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Chapter 1

Introduction to BCI-Based Motor
Control

This chapter provides an introduction to the subject of motion control using Brain-Computer

Interface (BCI). It begins with a classification of BCI-based controllers, and gradually explores

various control policies used in standard BCI systems. The different modules of a closed-loop

BCI are discussed in brief with their current state-of-the-art approaches. Next, the chapter pro-

vides a thorough review of recent approaches to BCI-based robotic device manipulation within

the context of closed-loop BCI. The chapter also provides an outline of the electroencephalog-

raphy (EEG)-based brain signals commonly used in closed-loop BCI-based robot control tasks.

The chapter ends with a discussion of the scope of the present thesis.
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1.1 Introduction

Human brain comprises several trillions of neurons connected in tandem and parallel to serve as

the basic infrastructure of knowledge/information processing. Although the complete picture of

brain functionality remained a mystery to this date, there remains evidence of local processing

of signals pertaining to perception, memory and learning, and motor control and coordination

by specific regions/lobes of the brain. It is noted that neurons engaged in processing different

cognitive tasks had evolutions over several decades to specialize themselves in handling the se-

lected tasks. For instance, neurons responsible for processing olfactory signals usually have long

axonal lengths to carry messages to the olfactory bulbs from the receptor end [1]. In contrast,

the neurons participating in memory tasks are relatively small in length to carry messages for

storing in the Long-Term Memory (LTM) from the Working Memory (WM) [2]. The motor

cortex in the human brain takes the responsibility to generate the necessary commands for vol-

untary actuation and/or control of the motor actions intended by the subject. The Parietal lobe

also has an important role in planning the intended motor action. In fact, there exists coordina-

tion between the Parietal lobe and the motor cortex to plan and execute a motor task [3]. In the

present research, we emphasize greatly the decoding of motor actions. Such decoding is needed

to execute the intended motor task by an artificial robotic limb. Several strategies of BCI-based

motor control are available in the literature. We would discuss them in detail in a subsequent

section. Capturing the motor planning and motor execution requires brain-signal acquisition

equipment. Different modalities of brain signal/image acquisition techniques are available in

the literature. A few of these that deserve mentioning include electroencephalography (EEG),

functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET), func-

tional Near Infrared Spectroscopy (f-NIRS) and Electrocorticography (ECOG). EEG is preferred

to other brain signal/image acquisition devices for its excellent temporal response, portability,

and low cost, and above all its non-invasive characteristics. In this thesis, we would restrict

ourselves to examining the response of BCI-driven motor activations using the EEG modality.

1.2 Closed Loop BCI

Brain-Computer Interfacing (BCI) refers to interfacing the human/animal brain with a com-

puter, bypassing the muscular pathways of communication, to understand and decode brain

activity by the computer. The primary contribution of this technology lies in the field of re-

habilitation and mainly focuses on controlling robotic prostheses with mental commands. How-

ever, there are other valuable contributions also, such as the development of a BCI-based virtual

keyboard[4][5], wheelchair control[6][7], BCI-based gaming[8][9], etc. The use of BCI in re-

habilitation was designed to enhance the quality of life for individuals experiencing various

conditions, including complete or partial paralysis, motor difficulties associated with locked-

in syndrome, cerebral palsy Amyotrophic Lateral Sclerosis (ALS), amputations, and cranium

trauma.

BCI systems are of 2 common types: Open-loop systems and Closed-loop systems. In

an open-loop BCI, the subject either by being stimulated externally or by mentally imagined
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Figure 1.1: Schematic Diagram of a Closed-loop BCI system

cognitive tasks releases certain brain signals, which are used up by the associated system as

open-loop control signals/commands. These open-loop control signals/commands may activate

a relay or a switch to perform the desired task. In the open-loop system, the external state of the

controlled agent does not influence the current brain state of the subject.

In a closed-loop BCI, a feedback measure of the targeted action is generated by suitable

sensors to offer necessary feedback to the subject to assist him in moderating his decisions to

release necessary brain-actuated commands in the next time slot. Hence the control action of the

human subject is influenced by the present state of the external device. As an example, a subject

controlling a robotic arm receives visual feedback about the position of the end-effector in a

closed-loop system. Such feedback establishes a both-way communication between the human

and the external agent, which is proven to be highly useful to treat severe neurological disorders

like depression, epilepsy, Parkinson’s disease, and obsessive-compulsive disorder (OCD) by

stimulating a part of the brain based on feedback.

Apart from medical use, the neuro-feedback signal has also got widespread usage in robotic

prosthesis control as it enables the human subject to determine how well he/she can control the

robot and reach the desired target and participate in the task interactively. It also enables them

to take corrective action in case an error occurs. The additional information in terms of the

feedback signal has the capability to alter the brain state of the human subject to achieve the

desired performance. A schematic overview of a general closed-loop system is given in Fig. 1.1.

Literature shows that various types of feedback have been used to provide additional infor-

mation about the external agent to the operating subject. Such feedback includes visual feed-

back, vibrotactile feedback, electrical or magnetic stimulation, and optogenetic and sonogenetic

feedback. Among them, visual feedback is the simplest yet powerful form of feedback, hence

the current thesis considers visual feedback for designing the closed-loop Brain-machine Inter-

face. The visual feedback is incorporated into the system through different modalities like P300,

SSVEP, and ErrP brain patterns, which are utilized here to design the brain-actuated controller

to actuate the robot arm with the user intent.
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Figure 1.2: Different brain signals used in the BCI along with their waveform shape and origin.

1.3 Commonly used Signals in EEG-BCI System

There exist quite a few brain signals which are used to design different BCI-based systems,

among them Motor Imagery (MI) signal, P300, ErrP, and Steady-state visual Evoked potentials

are widely used in EEG-based BCI systems for their high detection accuracy through EEG.

Fig.1.2 provides a ready reference of the commonly used BCI signals and their origin and shape.

A details description of the signals is given below.

1.3.1 Motor Imagery Signal

When a person undertakes imagination about the movement of his voluntarily controllable body

parts/organs, such as upper and lower limbs, jaws, etc., the process is referred to as motor imag-

ination, and the imagined item is often called motor imagery (MI). On the other hand, when

a person executes the movement of his voluntarily controllable organs, the process is referred

to as motor execution (ME). It is apparent from the BCI literature [10] that during both motor

imagination and execution phases, the human brain releases a specialized Event-Related Po-

tential (ERP), which primarily has two main temporal segments. The first component, called

Event-Related De-Synchronization (ERD), which lies in the Rolandic Mu band (8-12 Hz) and

beta band (13-19 Hz) appears on-screen as a waveform of gradually diminishing amplitude. The

ERD originates in the Parietal lobe during motor imagination with a peak at the Pz electrode and

also from the Motor Cortex region during the motor execution phase with a peak at Cz electrode.

The second segment, called Event Related Synchronization (ERS) signal, which appears in the

beta band (13-18 HZ), originates from the motor cortex (Parietal lobe) and is released after motor

execution (imagination) is stopped. The ERS signal exhibits a gradually increasing power until

the previous power level that appeared before the occurrence of ERD is restored. The ERD-ERS
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Figure 1.3: Figure showing multiple traces of motor-imagery brain signal with the dotted lines. The
grand average is marked with a solid line.

together looks like a v-type of signal with a peak at the left motor cortex for the Right-Hand

Motor Imagery or Execution (RHMI or RHME) and a peak at the Right Motor Cortex for the

Left-Hand Motor Imagery or Execution (LHME). This is due to the inherent contra-lateral con-

nection between our brain and the body. In most of the BCI literature that employs ERD/ERS

signals, MI/ME are undertaken for open-loop control of an external device, such as a robotic car

[11], [12][13], artificial robotic link [14], and the like. In recent times, researchers have shown

keen interest to develop closed-loop position control applications for a robot arm by employing

one additional signal along with ERD/ERS.

1.3.2 ErrP Signal

In a BCI-based robotic device control application, the additional signal used in conjunction with

ERD/ERS is Error-Related Potential (ErrP) and P300. The ErrP signal is used to detect the

occurrence of a positional overshoot around a given target position. The subjects are expected

to liberate ErrP signal when they observe any person or a robotic device committing any error

or they themselves commit any error. The signal can be thought of as the response of the brain

to an erroneous action.

The ErrP brain signal is characterized by the occurrence of Error Related negativity followed

by Error Related Positivity (Pe). ERN[15] is a sharp negative going peak that is generated

around 50-100ms after the subject observes/commits any error. On the other hand, Error Related

Positivity is a positive going peak that appears right after the ERN[16].
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Figure 1.4: Figure showing multiple trials of Error Related Potential (ErrP) brain patterns in dotted
lines. The grand average of the trials is shown with the solid line.

The Pe can be further categorized into two components: frontocentral and centroparietal.

The frontocentral Pe, which is associated with the P3a, emerges immediately following the ERN

(error-related negativity). On the other hand, the late Pe occurs in the centroparietal region and

has a latency of 200-400 ms after the error. This late Pe component appears to be linked to the

P3b[17]. Fig.1.4 shows the multiple traces of the ErrP signal and their grand average.

1.3.3 P300 Signal

Another important signal used in BCI is the oddball signal which is commonly known as P300.

Such brain signal is generated as a response to odd, rare, or infrequent stimuli [18]. When a

subject recognizes any rare or odd stimulus, a positive going peak after approximately 300ms of

onset of the stimulus is generated over the parietal, central, and frontal regions of the brain and

mainly distributed over the "z" lines of electrodes,i.e., Pz,Cz,andFz.

Figure 1.5: Figure showing P300 brain patterns in the dotted lines. The grand average of the trials
is marked with a solid line.
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Figure 1.6: Figure showing SSVEP brain patterns in the dotted lines. The grand average of the trials
is marked with a solid line.

However, the signal amplitude is highest in the Pz electrode and gradually attenuates with

the distance over the scalp. The latency of the P300 signal usually varies between 250-750ms.

The P300 signal, which usually responds to an oddball stimulus, here has been utilized to check

the possible overshoot of the end-effector of a robot arm around a given target position. A typical

P300 waveform is presented in Fig.1.5.

1.3.4 Steady-State Visual Evoked Potential

The third important class of signal is Steady-state visual evoked potential. Such a signal is

generated as a response of the brain to repetitive visual stimuli. It is observed that a subject

when perceives repetitive visual stimuli or gazes at flickering sources (such as flickering LED),

a particular brain pattern modulated by the fundamental source frequency is generated in the

primary visual cortex of the brain, which is popularly known as SSVEP. SSVEP along with the

source frequency also contains the harmonics of the source frequency, however, their amplitude

is relatively low. The frequency of the visual source stimulus ranges between 3.5Hz - 75Hz. The

SSVEP signal has been extensively used in BCI for its high recognition rate and high information

transfer rate. Another major advantage of using SSVEP is the minimum subject preparation time

compared to the other modalities such as MI, ErrP, etc. SSVEP signal (in response to 6.5Hz

flickering frequency) of multiple subjects is presented in Fig.1.6. It is evident from the figure

that the signal has the highest amplitude near 6.5Hz frequency which is the frequency of the

source stimulus.

1.4 Closed-Loop Position Control Using MI signals

In this section, we present a simple scheme for BCI-based position control in one dimension.

Consider Fig. 1.7, where the position control of a single-link robotic arm is considered. Given

a start position and a target position on the circular track. A motor-controlled robotic link needs
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Figure 1.7: BCI-based position control scheme in 1-Dimension

to be moved from the start point to the target point by a human subject. The subject here

employs MI signal to start moving the robotic link over the circular rim and releases the ErrP

(or P300) signal when the link crosses the desired target position. The BCI system here needs

to extract certain features from the MI signals and feeds them to a trained classifier to classify

the signal into Right-hand MI (RHMI) or no motor imagery. If it is RHMI, the robotic link is

commanded to turn right (clockwise). If no, no control command for link movement is issued

to the robot actuator. After the robotic link crosses the target position, the subject releases an

ErrP or P300. The task of the BCI system next is to extract certain EEG features and feed

those features to a pre-trained classifier to determine the class: Target crossed/ not crossed. In

case the target is crossed, the BCI system commands the robotic link to stop movement. In a

more sophisticated system, the robotic link is commanded to turn back by a pre-defined/pre-

calculated) offset angle.[19].

Stopping the robotic link at a position close enough to the target is an interesting open

problem. The current literature on BCI employs Error-Related Potential (ErrP) and or P300 to

address the above problem. The ErrP signal is released by the subject usually from the midline

electrodes of his brain when he recognizes the commitment of movement-related errors and/or

finds a second person or even a machine to commit an error. In the present context, the positional

error is committed by a movable robot arm, but this too helps the participating subject to release

the ErrP signal. It is noteworthy that subjects occasionally fail to release ErrP, although the

movable robotic arm commits a positional error. P300 would be the right choice for those

subjects as P300 hardly fails to liberate, when an oddball stimulus, such as the commitment of

error is noticed by the subject.

The position control scheme introduced above has been extended in [19] for a 2-dimensional

and 3-dimensional position control scheme. The fundamental difference between one-dimension

and multi-dimensional position control lies in fixing the target point. For instance, in one-

dimensional position control, the target is a point on the trajectory of motion of the end-effector,

as indicated in Fig.1.8. In 2-dimensional position control, the target is a line. In other words, the

last link carrying the end-effecter has to be aligned with the target line. Again, for 3-dimensional
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Figure 1.8: BCI-based position control scheme in 2-Dimension

position control, the target is a plane. In [19], the authors attempted to move the entire robot arm

from one starting plane to the desired plane (Fig.1.10). Here, the target is a 3D plane. The com-

plete architecture of the closed-loop BCI system employed for position control of a robot arm in

2-D and 3-D space is given in Fig.1.9 and Fig.1.11 respectively. Online selection of the target,

however, is not easy, as it adds cognitive load to the subject during the planning phase. This is

taken care of in subsequent research [20] by controlling the target position of the end-effector

only rather than the last link carrying the end-effecter. This is realized by employing Inverse

kinematics of the robot arm.

It is important to mention here that forward and inverse kinematics are two well-known

principles for robot motion planning. In the forward kinematics, the current position of the

end-effecter and angular position changes of the links are provided, and the final position of

the end-effector is determined with respect to a given reference frame of the robot. The inverse

kinematics model, on the other hand, requires specifying the current and the target position of

the end-effector, and the motivation is to determine the angles of turnings of the links or dis-

placements of junctions required. In a recent model, the authors [20] have emphasized the scope

of Inverse kinematics to command the end-effecter to move up/down, right/left, and top/bottom

around each position of the end-effector’s current position. The BCI planner receives the user

feedback to command the robot to move accordingly until the target position is reached.
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Figure 1.9: BCI-based complete position control scheme in 2D workspace.

Figure 1.10: BCI-based position control of a robot arm in 3D workspace
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Figure 1.11: Complete closed-loop system of BCI-based position control of a robot arm in 3-D
space.

The advent of inverse kinematics lies in the reduction of the cognitive load of the subject,

as he/she simply plans to move the end-effecter towards the goal. Naturally, the BCI end-users,

who usually are expected to be patients suffering from motor neuron diseases, would have a

user-friendly rehabilitative aid that can be controlled with minimum effort.

1.5 Generic Approach of Designing a Closed-loop BCI Framework

Researchers realized that even though the current state of the external agent ( ex. position of the

end-effector of a robot arm) is used as a feedback signal to the human operator to increase the

accuracy and quality of the performance, still the result was not satisfactory. The main reason

behind this was the stochastic nature of the human brain which causes the EEG signal to vary

significantly over the sessions during the neural activity task and even within the same session.

Such variability of EEG signals degrades the system’s performance. Another reason is the re-

searcher’s inability to perfectly understand the biological underpinnings of any specific neural

activity, hence decoding the brain signal with high accuracy is still a challenging task. Among

the other reason, researchers have found that it is still not feasible for a human subject to per-

fectly control the brain rhythms to accomplish a complex task. Even if some of the subjects are

able to control his/her brain activity in the desired manner but accomplishing a complex task

using a limited number of BCI commands imposes a high cognitive load on them.

Hence, in order to achieve reliable and superior performance, the design of the Brain-Computer

Interface (BCI)/ Brain-Machine Interface (BMI) system must contain an auxiliary controller
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which is introduced inside the control loop to mitigate the gap between desired performance and

the actual performance. When placed in the forward path of the loop, the auxiliary controller

takes the cognitive commands of the subject as the input and optimizes it by following a control

strategy to produce a suitable control signal. The control signal actuates the external agent (ex.

motors of the robot joints) in such a way that the desired performance is achieved. Such aux-

iliary controllers enable the subject to perform complex tasks relatively easily without causing

any mental fatigue. Such controllers are also responsible for ensuring the stability of the system

and maintaining certain input-output constraints when necessary, such tasks are not achievable

without the auxiliary controller. The auxiliary controller also reduces the dependency of the

system exclusively on the BCI decoding performance hence increasing the system accuracy in-

dependent of BCI decoding performance.

It is apparent from the above discussion that the auxiliary controller has now become an in-

dispensable part of designing the modern BCI/BMI system. Although the controller is gen-

erally placed in the forward loop, there are many examples where the auxiliary controller is

placed in the feedback path. When placed in the feedback path, the controller receives the

state information from the external agent to be controlled and optimizes it to actuate an encoder

that creates the suitable stimulation signal based on the feedback (ex. proprioceptive tactile

feedback[21][22]) it receives from the auxiliary controller. The stimulation signal is used to

stimulate a part of the human body ( Cortical areas of the human brain [23][24], back of the

human body[25]) to achieve better performance.

Now, the BCI system can be designed according to any of the generalized frameworks (GFMW)

discussed below.

1. Framework 1: This framework is an open-loop system where the brain commands are

directly applied to the external agent and the operating subject receives no feedback from

the agent. This framework includes a neural interface that translates the cognitive com-

mands to the control command of the robot through a series of steps like pre-processing,

feature extraction, feature selection, and classification. The framework is represented in

Fig.1.12.

2. Framework 2: Such types of frameworks include a visual feedback path from the robot

to the human subject. The human generates the control command based on the real-time

visual feedback he/she receives from the robot or any external agent. As an example, for

a position control application, the subject observes the present position of the end-effecter

and mentally determines how much it should be moved to reach the target position. The

framework is shown in Fig.1.13.

3. Framework 3: This framework introduces an encoder in the feedback path to convert the

current state information of the robot or an external agent into a vibrotactile or electrical

stimulation to stimulate a body part like skin or brain. The electrical stimulation generated

by the encoder provides the necessary feedback information to the user to generate a

suitable control signal for the agent. The scheme is shown in Fig.1.14.

4. Framework 4: Such frameworks incorporate an auxiliary controller inside the control loop
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either in the forward path or in the feedback path. The schematic diagram presented in

Fig.1.15 considers the auxiliary controller in the forward path. As evident from the figure

the auxiliary controller here receives the high-level brain command from the participating

subject through the neural interface and modulates them to generate low-level control

commands to actuate the robot or any external agent present in the loop. The current

thesis adopts this framework for designing the closed-loop system.

1.6 Modules of Closed-Loop Brain-Computer Interface System

The closed-loop BCI framework adopted in this thesis essentially contains two major compo-

nents, a neural interface, and an auxiliary controller. These two components are cascaded with

the human brain to achieve robust and superior performance. Here a brief description of each of

them is presented below.

1.6.1 Neural Interface

The neural interface is responsible for decoding high-level human intention into low-level con-

trol commands that can be applied to the external device or an auxiliary controller. As discussed

earlier, the interface decodes the human intention through a sequence of processing steps i.e.

Pre-processing or Artifact Removal, Feature Extraction, Feature Selection, and Classification.

Each of the sub-components is described below.

1.6.1.1 Pre-processing

The raw EEG signal acquired from the brain contains noise and artifacts arising due to unwanted

muscle movement, eye blinking, power line noise, and other environmental noises. The pre-

processing step helps to eliminate the noise using some filtering techniques. Such steps are

also important to extract the desired frequency sub-band (which contains the highest amount of

information about a cognitive task) from the original EEG signal.

Fast-Fourier transform (FFT) is a widely used method to extract the relevant frequency sub-band

from the EEG signal[26]. FFT provides an alternative representation of the time-domain signal

in the frequency domain using Discrete Fourier Transform(DFT). It allows us to visualize the

separate frequency contents present in the signal. A noisy signal is first converted to a frequency

domain signal using DFT and then the inverse DFT(IDFT) is applied to get back the signal in

the original domain. While reconstructing, the IDFT eliminates the co-efficient belonging to the

undesired frequency components, hence the reconstructed time domain signal is free of noise.

Sometimes another variant of FFT popularly known as the Short-time Fourier transform (STFT)

is also used to handle the non-stationary nature of EEG signals whose frequency components

vary with time[27].

Digital filters are also one of the widely used pre-processing methods in EEG signal process-

ing. The digital filters are designed in such a way that when a signal passes through the filter it

retains the desired frequency band of the signal and attenuates the other frequency components.
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The allowable frequency band is known as the passband and the attenuated frequency band is

known as the stopband. The boundary frequency between the passband and stopband is known

as the cut-off frequency. Based on the nature of the passband and stopband the filter can be

termed a High-pass, Low-pass, and Band-pass filter[28].

Both the Finite Impulse Response(FIR) and Infinite Impulse response filters are used in the BCI

experiment. The FIR filters are non-recursive in nature and always provide a stable response

however it’s computational efficiency is less than IIR filters which are recursive in nature and

requires less amount of memory enabling them to be used in real-time BCI system. Different

IIR filters like the Butterworth filter, Chebyshev filter, and Elliptic IIR filter are commonly used

in BCI[29].

Blind source separation or BSS is also an effective technique to separate the desired source sig-

nal from a mixture of multiple signals[30]. Such a technique is used to eliminate muscle and

ocular artifacts from the EEG signal. Another two commonly used techniques are Independent

component analysis(ICA) and Principal Component Analysis(PCA). The ICA attempts to solve

the BSS problem by representing the set of random variables (EEG observation) as a linear com-

bination of statistically independent components[31]. On the contrary PCA attempts to find the

directions (principal components) in the data that capture the maximum variance[32].

Apart from the spectral filtering techniques discussed above, spatial filtering techniques are

also very popular in the BCI domain as they help to obtain more localized signals and to reduce

the effect of far signal sources. One such spatial filtering technique is Common average refer-

encing (CAR) where the average value of all the electrodes is subtracted from every electrode

to reduce the effect of distant signal sources[33]. Laplacian filter on the other hand subtracts the

weighted average of the surrounding electrodes from a individual electrode, and the weights are

determined based on the distance between the electrodes[33].

1.6.1.2 Feature Extraction

Once the pre-processing phase is over, the brain patterns are subjected to further processing

for extracting the hidden features which are not self-revealing in the raw EEG signal. The

feature extraction method attempts to find the features that characterize the brain pattern and

helps to distinguish between two different classes of brain patterns. There exists a number of

feature extraction methods in the BCI literature, among them time domain feature extractors

like Hjorth parameters[34], Adaptive Auto-regressive parameters[35], time-frequency domain

feature extractors like Wavelet Transform[36], frequency domain feature extractors like Canoni-

cal Correlation analysis[37], spatial domain feature extractors like Common-spatial pattern[38],

Empirical mode decomposition [39] are mostly used in BCI experiments.

Here, we discuss four major feature extraction methods relevant to four major categories of brain

signals (MI, P300, ErrP, and SSVEP).

Common Spatial Pattern:

The Common Spatial Pattern (CSP)[40] technique aims to generate spatial filters that maximize

the variance of EEG signals for one class while minimizing it for the other class simultaneously,

and vice versa. This approach facilitates the decoding of the user’s intended actions in the subse-
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quent phase of a Brain-Computer Interface (BCI) system. From a mathematical perspective, this

definition involves determining the coefficients of the spatial filter, denoted as ’w,’ to optimize

the following objective function.

O(w) =
wT ET

1 E1w
wT ET

2 E2w
=

wTC1w
wTC2w

(1.1)

where; For a given class i, Ei represents the trial matrix of N ×Q dimension; N denotes the

number of EEG electrodes and Q denotes the time samples corresponding to each electrode. Ci

denotes the covariance matrix of class i. It is apparent from the above equation that maximizing

the objective function is nothing but the maximization of the signal variance of class l and the

minimization of the signal variation of class 2. On the other hand, minimizing the objective

function leads to the minimization of class 1 variance and maximization of class 2 variance.

Hence, the problem has been formulated as an optimization problem to obtain the optimal filter

coefficients. The optimization problem is subjected to the following constraints wTC2w = 1

while extremizing wTC1w. Mathematically, the above expression can be represented in terms of

the Lagrange multiplier as below;

L(λ ,w) = wTC1w = λ (wTC2w−1) (1.2)

Here, the spatial filters are found to be the eigenvectors of C−1
2 C1. However, we consider the

eigenvectors associated with both the extreme (highest and lowest) eigenvalues. Once the filter

coefficients are obtained, the variance of the filtered signal is calculated, and the logarithm of

the variance is taken as the CSP features.

Regularised Common Spatial Pattern In recent years a common trend is to modify the ob-

jective function of the CSP by introducing custom terms to achieve a specific solution[38]. One

such term is the "penalty term" that penalizes the filter which violates the constraints associated

with the formulation of the objective function. The penalty term is generally introduced in the

denominator of the objective function. After introducing the penalty term the objective function

takes the following form

OReg =
wTC1w

wTC2w+βS(w)
(1.3)

here S(w) = wT Mw is quadratic penalty term and β is the parameter of regularization. Like the

classical CSP method described above, the optimization of the modified objective function can

also be represented in terms of the Lagrange multiplier as below;

L(λ ,w) = wTC1w−λ (wT (C2 +βM)w−1) (1.4)

The spatial filters are obtained as the eigenvectors of the matrix (C2+βM)C−1
1 . However, unlike

the classical CSP methods, the minimization of the objective function is not desirable here as

it leads to the maximization of the penalty term. Hence the objective function is re-formulated

here as below;

OReg =
wTC2w

wTC1w+βS(w)
(1.5)
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Now the filter coefficients can be obtained from the eigenvectors of the matrix (C1 +βM)C−1
2 .

