 for Periodic DE genes:  No significant difference is observed between 

aperiodic and periodic TF gene controls in the indirect regulation perspective on the 

basis of the number of F score judged regulatory pathways. 

Cluster 8 for Periodic DE genes: On an average the indirect aperiodic TF gene 

regulation is slightly better.  

In all the above cases, the DE gene control executed by the two kinds of TF genes is 

being considered or compared, as the case may be. Apart from this inference, the 

graphical plots may signify one more important aspect. The invaluable presence of one 

or more TF genes guided by the mTOM structure in any regulatory pathway can be 

clarified by the number of such pathways present with respect to any F score. In this 

regard, there are some number of DE gene regulations which, via the application of TO-

LASSO approach, experience far higher F score in one condition compared to the other 

(for example, F score in Phase 1 and Phase 2 is quite higher compared to Phase 2 and 

Phase 3 or just the reverse). In other words, higher F score judged regulatory pathway 

predicts the indispensible presence of one or more indirect TF genes because in this 

case the pathway in consideration is significantly close to the performance of direct DE 

gene regulation, as per the framework of fused LASSO that has been worked out on a 

topological perspective. Hence, existence of differential regulatory link can be claimed 

to the concerned target DE gene. In one condition, there is the confirmed presence of a 

direct regulatory link (here the F score of the regulatory pathways, if any, will be close 

to zero) and on the other there is a high chance of the presence of indirect TF gene 

regulations via one or more pathways.  

6.2.4 Discussion: All the dataset specific results have been explored based on the 

performance parameter, F score. As per the definition of F score given in section 6.2.3 

under Results, it is essentially a parameter reflecting the biological significance of any 

reconstructed GRN or TRN. In the context of YEAST 5 ON/OFF data, only 5 genes are 

considered in the reconstruction process. The network connectivities that get generated 

as an outcome of TO-LASSO application can be perfectly judged by the F score. The 
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same comments do hold for YEAST 11 data as well where all possible connectivities 

are explored via TO-LASSO.  

However, the YEAST Cell Cycle and HeLa time course information corresponding to 

the respective TF and the target DE genes, have a different process of implementation. 

Here, in both cases, each and every DE gene specific regulatory pathway comprising of 

indirect contribution from one or more TF genes is considered. Thus instead of a fully 

connective GRN, the matter concentrates on specific TRNs that may be defined for 

target DE genes. In this regard, an example can be helpful to understand the F score of 

any such regulatory pathway. Considering N TF genes involved in the so called 

regulation of a particular DE gene and the presence of biological interactive or 

regulatory information from various renowned databases, the F score can be computed 

for any mTOM generated pathway in the TO-LASSO approach. For a particular TF and 

DE gene pair, the matter lies in understanding the statistical similarity between almost 

direct and completely indirect regulation, if any, present between these entities. In the 

process, it can be assumed that the biological information in hand states about 

interactive regulations between M TF genes and the concerned TF gene referred above. 

In other words, among the N-1 TF genes, M TF genes are known to be associated with 

the referred TF gene. Now, on reconstructing a TF gene regulatory pathway following 

the mTOM approach in TO-LASSO, which highlights statistical similarity between 

direct and indirect associations between the referred TF gene and the particular DE 

gene, the necessary TF genes out of N-1 TF genes that may be associated indirectly, can 

be found. This forms a TRN representing a regulatory pathway for the specific DE 

gene. This reconstructed TRN can then be validated with the known set of interactions 

between M TF and the referred TF gene using the F score analysis.  

Coming onto the precision and recall components of the F score, yielding a higher value 

of precision indicates greater proportion of true positive outcomes designed for 

reconstructing the GRN or TRN, as the case may be. In TO-LASSO, it is to be noted 

that higher precision comes with the benefit of predicting the obvious presence of one 

or more intermediary factors crucial to gene regulation statistics which normally are 

kept in abeyance as per biologically validated networks or databases. Again, lower level 

of false negative, hence higher recall, depict the fact that fully indirect connectivity 

design using TO-LASSO algorithm is capable of understanding the true potential of 

direct connectivity (as per biological validated networks) in between two genes. In other 
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words, there is an appreciable chance of exploring the presence of any hidden causal 

factor responsible in the regulation process. 

6.3 Conclusion 

The research content of this chapter centres around GRN mining using high dimension 

gene throughput data manipulated using a mTOM metric proposed novel measure, TO-

LASSO. Here, the design keeps in frame possible indirect gene association based 

hierarchical regulations, assigning equal weightage to all operational combinations in 

each order. The sole intention of this research work is about exploring the potential 

hierarchical or fully indirect regulations of a target gene from any source gene 

possessing statistically close regulatory performance with respect to semi-direct 

regulation, if any, between the source-target gene pair. The novelty lies in realizing the 

importance of the degree of indirect connectivity in a hierarchical model representing a 

biological regulatory pathway to the target gene. In this regard, the performance of the 

connectivity measure (in this case mTOM) between genes could help us probe further 

into regulation networks compared to direct regulations considering gene expression 

values in the LASSO based prediction framework. The connectivity measure is 

developed keeping at par the contribution of all possible genes according to the degree 

of consideration in mTOM metric. The regulatory cascade indicating indirect 

connectivity to any target gene plays a crucial role in determining the physical 

constraints required to ascertain different time delays in the regulation procedure 

[3,39,40]. In other words, there may be an intermediary presence of a physical gene 

entity or any unknown biological event that leads to the cascaded or hierarchical 

regulation possessing statistically similar causal effect to the target gene through direct 

interaction, if any. 
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