Empirical Mode Decomposition:

EMD (Empirical Mode Decomposition) is particularly well-suited for analyzing signals that

exhibit a mixture of frequencies at different scales, such as those containing both slow and

fast oscillations[39]. EEG signals, which are non-stationary in nature, pose a challenge for

decomposition using fixed basis functions like Fourier Transform or Wavelet Decomposition. In

contrast, EMD operates by decomposing the original sequence into Intrinsic Mode Functions

(IMFs). IMFs possess the following characteristics:

1. The number of extrema is one more than the number of zero crossings.

2. The local average of an IMF is zero, indicating that the average value of the upper envelope

and lower envelope is zero.

The EMD process operates through a series of iterative steps as follows[41]:

a) The local extrema (peaks and valleys) of the signal are identified.

b) The identified extrema are connected using a cubic spline interpolation method to obtain both

the upper and lower envelopes.

c) The average of the upper and lower envelopes is computed.

d) The difference between the original signal and the computed mean of the envelope is calcu-

lated.

e) The above steps (a-d) are repeated until an Intrinsic Mode Function (IMF) is generated. The

iterations continue until a specific criterion is met, which determines the termination of the de-

composition process. After applying the sifting process, the EEG signal x(n) can be expressed

as the sum of the derived Intrinsic Mode Functions (IMFs) as shown below:

x(n) =
N

∑
i=1

ˆfi(n) (1.6)

The above equation denotes the IMFs derived from the EEG signal as fi(n). After applying

the EMD algorithm separately to both categories of signals (trials containing the P300 evidence

P1(n) and trials without P300 evidence P2(n)), these signals can be expressed as linear combi-

nations of IMFs, as shown below:

P1(n) =
N1

∑
i=1

ˆf1,i(n) (1.7)

P2(n) =
N2

∑
i=1

ˆf2,i(n) (1.8)

IMFs obtained for the two categories of signals are N1 and N2. Now each class of the EEG

signal is expressed as a linear combination of the IMFs, which is considered a feature vector of

the corresponding class.

Canonical Correlation Analysis:

Canonical Correlation Analysis (CCA) is a statistical technique that aims to uncover the un-

derlying covariance or correlation structure between two sets of random variables by expressing
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them in terms of linear combinations[42]. CCA is particularly well-suited for the detection of

Steady-State Visual Evoked Potentials (SSVEP) because it involves identifying specific stimu-

lus frequencies from recorded EEG signals obtained from multiple channels. By leveraging the

correlation information between the recorded EEG signals and the target stimulus frequencies,

CCA enables effective detection and analysis of SSVEP responses[37]. For two sets of random

variables X ∈ Rm×n and Y ∈ Rp×n, CCA discovers two such linear combinations, LX ∈ Rm and

LY ∈ Rn for which the expressions given below,

c̃1 = LT
X X (1.9)

c̃2 = LT
Y Y (1.10)

yields maximum correlation subjected to maximization of the objective function given below,

max
LX ,LY

ρ =
E[c̃1c̃2

T ]√
E[c̃1c̃1

T ][c̃2c̃2
T ]

(1.11)

=
LT

X XY T LY

LT
X XXT LX LT

Y YY T LY
(1.12)

Where ρ denotes the correlation coefficient.

Canonical Correlation Analysis (CCA) is used to discover the strongest connection between two

sets of variables: X , representing recorded EEG data with m channels and n sample points,

and Y a prepared dataset with dimensions 2HN. Y contains the target stimulus frequency ( fs)

along with other frequencies. Specifically, Y is constructed to include both the sine and cosine

components of each frequency fs(1 to S). By incorporating both components, CCA aims to

capture complete information regarding the specific stimulus frequencies. The goal of CCA is

to identify the canonical correlations that maximize the relationship between the EEG data X

and the target stimulus frequencies in Y , allowing for the detection and examination of relevant

EEG responses associated with those specific frequencies.

Y =



sin2π fst

cos2π fst
...

sin2πH fst

cos2πH fst


where t =

1
F
,

2
F
, . . . ,

Stepwise Linear Discriminant Analysis:

SWLDA, or Stepwise Linear Discriminant Analysis, applies a modified version of Fisher Linear

Discriminant Analysis to classify trials into two categories[43], however, it can be used as a

detection tool for wide categories of brain signals. This process involves solving a discriminant

function to determine an optimal hyperplane that separates the two categories of the signal. The

discriminant function, which is used to compute the distinguishability scores, is expressed as

follows:
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ŵ. f (x)−b = 0 (1.13)

where b is the bias and f (x) is the transformation function acts on the input vector x. The weight

vector w is estimated using the equation below to predict the class label.

ŵ = (XT X)−1XT y (1.14)

SWLDA begins by including a single feature in the discriminant function and progressively in-

corporates additional features based on their statistical significance. When a new feature is added

to the feature pool, the algorithm scans the pool in reverse and removes the least statistically sig-

nificant feature. This iterative process continues until the feature pool reaches a predetermined

number of features[44].

1.6.1.3 Feature Selection

It is observed that the feature extraction method sometimes generates complex and high-dimensional

features from the original raw EEG data. However, it is not necessary that all the features gen-

erated by the feature extractor will be relevant for identifying the targeted mental state. Hence,

a subset of features having the highest importance with respect to the targeted mental state must

be judiciously selected from the original feature pool. Such a procedure is known as feature

selection. The feature selection process has multiple benefits in the BCI application.

First, it helps to extract the most relevant features and discard the redundant features. Relevant

features have high inter-class variance and low intra-class variance.

Second, the feature extraction method reduces the dimension of the feature which has a positive

effect on the classifier’s performance. As the number of features gets reduced the classifier needs

to adjust only fewer number of parameters and also reduces the chance of overfitting especially

when the number of training samples is small.

Third, fewer number of features speed up the classification process, which is highly required for

real-time BCI applications.

There exist quite a few feature selection methods that are extensively used in BCI applications.

Among them, Wrapper based methods like linear regressor[45], evolutionary algorithms[46], ge-

netic algorithm[47], filter-based methods like Principal Component Analysis[48][49][32], max-

imal mutual information[50], embedded methods like SWLDA[51], metaheuristic algorithms

like Particle Swarm Optimization[52], Ant colony optimization[53] are very popular. Apart

from the above methods, mRMR[54], and Relief[55] are also used as the feature selection tool

in EEG-based BCI. Feature selection methods from each of the three major categories are dis-

cussed in detail in this thesis. The evolutionary method like Differential Evolution is discussed

in Chapter 2, while the embedded method SWLDA is discussed under the feature extraction

section (Section 1.6.1.2). Hence, here we will restrict our discussion to PCA, the most popular

candidate from the filter methods.

Principal Component Analysis:

PCA aims to reduce the dimensionality of the original dataset while preserving the most im-
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portant information captured by the principal components, which are the directions in the data

space that maximize the variance.

Let us consider X ∈ Rn×p to be the EEG feature set of a single trial arising from n EEG

channels, and having p number of features. PCA first normalizes the data by subtracting the

mean (m) of each feature (mean is computed by averaging the feature values across all chan-

nels: m = (m1,m2, ....mp) ) from each channel. The normalized data matrix is then utilized to

compute the covariance matrix. For the normalised matrix X̂ , the covariance matrix Σ is calcu-

lated as Σ = 1
n X̂T ˆ̂X . Next, the covariance matrix passes through the eigendecomposition method

which reveals the eigenvalues(λ1,λ2, ...λp) and eigenvectors(V1,V2, ...Vp) of the matrix. Next,

the eigenvectors are sorted in descending order according to their corresponding eigenvalue.

This ensures that the principal components are ranked by the amount of variance they explain.

Now, we select the d principal components by taking the first d eigenvectors to create a projec-

tion matrix S. The original normalized EEG data matrix X̂ is now projected onto the S to obtain

the matrix P ∈ Rn×d with reduced dimension, where each row corresponds to a transformed data

point and each column represents a principal component score.

1.6.1.4 Classification

Classification is the last component of the neural interface. A properly designed classifier helps

to distinguish between different mental states corresponding to the different mental intentions of

the subject. Once the feature vector consisting of the discriminative features of an EEG trial is

obtained, the classifier categorizes the feature vector and assigns a pre-defined class label to it.

The categorized signal coming from the output of a classifier is used as an input to the auxiliary

controller. In the case of traditional BCI control where the auxiliary controller is absent, the

output of the classifier is directly used to actuate the external device such as motors of robot

joints.

The classifiers learn through the instances to categorize the different cognitive states, hence

the classifiers are trained with the available data generated during the training phase where the

subjects are instructed to perform a given mental task whose class labels are known as apriori.

The EEG signal acquired from the scalp of the subject while performing the tasks is processed

to obtain the feature vector of that specific class label, which is utilized to train the classifier.

Once the training process is over, the trained classifiers are employed in the real-time system for

testing their performance. The BCI system employs various classifiers for different applications.

For the robot control application, some of the widely used traditional classifiers are given below.

Discriminant analysis is a classification technique that falls under the category of generative

modeling methods. In this approach, the goal is to estimate the density of EEG feature vector

x within each class ci based on the given class label. By incorporating the prior probability

(unconditioned probability) of classes, we can calculate the posterior probability of ci using the

Bayes formula.

Linear-discriminant Analysis(LDA) classifier is the simplest form of discriminative classifier

widely used for classifying motor imagery, P300, ErrP, and other brain signals[56][57]. The

main assumption of the LDA is the equal covariance matrix of all classes, hence it presumes
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that the classes are linearly separable. It attempts to find the optimal direction in which the

classes are best separable[58]. The advantage of the LDA is its low complexity and ability to

handle multicollinearity. For a given feature vector x and class labels ci where i = 1,2,3...n the

discriminant function of the LDA is given below;

D̂(x) =−1
2
(x−µci)

T
Σ
−1(x−µci)

T + log(πci) (1.15)

where Σ is the covariance matrix, µk, and πk is the mean and prior probability of class ci. The

LDA finds the class label ci (for a given test vector) that maximizes the discriminant function.

It should be noted that while formulating the discriminant function the LDA drops the quadratic

terms and considers only linear terms.

Another important class of classifier is Quadratic Discriminant Analysis(QDA) which is an

extension of previously described LDA[59]. Unlike the LDA, the QDA assumes a different co-

variance matrix for each class. It attempts to maximize a discriminant function that is quadratic

in nature. The discriminant function is very similar to that of LDA but also includes the quadratic

terms that were previously discarded in the LDA formulation. The discriminant function is given

below;

D̂(x) =−1
2
(x−µci)

T
Σ
−1
ci
(x−µci)

T + log(πci) (1.16)

the notation of the equation remains the same as LDA but with an exception, the covariance

matrix Σci is now class dependent. Like the LDA, QDA also tries to find the class label ci for

which the discriminant function gets maximized. In some recent literature, QDA is found to be

used as a classifier to classify different cognitive states[60][61].

In LDA and QDA class density is assumed to be Gaussian in nature, but based on Baye’s

rule, there is another important classifier called Naive Bayes classifier which assumes the input

features governing the class densities are independent, hence the class density can be obtained

by simply multiplying the marginal densities of each input features[62]. Such an assumption of

conditional independence helps to simplify the calculation and increases the classification speed.

The Naive Bayes classifier is well suited for real-time EEG classification applications, hence has

been widely used in BCI domain[63][64].

Sometimes it is found that due to the complex nature of EEG data, it becomes almost im-

possible to distinguish between two different classes of data using "Hard" margins, i.e. it is

impossible to construct a decision boundary for which all the feature points belong to a class

label will be on the one side of the boundary and feature points belong to another class label will

be on another side of the boundary. Such situations are tackled by introducing the "soft" margin

which allows a small number of feature points to lie on the wrong side of the boundary but with

an aim to increase the generalization capability of the classifier. Support Vector Machine (SVM)

is one of the very popular classifiers which attempts to maximize this soft margin/hyperplane by

minimizing the classification errors[65][66].

Let’s say we have EEG feature vectors xi, where i ranges from 1 to N, representing the

training set X . Our objective is to create an ideal hyperplane g(x) = ωT x+ω0 that accurately

classifies the training vectors into two linearly separable classes, ω1and ω2. In the equation,
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ω represents the direction of the hyperplane, and ω0 represents its position. To achieve this,

Support Vector Machines (SVM) aim to find the hyperplane direction that maximizes the mar-

gin between both classes, ensuring a clear separation. The distance of a particular point from

hyperplane g(x) can be expressed as z = |g(x)|
||ω|| . Now, ω and ω0 can be scaled so that the value of

g(x) is +1 in the case of ω1, and -1 in the case of ω2. Hence, the task reduces to the problem of

computing parameters ω and ω0 to minimize the objective function

J(ω,ω0) =
1
2
||ω||2 (1.17)

subject to the constraint yi(ω
T xi +ω0)≥ 1 for i = 1,2,3...N.

The above optimization problem is solved using the method of Karush-Kuhn-Tucker(KKT)

conditions. The vector parameter ω of the optimal solution comes out to be a linear combination

of the number of feature vectors corresponding to non-zero Lagrange multipliers. These vectors

are known as Support Vectors. In case the feature points are not linearly separable, a nonlinear

mapping function popularly known as the kernel function is used to map the feature points in

a higher dimensional space. Once the above mapping is done, the SVM attempts to find an

optimal hyperplane that linearly separates the feature points in that higher dimension. Literature

shows the widespread usage of this classifier for classifying various brain patterns[67][68][69].

Another important classifier for brain signal classification is k-NN[70]. k-NN is a classifier

that maps the feature vector to class labels by storing k-feature points that are nearest to the

test feature point under consideration and then it calculates the Euclidian distance of the test

feature point from all other feature points. The most probable classes get the nomination from

previously selected k-nearest neighbors and the class which gets the most nomination is selected

as the class of that particular test feature point. k is a very important parameter of the k-NN

classifier as the local density of data is controlled by it and of course, it is much smaller than the

training sample size[66].

Apart from the statistical classifiers, Artificial Neural Network is also used as classifier in

the BCI task. The ANN is completely data-driven, hence doesn’t depend on the probability

distribution of the data [71]. The ANN attempts to learn the mapping between feature vectors

and class labels by adapting the connection weights between the artificial neurons. It uses EEG

feature vectors with known class labels along with a learning rule to update the connection

weights[72][73].

However, due to the low signal-to-noise ratio and non-stationarity of the EEG signals, the

classification performance is not optimal. Hence, a recent trend is seen where the parameters

of the classifier model are updated continuously to tackle the above drawbacks and increase

the classification accuracy[74]. Such parameter adaptation also helps to deal with the prob-

lem of the non-availability of a high amount of EEG data for classifier training. A very pop-

ular approach called transfer learning is also used to deal with the problem of less amount of

data, it enables the classifier trained in one BCI domain or session to be used in another BCI

domain/session[75][76][77]. There exist many other techniques which are used to increase clas-

sification accuracy, merging the feature extraction, feature selection, and classification process



1.6. Modules of Closed-Loop Brain-Computer Interface System 23

is one of them [74].

Parameter adaptation is done using both supervised and unsupervised learning[78], i.e. with

or without having prior knowledge about the class of the data, although most of the adaptive

classifiers are designed using supervised learning[79][80][81]. In motor imagery-based BCI,

adaptive LDA and QDA were used to classify the MI signals[82][83][78][84][85][86]. An adap-

tive probabilistic neural network was also used to classify different classes of MI patterns, such

models assume a distribution model of feature sets of each class and update it with the new

incoming feature vector[87]. Likewise, an altered non-linear Bayesian classifier employed un-

supervised or semi-supervised learning methods, where a subset of the incoming trials was la-

beled. This adaptation incorporated extended Kalman filtering to monitor the fluctuations in the

parameters of the class distribution alongside auto-regressive (AR) features[88].

Another important class of classifiers is Convolutional Neural Networks, which is popularly

known as CNN. A convolutional neural network is a type of neural network that follows a for-

ward propagation approach, where information moves unidirectionally from the input through

the hidden layers to the output. It is characterized by the presence of at least one convolutional

layer [89][90]. The convolutional layer employs a convolutional operator that transforms the

input signal into an output signal through (Eq.1.18). For a given trial of EEG data xi with N

number of samples, the convolutional filter gl having size L, transforms the input xi into output

yi

y(n) =
L−1

∑
i=0

gixn−i∀n = 0..1,2, ...N−1 (1.18)

Although the above equation is given for 1-D signal input, but the idea can be safely extended

for multidimensional input. Hence, CNN can be used for multichannel EEG inputs also.

In a general framework of CNN, non-linearities and pooling layers are introduced after the

convolutional layer. Such layers combine the relevant local data coming from the convolutional

layer output into a solitary value, usually by utilizing an average or maximum operation. Typ-

ically, in standard ConvNet architectures, multiple layers consisting of convolution, and non-

linearity (and pooling) are sequentially stacked, followed by additional layers, commonly fully

connected, which function as a classification layer [91]. It is worth noting that certain archi-

tectures employ solely convolutional layers for classification. The model parameters in these

architectures consist of the weights assigned to all the convolution filters, as well as the weights

associated with the fully connected layers.

Parameters of the network are trained through supervised learning with the aim to minimize

the cost function of the following generic form

ŵ = argmin
w

1
m ∑

i
J(yi,Dw(xi))+R(w) (1.19)

The training data above is represented as [xi,yi] for i ranging from 1 to the total number of

samples. The prediction function Dw, associated with the ConvNet, is used to predict the labels

for the input data xi. The loss function J is used to measure the discrepancy between the true class

of EEG trials xi and the predicted class. Additionally, R represents a regularization function that
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helps in controlling the parameters of the ConvNet. Stochastic gradient descent and its variants

are widely used for optimizing deep ConvNets due to the specific form of global loss, which is

the average loss over individual samples. Moreover, the feedforward architecture of Dw enables

the computation of gradients at any layer using the chain rule. This efficient computation is

accomplished through the back-propagation algorithm [92].

In the BCI domain, CNN is being extensively used to identify and distinguish between dif-

ferent mental commands( brain patterns) due to their superior ability to learn the most discrimi-

nating features present in that specific brain pattern [93]. Although there exist quite a few papers

that use CNN to detect various brain patterns like Motor Imagery, SSVEP, P300, etc., here we

will discuss some of the landmark papers for each category of brain signal.

The initial exploration of CNN for P300-BCI (Brain-Computer Interface) was conducted by

Cecotti et al. in their pioneering paper[94]. Their CNN architecture consisted of two convolu-

tional layers, where one layer was designed to learn spatial filters and the other layer to learn

temporal filters. These layers were followed by a fully connected layer. In addition to this, the

researchers also investigated the use of ensembles comprising multiple CNNs with similar archi-

tectures. In another instance, Manor R et al.[95] used CNN with one spatial convolutional layer

along with two other temporal convolutional layers to detect the presence of P300 generated in

the context of Rapid Serial Visual Presentation. The network also employed two dense fully

connected layers at the end for the classification purpose.

In the case of SSVEP detection, Kwak N S et al.[96] proposed the use of CNN consisting of

both spatial and temporal convolutional filters. The performance of the CNN was at par with

the Canonical Correlation Analysis and multi-layer perception, but the CNN provided a superior

performance over the other two classifiers in the case of a noisy signal input coming from a

moving subject.

The CNN is also extensively used in deciphering motor imagery signals in BCI. Tabar Y R et

al.[97] used CNN in conjunction with Deep Belief network (DBN) to classify motor imagery

signals. Schirrmeister et al [98] investigated different CNN architectures including shallow

CNN, deep CNN, hybrid shallow+deep CNN, and residual NN. The shallow CNN consisted of

one temporal convolution, one spatial convolution, squaring, mean pooling, and a softmax layer.

The deep CNN involved a temporal convolution, a spatial convolution, followed by three layers

of standard convolution, and a softmax layer. The hybrid shallow+deep CNN combined the ar-

chitectures of shallow and deep CNNs by concatenating them. The residual NN consisted of a

temporal convolution, a spatial convolution, 34 residual layers, and a softmax layer. Both the

deep and shallow CNN architectures outperformed FBCSP significantly in their performance,

however, the hybrid and residual CNN failed to do that. Another paper[99] used CNN to clas-

sify multiple brain patterns like Motor Imagery (MI), P300, ErrP, etc. They used a compact

structure of CNN with few layers and parameters.

1.6.2 Auxiliary Controller

Performance requirements of different BCI applications can not be met only with human efforts,

because of the subject’s inability to perform complex tasks (such as complex trajectory gener-
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ation for the robots, avoiding obstacles during the robot movement, proper grasping of objects

using robot gripper, etc) using limited number of BCI commands. It also imposes a high cogni-

tive load on the participating subjects. Hence an additional controller is needed to take care of

the low-level tasks. Such controllers are termed auxiliary controllers. The auxiliary controller

receives the human command from the neural interface and modulates it to actuate a robot arm

or an external device to achieve any specific task. The main role of the auxiliary controller is to

provide high-precision control, which usually is difficult to achieve by human agents.

Different control strategies based on the requirements of the BCI application are adopted for

designing the auxiliary controller. Here, we will briefly discuss three major strategies used pre-

dominantly in the Brain-controlled robot application.

1.6.2.1 PID Conroller

Proportional-Integral-Derivative(PID) controller is a traditional and one of the simple control

strategies which have got widespread application in various domains like robotics, process in-

dustry, the aerospace industry, etc. Such controllers are also implemented in closed-loop BCI

for their easy realization technique [100][101]. The control signal u(t) can be represented by

Eq.(1.20).

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

de(t)
dt

(1.20)

where e(t) is the error signal that arises due to the mismatch between the actual and desired

value. Kp,Ki, and Kd are the proportional constant, derivative constant, and integral constant

respectively. It is evident from (1.20) that the control signal u(t) is a function of the error signal,

rate of the error, and integral of the error. The objective is to optimize the values of Kp, Ki, and

Kd to obtain the desired control signal which can actuate the external agent to get the desired

performance. The proportional gain helps to obtain a fast response time, and the integral constant

helps to get a zero steady-state error while the derivative constant yields a reduced overshoot by

predicting the rate of change of error in advance.

Many studies have used PID controllers in the closed-loop BCI for various applications like

robot control, regulating the vibrotactile feedback, generating proprioceptive feedback from the

robot, etc [100][101][102][103].

1.6.2.2 Shared Controller

The utilization of a shared controller in a Brain-Computer Interface (BCI)-based robot manip-

ulation task offers inherent advantages. It serves to enhance the accuracy of task completion

by the robot while simultaneously reducing cognitive fatigue experienced by the human opera-

tor through a reduction of subject involvement in repetitive tasks. The primary objective of the

shared controller is to optimize the capabilities of both the human and robot agents within the

system by breaking down the task into smaller sub-tasks and assigning them to the most suitable

agent (either human or robot) based on their specific strengths. High-level decision-making sub-

tasks are entrusted to the human agent, while lower-level tasks like local navigation and object

grasping are autonomously performed by the robot agent using its onboard sensors like RGB(D)
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camera, ultrasonic sensors, etc. This approach ensures that human intervention is only required

when uncertainties arise in the decision-making process.

Typically, shared control methods employed in BCI applications can be classified into two main

types: sequential shared control and all-time shared control[104]. In the case of sequential

shared control, the task is shared between the autonomous controller and the human subject in

a sequential manner. Initially, the human subject provides high-level commands, such as the

desired destination to reach and the autonomous controller then executes the task while ensuring

specific conditions are met. In the other type of control method human operator and the shared

controller continuously shares the task and the decision is generated at each instant by combin-

ing the decisions of the human and the shared controller.

In the present thesis, the first type of shared controller has been designed with the help of a 3D

vision camera.

Vision-based Controller: Literature shows that vision-based shared controllers are predomi-

nantly used in the closed-loop BCI[105][106][7][107][108]. Such controllers use an RGBD

camera capable of providing depth information to guide the robot arm to reach the target lo-

cation. The controller works in the following manner. First, the camera captures the images

of the surrounding environment of the robot arm, then an image processing algorithm such as

object identification, and object localization is applied to extract the relevant information from

the captured images. Once the relevant information is extracted, that information is utilized to

understand and interpret the surrounding environment into controller-understandable informa-

tion. Based on the interpreted visual information, the controller makes decisions and generates

control signals to actuate a robot arm for achieving the required task. These decisions include

object tracking, path planning, obstacle avoidance, generating grasping configuration for robot

end-effecter, and any other specific tasks depending on the necessity of the BCI application.

Brief summary of State-of-the-art Object Recognition technique: The key component of the

vision-based controller is the image processing module. The image processing technique used

in the vision-based controller serves different purposes like object classification, object localiza-

tion, and object segmentation or semantic segmentation based on the application where it is ap-

plied. However, such challenging computer vision tasks come under a big umbrella called object

recognition. With the advent of deep learning techniques, and convolutional neural networks,

the object recognition task is mostly dominated by these two techniques. Here, we provide a

brief description of the state-of-the-art object recognition strategies relevant to the present thesis

work.

Girshick et al.[109] in 2014 proposed a promising approach to object recognition based on

region-specific convolutional neural network (CNN) features, such a family of algorithms is

popularly known as R-CNN or Region-based Convolutional Neural Network (R-CNN). The R-

CNN uses three distinct modules to recognize any object from a digital image. The modules

include

1. Region Proposal: This module is responsible for proposing the regions where the object

may be located and for creating candidate bounding boxes. An offline-based algorithm "

Selective Search" is used to propose the regions here.
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2. Feature Extractor: This module uses Deep Convolutional Neural Networks to extract rel-

evant features from each of the proposed regions.

3. Classifier: This final layer uses a classifier to assign a class label to each of the proposed

regions based on the features obtained in the previous module.

However, the R-CNN object recognition method is a sequential method and employs a

pipeline architecture, where the previously defined three modules work sequentially with a mul-

tistage pipeline. Hence the training process is slow. Training the Deep CNN for a large number

of proposed regions is also computationally expensive. Overall the process becomes slow and

not a good choice for real-time operation. As an alternative, Girshick et al.[110] proposed

the Fast R-CNN network to speed up the process. Unlike the R-CNN which takes the input

(proposed regions) for the CNN sequentially, the Fast R-CNN takes the entire image and the

proposals in a single forward pass. The network also employs a RoI pooling layer at the end of

the architecture to extract the specific feature related to each of the candidate bounding boxes.

The output of the CNN reaches two separate branches, where one of the branches contains a

softmax layer to predict the class label and another branch contains a regressor that regresses

through the bounding box. Hence, the Fast R-CNN simultaneously predicts the object class and

objectness score at the same time.

The structure of the network was further updated to increase the training speed as well as

to increase the detection accuracy. The update was mainly concerned with the region proposal

process, and a separate new module called Region Proposal Network (RPN) was introduced in

cascade with the Fast-RCNN network. The combined architecture of RPN and Fast-RCNN is

popularly known as Faster-RCNN[111]. The RPN is also a deep CNN structure that takes the

output of a pre-trained CNN (such as VGG-16, ResNet[112][113]) as its input and provides the

multiple region proposals along with their class label. The region proposals are nothing but

bounding boxes with pre-defined shapes. The class label associated with each bounding box

is binary in nature, i.e., RPN indicates whether the object is present in the region or not. Each

proposed region is passed to the Fast-RCNN for further classification and accurate bounding box

regression. This network takes the proposed regions as input and extracts their features using RoI

(Region of Interest) pooling or RoI align. The Fast-RCNN predicts class probabilities for each

proposed region and refines the bounding box coordinates to obtain accurate object detections. It

is apparent from the above discussion that instead of using an external region proposal algorithm

(like Fast-RCNN), Faster R-CNN combines the RPN and object detection network into a single

architecture. By sharing convolutional features between the RPN and the detection network,

Faster R-CNN achieves end-to-end training and further improves both accuracy and efficiency

compared to Fast R-CNN.

1.6.2.3 Model Predictive Controller

Model Predictive Control (MPC) is a control strategy that utilizes a predictive model of the sys-

tem’s behavior to optimize control actions over a future time horizon[114]. First, a mathematical

model of the system’s dynamics is developed from the experimental data to describe the dynamic
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behavior of the system. Based on the present state and control input of the system, the model

predicts the behavior of the system over a specified time. An objective function with certain

input-output constraints is optimized to obtain the optimal control input. Once the control input

is applied to the system, the state of the system gets updated, which becomes the present state of

the prediction model.

Such Model-based predictive controllers are currently being used to design the auxiliary

controller in closed-loop BCI for their superior performance in terms of precision and accuracy

[115][116][117][118].

1.7 State-of-the-art BCI-based Control Schemes

The BCI has become an emerging field in the last ten years, hence there exists a large number of

literature in this domain. However, here we provide a review of recent BCI works which focus

on the design of closed-loop BCI systems from the control-theoretic perspective and are relevant

to the main theme of the present thesis.

In 2016 Meng et al. [119]developed a novel approach to cursor control (and also position

control of an end-effecter) using two sequential steps. The first step utilizes the left/right MI

for cursor control in the x-direction on a horizontal plane. In the second phase, the authors

employed both hand-movement together to control the movement of the cursor (end-effecter) in

the y-direction of the horizontal plane. Next, they arranged to hover over the target object using

Mu-power. The position of the cursor/end-effecter is displayed as a feedback signal to the user

for necessary corrective actions in subsequent steps.

Meng et al.[120] in their other work, proposed an interesting approach to controlling the po-

sition of a cursor on a computer screen. They employed overt spatial attention (OSA) to control

the movement of a cursor on the left/right side of the screen depending on the subject’s alertness

towards the left/right ends of the screen. After the cursor hits the left/right bar of the screen,

it would have a change of color to signify success. Once the cursor control in the horizontal

direction is over, the user utilizes OSA to control the movement of the cursor in the up-down

direction. A third strategy to control the motion of the cursor in a virtual plane perpendicular

to the screen is to employ a left/right motor imagery signal to move the cursor outward/inward

on the plane. An alternative strategy is to control the left/right and up/down movement of the

cursor by motor imagery and motion in the perpendicular plane by OSA control.

Now, in the context of BCI-based robot manipulation, Tariq et al.[121] proposes the follow-

ing sequence of actions to control a robot using brain commands. The schematic diagram of the

system is provided in Fig. 1.16.

• 1. High-level control/planning decisions are generated by the BCI system.

• 2. The robot has its own sensory system and actuators to plan and execute high-level

commands using low-level control signals by local controllers.

• 3. On-screen selection of the target /navigational direction by BCI-based system using

P300. This is done by flashing the desired direction and activating by P300.
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Figure 1.16: Schematic diagram of BCI-based control strategy proposed by Tariq et al.

Liu et al.[122] proposed a novel scheme where left-arm motor imagery is utilized to lift the

robotic limbs and right-hand motor imagery to move down the limbs. Additionally, they utilized

inverse kinematics to determine the angular positions of the joints of the 6 degrees of freedom

manipulator. Lastly, they employed a novel neural-net-based position controller, that optimizes

a given control objective to reduce to optimize the angular velocity and angular acceleration of

each joint. The scheme is presented in Fig.1.17

Figure 1.17: Schematic diagram of BCI-based control strategy proposed by Liu et al.

Tang et al.[106] proposed an interesting technique to control the movement of an end-

effecter in a plane parallel to the plane of a camera mounted on the moving robotic arm. They

introduced an on-off type control strategy by utilizing the following principle.

• 1. The left/Right movement of the end-effecter on the coronal plane (parallel to the plane

of the camera) is done by left/right-hand motor imagery.
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• 2. The motion of the end-effector is stopped when the camera detects the object of intent

on the coronal plane.

Another work by Zhang et al.[7] proposes the following strategy to mentally control a robot

arm using a custom-designed neural interface.

1. The subject selects the objects using SSVEP.

2. The subject uses motor imagery to control the robot arm.

3. There are 6 types if movements involved in grasping control: left, right, up, down, open

and close.

4. By image analysis, the robot determines the displacement in left, right, up, down, opening,

and closure of end-effecter.

5. Additionally, the robot plans the same movement patterns of the end-effecter.

6. Now, the probability of the end-effecter to grasp object due to up, down, left, right etc.

movement are compared from the visual inspection data both by the Kinect sensor and the

subject. A data fusion algorithm is run to obtain the optimized constraints.

The work undertaken by Xu et al.[107] deals with switched mode dual control strategy where

BCI-based control is employed at an early stage to position a robot end-effecter close enough

to a targeted object. After the end-effecter reaches the neighborhood of the target position,

the manual to automatic camera-based position control is switched on. In the BCI-based control

paradigm, the subject employs left-hand motor imagery and right-hand motor imagery to control

the motion of the end-effector at 45° around the targetted position of the end-effecter. In other

words, the LHMI and RHMI are transformed into velocity vectors at an angle of +45° or -45°

respectively with respect to a reference line in the plane of motion of the end-effecter. The end-

effecter is moved in a zig-zag path toward the pre-defined target. Once the end-effecter comes

within close vicinity of the target object, the switch over to automatic control using vision-

based movement planning is instigated. Under this scheme, a camera mounted at the corner of

the robot-work table is turned on to capture the image of the object, localize it by image pre-

processing and segmentation, and a control strategy is developed to bring the gripper towards

the target object. Fig. 1.18 provides a schematic overview of the overall system involving the

camera, robot arm, the subject, and the distributed control strategy.

Sorbello et al.[123] proposed an interesting scheme of shared control to control the position

of the end-effecter. First, the subject selects the on-screen navigational commands, (such as

move horizontal, vertical, left, right, gripper open/close, and the like by using P300 signals. A

camera mounted on the top of the robot is used to determine the direction of navigation of the

end-effector intelligently. In case the direction indicated by the camera matches with the one

selected by the subject using P300, the action is selected, but not executed. Before execution

of the command, a second step of confirmation is obtained by the bio-feedback. The “bio-

feedback module” inputs 3 parameters: Attention, Focus, and Intent, and evaluates a metric as
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Figure 1.18: Schematic diagram of BCI-based control strategy proposed by Xu et al.

the weighted sum of the above 3 parameters. In case the weighted sum crosses a pre-defined

threshold, the action chosen by the subject is executed. If the weighted sum goes below the

threshold, the action selected by the subject is abandoned.

Wang et al. [124] presented an interesting approach to object selection through a camera

using SSVEP. The scheme employs a camera mounted on top of a robot arm to explore the

objects within the field of view, which are transferred to a computer monitor for selecting the

target object using SSVEP. Here for each object, a bounding box is developed. These bounding

boxes flicker at different frequencies to represent the identity of the individual objects. A subject

intending of selecting a specific object focuses on the item and the flickering frequency is picked

up by the subject through SSVEP. Once the object is selected, the navigation of the robot arm

is automated by a camera-based position control system, The distance of the object from the

camera is calibrated using the size of the object. The smaller the size, the closer the object with

the robot arm.

Lillio et al.[125] proposed a novel strategy for shared control to develop a BCI-controlled

assistive manipulator. Here the entire task of controlling the manipulator is partitioned into

two components: i) BCI-based human interaction and ii) Intelligent autonomous action. In the

BCI-based human interface, the subject selects three items in sequence: i) Object selection,

ii) Robotic Action selection, iii) Action execution. Selections are done using P300. The BCI

modality of the subject is now complete, and the control policy now is transferred to robot au-

tomation. In the automated phases, a Kinect-based camera is used for object recognition and

mouth recognition. This information is passed to the waypoint generator which generates a ref-

erence trajectory to be followed by the robot. A task priority-based inverse kinematics algorithm

is employed which takes care of the obstacles present in the environment and communicates
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with a low-level robot joint velocity controller. The joint velocity controller controls the torque

of each joint of the robot and manipulates it towards the desired direction.

Batzianoulis et al. [126] proposed an interesting approach for shared control by utilizing the

ErrP signal and Inverse reinforcement learning (IRL) paradigm. Here the subject has its own

choice of trajectory planning of a robot, for instance, obstacle avoidance and trajectory planning

toward the fixed target. Each time the robot reaches an obstacle before reaching the destination,

the subject releases an ErrP signal. The decoded ErrP signal is used to move away the robot

from the obstacle without violating the planned trajectory of the robot. An IRL algorithm is

employed to change the trajectory following the user’s preferred trajectory of motion.

Duan et al.[108] in a recent paper presented a novel scheme for shared control with a hy-

brid BCI system. They employed a camera-based capturing of robots’ movement. The camera

back-plane and the human retinal backplane are parallel. So, the information extracted by the

camera is the same as could be obtained by the subject, if he attempted to see the robot by his

naked eyes. The computer screen displaying camera view about the robot’s trajectory of motion

includes provisions for generating navigational commands for the robot using SSVEP. Naviga-

tional commands include turn right/turn left/ grasping etc. After the SSVEP-driven commands

are issued to the robotic device, the robot gets aware of the task it has to do with. Next, motor

imagination is carried out to turn the motor clockwise/counter-clockwise. The switching from

SSVEP to MI is performed by thresholding of a parameter.

Yuan et al.[127] developed a novel approach for BCI-based navigational planning of a mo-

bile robot. A camera mounted on top of a mobile robot is used to capture scenes including

obstacles present in the environment. The camera output is visible to a subject through a com-

puter screen. The camera front plane and the computer screen are placed in parallel, so the

subject has the same impact due to the onscreen video, rather than watching the robot motion

directly. A SSVEP based selection of robotic actions is included in the front panel of the com-

puter. The control decisions are taken by the subject are communicated to the robot wirelessly,

to perform the required task. The control decision includes avoid obstacles and move towards

the targeted goal.

Zeng et al.[128] provide a novel approach to BCI and camera-based object positioning and

gripping. The camera back-plane is kept in parallel with the plane containing several objects

around the robot arm. Naturally, the image acquired, when displayed on the computer screen,

all objects seen by the camera take specific positions/coordinates on the screen. A second cam-

era is mounted on the screen to develop the gaze-detection system. The gaze detection system

determines the direction of the gaze of the user to select one of several objects in the local neigh-

borhood of the robot. Later the subject controls the speed of the robot by repeated ERD/ERS

and the direction of the movement of the robot using gaze control. When the gripper reaches

above the object, the gripper vertically gets down to the object and grips it, and takes its precise

position.

Tidoni et al.[129] proposed a faster and easier way to navigate a walking bipedal humanoid

robot by combining SSVEP brain signals and audio-visual feedback from the robot. The task

was to 1. Navigate a humanoid robot towards a target object, 2. Pick the object 3. Place
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the object in the desired location. Participating subjects used their SSVEP signal to navigate

the robot in the desired direction (left, right, forward, backward and stop movement) and also

to select the desired object to be picked and desired location where the object to be placed. A

camera is placed on the robot’s head which captures the live feed of the robot’s local environment

and transmits the feed to a remote computer. The feed of the camera is visible to the user

through a computer. Now the subject mentally issues navigational commands to the robot by

observing the robot’s movement on the computer screen. While navigating the robot through

mental commands, the subject receives the footstep sound of the robot synchronous to the actual

robot movement. It was observed that subject could navigate the robot with the increasing speed

and accuracy while they receive audio and visual feedback from the robot through footstep sound

and camera respectively. The authors also placed mirror near the robot, through which the robot

it self became visible to the subject. Such placement of the mirror enhanced the accuracy of

operation.

Fransicso et al.[130] Introduced a novel approach for EEG-BCI based on-off control of home

appliances. In the said scheme, the subject selects control commands on a computer screen

to communicate his/her desire to activate external devices (such as a light, fan, AC, TV and

the like). The automatic selection of control commands is performed using P300 brain signal.

Once a control command is selected, it is transformed into a speech signal by a text-to-speech

translator. A Google Assistant is activated, once the speech is generated with a codeword used

to activate Google Assistant. The rest of the communication is actuated by Google Assistant.

For example, if the message needs to be communicated to a subject by phone, a phone call to

the recipient may be initiated. In case the speech needs to be communicated to the speaker, the

voice message is sent to the subscriber by phone. In case a TV or an AC needs to switched

ON/OFF, an IR device is activated to be used as a remote controller through a Wi-Fi device to

switch ON/OFF the TV/AC or similar devices.

Mao et al.[131] proposed a novel strategy for brain-robot interaction by fusing human and

machine intelligence. They attempted to develop an intelligent system to navigate a mobile

humanoid robot in a fixed workspace through BCI-based control commands. The workspace is

captured by a camera mounted on the head of the robot. The captured frames about the local

neighborhood of the robot is mapped onto a computer screen. The motivation here is to make the

robot move along a user-intended path. This is done by generating two brain signals P300 and

SSVEP in sequence. To make the problem simplified, let us assume the robot is desired to move

to a fixed object position. This is realized by liberating P300 through flashing the desired object

on the screen. However, in case, a trajectory of the robot is required, the first object the robot

needs to reach is commanded by generating P300 (by flashing the selected object on screen) and

the motion of the robot therefrom is controlled by generating SSVEP by gazing at a flickering

source. Such movement of robot from one location to the other is needed in many applications

like transportation, assembling in factory automation, and fire extinguishing at several places.

The schematic diagram of the control strategy is given in Fig.1.19

Mengfan et al.[132] extended their previous work by judiciously selecting the 2-step motion

commands of a robot using N200 and P300 signals. The first step involves the selection of
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Figure 1.19: Schematic diagram of the BCI strategy proposed by Mao et al.

forward motion, while the latter involves one of the three possible motions like continuous,

discrete or stepwise. In both cases, they utilize N200 followed by P300 signals for command

generation. The classification accuracy is here increased by 2 parallel classifiers: SVM and FDA

and the classifier decision is communicated to the robot when the response of the classifiers is

matched.

The robotic neural prosthesis is an effective way to restore the function of disabled or am-

putated limbs but poses a restriction on the subject to receive somatosensory feedback. Such

drawback is overcome by reanimating the original limb of the subject instead of using a robotic

prosthesis. A novel strategy following the above protocol is proposed by Liu et al.[133], where

they used a custom-designed low power, miniaturized, tactile force sensor, and an electro go-

niometer to encode tactile and proprioceptive feedback signals respectively from the re-animated

limb. The subject wears the sensors which encode the feedback signal from the limb and

transfers it to a bidirectional invasive brain-machine interface (BMI) which in turn generates

a frequency/pulse-modulated stimulation to actuate a specific brain region. The BMI interface

was designed using SoC technology, which integrates a neural activity recorder, electrical stim-

ulator, analog-to-digital converter, ultra-wideband transceivers, and a digital signal processor for

suitable stimulus signal generation.

As an improvised method of post-stroke rehabilitation, Romero-Laiseca et al.[134] proposed

a novel brain-machine interface where the participating subjects perform pedaling imagery to

trigger a motorized exercise bike which is highly effective for gait and lower-limb rehabilitation.

The system is beneficial for post-stroke patients who can not voluntarily actuate a movement

but now become able to do it using the proposed brain-machine interface. They focused on
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minimizing the computational cost of the system using a few strategies which includes the use of

i) Fast Fourier Transform(FFT) followed by inverse FFT for the pre-processing of EEG signal,

ii) Riemannian geometry based feature extraction, iii) pairwise feature proximity for feature

selection and using low-cost LDA classifier for pedaling motor imagery classification. The

highest accuracy achieved by the two post-stroke patients was as high as 41.67 % and 91.7%

although the average accuracy achieved by them were bit low. Significant improvement in the

actuating time shows the efficacy of the system for its longer use.

Another efficient way of decoding the neural signals for the generation of suitable control

signals in a closed-loop BCI system is proposed by Dangie et al.[135]. The method is par-

ticularly suitable for decoding the non-stationary brain signal in an online BCI task. Instead

of using a traditional Kalman filter-based decoder which uses batch estimation for updating its

parameters, here the researchers have proposed an adaptive version of the Kalman filter which

continuously updates its parameter through a stochastic gradient descent algorithm. The pro-

posed adaptive Kalman filter (AKF) updates the estimation of the state matrix and observation

matrix at each time step. The efficiency of the algorithm is validated using the center-out cursor

movement task in a 2D virtual plane and the brain function is mimicked using a simulated model

of cortical neurons. The algorithm results in a faster learning process and increased success rate.

The algorithm proves to be more robust to the sudden disturbances than it’s non-adaptive version.

Kyung-Huan Shim et al.[136] proposes a novel technique of brain-machine interface-based

robot reaching and grasping tasks using a custom-designed neural interface and a 3D vision cam-

era. The neural interface translates the human intention captured by the EEG signal into robot

commands using a novel convolutional neural network. The proposed CNN uses a smaller recep-

tive field of 3x3 dimension to extract the minimal difference between the imagined movements

of different parts of the same limb. The lower receptive field has the advantage of increasing the

spatial resolution of EEG feature vectors. The proposed CNN also rules out the usage of any

max-pooling layer that considers only the active features and neglects other important features,

which may cause the robot to follow any unwanted command. The experiment consists of reach-

ing and grasping an object with the mentally guided robot arm and pouring a beverage from the

grasped object. All the tasks are carried out by five mentally imagined commands (Right/Left

MI, twisting wrist imagery etc.). The imagined commands decoded by the neural interface ac-

tuate the robot-end-effecter to reach the correct region where the target object is located and

then a 3D Kinect camera determines the exact location of the target object using a YOLO object

detection algorithm and guides the robot end-effecter to grasp the target object. Results obtained

in this study reveal that the proposed CNN yields an online accuracy of 90% and also performs

better than other CNN-based decoding algorithms that use the maxpool in their architecture.

Recently Lu et al.[137] proposed a novel shared control-based strategy using an auxiliary

controller to drive a car with mental commands. The auxiliary controller was designed based on

the model predictive control strategy. The proposed Model Predictive Controller(MPC) ensures

driving safety by properly adjusting the control commands issued by the human driver. It pe-

riodically tracks the output of the neural interface which translates the brain command into the

motion control command of the robot. The entire system including the neural interface and MPC
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was realized on embedded hardware. The proposed strategy was tested through a hardware-in-

loop driving setup with two relevant driving tasks ( Task1. Keep the vehicle on the road, Task2.

Avoid obstacles. The human driver issues mental commands using an SSVEP interface to navi-

gate a virtual car in right/left and forward directions. The MPC receives the human navigational

command and generates suitable control motion commands for the vehicle by satisfying a num-

ber of safety constraints. The controller optimizes the control signal in such a way that the

original navigational intent of the subject is preserved. The result shows that the accuracy of the

mentally driven cars increases significantly where a accuracy of almost 100% was achieved in

both the driving tasks described above.

Lu et al.[116] extended their previous work to develop a more robust controller that opti-

mizes the motion command of the vehicle based on the human driver behavior model along with

the host and preceding vehicle dynamics model. The controller aims to provide maximum rear

seat safety by maintaining a threshold safe distance from the preceding vehicle and by maxi-

mizing the "minimum time to the collision". The controller attempts to preserve the original

navigational command of the human driver while maintaining the driver’s comfort during the

journey. The most notable accomplishment of this study is the development of a human-driver

behavior model which consists of a driver behavior model and a brain control behavior model.

These two models along with the longitudinal model of the host and the preceding vehicle are

exploited by the MPC to generate a suitable motion control command that ensures riding safety.

The model and controller performance was tested under three different scenarios. In the first two

scenarios, the driver has the task of following a preceding vehicle moving with different profiles

of acceleration and in the third scenario the subject needs to issue an emergency brake command

to avoid collision. The "vehicle follow" task achieves the highest 100% accuracy whereas the

emergency braking task shows a significant reduction in response time. However, the system

performance is still to be evaluated in the presence of actual physical vehicle.

A similar approach of using a Model Predictive auxiliary controller in a Brain-machine in-

terface setup can be seen in a recent research paper by Fuizon He et al.[115]. They used a model

predictive controller for the safe operation of a bain commanded mobile robot. The proposed

controller modulates the control signal issued by the human operating subject to provide a safe

and collision-free trajectory for the mobile robot. It also overcomes the shortcomings of the

direct BCI control (without any auxiliary controller) that may lead to poor performance due to i.

longer response time, ii. no guaranteed safety and iii. the higher number of control commands

required to navigate the robot. The MPC uses a virtual model of a mobile robot to estimate

the system behavior and generates a sequence of optimal control signals by satisfying the safety

constraints at each time instant. The scheme was tested in a virtual environment where the sub-

ject uses SSVEP brain signal to issue different navigational commands which get optimized by

the proposed model predictive controller. The accuracy of the robot navigation task reached

100% without any incident of collision with the obstacles and the task completion time was also

reduced significantly.

The use of a model predictive controller in a BMI-based prosthesis control task (described

above) requires the mathematical model of the system, which is often very complex in nature
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due to the inclusion of a complex human brain model and other bio-physiological models in the

control loop. Pan et al.[138] provided an interesting solution to it by designing a model-free

controller which is entirely data-driven and does not require an explicit system model. However,

the proposed controller was used in the feedback path of a closed-loop brain-machine interface

to generate a suitable control command to actuate a device that can stimulate a specific brain

region so that the subject can mentally guide the robot to achieve the desired response( such as

a specific trajectory). They considered a simulated model of the cortical circuit for single-joint

movement and used a model-free controller to generate artificial sensory feedback to actuate

the group of perceived position vector (PPV) neurons of the cortical circuit to achieve their

target firing rate which is required to control the robotic prosthesis. The controller performance

was compared with a model predictive controller and the result shows that although the MPC

controller shows slightly better performance but the proposed model-free controller has a faster

response.

Shared autonomy in a BCI-based robot manipulation task has the intrinsic advantage of

increasing the task accomplishment accuracy of the robot and also minimizing the cognitive

fatigue of the human operator by reducing the human involvement in repetitive tasks. A general-

ized hierarchical structure for achieving suitable shared autonomy in a BCI system was proposed

by Akinola et al.[139]. The proposed hierarchical system is universal in nature and hence can

be adopted in any BCI-based robotic system. It aims to leverage the fullest power of each

agent(human and robot) present in the system by subdividing the task into smaller sub-tasks

and assigning those sub-tasks to the best agent (human/robot) for that specific sub-task. The

sub-tasks involving high-level decisions are carried out by the human agent while the low-level

tasks such as navigation in the local environment, and object grasping are carried out by the

robot agent autonomously using its onboard sensors. It ensures that human involvement is only

required when uncertainty about a decision arises. The performance of the system was evalu-

ated in a home-like environment where a mobile robot has to perform certain tasks like food

delivery, table cleaning, etc. The robot receives the higher level navigational commands from

the human subject through an SSVEP-based neural interface and navigates to the target location

using SLAM. A vision-based camera is then actuated to identify the desired object in the target

location and a suitable grasping strategy is applied to grasp the desired object, The experiment

achieved a task completion accuracy of 96.2%.

The shared-control-based strategy adopts various modalities to convey the user intent to the

auxiliary controller. Among them, SSVEP is widely used for its high information transfer rate

and high detection accuracy. Flickering sources on the screen are used to evoke the SSVEP in

the subject’s brain. In the vision-based strategy, SSVEP is often utilized by the subject to pro-

vide the necessary navigational command to the robot by observing its surrounding environment

through a camera whose live video is presented on a screen. In all the cases the camera feed

and the SSVEP sources are represented separately. However, a more interesting approach was

proposed by Yang et al.[140] where they embedded the flickering sources directly on the objects

visible in the live camera feed. A stereo-vision camera located in a fixed frame is utilized to

capture the surrounding environment of a Baxter robot and identifies the nearby objects through
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color segmentation. Subjects having the intent to select a particular object focus on the flick-

ering source virtually embedded in it. A decoder interface was designed to decode the SSVEP

response of the brain, which enables the system to identify the target object. Once the object

is identified, its location (after suitable coordinate transformation) is conveyed to a vision-based

controller which guides the robot to reach the target object. The controller is also responsi-

ble for avoiding collision with obstacles by coordinating the self and task motion of the robot.

They also proposed a novel adaptive algorithm to identify objects in different lighting condi-

tions. Apart from the above contribution they introduced the least mean square method in the

co-ordinate calibration task between robot and the camera. The experiment was validated using

an object-picking task where two subjects participated and achieved an accuracy of 100% and

80% respectively.

Generally, shared control methods used in BCI applications are broadly categorized into two

types i.e. sequential shared control and all-time shared control. In the first case, the autonomous

controller and the human subject share the task in sequential order. The human subject first

delivers high-level commands such as the destination to reach and the autonomous controller

performs the above task with maintaining certain conditions. The main drawback of such sys-

tems is the user’s inability to intervene in the task while the autonomous controller is executing

the task,i.e. once the task is assigned to the auxiliary/autonomous controller the user can no

longer issue any further command until the controller becomes free. Such phenomena reduce

the sense of authority of the user. Deng et al. [104]proposed a novel shared control scheme

for the continuous sharing of tasks between humans and the auxiliary controller in a virtual

wheelchair control application. A Bayesian shared controller was proposed to intelligently com-

bine brain-actuated control and autonomous control introduced by the auxiliary controller to

generate an optimal steering command for the wheelchair.

1.8 Scope of the Thesis

In recent years, there has been a growing interest in Brain-Computer Interface (BCI) due to

its extensive applications in areas such as neural rehabilitation for patients with neuro-motor

disorders, mind-controlled interfaces for gaming, cognitive driving, defense applications, and

more. One particular challenge in neural rehabilitation using BCI involves effectively controlling

the position of the robot arm’s end-effector. A large number of works have been carried out

addressing this challenge in the last few years, which have enriched the BCI community. Despite

the promising results demonstrated by existing works, they are not without their limitations and

drawbacks. Three major limitations are mainly observed;

First, most of the existing works use an ON-OFF control strategy to control a robot arm

using mental commands. To illustrate, let’s consider the process of turning a robotic link to

a desired angle. This requires mentally activating an electromechanical motor to initiate the

turning motion at a constant speed for a specific duration until the desired position is reached.

Subsequently, the motor is deactivated for a pause, resulting in an on-off control strategy akin

to traditional control theory. While this approach suffices for controlling individual links, the
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complexity increases when multiple links need to be turned in a specific sequence. Hence,

sequential control task becomes increasingly difficult with the increase in the number of robot

links. Moreover, such an ON-OFF control strategy yields a large steady-state error, and large

positional overshoot, resulting in a degradation of performance in terms of control theoretic

parameters.

Second, some of the existing works are found to be using PID and Model Predictive Control

based auxiliary controllers to aid the decision-making process of the participating subject and

to generate optimized control commands based on the user intent to actuate a robot arm. Such

auxiliary controllers are introduced inside the control loop to mitigate the gap between desired

performance and actual performance. However, such a controller requires a complete mathe-

matical model of the system, which is often highly complex in nature due to the inclusion of a

complex human brain model and other bio-physiological models in the control loop. Obtaining

an accurate mathematical description of the entire system is also not feasible in most of cases.

Hence, the controllers fail to deliver satisfactory performance without complete knowledge of

system dynamics. Additionally, such controllers can hardly model the individual subject’s men-

tal intentions about the high-level commands, i.e., the controllers can not be customized based

on user preference.

Third, certain recent literature has introduced vision-based controllers to guide robot arms

within a specific environment. These controllers utilize a camera to capture the surroundings and

identify objects within that environment. However, in many of these studies, subjects are still

responsible for planning the robot’s trajectory or aligning the end-effector with the target object

using their mental commands. The vision-based controller primarily aids in collision avoidance

during the robot’s movement and assists in grasping the target object once the end-effector is

aligned with it. Notably, no specific autonomous grasping policy has been developed in these

works. Very few works use some image processing techniques to identify the objects present

in the environment and create an interface to enable the subject to directly choose the desired

object, but in all those literature the researchers have depended on the existing object recognition

approach, which is unable to identify the target object and grasp it from multiple overlapping

objects that may appear within the camera’s field of view. However, in real-life situations, it is

common to encounter such overlapping objects in the user’s domestic workspace. Attempting

to manually grasp these objects solely through cognitive effort is exceedingly challenging for

humans.

The thesis aims at handling the above problems by 3 distinctive approaches, presented in

Chapters 2-4. Chapters 2 and 3 attempt to overcome the first two drawbacks of the existing

control strategies while Chapter 4 overcomes the last drawback mentioned above.

Chapter 2 provides a new approach to brain-actuated controller design for BCI-based re-

habilitative applications with an aim to reduce steady-state positional error, and settling time

and also attempt to improve the relative stability of the proposed control systems by judiciously

choosing the parameters of the controller. The chapter focuses on the issue of velocity modu-

lation for individual links of a robot arm when crossing the desired target position. This mod-

ulation involves gradually reducing speed amplitude and even reversing direction to achieve



40 1. Introduction to BCI-Based Motor Control

tighter control over the end-effector’s position. The chapter introduces a two-loop cascade con-

trol approach, where the outer loop handles position control and the inner loop focuses on speed

control. This configuration improves time-response performance, settling time, and positional

overshoot, while also addressing steady-state error. The proposed control strategy includes a

customizable brain-actuated controller that generates commands based on the occurrence of a

P300 signal triggered by the subject in response to positional error zero crossings. Stability anal-

ysis, using root contour plots, confirms the stability of the brain-actuated control system under

varying controller parameter values. Additionally, relative stability analysis is conducted to de-

termine optimal parameter settings that simultaneously minimize the settling time and maximize

the DC gain. The root locus analysis also finds the effect of the initial velocity of the robot link

on the stability of the overall system. The above chapter also provides a thorough comparison

of the controller performance with other hybrid-BCI-based position control schemes in terms of

four performance metrics i.e. success rate, steady-state error, peak-overshoot, and settling time.

Chapter 3 explores the use of fuzzy logic in controller design, building upon the previous

work presented in Chapter 2. The aim is to extract more information from the BCI system

itself regarding positional overshoot/undershoot, enabling the controller to enhance positional

accuracy in steady-state. While the P300 signal released by the experimental subject during the

control system test phase indicates zero-error crossings in the positional offset, it does not pro-

vide information about the magnitude of positional error resulting from end-effector movement.

To address this, the proposed fuzzy control policy utilizes two parameters: error magnitude and

sign. The magnitude of error is assessed by determining if the end-effector or desired link crosses

user-defined landmark positions located around the target position. Although fixing landmarks

adds complexity, it aids the BCI system in approximating the magnitude and sign of error. A

fuzzy-rule-based system is then designed to adjust the speed of the selected link or end-effector

in the desired direction based on the error’s sign and magnitude. The control scheme is validated

with the participation of twelve volunteers.

The aforementioned works place the burden on the user to manually create complex tra-

jectories for the robot arm using mental commands in order to reach and grasp specific objects.

This process demands a significant cognitive load on human subjects, particularly for the precise

position control needed to align the end-effector accurately with the desired object for success-

ful grasping. Additionally, both works utilize a control scheme that focuses on controlling one

link of the robot at a time. Consequently, rather than directly controlling the motion of the

end-effector, the subjects are responsible for controlling each individual link separately.

Chapter 4 introduces a novel shared controller that addresses the limitations mentioned ear-

lier. By leveraging vision-based techniques, this controller enables the robot to autonomously

reach and grasp the desired object with the minimum number of brain commands. Consequently,

in this scheme, the subject is relieved from the task of planning a complex trajectory for the

robot link to align it with the desired object. The proposed scheme allows subjects to select their

desired object using mental commands and a vision-based controller guides the robot arm to

autonomously reach and grasp the target object. To achieve precise grasping of the target object

by the robot gripper, a novel CNN-based robotic grasp detection network called Overlapping
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Object Grasp Net (OOGNet) is utilized. This network generates a grasp rectangle, bounding

box, and object class for each object present in the image, thereby associating each predicted

grasp with its corresponding object. In order to enable simultaneous object and grasp detection,

a custom loss function is proposed to ensure that each estimated grasp is correctly affiliated with

its corresponding object. Additionally, the OOGNet network is capable of grasping the desired

object even in situations where the object is partially overlapped by other objects. This capability

enables the robot to accurately identify and grasp the target object, even in complex and clut-

tered environments. This autonomous movement of the robot arm also facilitates precise control

that surpasses what can be achieved solely through human effort. In the chapter, a comparison

is made regarding the cognitive workload experienced by subjects while operating a robot using

three different BCI strategies, including the proposed strategy. The workload assessment utilizes

the NASA-TLX questionnaire developed by NASA Ames Research Center.

Chapter 5 conducts a thorough self-review of the thesis, evaluating its content and findings.

It also explores opportunities for extending the thesis in both theory and practice, considering

the limitations and strengths of the research.





Chapter 2

Design and Analysis of Brain-Actuated
Position Control of a Robot Arm

Brain-Computer interfacing (BCI) has currently added a new dimension in assistive robotics.

Existing brain-computer interfaces designed for position control applications suffer from two

fundamental limitations. First, most of the existing schemes employ open-loop control, and thus

are unable to track positional errors, resulting in failures in taking necessary online correc-

tive actions. There are examples of a few works dealing with closed-loop electroencephalog-

raphy (EEG)-based position control. These existing closed-loop brain-induced position control

schemes employ a fixed order link selection rule, which often creates a bottleneck preventing

time-efficient control. Second, the existing brain-induced position controllers are designed to

generate a position response like a traditional first- order system, resulting in a large steady-

state error. This paper overcomes the above two limitations by keeping provisions for steady-

state visual evoked potential (SSVEP) induced link-selection in an arbitrary order as required

for efficient control and generating a second-order response of the position-control system with

gradually diminishing overshoots/undershoots to reduce steady-state errors. Other than the

above, the third innovation is to utilize motor imagery and P300 signals to design the hybrid

brain-computer interfacing system for the said application with a gradually diminishing error-

margin using speed reversal at the zero-crossings of positional errors. Experiments undertaken

reveal that the steady-state error is reduced to 0.12%. The paper also provides a thorough

analysis of the stability of the closed-loop system performance using the Root Locus technique.
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2.1 Introduction

Brain-Computer Interfaces(BCIs) are currently gaining increasing interest for its wide spread ap-

plication in neuro-motor prosthesis, neural rehabilitation, and mind-driven command generation

for robot control, car control and other applications.BCI technology captures the human motor-

intention to translate the thoughts into commands and actuates the robot to execute a mentally

planned complex task. A BCI framework provides a non- muscular channel of communication

with the outer world to enhance the quality of life of people suffering from brainstem stroke,

neuro-muscular disorder, and the like, with an aim to rehabilitate them back to their normal

lives.

Hybrid BCI [141] is a widely used name in BCI technology. Generally, it refers to multiple

modalities of acquisition of brain activities, including functional near infrared spectroscopy

(fNIRS), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), elec-

trocorticography (E-Cog), and the like. The second category of hybridization includes utilizing

brain activity acquisition response in the presence of other physiological modalities, such as

muscle activity acquisition by electromyography (EMG), eye-movement acquisition by electro-

occulography, and the like. In this paper, we, however, used the phrase “hybrid BCI” to refer to

utilizing multiple brain signals within a single modality of brain-activity acquisition, i.e., EEG.

Each brain signal refers to one specific cognitive functionality of the brain, such as motor move-

ment planning, responding to rare/infrequent (error) stimuli, and communicating the subject’s

choice (among alternatives) to the BCI system. It is, however, important to note that hybrid BCI

may involve multiple EEG signals to decode a single cognitive activity of the brain [142] with

an aim to improve reliability in the detection of the cognitive task undertaken.

EEG is preferred in BCI design for its non-invasiveness, faster temporal response, and

low cost [143]. This work employs EEG to capture the subject’s motor intention. Exist-

ing works on mind-controlled external devices utilize a few selected brain signals, includ-

ing steady-state visually evoked potential (SSVEP), P300, motor imagination (MI), and error-

related potential (ErrP) for position control of artificial human appendages/external manipulators

[144][131][145][146][147]. For example, P300 has successfully been used for goal/destination

selection of a mobile robot/wheelchair [148], [149]. SSVEP has been utilized for direction

control of wheelchairs [150]. Motor imagery is used mostly in position control applications to

actuate an external device based on right/left hand-motor imagination [151][152]. Lastly, ErrP

is infrequently used to determine the occurrence of errors, particularly when the manipulator

crosses a fixed (predefined) target position [19]. SSVEP has been proven to be the most promis-

ing brain pattern in the BCI technology [153]. It is elicited from the visual cortex of the occipital

lobe as a response to some visual stimulus that flickers continuously at a certain frequency in

the range of [6, 30] Hz. The SSVEP constitutes signal rhythms at the target frequency and its

harmonics [154], and thus is useful in communicating the subject’s choice to the BCI system

when the options corresponding to the stimuli are flickered at selected frequencies.

When a subject undertakes MI, a signal called event-related de-synchronization (ERD) fol-

lowed by event-related synchronization (ERS) originates from the motor cortex as mu and beta

rhythms. ERD refers to a relative decrease in the signal power in the µ and the β -bands during
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motor imagination in comparison to the resting state of the brain [155], [156]. On completion

of the motor imagination task, the signal power of the β -band increases until the power level

matches the average value of the resting potential. The later signal is referred to as ERS.

Lastly, P300 is an important event-related potential (ERP) that appears in the subject’s EEG

recording when they focus their attention on some significant but rare stimulus [157], [158]. The

subject must respond to the target stimulus in either a covert or overt manner in order for P300 to

be evoked. This modality is characterized by a positive deflection in the EEG voltage waveform

around 250–500 ms (on an average of 300 ms) after the observation of the target stimulus. P300

can be recorded most prominently over the midline of the brain. This ERP is often used to

monitor the subject’s attentiveness [159].

In the context of BCI, most of the existing BCI-based control applications are open-loop and

require generating on-off commands for motors and actuators to switch on and off as needed

by the users. Even in the traditional closed-loop BCI system mental-motor switching or ON-

OFF control is employed to activate or deactivate the external device( electrical motor). Such

a system utilizes visual feedback to reduce positional errors, but due to the ON-OFF control

strategy, it always yields a non-zero steady-state error. Because of the above limitations of the

ON-OFF control strategy, a continuous control that keeps track of the positional error to generate

the control command for the motor is needed. This type of brain-actuated controller modulates

the visually attended positional error into suitable control commands to reduce positional error

toward zero within a small settling time. Generally, such controllers are referred to as aux-

iliary controllers as they attempt to translate high-level motor intention into low-level control

commands.

A brief survey of the auxiliary control policy is attended here. Unlike traditional position

controllers, the auxiliary controller is placed in both forward and feedback paths [115][116][117][118].

Controllers placed in the forward path generally use the following control strategy; i) PID con-

trol strategy,[100][101] ii) Shared Control strategy[160][161], and iii) Model predictive control

(MPC) strategy[115][116]. In both the PID and MPC-based strategy a mathematical model of

the system is assumed and the controllers attempt to provide an optimal control signal to actuate

the external device based on the user intent. In MPC the controller is also able to satisfy safety

constraints and certain input/output constraints.. On the other way, the shared control strategy

uses an external sensor such as camera/Kinect sensor etc. to obtain information about the sur-

rounding environment of the robot, which is combined with the user’s original intent to generate

a suitable navigational command for the external agent (robot).

One fundamental problem in model-predictive control lies in the complexity of modeling the

bio-physical aspects of the controller. Additionally, the MPC can hardly model the individual

subject’s mental intentions about the high-level commands. The shared controller, on the other

hand, losses the sense of authority of the user due to its autonomous nature of executing the

assigned task. Because of the above limitations, we in the present chapter attempt to model an

alternative brain-actuated controller capable of translating user intention into motor commands

to achieve desired performance in stability and steady-state error irrespective of the individual

difference among the subjects.
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In closed-loop position control applications, we often come across a feedback signal for the

automatic detection of zero positional error with respect to a desired step input of the angular

position command. Both P300 [162] and ErrP [163] have been employed by previous authors

to address the problem. The ErrP used in the present context, often referred to as observational

ErrP, which is elicited from the medial frontal region with a negative deflection of approximately

250 ms after the subject observes a machine (or a person) to commit errors. Here, committing an

error refers to crossing the desired angular position/set-point of the position-control experiment.

ErrP, in general, is a reliable feedback signal. One of the early applications in this regard is Motor

Imagery(MI) based actuation of a robotic arm and de-actuation by sensing the onset of Error-

related Potential(ErrP) from the subject’s brain. The MI signal is released when the subjects

intend to move a link of a robot arm and ErrP is released when they inspects the robot to cross

the target location. However, its magnitude is diminished in subjects with spinal cord injury

and schizophrenic disorders [164], [165]. ErrP amplitude and latency also suffer from inter-

subject and inter-trial variability [166], [[167]. Lastly, ErrP is best elicited with discrete events

[16]. Here the robot motion is continuous which makes the ErrP signal less suited to being used

as feedback marker. Because of the above limitations of ErrP, we prefer to use P300, which is

released approximately 300 ms from the onset of positional zero-crossing errors, experienced by

the subject. Additionally, the limitation of this scheme is fixed order link selection for position

control and large steady-state positional error.

In the current work, SSVEPs corresponding to different flickering frequencies have been

used to randomly select a link of the robotic manipulator. Motions of the manipulator links are

then activated by the subject’s motor imagination. When the selected link reaches the desired

target position, P300 is elicited in the subject’s EEG. The P300 is used to freeze the current

motion of the robotic link. Since elicitation and detection of P300 waveform requires a finite

(non-zero) time, the robotic link crosses the target position by a small angle before its motion is

stopped. An auxiliary controller is designed to align the link with the target with high precision.

Now the controller actuates the link movement in the reverse direction of the last motion, i.e.,

towards the target location. Throughout the motion of the link, the controller maintains a gradu-

ally diminishing speed. When the link reaches the target again, P300 appears once again and the

aforementioned process is repeated. Although P300 is released by the subject for both forward

and backward zero error crossings, here the zero-crossings during forward motion are repre-

sented by positive impulses and zero-crossing during backward motion by negative impulses.

This cyclic operation continues as long as the steady-state error drops down to a threshold value

determined by the user. Evidently, this process can align the link with the target with a high

degree of accuracy. The BCI framework developed here consists of 4 successive stages. First,

the acquired EEG signals are pre-processed to make them free from noise and artifacts. Second,

the relevant features are extracted from the pre-processed signals. Third, the different classes of

the experimental data points are determined by suitable pre-trained classifiers. Finally, control

commands are generated to actuate the manipulator to serve the desired requirement.

The original contribution of the work lies in the architectural design of the hybrid BCI-based

closed-loop position control system with special emphasis on the modeling of the auxiliary po-
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sition controller from the response analysis of the control system. The model presumes an ex-

pected time-varying response of the position-controller like that of stable second-order dynamics

due to the impulsive occurrence of error input at the time of target crossing and thus determines

the transfer function of the position controller in the Laplace-domain. Given the transfer func-

tion of an armature-controlled DC motor (for one link of the robot), a stability analysis of the

closed-loop position control system, involving both the motor and the controller, is performed

using the Root-Locus analysis [168]. The analysis reveals an interesting observation that the

stability margin of the closed-loop system is determined by the initial choice of maximum speed

of the robotic links. The proposed method of analytical formulation of the auxiliary controller is

novel in the BCI-based position-control system. Secondly, a simple but elegant feature selection

algorithm is proposed to automatically select the best feature set from a pool of features with the

aim to minimize the distance between pairs of intra-class data points and maximize the distance

between pairs of inter-class data points for the selected feature set. An evolutionary algorithm is

used to handle the said optimization problem. Third, it includes a provision for random ordered

link-selection by SSVEP based BCI, instead of a fixed ordered link selection adopted in [19].

Above all, the proposed method reduces the steady-state error drastically (0.12%) in comparison

to the one presented in [14], thus justifying its scope in high-precision rehabilitative appliances.

The chapter has 9 sections. Section 2.2 provides a general overview of the complete scheme.

Controller design and stability analysis are examined in Section 2.3. Section 2.4 deals with sig-

nal processing, feature extraction, and classification of used brain signals. Experimental details

are presented in Section 2.5. Statistical analysis and controller performance analysis are given

in Sections 2.6 and 2.7, respectively. Comparison with similar works is undertaken in Section

2.8. Finally, the concluding remarks are listed in Section 2.9.

2.2 System Overview

This section provides an overview of the BCI-based position control for a multi-link robot arm.

The robot arm used here has 6 degrees of freedom (DOF) with a maximum reach of 580 mm

in any arbitrary direction. The frame assignments for all the joints along with the directions of

positive angular motions about the z-axis are shown in Fig.2.1. The current work uses only the

first three links, L1, L2, and L3, of the robot arm. Fig. 2.2 illustrates the complete position con-

trol scheme. Three different brain signals, including SSVEP, ERD/ERS, and P300 are employed

here to control the position of the robot arm in its workspace.

An overview of the BCI-based position control scheme from a control theoretic point of

view is given in Fig. 2.4. The scheme involves the link selection of a robot arm randomly as

determined by the user based on the positional shift needed for the end-effecter. Link selection is

done by using Steady-state visual evoked potential(SSVEP). After a link is selected, the subject

performs Left/Right-hand motor imagination (MI) to turn the selected link counterclockwise or

clockwise respectively. Once the robotic link crosses the target position, the subject releases a

P300 signal, and the BCI system on detecting the P300 signal, commands the selected robotic

link to turn oppositely with exponentially reduced speed. Once the subject decides that the
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Figure 2.1: Frame assignments of a 6 Link Jaco Robot Arm

Figure 2.2: Schematic diagram of complete position control scheme
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steady-state error for the link is small enough, he/she stops paying attention to the link and

selects the next link he feels is important for the position control of the end-effecter. The link

selection is continued one by one until the end-effecter reaches the target position. The flowchart

of the sequence of actions is given below in Fig. 2.3

Link Selection
by SSVEP

LEFT/RIGHT MI
based C/ CC

motion setting of the
selected Link

?

Next Link
Selection

All Link
Selection

 Done
?

YES

STOP

YES

Zero Crossing
Detected

Release of
P300

NO

YES

Reversal of Link motion
with exponentially
decreased speed

NO

NO

Figure 2.3: Flowchart of Sequence of Actions

Here, we propose a 2-loop position control system, where the inner loop, also called the

stabilization loop, is used to enhance the stability of the complete 2-loop system because the

negative feedback in the inner loop undertakes velocity control with a target to control the posi-

tion of the end-effector of a robot arm. The velocity reference of the inner loop is generated by

the outer loop with the help of the brain-actuated controller.

The brain-actuated controller starts functioning with the P300 response of the human subject.

The subject releases P300 on observing the zero crossings of the positional error signal. The

P300 signal released by the subject is then utilized to modulate the velocity of the position con-

troller.

2.2.1 Link Selection by SSVEP Detection

Existing research on BCI-controlled robotics utilizes a fixed order of link selection, i.e., the robot

follows a fixed temporal sequence of link selection irrespective of the target position of the end-

effecter [19]. In many real-world position-control applications, dynamic link selection based on
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Figure 2.4: Schematic diagram of Proposed BCI system from the control-theoretic perspective

the users’ choice is required to improve the speed and accuracy of the position-control task. This

chapter aims at developing a dynamic order of link selection. One fundamental hindrance with

dynamic link selection is the lack of communication to the robot about the choice of the current

link by BCI means. This has been overcome here by attaching light emitting diodes (LEDs) to

individual links, flickering at different frequencies. The subject needs to stare at one of the links

carrying a LED, flickering at a fixed frequency, which in turn releases a special brain signal,

called SSVEP. The SSVEP is frequency modulated at the flickering frequency and yields a large

amplitude at the flickering frequency of the specific LED, which the subject pays attention to.

The subjective interest of link-selection thus becomes apparent from the frequency spectra of

the SSVEP.

2.2.2 Motion Activation by MI Decoding

Selection of a link by the subject indicates that the subject prefers to activate the link for clock-

wise/counterclockwise turning using motor imagery signals. The ERD/ERS motor imagery sig-

nal has been used to direct the motion of the link in the desired direction. The ERD/ERS signal

exhibits a de-synchronization in the µ- and the β -band power, followed by a synchronization in

the β -band power, and thus takes a “v”-like wave-shape. Because of the contra-lateral connec-

tivity between limbs and the brain, ERD/ERS is released by the left motor cortex for right-hand

motor imagery (RHMI) and by the right motor cortex for left hand motor imagery (LHMI). Sup-

pose the subject wants to move the link clockwise by RHMI and counter-clockwise by LHMI.

Thus it is preferred to detect LHMI (RHMI) from the right (left) brain lobe for efficient decoding

of the motor imageries.

Decoding of ERD/ERS requires determining the ground-truth and then identifying similar

ERD/ERD traces from the experimental instances. One simple method to construct the ground

truth is to take average of the available ERD/ERS traces from the experimental instances [169],

where averaging is performed at the sample points over all instances. The averaged trace is

defined as the ground truth ERD/ERS. The other ERD/ERS traces in the pool that satisfy the

Gaussian characteristic at all the sample points are regarded as positive instances for the true
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ERD/ERS class. The Gaussian criterion is given below for the sake of convenience. Let Avi be

the average value of all ERD/ERS traces at sample point i, and σi be the standard deviation of all

the traces at sample point i. Then an unknown ERD/ERS trace is presumed to be close enough

to the ground truth if
|x j

i −Avi|
σi

≤ 3∀i (2.1)

where, xi is amplitude of the j-th ERD/ERS at sample point i. The true class of ERD/ERS thus

can easily be obtained. To identify the training instances for the false class, the false negative

ERD/ERS instances are considered, and the above steps of positive instances are repeated. After

the 2 classes of the ERD/ERS traces are generated, we need to extract certain ERD/ERS features,

which together with the class label represent a sample training instance. Hzorth parameters,

adaptive auto-regressive parameters (AAR) and discrete wavelet co-efficient (DWT) are few

useful features, which have received wide publicity in BCI research. Common spatial pattern

(CSP) features have also shown promising performance in LHMI/RHMI classification tasks

[31]. We would use CSP features for MI classification in this paper.

2.2.3 Alignment With the Target by P300 Identification

Once the MI signal is released by the subject’s brain, one selected link of the robot starts turning

in the clockwise/counter-clockwise direction, and as a consequence, the end-effecter/ link at

some time point t, counted from the onset of the ERD/ERS signal crosses the fixed (pre-defined)

target position. This phenomenon where the end effecter crosses the target position acts as an

infrequent stimulus to the subject, causing him/her to release the P300 signal. In other words,

release of the P300 signal from the subject’s brain in the present context, is a clear indication

that the end-effecter/link crossed the target position, and thus needs a corrective action. Here,

the release of P300 is used as corrective feedback to the BCI system to turn the robotic link in

the reverse direction of its current movement direction with a gradual decay of its angular speed.

The process is continued until the positional error goes below a threshold as mentally desired by

the subject. The continued reduction in speed, and reversal of motion around the target-point,

effectively results in a reduction in the peak overshoot and steady-state error. The pseudo-code

for the proposed scheme of position control of a robotic arm is given below in algorithm 1. The

code is self-explanatory.

2.3 Controller Design and Stability Analysis

Traditional BCI-based position control paradigms realize open-loop control using MI. As a con-

sequence, the performance of the position control system cannot offer desired performance. A

closed-loop feedback control system realization using BCI is a necessity to provide the desired

performance in position control, such as reduced steady-state error and peak overshoot. The pro-

posed control strategy can reduce both the steady-state error and peak overshoot than the ones

obtained in open-loop position control. The peak overshoot is reduced by taking into account

the occurrence of the P300 signal. Once the desired robotic link crosses the targeted position
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Algorithm 1: Pseudo-code for the proposed position control scheme

1 Begin
2 Initialize: Initialize angular speed ω of each link = ω0× e−λ t , where ω0 is the initial

angular speed, λ (> 0) is the decay factor, and t = iteration; ε= lower limit of angular
speed;

3 Repeat:
4 1. Use SSVEP decoding to select a link of the user’s choice;
5 2. Use MI decoding to find the direction of motion (clockwise/ counter-clockwise) of

the selected link with a pre-selected angular velocity ω;
6 While SSE > ε do Begin
7 3. Continue moving the link until P300 is detected, implying that the selected link

crossed the mentally-imagined target position;
8 5. After the link crosses the mentally imagined target position, stop it temporarily, and

reverse the motion of the link with the magnitude of angular speed ω = ω
′× e−λ t ,

where ω
′
= the angular speed of the link just before zero-positional crossing;

9 End-While;
10 Until: the movement of all desired links is over;
11 End.

(target point in the case of translational movement along a line, target angle in the case of rota-

tional movement on a plane, and target plane in the case of rotation of the link from one plane to

the other), and then by reversing the motion of the link. The steady-state error here depends on

the response time of the P300 signal and the time required for robotic motion. The steady-state

error can be reduced by gradually reducing the speed of the motor exponentially with time t, and

reversing motor speed each time the robotic link crosses the target position.

Let the i-th link at time t be at position c(t) and r be the visually fixed target position for the

same link. Then error at time t is defined as follows:

ei(t) = r− c(t) (2.2)

A typical P300 response is generated by the brain whenever ei(t) crosses zero value, i.e.,

ei(t) is slightly positive or negative. It is important to mention here that in classical control

theory [44], the control signal ui(t) for the i-th link is a the function of error ei(t). However, in

a BCI-based position control, we do not have an absolute measure of the magnitude of error as

the error is recognized visually by the brain from the zero-crossings of ei(t), and P300 can only

ensure the occurrence of zero-crossings without having any information about the magnitude of

the error. Thus, we need a different formulation of the controller, which is given below.

Let v0 be the initial velocity of the controller before the release of the first P300 signal. On

receiving the P300, the velocity of the controller is reversed and decreased exponentially until

the occurrence of the next P300 signal. The process is repeated until the subject feels that the

error magnitude is too less and steady-state error is nothing to reach. The velocity profile set

by the brain-actuated controller is used as the reference input to the inner loop. The integrator

at the output of the inner loop provides the angular position of the motor, which is fed back

to the positional error detector to detect the positional error. The schematic architecture of the
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Figure 2.5: Variation of link velocity (v(t)) due to the occurrences of the P300 signal.

proposed system is given in Fig.2.4.

In Fig.2.4 the outer loop is used to sense the zero crossings in positional error which is detected

by the experimental subject to return P300 in response to the zero crossings. The brain-actuated

controller generates the control command for the velocity setting for the inner loop. The design

of the brain-actuated controller is outlined here.

2.3.1 Design of Brain-Actuated Controller

It is evident from Fig.2.5 that the output velocity profile can be expressed as a sum of decaying

exponential signal within the interval T1 = T +∆T , where T is the time interval between two

consecutive P300 generations and ∆T is the time taken by the system to identify P300 (for the

sake of brevity ∆T is not shown in the figure. Now for n number of P300 input signal the velocity

profile v(t) will exhibit n cycles of oscillation. Considering T +∆T = T1, the above phenomenon
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can be mathematically expressed as the following

v(t) =
n

∑
k=1

(−1)kv0e−λ t [u(t− (k−1)T1)−u(t− kT1)] (2.3)

As the v0 term in the above expression is constant, hence the above expression reduces to

v(t) = v0

n

∑
k=1

(−1)ke−λ t [u(t− (k−1)T1)−u(t− kT1)] (2.4)

Now the input sequence can be expressed as n number of P300 impulses ;

x1(t) =−δ (t)+δ (t−T1)−δ (t−2T1)+ ....+δ (t− (n−1)T1) (2.5)

The above equation can be written in a more generalized way using the following notation;

x1(t) =
n

∑
k=1

(−1)k
δ (t− (k−1)T1) (2.6)

Now the transfer function of the mental controller can be obtained from the input-output relation

defined in Eq.2.4 and Eq.2.6.

The transfer function C(s) is obtained by taking the ratio between the Laplace transform of

the above two equations with zero initial condition.

G(s) =
L(v(t))
L(x(t))

=
V (s)
X(s)

(2.7)

Now the V (s) and X(s) can be found using the following way First considering Eq.2.4 and

taking the Laplace transform, we get

V (s) = v0

n

∑
k=1

(−1)k[
e−(k−1)(s+λ )T1

s+λ
− e−k(s+λ )T1

s+λ
]

=
v0

s+λ

n

∑
k=1

(−1)ke−(s+λ )kT1(e(s+λ )T1−1)

=− v0

s+λ
(e(s+λ )T1−1)

n

∑
k=1

(−1)ke−(s+λ )kT1

(2.8)

The rightmost term of the above equation can be expressed as a sum of an alternating GP series

whose first term is −e−(s+λ )T1 and the common ratio is −e−(s+λ )T1 . Hence the Equation 6 can

be simplified as below,

V (s) =− v0

s+λ
(e(s+λ )T1−1)(−e−(s+λ )T1)(

1− (−e−(s+λ )T1)n

1− (−e−(s+λ )T1))
(2.9)

Now considering n = odd (Two successive P300 create an oscillation, but for the system de-

signed by considering n of oscillations, the last even-numbered P300 (returning P300) does not

actuate the controller ,i.e., as n starts from 1, the system always receives an odd number of P300
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impulses), Eq.2.9 takes the following form;

V (s) =− v0

s+λ
(
1− e(s+λ )T1

1+ e(s+λ )T1
)(1+ e−(s+λ )nT1) (2.10)

Using Pade’s approximation[170];

V (s) =− v0

s+λ

1− 1−(s+λ )T1/2
1+(s+λ )T1/2

1+ 1−(s+λ )T1/2
1+(s+λ )T1/2

(1+ e−(s+λ )nT1)

=−v0T1

2
(1+

1− (s+λ )nT1/2
1+(s+λ )nT1/2

)

=− −2v0

n(s+2/nT1 +λ )

=− −2v0

n(s+2/(n(T +∆T ))+λ

(2.11)

Now, the Laplace transform of the input sequence is obtained by taking the Laplace transform

of both side of Eq.2.6;

X(s) =−1+ e−sT1− e−2sT1 + ....+ e−(n−1)sT1 (2.12)

which can be approximated as a GP series whose first term is −1 and the common ratio is

(−e−sT1). The sum of the series is given below when n = odd;

X(s) =−1+ e−nsT1

1+ e−sT1
(2.13)

Again using the Pade’s approximation we get;

X(s) =−
1+ 1−nsT1/2

1+nsT1/2

1+ 1−sT1/2
1+sT1/2

=− 1+ sT1/2
1+nsT1/2

=− 1+ sT/2+ s∆T/2
1+nsT/2+ns∆T/2

(2.14)

As ∆T is very small, we can safely ignore s∆T in the numerator. The final form of the expression

is given below;

X(s) =− s+2/T
n(s+2/(n(T +∆T ))

(
T

T +∆T
) (2.15)

The transfer function G(s)of the mental controller is obtained by putting the values in Eq.2.7

as received from Eq.2.11 and Eq.2.15. G(s) is given below;

G(s) =
2v0α(s+2/nT1)

(s+2/T )(s+λ +2/nT1)
(2.16)
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where α = T+∆T
T and T1 = T +∆T . For very small value of ∆T , α is taken as unity. The final

transfer function is given as

G(s) =
2v0(s+2/nT1)

(s+2/T )(s+λ +2/nT1)
(2.17)

The mental transfer function has poles at two different locations of negative real axis Pole =

−2/T,−(λ +2/n(T +∆T ) and a Zero =−2/n(T +∆T ).

2.3.2 Design of the Inner Stabilization Loop

The inner loop is realized using a proportional plus derivative controller in cascade with the

plant which here is an armature-controlled DC motor. The PD controller is selected for the

following two reasons. The proportional control for the given second-order plant results in an

overshoot, which is avoided by adding a derivative control which in anticipation of a large error

rate increases the damping of the system resulting in a decrease in the overshoot. Secondly, the

PD controller also increases the speed of the response.

Human-Actuated Controller P-D Velocity Controller DC Motor of Robot Joint

Figure 2.6: Block diagram of proposed control scheme

2.3.2.1 Design of PD controller

Links of the 3-DOF robot arms are connected through the rotary joints which are controlled by

the armature-controlled DC motors. The parameters of the motor are given in Table2.1.

Table 2.1: Parameters of the DC motor used in the experiment
Parameter Description Value

J Armature Inertia 0.01 N-m-s2/rad
b Armature viscous friction 0.1 N-m-s/rad
K Mechanical Gain 0.01 N-m/A
L Armature inductance 0.5 H
R Armature resistance 1.2 Ohm
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The transfer function of the motor is given below,

M(s) =
K

(Js+b)(Ls+R)+K2

=
0.01

0.005s2 +0.06s+0.1001

(2.18)

The motor has two poles at −9.99 and −2 on the negative real axis.

The PD controller here acts as a velocity controller and receives the velocity feedback from the

motor using a tachometer. The transfer function of the PD controller is given below,

C(s) = Kp +Kds (2.19)

The block diagram of the system is given in Fig. 2.6 where an integrator is used to obtain the

position from the velocity response of the motor. The PD controller inside the stability loop is

tuned to satisfy the criteria of zero steady-state error and < 1s settling time of the system. The

tuned values of the parameters are found to be Kp = 15 and Kd = 6. The stability loop Gin(s) is

obtained with the following equation

Gin(s) =
M(s)C(s)

1+KtM(s)C(s)

=
0.06s+0.15

0.005s2 +0.09s+0.175

=
12(s+2.5)

s2 +18s+35

(2.20)

where the Kt is the gain of the tachometer. The step response of the velocity loop is given in Fig.

2.7.

2.3.3 Stability Analysis of the Complete Loop

The outer closed-loop system involves 3 parameters λ ,n, and T . Naturally, the stability of the

system is expected to depend on the choice of the parameters. An exhaustive test of stability is

needed for the optimal choice of λ for a given value of n and T . The variable n is user depen-

dent as the user decides when he/she should no longer continue participation in the experiment

as plant response (position) reaches a steady-state value. However, the parameter T is approx-

imately known priory. Here T denotes the delay between two successive P300 occurrences.

Typically T lies between 1s to 3s. Hence, we consider the variation of T in the range [1,3] and

the variation of n in the range [1 3 5] to check the parameters of instability (if any) in the said

range. This is done in two phases. In the first phase, we draw root-contour plots of the system by

keeping 2 variables out of λ , T ,n constant. It is evident from the root contours that the stability

of the system increases with the increasing value of λ . However, it is apparent from the transfer

function of the system that the settling time of the system also gets affected by the λ . Hence an

optimal value of λ must be obtained for satisfactory performance of the system.

In the second phase, we plot the ratio K
Ts

(where K is the DC gain of the system and Ts is the
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Figure 2.7: Step Response of the velocity loop

settling time of the system) and search for the optimal value of the λ for which the above ratio

is highest. The surface plot of the ratio defined above for different values of n and λ is given in

Fig. 2.9. The plot is obtained by varying n and λ for a given value of T .

The stability of the complete system is provided in Fig.2.8 through root contours for a spe-

cific value of n,T and with increasing value of λ , but the motor pole at −14.6(marked with

red box) location does not get altered for different combination of n and T , hence for the sake

of brevity this pole is not explicitly shown in the root contours for different combination of

controller parameters presented through Fig.2.9 to 2.17 . The root contours are plotted with

increasing values of λ for a given value of n and T . The DC gain of the system is reported in

the figure by the notation K. It is evident that for a wide range of variations of the controller

parameters, the system remains stable. However, the relative stability greatly varies with the

parameter variation. For a given value of n and T , the stability margin is found to be increasing

with the increasing values of λ . Another important observation is the dependency of the sys-

tem’s relative stability on the choice of initial velocity. The individual root locus for a specific

choice of n, T , and λ is stable for a certain range of DC gain K, which is numerically equal to

double of the initial velocity. i.e. K = 2v0, hence the DC gain explicitly depends on the initial

velocity v0. As an example, a specific parameter combination (n = 3, T = 1, and λ = 0.5) yields

the stability margin 0 < K < 23.56 for the system to be stable, i.e. the initial velocity v0 must be

below 23.56/2 = 11.78 to maintain the stability criteria.



2.3. Controller Design and Stability Analysis 59

Figure 2.8: Root Locus of the complete system with increasing values of λ .

Figure 2.9: Surface plot of the K
Ts

ratio for different values of n,T and λ
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Figure 2.10: Root-Contour plots of the overall system for n=1,T=1 and increasing value of lambda

Figure 2.11: Root-Contour plots of the overall system for n=1,T=2 and increasing value of lambda

Figure 2.12: Root-Contour plots of the overall system for n=1,T=3 and increasing value of lambda
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Figure 2.13: Root-Contour plots of the overall system for n=3,T=1 and increasing value of lambda

Figure 2.14: Root-Contour plots of the overall system for n=3,T=2 and increasing value of lambda

Figure 2.15: Root-Contour plots of the overall system for n=3,T=3 and increasing value of lambda
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Figure 2.16: Root-Contour plots of the overall system for n=5,T=1 and increasing value of lambda

Figure 2.17: Root-Contour plots of the overall system for n=5,T=2 and increasing value of lambda

Figure 2.18: Root-Contour plots of the overall system for n=5,T=3 and increasing value of lambda
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2.4 Brain Pattern Decoding

This section narrates the steps involved in processing the EEG signals with the ultimate aim

to recognize the BCI signals: SSVEP, MI, and P300. The SSVEP signal originates from the

visual cortex region of the occipital lobe. The electrodes O1 and O2 of the international 10–20

electrode placement system are nearest to that brain region used for the purpose of SSVEP

decoding. The origin of the MI signals, on the other hand, is the parietal cortex and sensory-

motor cortex regions. The electrodes located nearest to this region are C4, C3, Cz, P3, P4, and

Pz. Thus, these 6 electrodes are employed for MI signal classification. Lastly, the P300 signal

appears with a relatively larger amplitude over the midline of the brain, thereby facilitating the

use of Fz, Cz, and Pz electrodes for its identification. Thus in this study, a total of 9 electrodes,

including Fz, C3, C4, Cz, P3, P4, Pz, O1, and O2, are employed for EEG signal acquisition.

2.4.1 Pre-processing

After the acquisition, the EEG trials are filtered spatially by means of common average refer-

encing (CAR) to remove common-mode noise, including thermal noise, power line interference,

undesired physiological signals, etc., which appears uniformly across all the EEG electrodes

[33]. Here, the sample-wise average of all the channels is subtracted from the signal samples of

each channel at each time instant. Although there exist other sophisticated methods of noise and

artifact removal, CAR has been chosen because of its low computational overhead in comparison

to other existing filtering algorithms [171].

2.4.2 SSVEP Detection

The following steps are followed to detect the SSVEP brain signal liberated by the subject while

gazing at the flickering sources mounted over the links of the robot arm.

2.4.2.1 SSVEP Preprocessing

The spatially filtered EEG signals are passed through a band-pass filter of passband 0.1–30 Hz,

realized with a 6th order elliptical filter of 1 dB passband ripple and 60 dB stopband attenuation.

The reason behind the choice of the elliptical filter is that it provides sharp roll-off characteristics

and good attenuation of ripples in both the pass and the stop bands.

2.4.2.2 Feature Extraction

For the purpose of SSVEP detection, power spectral density (PSD) estimates the three flickering

frequencies and two harmonics of each of those frequencies that are used as the EEG signal

features. In this paper, the Yule Walker method of auto-regressive (AR) spectral estimation is

employed, where the AR model of the input signal is used to determine the PSD [172]. The

AR based method is chosen over the conventional periodogram method primarily because of

two significant advantages. First, for signal-to-noise ratio (SNR) greater than 0 dB, this method

provides better frequency resolution than traditional periodogram methods. Second, this method
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is free from distortions due to side-lobe leakage effects which are inherent in the periodogram

approach. According to the Yule Walker method, the acquired EEG signal is described by an

AR model, where AR model parameters depend only on the previous output samples of the

system. Therefore, the acquired n point sequence of EEG signal y(n) can be described as a

linear combination of the previous output of the system with the introduction of an error term

∆(n) where ∆(n) = N{0,σ2
E} represents a Gaussian noise with mean zero and variance σ2

E .

For previous j samples, y(n) can be represented as

y(n) =−
j

∑
k=1

a(k)z−ky(n)+δ (n) (2.21)

where y(n) indicates the nth sample of the input signal and a(k) denotes the AR parameters

where k = [1, j], and j denotes the model order of the system. Here AR parameters are estimated

using the least mean square method (LMS). Rewriting Eq.(2.21) yields

H( f ) =
y(n)
δ (n)

=
1

1+∑
j
k=1 a(k)z−k

(2.22)

For estimating the PSD of the original EEG signal, the Power Spectral Density of the white noise

(error term) must be known, which is found to be its variance σ2. Therefore, the power spectral

density estimate reduces to computation of Eq.2.23 given below:

Py( f ) =
σ2δ (n)

|1+∑
j
k=1 a(k)e− jkωt |

(2.23)

In the present context, three flickering frequencies (7 Hz, 10 Hz, and 12 Hz) are considered. The

spectral power of each of the 3 frequencies with their 2 harmonics is considered as a feature

vector. For each frequency, a bandwidth of 0.5 Hz below and above the stimulus frequency is

taken with a resolution of 0.1 Hz. Each stimulus frequency with its two harmonics generates 11

× 3 = 33 features for a single electrode. The total features generated in a single electrode for all

the frequencies are 33 × 3 = 99. The study considers two electrodes for SSVEP detection, hence

a total of 99 × 2 = 198 features are generated in a single epoch. We reduce the set of features

into a small set using the following feature selection algorithm.

2.4.2.3 Evolutionary Feature Selection

The motivation of feature selection is to identify the smallest possible set of features, which

should ideally be independent of each other, but are sufficient to characterize the classes of the

given training instances. Such characterization is necessary for recognition of the classes from

the selected features/attributes of the training instances. Existing literature on feature selection

is primarily aimed at selecting features based on their linear independence[173]. An alternative

method, perhaps, is to select features so as to maximize inter-class separating distances and

minimize intra- class separating distances. This requires construction of objective functions,

ensuring the above requirements, and a time-efficient search algorithm that identifies the smallest
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possible set of features that satisfies the objective functions jointly. Let, fi, j,krepresent the feature

i of the data point k lying in class G( j). Also consider the parameters: fi, j,land fi, j′ ,l where the

suffixes carry similar meaning as defined for fi, j,k. Suppose the training instances include M

features for each data point, and s(≤ M) denotes the number of selected features. Let Ob j1

and Ob j2 denote 2 objective functions, representing the respective measures of intra-class and

inter- class separating distances between pairs of data points. In the case of Ob j1, the distance

is computed between fi, j,k and fi, j,l for data points k and l both lying in class G j for j in [1,R].

In the case of Ob j2, the distance is evaluated between fi, j,k and fi, j′ ,l lying in different classes

G j and G
′
j , respectively. For the present application, we need to minimize Ob j1 and maximize

Ob j2

Ob j1 = ∑
∀ j

∑
∀i

∑
∀k,l∈G j,k ̸=l

∥ fi, j,k, fi, j,l∥ (2.24)

Ob j2 = ∑
∀i

∑
G j,Gk∈G

∑
∀k,∈G j,∀l∈Gl

∥ fi, j,k, fi, j′ ,l∥ (2.25)

where

G =
⋃

Gr,r ∈ { j, l, ...} (2.26)

and ∥.∥ denotes the Euclidean norm. For the sake of simplicity and convenience, the objective

functions presented in (2.24) and (2.25) are combined to form a single objective function (2.27),

the minimization of which would serve the purpose.

Ob j3 =
Ob j1

δ +Ob j2
,δ ≥ 0 (2.27)

Here, δ , a small positive number, is introduced in (2.27) to limit Ob j3 to a finite value, partic-

ularly when Ob j2 approaches zero. In the present circumstance, we select δ as a very small

positive number (10–6), so that it has no influence on Ob j3, as Ob j2 >> δ in (2.27), for such a

setting of δ .

Although there are several meta-heuristic algorithms to minimize (2.27), we select the well-

known particle swarm optimization (PSO) algorithm, primarily for its small code, small con-

vergence time, small run-time complexity, and most importantly the authors’ familiarity with it

[36] over a decade. The parameters of the PSO algorithm used include swarmcon f idence = 2.0,

sel f − con f idence = 2, and inertialweight = 0.729 based on the authors’ experience [174].

2.4.2.4 Classification

A three-stage hierarchical linear support vector machine (LSVM) classifier has been employed

for the purpose of SSVEP classification. Though any other standard pattern classifier could have

served the purpose, LSVM is selected for its high classification accuracy and low computational

overhead [175]. Moreover, LSVM requires a smaller training time as compared to other classi-

fiers such as naive Bayesian or multi-layered Perceptron. Here SSVEP detection is performed in

three distinct stages of binary classifications. In the first stage, the EEG trial is classified to check

the presence of SSVEP in the selected time window. On finding the presence of SSVEP, the sec-

ond stage of classification is performed so as to determine if the trial corresponds to frequency
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f1. In the final stage, the non-f1 trials are further classified into the two classes corresponding to

frequencies f2 and f3, respectively.

2.4.3 ERD/ERS Detection

2.4.3.1 Pre-processing

In this case, EEG trials filtered spatially by CAR, are again filtered by a BPF of passband 8–24

Hz. The BPF is designed by utilizing a 6th-order elliptical filter of 1 dB passband ripple and 60

dB stopband attenuation.

2.4.3.2 Feature Extraction

For MI detection, we extract common spatial pattern (CSP) features. CSP is an optimized spa-

tial filter, which aims at minimizing intra-class variance and maximizing inter-class variance of

the filtered signals[176]. Let Xibe a (p× q) matrix representing band-pass filtered EEG data

of class i, i = 1,2, where p and q respectively denote the number of channels and time-slices

used in a trial for data acquisition. Let C1 and C2 be the spatial covariance matrices for classes

1 and 2, respectively, where C1 = X1XT
1 and C2 = X2XT

2 . CSP attempts to determine the op-

timal spatial filter vector w = [wi], where wi is the weight of the i− th channel, such that the

ratio of variances of the spatially filtered signals wX1 and wX2, given by JCSP(w) is optimized

(maximized/minimized), where

JCSP = (wX1).(wX1)
T : (wX2).(wX2)

T (2.28)

= w(X1XT
1 )w

T : w(X2XT
2 )w

T (2.29)

= wC1wT : wC2wT (2.30)

The optimization of (2.30) is solved by the general eigenvalue decomposition (GEVD) tech-

nique. In fact, the principal components corresponding to the largest and the smallest eigen-

values of A = C−1
2 C1act as the desired spatial filters corresponding to the maximum and the

minimum variances. The singular value decomposition (SVD) technique is employed next to

obtain the CSP filter w =UT by representing the matrix AbyUDUT , where D is a diagonal ma-

trix. The logarithm of the variance of CSP projections, i.e., log(wCwT ) = log(var(wX)) for

X = X1 and X2are then used as CSP features of 2 classes.

The classical CSP algorithm outlined above works exceptionally well when the acquired EEG

signals have large signal to noise ratio. However, because of the non-stationarity of the EEG,

the same algorithm may not work well universally across all subjects [40]. Particularly, it suf-

fers from high sensitivity to noise, over-fitting and in-sensitivity to spectral information of the

used EEG samples [40]. The sensitivity to noise and over-fitting are eliminated by adding suit-

able regularizing constraints [38] in the CSP objective function (2.30). To utilize discriminating

wave shapes and/or spectral information of RHMI and LHMI, there are 3 alternatives: i) using

CSP features along with temporal [177] and spectral features [178] of EEG for classification;

ii) undertaking CSP in narrow sub-bands of the useful frequency spectrum for MI, and then se-
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lecting the best set of features from the CSP features in b sub-bands using a mutual information

based feature section [50] hereafter called filter bank CSP (FBCSP); and iii) considering both

magnitude and phase of the EEG samples in the CSP formulation [179] to derive optimal CSP

features. Here, we adopt both ii) FBCSP and iii) magnitude-phase CSP (MPCSP) independently,

and compare their relative performance with classical CSP in the experiment section. A brief

outline of the newer approach [179]is given below.

The classical CSP formulation takes into account of the amplitudes of the EEG time samples,

disregarding the phases of the EEG signals. In [179], the authors considered both the amplitude

and phase of the EEG signal to obtain more reliable CSP features, responsible for improving

the classification accuracy for the 2-class classification problem. In their formulation, the ob-

jective function appears similar to (2.30) with C1 and C2 replaced by C∗1 and C∗2 respectively

defined in the complex plane. Later they adopted the Lagrange multiplier technique to optimize

an objective function (2.31) equivalent to (2.30), containing C∗1 and C∗2 in place of C1 and C2,

respectively.

L(λ ,w) = w̄C∗1w−λ (w̄TC∗2w−1) (2.31)

where w̄ is the complex conjugate of w . The optimization of L with respect to w returns

C∗−1
2 C∗1w̄ = λ w̄. As M = C∗−1

2 C∗1 is a complex matrix, they adopted symmetric singular value

decomposition (SSVD) for eigenvalue decomposition. In SSVD, for a singular matrix of (p×q)

we have a unitary matrix U
′
, such that P=U

′
C∗U

′T , where C∗= diag[σ1,σ2, ...σp] with σi≥ 0,

where σi is the eigenvalue. Consequently, for the square symmetric matrix A =C∗−1
2 C∗1 we ob-

tain M = WDW̄ T where D is a diagonal matrix and W̄ T is the desired CSP matrix. In classical

CSP, the principal component analysis (PCA) is employed to determine the principal compo-

nents corresponding to the largest and the smallest eigenvalues of A =C∗−1
2 C∗1 .

A non-linear PCA and conformal mapping are required here to determine the largest and

the smallest eigenvalues of the complex matrix A = C∗−1
2 C∗1 , the details of which are available

in [179]. The CSP features thus obtained, in conjunction with a standard linear discriminant

analysis(LDA) classifier improves the classification accuracy to more than 98% at the cost of

additional computational overhead.

2.4.3.3 Classification

This study makes use of a 2-stage radial basis function kernelized support vector machine (RBF-

SVM) classifier, where the first stage categorizes the feature vector of an EEG trial in the pres-

ence/absence of MI in the trial. The trials found to contain MI are classified in the second stage

into LHMI and RHMI.

2.4.4 Signal Processing for P300 Detection

2.4.4.1 P300 Preprocessing

The CAR-filtered P300 signal is passed through a BPF of passband 0.1–10 Hz. The filter is

implemented with the 6th-order elliptical filter of 1 dB pass-band ripple and 60 dB stop-band



68 2. Design and Analysis of Brain-Actuated Position Control of a Robot Arm

attenuation.

2.4.4.2 P300 Feature Extraction

Here, the adaptive autoregressive parameters (AAR) are utilized as the features of the EEG

trials. The AAR model can efficiently represent the stochastic and non-stationary nature of

EEG signals owing to the time-varying characteristics of the AAR coefficients [180] A jth order

AAR modelis represented by, AAR( j), where the AR parameters are evolved with time using a

recursive-least-squares (RLS) algorithm [181] with an update-coefficient set to a small number

(= 0.008) to facilitate only small changes in consecutive iterations.

For offline sessions, here, P300 trial is captured for the duration of 2s. Considering a sam-

pling rate of 200Hz, a total of 400 data samples are collected during a single trial. Here, a 6th

order AAR model is considered, hence 6 × 400 = 2400 AAR features are obtained. AAR fea-

tures are averaged with a moving window of length = 60 features (50 ms). So, the dimension of

the feature vector for each electrode after window averaging is 40. Considering three electrodes,

Fz,Cz, Pz we thus have a total of 40×3 = 120 features.

2.4.4.3 Feature Selection

The PSO-based feature selection algorithm introduced before is employed now to select the

most discriminating features for 2 classes, representing P300 present or absent in a given time-

window.

2.4.4.4 Classification

The selected features are submitted to an LSVM classifier to recognize the presence or absence

of P300 in the selected window.

2.5 Experiments and Results

This section presents the experimental protocol and the main results obtained while conducting

the experiment. Performance of the SSVEP, MI, and P300 classifiers have been presented here

in terms of four metrics viz. classification accuracy, true positive rate, false positive rate, and

computation time.

2.5.1 The Experimental Framework

Subjects: Ten volunteers were chosen for the experiment. The medical history of the volunteers

shows no evidence of any critical illness or any other surgery undergone in the near past. Among

10 subjects, 6 are male and 4 are female and all of them are in the age group of 24–30. A consent

form was duly signed by them stating their willingness to participate in the experiment. All other

safety and ethical issues were maintained according to the Helsinki Declaration of 1970, revised

in 2000 [182].
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The EEG System Used: A 19-channel EEG device manufactured by Nihon-Kohden was

used to acquire the EEG signal from the subjects. Electrodes were placed according to the

standard 10–20 electrode placement system, which uses A1 and A2 as the reference electrodes

and FPz is the common ground (Fig. 2.19). A built-in notch filter of 50 Hz frequency eliminates

the power-line disturbances. The device acquires an EEG signal at a sampling rate of 200 Hz.

Figure 2.19: Bold (blue) circles representing selected electrode positions in the international 10–20
electrode placement array.

2.5.2 The Training Session

The training was offered in offline mode with the help of a power-point (PPT) stimulator. The

first slide includes a fixation cross to make the subject alert to the stimulator. The second slide

includes a flickering source mounted on one link of a robot arm to help the subject reproduce

the SSVEP at the source frequency. The simulator includes a 3-link robot arm, each with a

provision for flickering at different frequencies, with the ultimate aim to select the link based on

the frequency contained in the SSVEP produced by the subject. The subject is asked to gaze at

the particular flickering source mounted on the robot link. Once the SSVEP is recognized, the

corresponding link responsible for the SSVEP is highlighted with a green color. The third slide

includes commanding the subject to produce left/right motor imagery for clockwise/ counter-

clockwise rotation respectively of the link. The last slide contains a virtual scenario where a

particular robot link crosses a fixed target. The subject on observing this is expected to yield a

P300 signal. The above sequence of four slides is repeated 60 times across one week’s time. One

typical instance of the training session, comprising a stimulus presentation followed by robotic

actions in response to the stimuli is given in Fig.2.20
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Figure 2.20: Stimulus description (header of the figure) with robotic actions in sequence (left to
right of the first row followed by left to right of the second row) for a specific control task

2.5.3 The Testing Session

The basic difference between the training and the test session lies in the phenomenon that the

training is imparted in simulation mode, while the test session is performed online with the real

robot. Although the difference is small, the test session usually is more complex, as the subject

has to plan the three steps of operations: link selection by SSVEP, MI to move the selected

robot arm, and P300 generation on observing a positional error (i.e., the link crosses the target

position), without having a reference on time-limits/intervals. The link selection protocol and

link movement direction protocol are illustrated in Tables 2.2 and 2.3, respectively. During the

real-time testing session, each of the three brain signals is observed with a moving time window

of 1 s. Hence all the signals are captured throughout the length of the window but an exception is

followed in case of MI detection. MI signal is observed through the entire length of the window

but only the last 0.2 s of the signal is taken into account[183].

2.5.4 Observed Waveforms/Traces

The acquired P300, SSVEP, and ERD/ERS traces for 5 distinct trials on a subject with their

population average trace are given in Figs. 2.21, 2.22, and 2.23, respectively. In each case,

the population average is obtained by taking the average of all available instances. It is evident

from Fig.2.21 that positive peaks of P300 are generated around 250 ms to 350 ms, counted

from the onset of the target stimuli (at the 0th second), whereas Fig.2.22 refers to the SSVEP
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response corresponding to a frequency of 7 Hz. It is interesting to note that the band power

of SSVEP has shown a significant rise around 7 Hz. In Fig.2.23, the ERD plots show a sharp

fall-off in magnitude at approximately 400 ms time-point, and the signal power is restored at

approximately around 550 ms. Here ERD is quantified as a percentage change of power at each

sample point relative to the average power in the reference interval [184].

Table 2.2: SSVEP-based link selection protocol

Link Number Color of LED Frequency of flicker(Hz)

Link 1 Red 7

Link 2 Green 10

Link 3 Amber 12

Table 2.3: MI-based motion activation protocol

Desired link movement Corresponding MI

Clockwise rotation of any link RHMI

Counter-clockwise rotation of any link LHMI

Figure 2.21: P300 waveform for 5 subjects represented by dotted lines and the population average
of the signals represented by a red solid line after acquisition from Cz electrode, and filtering by 6th
order elliptical filter in band 0.1–10Hz.
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Figure 2.22: PSD plot of SSVEP at 7 Hz frequency for 5 subjects represented by dotted lines and
the average of the signals represented by a black solid line after acquisition from channel O1.

Figure 2.23: Percentage ERD plot of 5 subjects taken at C3 electrode for right arm motor imagery
with the population average represented by a solid black line after filtering in [8–11] Hz

2.5.5 Validation of the Decoders

In this experiment, 3 different methodologies are proposed to decode the three different EEG sig-

nals: SSVEP, MI, and P300. For the purpose of evaluating the performances of these decoders,

5 well-known performance metrics have been employed which are classification accuracy (CA),

true positive rate (TPR), false positive rate (FPR), computational time (CT), and Cohen’s kappa

(κ) co-efficient. The formal definitions of these metrics are presented below for ready reference.

• CA: The fraction of the total number of instances that are correctly identified by the de-

coder.

• TPR: The ratio between the correctly detected positive instances and the total number of

positive instances.
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Table 2.4: Comparison of Different CSP-Based Classifiers

Algorithm CA% Kappa Training Time(s)

Classical CSP + RBF-SVM 94.1 0.89 0.4232

FBCSP + LDA 97.3 0.86 3.2658

MPCSP+RBF-SVM 98.6 0.92 3.8249

• FPR: The fraction of the total number of negative instances that the decoders identify as

positive ones.

• CT: The time taken by the trained decoder in order to generate the inference about the

presence/absence of the concerned signal in a single trial EEG.

• Cohen’s kappa: The inter-rater reliability parameter for the categorical items and also is a

more robust parameter than percent classification accuracy [185].

For each subject, 7 instances are acquired of which 6 instances selected randomly are used for

classifier training and the remaining one for classifier testing.

2.5.5.1 Validation of MI Decoder

Table 2.4 reports the performance evaluation results of the CSP based MI decoder which is

required to identify the desired direction of link motion. It is apparent from the Table that the

MPCSP feature selection method along with the radial basis function (RBF) kernelized SVM

(RBF-SVM) classifier outperformed its nearest competitor FBCSP feature selection + linear

discriminant analysis (LDA) classifier by a margin of 1.3% in terms of classification accuracy.

A higher inter-rater reliability value (κ = 0.92) is obtained for MPCSP + RBF + SVM at the

cost of increased training time. As the training session is performed offline, the relatively larger

training time of MPCSP compared to FBCSP does not affect the real-time performance of the

MPCSP-RBF-SVM classifier with its nearest competitor FBCSP-LDA.

Now considering Table 2.5, the best CA was attained in the case of the fourth subject which

is 99.2%. The average metric values obtained are: CA = 98.1%, TPR = 0.93, FPR = 0.04, CT

= 0.422 s, and kappa = 0.89. Here, the inter-subject variance of the results is represented as

the coefficient of variation (CV), which is measured as the ratio of observed mean and observed

variance. The CV value for classification accuracies is found to be 0.01 whereas the CV value

of kappa over the different subjects is found to be 0.03.

2.5.5.2 Validation of the SSVEP Decoder

It is seen from Table 2.5 that the SSVEP decoder offered average CA, TPR, FPR, and CT of

95.9%, 0.92, 0.04, and 0.091 s, respectively. The average kappa value obtained is 0.91. The best

CA of 96.8% was obtained for the fourth subject and the best kappa value is found to be 0.94 for

the first subject. CV values of classification accuracy and kappa values over the different subjects
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are found to be 0.005 and 0.018, respectively. It is apparent that such values are significantly on

the lower side.

2.5.5.3 Validation of P300 Decoder

The average values of CA, TPR, FPR, kappa, and CT of the P300 decoder obtained are 93.3%,

0.90, 0.03, 0.89, and 0.108 s, respectively with the best CA of 94.9% obtained for the 9th subject.

CV values of classification accuracy are noted to be 0.01 and that of kappa is noted to be 0.02.

2.6 Statistical Validation

ERD/ERS trials depicted in Fig.2.23 are statistically validated with the criterion mentioned in

(2.1). Sample points of the depicted trials are compared with the sample points of the population

mean trial (Ground truth) to check if they conform to Gaussian criteria.

P300 trials represented in Fig.2.21 are statistically validated with the population mean la-

tency obtained from all trials of all subjects participating in the study. The mean latency of P300

is found to be 360 ms. The latency of 6 trials presented in Fig.2.21 is given in Table 2.6. The

particular time instant when the highest peak of the P300 occurs is considered as the latency of

the signal. Population mean latency is found to be 360 ms. One sample t-test [186] is used to sta-

tistically validate the trials with the population mean. The required null hypothesis is expressed

as follows:

H0 : µ = X̂ (2.32)

where µ is the population mean and X̂ is the sample mean. A confidence level of 95% with

degrees of freedom (d f = 5) is considered for obtaining the p-value. Table 2.7 provides the

results of the One-sample t-test on P300 trials. The p value obtained here clearly indicates

that the assumed null hypothesis is true. Hence, the represented samples belong to the same

population.

Table 2.6: LATENCY OF THE REPRESENTED P300 TRIALS

Trial No Latency(ms)

Trial 1 364

Trial 2 356

Trial 3 362

Trial 4 356

Trial 5 371

Trial 6 395

SSVEP trials presented in Fig.2.22 are also statistically validated using the One-sample t-

test against the population mean amplitude revealed by power spectral density. The amplitude

of the highest peak occurring in 6.5–7.5 Hz frequency range is considered for comparison. The

population mean amplitude is found to be 9.1 dB. Peak amplitudes of the trials are given in Table
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Table 2.7: RESULT OF One-sample t-test ON P300 TRIALS

Sample mean Population mean SD sample t-stat p-value(95%) Result

367.33 360 14.66 1.22 0.2752 Not Significant

2.9. The null hypothesis is considered as same as considered in the previous case. The details of

the results are given below in Table 2.8.

Table 2.8: RESULT OF t-test APPLIED ON SSVEP TRACES

Sample mean Population mean SD sample t-stat p-value(95%) Result

9.28 9.2 1.30 0.13 0.89 Not Significant

Table 2.9: AMPLITUDE OF THE REPRESENTED SSVEP TRIALS

Trial No Amplitude

Trial 1 7.8

Trial 2 8.2

Trial 3 9.3

Trial 4 10.2

Trial 5 10.9

The p-value (two-tailed, 95% confidence with d f = 4) obtained in this case is 0.89, which

clearly indicates that depicted trials are not statistically different; thus the assumed null hypoth-

esis proves to be true in this case.

The performance of the classifiers is validated using the Friedman statistical test [187]. The

Friedman test is a non-parametric statistical test. It ranks the classification algorithms for each

dataset based on classification accuracy. The classifier with the highest classification accuracy

gets the lowest rank of 1. For the i-th dataset and j-th algorithm, ri j designates the relative rank

of the classifier. The total rank of a classifier is evaluated by summing all the ranks it received

for all the datasets. Ri j, the total rank of the j-th classifier is given in (2.33).

R j =
N

∑
i=1

ri
j (2.33)

where N denotes the number of datasets. For each subject, we consider a dataset. The test

considers the null hypothesis, which assumes that the performances of all the classifiers are

equivalent, so their rank sum should be equal. Under the null hypothesis, Friedman statistics are

distributed as χ with k˘1 degrees of freedom. Here k denotes the number of classifiers used in

the study.

The Freidman statistic is calculated by
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χ
2
F =

12
Nk(k+1)

k

∑
j=1

(R j)
2−3N(k+1) (2.34)

where N = number of databases, and k = no. of competitive classifiers. Now using N =

10, k = 5, and ranks obtained from Table 2.11, Table 2.12, and Table 2.13, the value of χ2
F is

determined separately for each of the three categories of signal and compared with the critical

value of the chi-square obtained with a 95% confidence level and 4 degrees of freedom. The χ2
F

values obtained along with the critical value are presented in Table 2.10.

Table 2.10: Comparison Table of chi-square Values

Signal Category
χ2

F value

obtained from test

Value of χ2
4,0.95

obtained from

chi-square distribution

Null Hypothesis

Accepted/Rejected

SSVEP 35.76
9.48

Rejected

MI 38.56 Rejected

P300 36.86 Rejected

It is evident from the table that in each case value obtained from the Friedman test exceeds

the critical value, so the null hypothesis that all the classifiers are equivalent is discarded. Hence

the performance of the classifiers is evaluated by their cumulative ranks. The classifier with

the smallest rank has the best performance. It is apparent that the RBF-SVM classifier has the

lowest cumulative rank-sum in each case and performs best in the study.

Table 2.11: Rank Table of Classifiers used in SSVEP Detection

Sub ID
Friedman Statistical Test for SSVEP

LSVM Rank QDA Rank LDA Rank k-NN Rank BPNN Rank

1 95.5 1 92.2 2 91.2 3 89.7 4 86.2 5

2 96.2 1 94.5 2 92.4 3 90.4 4 86.4 5

3 95.8 1 92.5 2 90.7 3 87.6 4 84.8 5

4 96.8 1 93.1 2 90.3 3 88.1 4 85.2 5

5 95.4 1 95.2 2 91.0 4 92.4 3 89.6 5

6 95.9 1 92.8 2 90.3 4 91.8 3 87.1 5

7 93.1 2 96.0 1 91.6 3 88.9 5 90.2 4

8 95.1 1 91.2 2 89.6 4 90.8 3 86.3 5

9 96.3 2 96.9 1 94.0 3 92.2 4 88.8 5

10 95.8 1 93.6 2 89.1 4 91.9 3 86.5 5

Total 12 18 34 37 49
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Table 2.12: Rank Table of Classifiers used in MI Detection

Sub ID
Friedman Statistical Test for Motor Imagery

RBF-SVM Rank LSVM Rank QDA Rank LDA Rank k-NN Rank

1 98.3 1 96.1 2 95.2 3 93.1 4 92.3 5

2 98.6 1 95.3 2 94.1 3 92.5 4 91.4 5

3 97.8 1 93.7 2 92.8 3 91.0 4 89.8 5

4 99.2 1 95.1 2 94.4 3 92.3 4 90.3 5

5 97.1 1 93.7 2 92.4 3 90.1 4 89.5 5

6 96.2 2 96.8 1 94.3 3 91.1 4 88.4 5

7 98.4 1 93.1 2 91.8 3 91.1 4 86.9 5

8 98.5 1 93.5 2 92.0 3 90.8 4 89.1 5

9 97.3 1 93.5 2 91.5 4 91.6 3 90.2 5

10 98.7 1 92.8 2 91.6 3 90.3 4 89.1 5

Total 11 19 31 39 50

Table 2.13: Rank Table of Classifiers used in P300 Detection

Sub ID
Friedman Statistical Test for P300 Detection

LSVM Rank QDA Rank LDA Rank k-NN Rank BPNN Rank

1 94.1 1 92.0 2 91.4 3 88.2 4 86.4 5

2 92.6 1 90.1 2 88.3 4 89.2 3 85.2 5

3 91.8 1 88.6 2 87.2 3 87.1 4 83.3 5

4 94.3 1 93.2 2 91.0 3 89.3 5 89.8 4

5 93.2 1 91.5 2 89.4 4 90.0 3 87.8 5

6 93.7 1 89.9 2 87.2 3 82.4 4 82.2 5

7 90.5 1 90.1 2 88.1 3 86.3 4 83.4 5

8 93.4 1 93.0 2 89.3 3 88.6 4 86.0 5

9 94.9 1 93.7 2 90.6 3 87.2 4 85.1 5

10 92.4 1 90.2 3 91.8 2 86.9 4 82.9 5

Total 10 21 31 39 49

2.7 Controller Performance Analysis

The performance evaluation of the proposed method of robot arm position control is done based

on four popularly used metrics, i.e., steady-state error, peak overshoot, settling time, and success

rate. The formal definitions [19] of these metrics are given below for ready reference.

1. Steady-State Error (SSE): The difference between the steady state position of the end

effector of the robot and the visually fixed position of the subject, in the limit as time goes

to infinity.
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Table 2.14: Controller Performance for different values of n and T

n=1 n=3 n=5

SR% Mp% SSE% Ts (s) SR% Mp% SSE% Ts (s) SR% Mp% SSE% Ts (s)

T=1 86.5 4.3 0.32 4.12 90.2 4.1 0.18 6.66 90.4 4.1 0.10 8.10

T=2 89.9 3.1 0.20 5.16 92.1 3.2 0.12 9.89 92.5 3.1 0.09 14.75

T=3 91.5 2.9 0.15 6.9 92.6 3.0 0.12 13.08 92.8 2.8 0.08 20.30

2. Peak Overshoot (MP): The maximum positional shift in response with respect to the (de-

sired) steady-state position of the end-effector. It is expressed as a percentage of the final

value. It is the first maximum peak

%Mp =
CPp−CPss

CPss
×100 (2.35)

where CPp is the final response, and CPss is the steady-state response of the system for

step input.

3. Settling Time (Ts): It is the time taken by the response to reach and stay within 2% of the

steady-state value or the desired value.

4. Success Rate (SR): It is defined as the ratio between the number of successful attempts

by the subject to the total number of attempts. A trial is considered successful when the

subject is able to reach the target within the positional tolerance of 2%.

The performance of the system is given in Table 2.14 for different choices of n and T by

the user, while the parameter λ was taken based on the criteria mentioned in section 2.3.3, i.e.

to maximize the ratio between the DC gain of the system and Settling time. It is apparent that

the combination [n = 2,T = 2] achieves the optimal performance with respect to all the param-

eters. It achieves a success rate of 92.1% with an overshoot of 3.2% and a moderate settling

time of 9.89s. However, some other combinations achieved slightly higher accuracy and lower

overshoot (ex. combination with [n = 5,T = 3], [n = 3,T = 2]) but at the cost of a signifi-

cant increase in settling time. The steady error was also found to be 0.12 with this combination,

which can be considered to be significantly small for the BCI-based position control application.

Few combinations providing smaller steady-state error again yield higher settling time. On the

other hand, combinations providing smaller settling times yield lower success rates and higher

steady-state error such as combination [n = 1,T = 1]. Hence, here we consider the performance

obtained from the combination [n = 3,T = 2] as our benchmark to compare the performance of

our proposed system with other state-of-the-art methods. A qualitative comparison between the

proposed method and the other three control strategies employing only MI, MI+ErrP is provided

in Table 2.15.

As observed from Table 2.15 the proposed scheme performs better than the scheme employ-

ing the motor imagery detectors. The results show how the inclusion of the P300-based error

detector has led to a drastic improvement in the results. The steady-state error has improved
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Table 2.15: RELATIVE PERFORMANCE ANALYSIS

Performance Metrics Only MI MI+ErrP Proposed Scheme

SSE(%) 7.73 2.1 0.12

Mp(%) 5.4 4.9 3.2

Ts(s) 35 31 9.89

SR(%) 48.3 85.6 92.1

by 7.61% with the error being closer to zero for the proposed scheme. In addition, the settling

time has also considerably been reduced from 31 s to 9.89s as the initial speed for the proposed

scheme is relatively higher, and so the first zero-crossing occurs much earlier. In the MI + ErrP

scheme, the initial speed of the links has a moderate value in avoiding peak overshoot. The

success rate of the proposed scheme also is improved with respect to that of MI + ErrP.

2.8 Comparison With Existing Literature

There exist quite a few papers involving BCI where EEG-based robot manipulation has been

used successfully. Most of the cited references use an open-loop control strategy to control

the position of the end-effecter. Those were achieved using different BCI signals like SSVEP

[187], MI [152], [188]. All of them use a controller which essentially works in on/off control

mode, and no feedback path is introduced between the robot and the human. Very recent works

have used the P300 brain pattern for mobile robot navigation [147] and for the movement of a

rehabilitative external agent [149]. All of the works are exposed to high positional error and a

large value of peak overshoot because of the absence of any feedback mechanism from the robot

to the human subject. The above approaches also need a rigorous amount of subject training to

achieve a satisfactory calibration. This paper proposes a novel idea of minimizing bi-directional

error and peak overshoot of the controller by incorporating a closed-loop control strategy. It also

reduces the scope of subject-dependency by using Event-Related Potential P300 for stopping

further movement of the arm. For a particular link operation, the subject has to perform the MI

task once, and position alignment with the target will be achieved automatically by means of

P300, for which the subject only has to concentrate on the object he has visually fixed. Such

use of a closed-loop control strategy for BCI-based robot control is novel in the literature. The

flexible link selection scheme also provides some definite advantages over the end-effecter-based

control scheme of the manipulator. First, it is observed that linear movement of the end-effecter

(translation along three coordinate axes) leads to the alignment singularity [192] condition when

operated in a large range. It is not possible for the subject to resolve the singularity condition

without any external intervention. Second, due to the lack of flexibility in controlling each

degree of freedom, an overall movement of six joints becomes necessary even when the task can

be achieved by turning only a single link. It is evident from relative performance analysis that

the steady-state error in the case of the proposed approach is reduced drastically.

The comparison of the work with Hybrid BCI systems designed for position control by
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robots is presented in Table 2.16. It is clear from the Table that the proposed study and the

study by Bhattacharyya et al. [19] only address the problem of a closed-loop control strategy.

The proposed study has improved steady-state error, settling time, and success rate, and so

outperforms [19] significantly.

2.9 Conclusions and Future Directions

This paper introduced a new approach for position control of a robot’s end-effecter by judi-

ciously controlling the positions of the individual links of the arm. The choice of individual link

selection and their position control is left to the user. The individual link selection is performed

by the user by noticing the flickering LED mounted on the link. In fact, each link has one LED

mounted over it to flicker at a fixed frequency. If the subject releases a P300 from one of the

links, it’s inferred that the subject prefers to use the link in the next time slot for position control.

Apart from BCI-based link selection, the other important attributes of our work lie in ERD/ERS

based motor planning of the previously selected link, and a P300-induced automatic stopping

and speed-reversal, where at, the target position is reached by an individual link. A thorough

modeling and analysis of the controller.

performance undertaken in the study reveals that the proposed BCI based control is stable

with low steady-state error (0.12%), low peak-overshoot (3.2%), and relatively lower settling

time (9.89 s).

An analysis of the root locus of the overall system reveals that the stability margin of the

proposed system is contingent on the initial choice of the maximum speed of the robotic links.

The classifiers chosen have high classification accuracy and their ability to work in the presence

of noise proves their elegance in the present study.

Above all, the proposed system outperforms all existing and reported works utilizing BCI-

based position control with respect to both classifier and controller performance, thus justifying

its utility in rehabilitative aids for people with neuro-motor disability. Future works may involve

i) designing alternative control strategies to reduce subjective cognitive load; ii) improving clas-

sifier design, particularly MI classifiers following[183], [193]; and iii) removing ocular artifacts

following [194] to develop robust, noise-insensitive BCI based control systems.



Chapter 3

Unertainty Handling in
Brain-Actuated Position Control using
Fuzzy Logic

This section addresses a novel approach to position control of a robot arm by utilizing 3 impor-

tant brain signals, acquired with the help of an EEG interface. First, motor imagery signal is

employed to activate the motion of a robotic link. Second, the Error Related Potential signal is

acquired from the brain to stop the motion of the robotic link, when it crosses a predefined target

position. Third, the approximate magnitude of the positional error is determined by steady-state

Visual evoked potential signal, acquired by noting the nearest flickering lamp that the robotic

link has just crossed. The novelty of the present research is to decode the approximate magnitude

of the positional error. Once the approximate magnitude and sign of the positional errors are

obtained from the mental assessment of the experimental subject, the above two parameters are

fed to a fuzzy position controller to generate necessary control commands to control the position

of the end-effecter of the robotic link around the pre-defined target position. Experiments under-

taken confirm a low percentage of overshoot and small settling time of the proposed controller

in comparison to those published in the current literature.
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3.1 Introduction

Brain-computer Interface (BCI) is currently gaining increasing potential for its wide-spread ap-

plications in rehabilitative robotics. People with neuro-motor disability such as Amyotrophic

Lateral Sclerosis (ALS), partial paralysis and the like require assistive support to perform their

regular day-to-day-works, such as delivery of food[195], medicines[196] etc. by an artificial

robotic device, where the patients themselves can control the movements of the robot arm,

their pick-up and placements etc. by mind-generated control commands. Neuro-prosthesis is

one of the most active area of BCI research for its inherent advantage to rehabilitate people

with degenerative neuro-motor diseases. Early research on neuro-prosthetics began with the

pioneering contribution of Pfurtscheller[197][10], who experimentally could first demonstrate

the scope of one fundamental brain signal, called Motor Imagery, technically titled as Event

Related De-synchronization followed by Event Related Synchronization (ERD/ERS). This sig-

nal appears in the motor cortex region of a person, when he/she thinks of moving his/her

arms/legs or any voluntarily movable organs. Several researchers have utilized this signal for

mind-driven motion-setting to a mobile robot[198], local navigating device[199],[200] artifi-

cial robotic arm[201][202][203], and many others. However, using ERD/ERS signal alone can

switch on or switch off a device, and thus can only be used for open-loop applications.

In order to utilize the ERD/ERS in closed-loop position control applications, we need addi-

tional brain signals. Several research groups [204][205][19], have taken initiatives to utilize the

benefits of Error-Related Potential (ErrP) and/or P300 signals to develop a generic platform for

closed- loop position control applications. It is important to mention here that the ErrP signal

is liberated from the z-electrodes, located at the midline of our scalp, when a subject himself

commits any motion-related error and/or finds a second person or a machine to commit similar

errors. The ERD/ERS and ErrP signals have been employed in a number of robot position con-

trol systems to set in motion of the robotic motor on emergence of the MI (ERD/ERS signal) and

switch off the motor of the robot arm, when the robotic link crosses a fixed target position. How-

ever, the primary limitation of such position control schemes is on-off control strategy, which

according to classical control theory results in large steady-state error [206].

To overcome this problem, several extensions to the basic control strategies have been pro-

posed in the recent past[207][19]. In [207], the authors developed a new strategy to reduce large

steady-state error by commanding the robot to turn in reverse direction at a relatively lower

speed than its current speed and also sensing the second, third P300, when the target is crossed

several times by the end-effecter. Such scheme can result in reduced steady-state error but at the

cost of extra settling time.

The present research can reduce both steady-state error and settling time as happens to be in

case of classical control strategy by assessing the sign and magnitude of positional error from

the subject’s brain. However, as the magnitude of error is approximate, a fuzzy controller is a

more appropriate option in contrast to a traditional controller. A set of fuzzy rules are proposed

to infer the position of the end-effecter from the approximate magnitude and sign of positional

errors. Traditional Mamdani-type fuzzy reasoning is employed to yield the fuzzified end-effecter

positions. In case a number of fuzzy rules fire synchronously, the union of the inferences are
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considered. Finally, a defuzzifier is used to get back the controlled position of the end-effecter.

The proposed approach thus is unique and remained unknown to the BCI research community.

The chapter is divided into 5 sections. In Section 3.2, we provide the principles adopted for

position control using magnitude and sign of error, captured from the acquired ErrP and SSVEP

signals. Section 3.3 deals with a discussion on processing of the acquired brain signals to make

them free from noise and extraction of certain features from the pre-processed signals for clas-

sification. Section 3.4 deals with fuzzy controller design. Section 3.5 covers the experimental

issues, and also narrates the main results justifying the claims. A list of conclusions is included

in Section 3.6.

3.2 Principles Adopted in the Proposed Position Control Scheme

This section provides the principles of position control using 3 brain signals: i) Motor imagery

to actuate the motion of a robotic link, ii) stopping the robotic link by sensing the ErrP signal,

iii) assessing the magnitude of positional error from the flickering Light Emitting Diode (LED)

closest to the stopping position. It is indeed important to mention here that assessment of the

magnitude of error by SSVEP introduced here is novel and primary contribution of the present

research. The sign and the magnitude of positional error together helps in generating the accurate

control action for the position control application. The principles of the BCI-based position

control scheme is given in Fig.3.1. It is noteworthy from Fig.3.1 that the controller receives both

sign and magnitude of error to generate the control signal. However, the exact measure of the

magnitude of error cannot be performed easily for practical limitation in placement of SSVEP

sources continuously along the trajectory of motion of the robotic end-effecter. To overcome

the present problem, an approximate assessment of the positional error is evaluated in 5 scales:

NEAR ZERO, SMALL POSITIVE, LARGE POSITIVE, SMALL NEGATIVE and LARGE NEGATIVE

using fuzzy membership functions[208]. The control signal about position of the end-effecter is

also fuzzified in the same 5 scales. Such assessment helps in generating fuzzy inferences about

the degree of memberships of control signals in multiple fuzzy sets. The schematic diagram of

the overall position control scheme is presented in Fig.3.2. It is indeed important to mention

here that a fuzzy system usually is much robust in comparison to traditional rule based expert

systems as it takes care of aggregation of the inferences obtained from firing of multiple rules

simultaneously by taking fuzzy union of the generated inferences. The defuzzification of the

overall inference returns the signal back in the real domain. There exist several defuzzification

procedures. Here, the center of gravity(CoG) defuzzification is used for its simplicity and wide

popularity in fuzzy research community [209].

3.3 Signal Processing and Classification of Brain Signals

This section provides an overview of the basic signal processing, feature extraction and classifier

design aspects for the proposed application.
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Figure 3.1: Overview of BCI based position control scheme

3.3.1 ERD-ERS Feature Extraction and Classification

For ERD-ERS feature extraction, we need to take as many as 500 offline instances of motor

imagery (MI) signals acquired from the motor cortex regions of the subject. These 500 instances

of MI signals are examined manually to identify around 300 true positive (v-shaped) and around

200 false negative (non-V or V with inadequate depth) instances. Both the true positive and

false negative instances are then sampled at a fixed interval of time, and the mean and variance

of the signals at each sampled point is evaluated. Let, at a given sample point si we obtain 300

values from 300 true positive curves. Now a Gaussian model is constructed for each sample

point si, with mean=mi and standard deviation σi. The sample values that lie within mi± 3σi
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Figure 3.2: Schematic diagram of proposed position control system
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are used and the rest are discarded. Thus for each time position in the training samples, we

accommodate selected values of the existing trials. Similarly, we undertake selective sample

values from a pool of 200 EEG false negative instances. These true positive and false negative

instances of the ERD/ERS signals are used subsequently to train a classifier. In this paper,

Common Spatial Pattern (CSP), which is widely used in BCI literature as an optimized spatial

filter [210], is employed to evaluate the data co-variance matrices for the 2 classes to effectively

project the training samples into CSP features. These CSP features are then transferred to a 2

level classifier to recognize the positive and negative motor imagery (MI) signals.

For classification of MI and resting conditions (also called NO motor imageries), the fol-

lowing steps are followed. Let X1 and X2 be m x n matrices, where m and n respectively denote

number of EEG channels and number of time samples. Let C1 and C2 be the spatial covariance

matrices given by C1 = X1XT
1 and C2 = X2XT

2 for positive (MI) and false negative classes. The

motivation of CSP is to obtain filter vector w, such that the scalar wC1wT/wC2wT is maxi-

mized. Once optimal value of vector w is evaluated, the variance of CSP projections: wX1 and

wX2 are utilized as CSP features of 2 classes. Any traditional linear classifier, such as Linear

Discriminant Analysis (LDA) or Linear Support Vector Machine (LSVM), and the like can be

used for classification of the MI signals from the resting states. Here, the authors employed Ker-

nelised Support Vector Machine(KSVM) with Radial Basis function (RBF) kernel for its proven

accuracy in high dimensional non-linear classification[211].

3.3.2 ErrP Feature Extraction and Classification

Previous research on ErrP feature extraction reveals that the characteristics of ErrP signal can be

better captured by time-domain parameters, such as Adaptive Autoregressive (AAR) coefficients

[19]. This inspired the authors to utilize AAR features for the detection of ErrP. In the present

research, AAR parameters are extracted from approximately 500 ErrP instances and 500 resting

states in offline training phase. A q order AAR expresses each EEG sample as a linear combi-

nation of past q samples along with an error term characterised by zero mean Gaussian process.

AAR co-efficients are estimated using Least Mean Square(LMS) algorithm with an update pa-

rameter of 0.0006. For an EEG signal of 1s duration (200 samples), an 6th order AAR generates

6×200= 1200 AAR parameters which are used as the feature vector of the EEG trial.An LSVM

classifier is then developed to determine the unique set of weights of the classifier to classify the

ErrP and non-ErrP instances in real-time.

3.3.3 SSVEP Detection

For detection of SSVEP, the occurrence of the peak power at the flickering frequency of the

stimulus is checked. To test this, the maximum power in the PSD is searched over the frequency

spectrum. If there is a single peak power occurring at the flickering frequency, then SSVEP

is confirmed.In this study we estimated the spectral power density through Welch’s modified

periodogram method[212]. Power spectral density is obtained for each stimulus frequency and

their first two harmonics. We considered an interval of 1Hz below and above the stimulus

frequency to obtain the PSD. Once the PSD values associated to each SSVEP stimulus frequency
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are obtained, we search for the frequency that has highest PSD value. The frequency having the

highest frequency value is considered as the target stimulus.

3.4 Fuzzy Controller Design

The novelty of the current paper is to determine the controller response from the approximate

measure of magnitude of error. Here, the occurrence of the error signal is determined from the

occurrence of ErrP signal. Now, to measure the magnitude of the error signal, a set of flicker-

ing light sources are placed at regular intervals. All these sources flicker at disjoint frequencies.

When the subject observes the robotic arm crossing the target position, he is supposed to yield an

ErrP signal from the z-electrodes. Almost simultaneously, he is supposed to release an SSVEP

signal. Generally, people suffering from neuro-motor diseases have relatively poor reflex, and so

they take longer time to respond to flickering visual signals. In order to alleviate this problem,

light sources flickering at different frequencies are placed around their trajectory of the end-

effecter. Here, the subject has to pay attention to the nearest flickering source, close enough to

the terminal position of the end-effecter. Here, the flickering signal of the sources have frequen-

cies in the ascending order of their distances from the predefined target position. This makes

sense in the way that larger is the distance of the flickering source from the target position, the

larger is the frequency of the source. A set of fuzzy quantifiers is employed to quantify the mea-

sure of the positional error in 5 grades: NEAR ZERO(NZ), SMALL POSITIVE(SP), LARGE

POSITIVE(LP), SMALL NEGATIVE(SN) and LARGE NEGATIVE(LN). A knowledge- base

comprising a set of rules that map the fuzzified errors into fuzzy control signals is then utilized

to derive the control signals for each fired rule. The union of the fuzzy control signals is taken,

and the result is de-fuzzified to get back the actual value of the control signal.

3.4.1 Fuzzy Reasoning in the Control Problem

Consider the fuzzy production rules:

• Rule 1: If x is A1 then y is B1

• Rule 2: If x is A2 then y is B2
...

• Rule n: If x is An then y is Bn

Here x,y are linguistic variables in the universes X and Y respectively. A1,A2, ...,An are fuzzy

sets under the universe X and B1,B2, ...,Bn are fuzzy sets under the universe Y . Let x = x′ be a

measurement. We compute the fuzzy inference for the given measurement x = x′ by the follow-

ing steps.

Step 1: Compute: α1 =Min(µA1(x
′),µB1(y)), α2 =Min(µA2(x

′),µB2(y)),..., αn =Min(µAn(x
′),µBn(y)).

Step 2: Evaluate the overall fuzzy inference µB′(y) = Max(α1,α2, ...,αn).

After the fuzzy inference µB′(y) is evaluated, we compute the centroid of it by ’centre of

gravity’ method[213].



3.4. Fuzzy Controller Design 89

1.0

0-30 +30

SMALL
NEGATIVE 

LARGE
NEGATIVE

LARGE 
POSITIVE 

SMALL
POSITIVE 

NEAR
ZERO

Membership
Value 

Figure 3.3: Membership function: error

1.0

0-30 +30

SMALL
NEGATIVE 

LARGE
NEGATIVE

LARGE 
POSITIVE 

SMALL
POSITIVE 

NEAR
ZERO

Membership
Value 

Displacement of the end-effecter in cm

Figure 3.4: Membership function: angular displacement

Fuzzifier

Fuzzy  
Knowledgebase 

Fuzzy inferencing
by rule   

Fuzzy inferencing
by rule   

Positional
Error

 

Centre of
gravity 

Defuzzification (Defuzzified value)

Figure 3.5: Architecture of the proposed fuzzy controller



90 3. BCI for Fuzzy Position Control

In the present control problem, x is error and y is displacement of the end-effecter. The

fuzzy rules constructed for the position control system are triggered appropriately depending on

magnitude and sign of error signal and the selected rules on firing generate inferences, the union

of which is the resulting control signal, representing displacement of the end-effecter. The fuzzy

membership functions involving error is SMALL POSITIVE etc. and angular displacement is

SMALL POSITIVE etc. are given in Fig.3.3,Fig.3.4 and architecture of the proposed fuzzy

controller is given in Fig.3.5. The list of fuzzy rules used for the generation of control signals is

given below.

• Rule 1: If error is SMALL POSITIVE then angular displacement is SMALL POSITIVE.

• Rule 2: If error is SMALL NEGATIVE then angular displacement is SMALL NEGA-

TIVE.

• Rule 3: If error is NEAR ZERO then angular displacement is NEAR ZERO.

• Rule 4:If error is LARGE NEGATIVE then angular displacement is LARGE NEGATIVE.

• Rule 5:If error is LARGE POSITIVE then angular displacement is LARGE POSITIVE.

3.5 Experiments and Results

This section first describes the experimental protocol in a detailed way and represents the major

outcomes of the experiment in subsequent stages. Key details of the experiment are highlighted

below,

3.5.1 Subjects

Twelve people within a age group of 18-40 years (mean age 32) voluntarily participated in the

study . None of them had any prior experience with BCI training. Out of the twelve volunteers

, 6 were male, 6 were female. The objective and procedure of experiment were made clear to

the volunteers before conducting the experiment and a consent form stating their willingness to

participate in the study was duly signed by them. The experiment was conducted in adherence

to the Helsinki Declaration 1970 later revised in 2000[182].

3.5.2 EEG system

EEG data were acquired from the volunteers using a 19 channel EEG amplifier device made

by the company Nihon-Kohden. The EEG system has sampling rate of 200Hz and comes with

built in notch filter at 50Hz frequency. EEG electrodes were placed over the scalp by following

the international 10-20 electrode placement convention[214]. Out of the total 19 electrodes, we

used six electrode positions ( C3,C4,Cz over the motor cortex and P3,P4,Pz over the parietal

lobe) to acquire the Motor Imagery brain signals. For the SSVEP and ErrP brain signals, we

used {O1,O2} and {Fz,Pz} electrode positions respectively.
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3.5.3 Training Session

We conducted the training session throughout the 15 days with a repetitions of 3 sessions in a

day for each subject.Inter session gap of 10 minutes were provided. Each session consists of 50

trials, resulting 150 trials for a subject in a day.Each trial contains the visual instruction to be

followed by the participating subjects.

Visual instructions are presented before the subject through a robotic simulator. The robotic

simulator virtually represents a robotic limb capable of producing clock/anti-clockwise move-

ment around a specially designed fixed frame. The frame has markings of various positions over

it along with the target position and LEDs are mounted near the frame against each positional

markings. The LEDs flicker with a constant frequency but are different from each other.

A trial starts with a fixation cross that appears as a visual cue and asks the subject to remain alert

for the upcoming visual cues. It stays on the screen for 2s duration. The next visual cue contains

an instruction to perform either LEFT or RIGHT arm motor imagery for clockwise/anti clock-

wise movement of the robotic limb. The next visual cue contains a scenario where the moving

link commits an error by crossing the target location, hence the subject develops ErrP brain pat-

tern by observing the error. The next scenario illustrates a condition where the end-effecter of

the moving link crossed the target position. Now, Subjects are instructed to focus their gaze on

the flickering LED nearest to the present position of robot end-effecter, focusing on the flicker-

ing source generates a SSVEP signal modulated by the source frequency in the subjects’ brain.

Timing diagram of stimulus presentation is depicted in Fig. 3.6.

LHMI / RHMI Wait For ErrP
release ErrP SSVEP Release REST LHMI / RHMI

3s2s 3s 3s 3s 15s 2s 3s

Figure 3.6: Stimuli diagram of training session

3.5.4 Testing Session

The major difference between training session and testing session lies in the medium of opera-

tion. In contrast to the training session, which is conducted offline using a robotic simulator, the

testing session is performed in real time with the physical robot. This session is more complex

than training session as the subject participating in this session does not receive any visual in-

struction to perform the required mental task. Hence, the subjects need to plan the three steps of

action (viz. link movement, target selection and gazing on the nearest flickering source) them-

selves without any visual guidance. A timing diagram presented in Fig. 3.7 shows the time taken

by each module during real time operation. During the real time operation, we used a window

of 1s duration to acquire the MI signal and SSVEP signal, whereas ErrP was acquired through

the windows of 250ms.
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Table 3.1: Comparative Study of Different ERP Detection Methods

Brain Pattern Feature Extraction Performance Metrics
Detection + Classifier CA (%) TPR FPR kappa

MI Detection CSP+KSVM-RBF 91.31 0.89 0.04 0.84
CSP+LSVM 90.11 0.89 0.05 0.83
CSP+QDA 87.19 0.85 0.06 0.79

DWT+KSVM-RBF 84.45 0.83 0.07 0.84
DWT+QDA 88.56 0.89 0.05 0.80

Hjorth+KSVM-RBF 82.38 0.81 0.09 0.75
Hjorth+QDA 80.62 0.80 0.09 0.72

ErrP Classifier AAR+LSVM 92.71 0.91 0.04 0.82
AAR+LDA 90.18 0.85 0.06 0.80

Temporal Feature+ANN 83.13 0.82 0.07 0.76
Temporal Feature+LDA 80.52 0.79 0.08 0.74

SWLDA 91.23 0.90 0.04 0.81

SSVEP Classifier PSD(Welch)+Threshold 92.89 0.92 0.04 0.86
PSD(Welch)+LSVM 93.80 0.93 0.03 0.85

FFT 88.81 0.87 0.05 0.78
CCA 94.96 0.94 0.02 0.88

CSP=Common Spatial Pattern

KSVM-RBF=Kernelised Support Vector Machine with Radial basis function kernel

LSVM=Linear Support Vector machine,DWT=Discrete Wavelet Transform

QDA=Quadratic Discriminant Analysis,LDA=Linear Discriminant analysis

ANN=Artificial Neural Network, CCA=Canonical Correlation Analysis

3.5.5 Results and Discussions

The results of the current experiment are presented in three stages. First, we provide a compara-

tive analysis between the performance of the proposed feature extraction and classifier combina-

tion and other widely used methods in BCI literature.The performance is evaluated by averaging

the performance of all the subjects over all the sessions during the testing phase. In the second

stage, we provide performance analysis of all the subjects that participated in the testing session,

and the performance of the proposed fuzzy controller is presented in the third stage.

Performance of the brain signal detection methods are evaluated on the basis of four metrics -

Classification Accuracy (CA), True Positive Rate (TPR), False Positive Rate (FPR) and Cohen’s

kappa index (κ) as used in [207].

MI to move
the Robot

Link

ErrP
Detection Time to reach target

ERD/ERS Detection Check for the
occurrence of

error

Focusing on
nearest Flickering

LED

SSVEP
Detection

Posiional error
correction

1s 1s 900ms 1.5s 1s

Figure 3.7: Timing diagram of testing session
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■ CA: Classification accuracy (CA) indicates the fraction of trials in the test data that have

been correctly classified by the system. It is computed from the confusion matrix as below;

CA =
T P+T N

T P+T N +FP+FN
= pa (3.1)

where TP, TN, FP, and FN represent True Positive, True Negative, False Positive and False

Negative respectively.

■ TPR: True Positive Rate (TPR) is defined as the fraction of test trials that are correctly

detected as the positive instances out of the total positive instances. Numerically it is

computed as below;

T PR =
T P

T P+FN
(3.2)

■ FPR: False Positive Rate(FPR) is defined as the fraction of instances that are misclassi-

fied as the positive class but originally belong to the negative class out of all negative

instances.The computational formula of FPR is given below;

FPR =
FP

FP+T N
(3.3)

■ kappa(κ): Cohen’s kappa index is a inter rater reliability measure of categorical items and

it is used to assess the reliability of the classifier. It is computed as

κ =
pa− pe

1− pe
(3.4)

where pe is the chance of agreement that is expected and pa is actual percentage of agree-

ment. The random accuracy, pe, is calculated as

pe =
(T N +FP)(T N +FN)+(FN +T P)(FP+T P)

(T P+T N +FP+FN)2 (3.5)

Performance of MI detection is presented in the first phase of Table 3.1. Along with the

proposed Feature Extraction and Classifier combination (CSP + RBF SVM), we considered six

other combinations to compare the performance. It is evident from the table that the proposed

feature extraction+classifier combination worked best in our case yielding an average accuracy

of 91.31% with average TPR,FPR and kappa of 0.89, 0.04 and 0.84 respectively.

ErrP detection and SSVEP detection performances are compared with other relevant methods

and results are presented in the second and third phase of Table 3.1. It is observed that average

ErrP detection accuracy is achieved as high as 92.71% followed by the TPR ,FPR and kappa of

0.91, 0.04 and 0.82. Clearly, the present ErrP detection scheme outperforms the other methods

by a significant margin.

We see a similar result in SSVEP performance, where the present SSVEP detection method

achieves a moderately high detection accuracy of 92.89% with the TPR=0.92,FPR=0.04 and
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kappa=0.86. Although, CCA here performs a little better than our proposed detection method,

but still we choose the proposed method for the major advantage of being computationally very

inexpensive, hence most suitable for real-time operation.

Table 3.2: Subjectwise Motor Imagery Detection Result

Subject Performance Metrics(MI Detection)
CA% ±std TPR FPR Kappa(κ) Time(s)

Sub1 92.82±2.39 0.92 0.03 0.86 0.602
Sub2 93.96±1.82 0.92 0.03 0.91 0.549
Sub3 94.39±1.06 0.93 0.02 0.92 0.553
Sub4 89.81±2.21 0.86 0.03 0.81 0.608
Sub5 87.84±1.89 0.86 0.06 0.84 0.574
Sub6 94.49±1.84 0.92 0.04 0.89 0.579
Sub7 92.16±1.95 0.91 0.03 0.81 0.601
Sub8 91.87±1.26 0.89 0.04 0.83 0.583
Sub9 94.23±1.93 0.93 0.03 0.81 0.559

Sub10 93.12±1.28 0.93 0.05 0.84 0.552
Sub11 86.82±4.28 0.87 0.08 0.78 0.548
Sub12 84.23±3.73 0.85 0.07 0.76 0.571

Table 3.3: Subjectwise ErrP Detection Result

Subject Performance Metrics(ErrP Detection)
CA% ±std TPR FPR Kappa(κ) Time(s)

Sub1 94.81±1.05 0.93 0.03 0.82 0.109
Sub2 94.52±1.01 0.94 0.04 0.90 0.113
Sub3 91.86±2.09 0.90 0.03 0.79 0.108
Sub4 93.47±0.98 0.92 0.04 0.81 0.121
Sub5 94.31±0.77 0.95 0.04 0.78 0.111
Sub6 93.28±1.46 0.92 0.03 0.93 0.107
Sub7 90.63±2.58 0.91 0.03 0.81 0.118
Sub8 89.86±2.81 0.88 0.03 0.85 0.105
Sub9 92.19±1.63 0.90 0.02 0.86 0.118

Sub10 90.25±2.28 0.90 0.06 0.78 0.108
Sub11 89.11±3.13 0.90 0.06 0.79 0.113
Sub12 86.28±2.08 0.85 0.05 0.72 0.110

Performances of all the subjects participated in the experiment are given in Table 3.2, Table

3.3, and Table 3.4. Each participant is evaluated through four metrics (CA, TPR, FPR, kappa(κ))

described earlier.Average classification time taken by the classifier during the testing time is also

reported in the above tables. Table 3.2 reveals that the highest detection accuracy of MI brain

pattern is achieved for the sixth subject (CA=94.49%) while the third subject shows the highest

kappa value of 0.92 indicating highest reliability. As revealed from Table 3.3 and Table 3.4,the
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Table 3.4: Subjectwise SSVEP Detection Result

Subject Performance Metrics(SSVEP Detection)
CA% ±std TPR FPR Kappa(κ) Time(s)

Sub1 93.88±0.89 0.92 0.02 0.91 0.091
Sub2 91.49±0.96 0.92 0.03 0.88 0.082
Sub3 91.90±0.93 0.90 0.04 0.82 0.095
Sub4 95.06±0.18 0.95 0.03 0.91 0.090
Sub5 95.27±0.27 0.94 0.02 0.92 0.086
Sub6 89.26±2.65 0.90 0.03 0.86 0.097
Sub7 92.43±1.03 0.91 0.03 0.87 0.092
Sub8 90.79±1.88 0.89 0.05 0.82 0.089
Sub9 93.72±0.98 0.94 0.05 0.81 0.103
Sub10 90.93±2.15 0.90 0.05 0.81 0.098
Sub11 85.89±5.05 0.84 0.08 0.72 0.089
Sub12 88.21±4.29 0.89 0.05 0.80 0.085

other two brain patterns, ErrP and SSVEP were detected with maximum accuracy of 94.81%

and 95.27% respectively. The highest ErrP accuracy is observed with the first subject while the

fifth subject shows the highest SSVEP accuracy. For the above two categories of signal, the

highest kappa values are achieved as 0.93 and 0.92.

3.5.6 Comparison of System Performance

The overall position control performance of the system is evaluated using few popular metrics

taken from control system literature. The metrics are Success rate, Steady State Error(SS error),

Peak Overshoot and Settling Time [207][206] The metrics are given below with their formal

definition.

■ Success Rate: It defines the number of successful attempts made by the robot arm to reach

the desired target position. An attempt is considered successful only when it reaches the

target position and stays at that position.

■ Steady-State error: It indicates the maximum positional deviation of the robot end effector

from the desired position in the infinite time range.

■ Peak Overshoot: The maximum deviation of the response from its desired position. It is

expressed as percentage change from its final response.

■ Settling Time: Time consumed by the robot arm to reach and stay within the 2% of steady

state location.
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Overall performance of the system is presented in Table 3.5. Results are averaged over all

the subjects over all the testing sessions. Performance result is compared with five other rel-

evant strategies. First the result is compared with the open loop control strategy solely based

on Motor Imagery [215]. Success rate obtained in this case found to be (76.2%). Next, the

proposed method is compared with four hybrid BCI control strategies, where researchers ,in-

stead of relying on a single brain pattern ,used multiple brain signals to design a robust interface

for mentally controlling a robot arm. We considered four different control strategies that used

four different combination of brain signals (MI+SSVEP[216], MI+P300[147], MI+ErrP[19],

MI+SSVEP+P300[207]). Comparison results are obtained by implementing the control strate-

gies in our own BCI setup. It is evident from the Table 3.5 that our proposed method achieves

Table 3.5: Relative Performance Analysis

Strategies Performance Metrics
Success SS Peak Settling

Rate Error(%) Overshoot(%) Time(s)
MI[215] 76.2 6.22 6.2 18

MI+SSVEP[216] 88.5 6.09 5.9 15
MI+P300[147] 84.3 3.21 4.5 13
MI+ErrP[19] 85.8 2.1 4.9 16

MI+P300+SSVEP[207] 90.2 0.31 4.2 20
Proposed Mehod 92.1 0.15 4.1 6

highest success rate (92.1%) among all the control strategies. It also ensured the lowest set-

tling time(6s), steady-state error (0.15%), and peak overshoot (4.1%) among strategies under

comparison. Although the present scheme shows improvement over all the fields considered in

Table 3.5, the major improvement is considered to be the drastic reduction of settling time with

simultaneous reduction of steady state error and peak overshoot. Hence, the proposed fuzzy BCI

controller outperforms the rest of the control strategies by a significant margin.

3.6 Conclusion

This chapter claims to have utilized mentally generated sign and magnitude of positional error

for automatic control of artificial robotic limb. The principles and realization of the above idea

being novel in the realm of BCI, is expected to open up new direction of control strategies,

parallel to traditional controllers, as both the (approximate) magnitude and sign of positional

error is known beforehand. Because of approximate estimation of positional errors, the logic of

fuzzy sets has been incorporated that could handle the approximations and yields good control

accuracy with small peak overshoot below 4.1% and settling time around 6 seconds.



Chapter 4

Vision-Assisted Brain-Computer
Interface for Autonomous Position
Control and Grasping

A major drawback of a Brain-Computer Interface-based robotic manipulation is the complex

trajectory planning of the robot arm to be carried out by the user for reaching and grasping an

object. The present chapter proposes an intelligent solution to the existing problem by incorpo-

rating a novel Convolutional Neural Network(CNN)-based grasp detection network that enables

the robot to reach and grasp the desired object (including overlapping objects) autonomously

using an RGB-D camera. This network uses a simultaneous object and grasp detection to affil-

iate each estimated grasp with its corresponding object. The subject uses motor imagery brain

signals to control the pan and tilt angle of an RGB-D camera mounted on a robot link to bring

the desired object inside its Field-of-view presented through a display screen while the objects

appearing on the screen are selected using the P300 brain pattern. The robot uses inverse kine-

matics along with the RGB-D camera information to autonomously reach the selected object

and the object is grasped using the proposed grasping strategy. The overall BCI system out-

performs other comparative systems involving manual trajectory planning significantly. The

overall accuracy, steady-state error, and settling time of the proposed system are 93.4%, 0.05%,

and 15.92 s, respectively. The system also shows a significant reduction of the workload of the

operating subjects in comparison to manual trajectory planning-based approaches for reaching

and grasping.
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4.1 Introduction

People suffering from neuro-motor disabilities face great difficulty in locating and grasping ob-

jects even if the desired object is present within their reach. With the recent development of

Brain-Computer Interface (BCI) technology and current state-of-the-art robotic arms, hands, and

perception systems, it has been proved that these individuals with restricted mobility can interact

with their environment to perform activities of daily living (ADL), including things like drinking

water, opening doors, and other basic actions. BCI provides direct nonmuscular communication

between the neural activity generated by the subject’s brain and the outside world [155]. For

electroencephalography (EEG) based non-invasive BCI, the brain signals are obtained by plac-

ing the electrodes on the surface of the subject’s scalp which are then mapped to manipulate

external devices such as humanoid robots [108, 217], virtual helicopters [218, 219], wheelchairs

[220, 221], telepresence mobile robots [222, 223]. In the recent past, BCI has been successfully

used for rehabilitation training of stroke patients [224, 225, 226], motor control of prosthetic

limbs [227, 228, 229] and performing several activities of daily living [230, 231, 232]. How-

ever, accurate object grasping using only brain-commanded signals is still an open challenge

because of the high degrees of freedom (DOF) and challenges arising from complex precise

position control of the robot arm.

EEG based BCI can be categorized based on characteristic brain activity patterns. Among

them Motor Imagery (Event-Related Desynchronization / Synchronization (ERD/ERS)) [233,

234], Steady State Visual Evoke Potentials (SSVEP) [235, 236] and P300 patterns[237] are

widely used. Motor Imagery is extensively used for control of brain-actuated robot link control

and navigation. However, the main drawback of the MI-based system is the rigorous subject

training required. P300-based BCI is relatively easy to use for generating control signals without

extensive training of the user. There are also traces of work where a hybrid modality employing

two or more brain signals is used for robot link manipulation. But most of the previous research

works employing MI and P300 are solely based on subjective control of the robot link where the

participating subject mentally guides the robot arm to reach and grasp the desired object. The

main drawbacks of those systems are two folds, first, the brain-commanded robot often misses

the target object resulting a large positive or negative positional error. Second, it requires a

large amount of subject training to accurately control the position of the robot arm to grasp the

desired object. Here the subjects need to perform the complex trajectory planning of the robot

arm in order to align the robot gripper with the desired object. It becomes extremely difficult for

the human subject to perform such complex planning mentally and to control the position and

orientation of the robot gripper to perfectly grip the desired object. Added to the above facts,

such complex trajectory planning imposes a high cognitive load in the user’s brain.

Literature shows that quite a few studies exist in the domain of EEG-based grasping con-

trol. In 2012, Hochberg et al. [238] and Collinger et al. [239] developed neural interface

system-based control of robotic arms to perform three-dimensional reach and grasp movements

for patients with tetraplegia. Later in the past few years, ample experiments is conducted to

control the robot arm using brain signals for reaching and grasping task [240, 241, 242] In all

the above cases, MI-based BCI protocol is used. These BCI systems required several weeks of
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training sessions to learn direct motor control with high DOF. Such a rigorous training proce-

dure often causes a large discomfort to the participants. Moreover, as these systems are not fully

autonomous and the user controls the complete trajectory of the robot arm, their performance

is limited for real-time practical applications and the cognitive load of the operating subjects is

also very high. There also exists quite a few literature that uses P300 navigational signal to the

robot. Spataro et al. [243] used P300 based EEG command to control a humanoid robot with

the aim of reaching and grasping a glass of water; however the desired object can not be di-

rectly selected and the subject needs to mentally guide (using P300 based GUI) the manipulator

to reach the object. Such drawback is also seen in a few other works as well [149, 244, 245].

As discussed, such a strategy imposes a high cognitive load on the subjects’ brain. Recently,

Rakshit et al. [207] proposed a SSVEP-based random order robot link selection and P300 based

link movement seizing strategy to reduce the positional error. They found a drastic reduction in

positional error compared to the other state-of-the-art literature [19], but here again, the entire

robot arm trajectory is planned by the subject.

BCI based shared control strategy has also been studied in the past. Tang et al. [105] used

a shared control strategy to grasp an object using robot hand but the method suffers from the

fact that the objects used for the experiment were identical in nature (red cap bottles), which

makes the method challenging for diverse objects present in the environment. Xu et al. [107]

proposed a novel shared control strategy where subjects mentally guided a robot end-effector

in a horizontal plane and once the end-effecter comes within close vicinity of the target object,

the switch over to automatic control using vision-based movement-planning is instigated. Al-

though they achieved the highest accuracy around 97% but the following points still need to be

addressed there. First, the user can move the end-effector in only a horizontal plane, no control

commands are assigned to move it in the vertical direction.Second, the scheme does not allow

the user to select the target object priory, the subject still needs to mentally plan the trajectory

of the end-effector and use motor imagery to reach the target object. In their continuation work,

Xu et al. [246]extended their strategy for multiple objects and provided adaptive assistance to

the participating subject. Assistance was provided by implementing autonomous trajectory cor-

rection and autonomous grasping during reaching and grasping of the target object respectively.

The scheme still requires human intervention in the path planning of the end-effector. Grasp-

ing performance was evaluated using three identical objects scattered in the workspace, hence

its performance for various objects in various scenes (overlapping and non-overlapping) is still

to be explored. In [122] Liu et al. proposed a novel strategy of controlling a dual-arm robot

using motor imagery and a Kinect sensor. The subject used their left and right MI to command

a dual-arm robot to lift and drop a given object respectively. A PDNN-based neuro-dynamics

optimization was used for solving the motion redundancy of the robotic arm. In [106] Tang et

al proposed a BCI-based robot manipulation approach to quickly grasp an object using motor

imagery and camera-based object detection technology. A camera is used here to capture the live

feed of the robot environment which is visible to the user through a computer monitor. The sub-

ject observes the computer screen and uses left/right arm motor imagery to align the robot arm in

such a way that the target object should come in the target area( centre of the camera view). The
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YOLO object detection algorithm is used to get the information about the object inside the target

area and the grasp command is executed thereafter. We recognize first, that aligning the target

object with the target using mental commands is bit challenging for the patients and second, the

performance of the system is still unknown for objects located spatially very close to each other

(for the condition when more than one object come inside the target area). Recently Zeng et

al. [128]proposed a novel shared controller which dynamically blends the user motion planning

and autonomous motion planning to achieve a smooth and collision-free robot trajectory. The

user continuously uses his/her gaze direction to move the end-effector in a desired direction over

a horizontal plane and simultaneously performs motor imagination to modulate the speed of it.

The subject gets assistance for most difficult part of the task. The strategy yields a maximum

of 100% success rate in this context. However the paper focuses mostly on the reaching task

and its performance(reaching+grasping) in presence of multiple overlapping objects is yet to be

explored. The scheme also involves user intervention throughout the task (focusing gaze and

performing MI simultaneously), which may increase the cognitive load of the novel participat-

ing subjects. Duan et al.[108] proposed an approach to manipulate wheeled robot using mental

commands and computer vision. A camera mounted on the chest of the mobile robot extracts the

information about the robot environment. The computer screen displaying camera-view about

robot’s trajectory of motion includes provisions for generating navigational commands for the

robot using SSVEP, whereas MI commands are issued to accomplish the manipulation task such

as grasping the object. The grasping phase was validated using an object which carries a color

mark on its body which helps the vision system to distinguish the object from the background

based on the color feature. Hence the proposed system performance is yet to be explored in

real-life scenario, where multiple objects with different colours are present and it is also difficult

to mark each of them with colour marker. Wang et al. [124] in a recent work used camera-based

real-time feedback to navigate a telepresence robot and reach the desired object using SSVEP.

The scheme employs a camera mounted on top of a robot arm to explore the objects within the

field of view, which are transferred to a computer monitor for selecting the target object using

SSVEP. Here for each object, a bounding box is developed. These bounding boxes flicker at

different frequencies to represent the identity of the individual objects. A subject intending of

selecting a specific object focuses on the item and the flickering frequency is picked up by the

subject through SSVEP. Once the object is selected, the navigation of the robot arm is auto-

mated by a camera-based position control system.However if the objects are located spatially

very close to each other, it might fall inside the same flickering bounding box making it difficult

to grasp any one of them. Apart from that, prolonged attention over the SSVEP stimuli also

causes mental and eye fatigue to the user. Similarly, Zhang et al. in [241] used a MI based

shared control strategy to control the robot grasping, and in their another paper [7] they used

SSVEP-based object selection along with the Kinect-based machine vision, the shared control

strategy is used for the same purpose. Recently, Di Lillo P et al. [125] used a similar P300 and

Kinect-based grasping strategy to control a manipulator in grasping an object. Li et al. devel-

oped a BCI based shared control strategy to navigate a humanoid robot by combining central

vision tracking strategy and two different brain signals N200 and P300 [247]. Batzianoulis et
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al. [126] proposed an interesting approach for shared control by utilizing the ErrP signal and

Inverse reinforcement learning (IRL) paradigm. Here the subject has its own choice of trajectory

planning of a robot, for instance, obstacle avoidance and trajectory planning towards the fixed

target. Each time the robot reaches an obstacle before reaching the destination, the subject re-

leases an ErrP signal. The decoded ErrP signal is used to move away the robot from the obstacle

without violating the planned trajectory of the robot. An IRL algorithm is employed to change

the trajectory following the user’s preferred trajectory of motion.

In all the literature stated above, the authors have relied on existing object recognition strat-

egy which is not capable of detecting multiple overlapping objects present in the field of view

of the camera. In real-life scenarios, such multiple overlapping objects can frequently be found

in the domestic workspace of the user, and grasping those objects using only manual cognitive

effort is immensely difficult for the human user.

In this chapter, we aim to provide an intelligent solution to this problem of brain-actuated

object grasping with the help of a camera mounted on a robot arm to localize the object on

the computer monitor and autonomously control the motion of the arm to accurately grasp the

object. This work employs a 6-DOF robot arm and a Microsoft Kinect which can be used as

a depth-sensing device in association with an RGB camera. The surrounding environment is

visible to the subject on the computer screen through the real-time feed of the Kinect. The

Kinect is mounted on the robot arm so that it can move in accordance with the arm. The subject

uses feet motor imagery to choose between the pan and tilt motion of the camera and hand motor

imagery to change the pan and tilt angle of the camera(by moving the 1st/5th joint of the robot

arm) until the desired object comes into the field of view of Kinect and appears in the screen.

A standard pre-trained 1-D CNN classifier is used to decode the hand and feet motor imagery

signal. A deep learning-based masking algorithm is used to estimate the object masks in the

environment and to compute the centroid of all the objects appearing on the screen. To choose

the desired object, the centroid of the objects appearing on the screen is flashed randomly. Once

the centroid of the target object is flashed, the subject releases a P300 signal, indicating his/her

choice of the desired object. After the desired object is known to the system, the robot arm

automatically moves closer to the object and we employ a novel Overlapping Object Grasping

Network( OOGNet) to estimate the proper grasping rectangle and finally, grip the desired object

by a parallel-plate gripper mounted at the end of the last link of the arm.

The main contributions of this chapter are summarized as follows

• The chapter presents a novel scheme for brain-commanded object grasping to localize,

select and grasp the desired object in a multi-object scene. Our proposed strategy of

shared cognitive control allows subjects with neuro-motor disabilities to grasp objects in

their surroundings accurately and reliably with minimal cognitive effort.

• The chapter proposes a CNN-based novel robotic grasp detection network named Over-

lapping Object Grasp Net(OOGNet), which is capable of grasping the desired object even

if the object is partially overlapped by other objects. The proposed grasping model out-

performs the baseline algorithms by a large margin.
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• Here, the subject is relieved from planning a complex trajectory for the robot link to align

it with the desired object as the entire reaching and grasping phase of the robot is made

autonomous in the present work. Hence, the proposed scheme requires very little subject

training compared to existing state-of-the-art algorithms and reduces the overall workload

of the subject.

• The proposed strategy significantly improves the success rate while minimizing the set-

tling time and positional-steady error of the system. Autonomous navigation of the robot

toward the desired object and the proposed OOGNet-based grasping strategy yielded su-

perior performance.

In addition to this, this chapter provides a comparative analysis of the workload imposed

on the performing subject while implementing different BCI schemes. Due to the limited cog-

nitive processing ability of the human brain, workload analysis becomes a necessary method

to evaluate the advantages of any BCI scheme over the others [248][249]. Such comparison

also provides a tool of assessing the match between mental cost and system performance [250].

Here we adopt a NASA-TLX-based workload analysis technique to compare our proposed BCI

scheme with the two other state-of-the-art BCI schemes that use manual trajectory planning

[251]. NASA-TLX-based workload assessment has greatly been adopted in the field of BCI for

years and also proves to be an effective way of workload assessment [252][130].

4.2 System Overview

Our setup consists of a 6-DOF robot arm (Model: ABB IRB 120), with a payload capability of 3

kg and a maximum reach of 3 ft, mounted beside a human subject. The links of this manipulator

are connected by rotary joints allowing only rotational movements. A Microsoft Kinect sen-

sor(RGB camera with depth sensing device) is placed on the 5th axis of the robot arm, in such

a way that one can change the camera’s pan and tilt by rotating the 1st and 5th joints of the ma-

nipulator respectively. The Kinect provides live RGB feedback of the surrounding environment

to the subjects via an LCD monitor placed next to them. Multiple objects of different classes are

arranged in a variety of layouts, in the vicinity of the robot arm with some objects overlapping

with others. We aim to solve the task of locating, identifying and grasping the desired object

(within the reach of the robot arm) with minimal human intervention. A complete overview of

the system is presented in Fig.4.1. For the sake of simplification, we have taken the following

liberties in our set-up:

• Although some objects may overlap with each other, each object is clearly visible from

the initial position by changing the camera’s Field of View (FOV).

• Different objects belonging to the same class are indistinguishable in nature.

• Grasping an object does not require re-arrangement of other overlying objects.

We have divided the problem into several sub-tasks.
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Figure 4.1: Complete overview of the proposed scheme.

1. Locating the object: Although the user can see the objects physically in the environment,

all of them are not visible on the monitor as the Field-of-view(FOV) of the Kinect is lim-

ited. So there may arise a need to move the Kinect to bring the desired object into its FOV.

We have thus developed an algorithm that allows the subject to use MI brain signals to

change the Kinect’s pan and tilt based on the position of the desired object. The right and

left arm motor imaginations are mapped to the clockwise and anti-clockwise movement

respectively of the selected joint (1st/5th) , while feet imagery is used to toggle the selec-

tion between 1st and 5th joint. Hence a subject first uses feet imagery to select the desired

joint followed by the left and right arm imagery to rotate the joint in desired direction.

The present selection of the joint is displayed on the screen for the convenience of the

participating subject. Motor imageries are decoded by detecting each unique ERD/ERS

MI pattern [233, 234] using a CNN classifier.

Once the object fully enters the Kinect’s FOV, the user stops the Motor imagination. If no

MI pattern is detected in two consecutive time windows, the algorithm terminates, indi-

cating to the system that the object has been successfully located. This stipulation reduces

system sensitivity to both classification and user errors. The algorithm of the process is

given in Algorithm 2.

2. Choosing the object: Depending on the layout, there may be multiple objects visible

on the screen together with the desired one. In order to tell the system which object

to grasp, we need to identify all the objects and select the desired one out of them. Our

algorithm uses a state-of-the-art network Mask-RCNN [253] to detect objects in the image

and calculate the object centroids from their segmentation masks. The centroids are then
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flashed in a random sequence following the oddball paradigm [237]. When the desired

centroid flashes, the subject gazing at that object elicits a P300 response which is detected

by a CNN classifier to identify the target object for the system. The target object’s class

as predicted by Mask-RCNN is recorded for automatic identification in a later step. If no

P300 signal is detected, the system returns to the starting state. Algorithm 3 explains the

above procedure.

Algorithm 2: Algorithm for Object Localization

12 COUNT← 1;
13 Default Joint← 1st joint (Pan);
14 while COUNT ≤ 2 do
15 Provide Cue to Subject to Start MI;
16 while Time within TIME WINDOW do
17 Read EEG data;

18 Provide Cue to Subject to Stop MI;
19 Classify EEG for MI Tasks;
20 if MI not detected then
21 COUNT← COUNT+1;
22 else
23 COUNT← 1;
24 switch MI pattern do
25 Feet: Toggle between Pan and Tilt;
26 Left hand: Tilt Up/Pan Left;
27 Right hand: Tilt Down/Pan Right;

Algorithm 3: Algorithm for Object Selection

28: Perform Object Detection and Centroid Calculation;
29: Generate Random Sequence S of Detected Objects;
30: for Objects in S do
31: Blink Centroids and Read EEG Data;
32: if P300 detected then
33: Choose Current Object;
34: Exit Loop;

3. Grasping the object: The system can now identify the desired object. But the end effec-

tor/gripper is still far away from its target to grasp it. We solve the automatic grasping

problem in two steps:

(a) Positioning: For any position (within the reach of the arm) of the desired object,

the gripper first automatically moves closer to the object. Once the desired object is

selected, the system calculates its real-world 3D position from the 2D coordinates

of the centroid and the 2D depth map produced by the kinect. We apply inverse

kinematics to move the gripper to a new position located a small fixed distance above
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the desired object, with the Kinect tilted downwards to provide a new point of view

(POV) from the top. This allows the next step to be independent of object’s position

relative to the initial position of the gripper.

(b) Estimating Gripper Configuration: The positioning step allows us to formulate

the final task of grasping as the problem of calculating the gripper configuration

from the object image. Jiang et al. [254] and Lenz et al. [255] have shown that a

seven-dimensional grasp orientation for a parallel plate gripper can be represented

by a grasp rectangle parameterized by its position, width, height and orientation.

So, the problem is reformulated as the task of predicting a grasp rectangle from the

object’s RGB-D image. In our case the top view may show multiple objects on

the screen along with the desired one with possible overlapping layouts. We need

to re-select the target object from the new POV as the previously calculated 3D

position is not reliable in terms of identifying the object across different points of

view of the camera, especially in case of close and overlapping object arrangements.

Further, due to the proximity between objects, the problem cannot be reduced to

a single object or a simple multi-object non-overlapping grasp detection task like

[254, 255, 256, 257, 258, 259, 260, 261], as there arises a need for affiliation between

object and grasp prediction.

Hence,our proposed network OOGNet generates a grasp rectangle, a bounding box

and a class prediction for each object in the multi-object scene, thus ensuring a re-

liably high accuracy even in overlapping scenarios. Since objects of the same class

are indistinguishable in our setup, the target object is re-identified automatically, by

matching the object classes predicted by OOGNet with the previously recorded class

of the object chosen in the selection stage. Once the target object is identified, the

corresponding grasp rectangle is converted to a gripper configuration to grasp the

desired object.

4.3 Method

4.3.1 EEG Data Analysis

The raw EEG data is usually noisy and contains a lot of irrelevant information. Hence, appro-

priate task-specific filtering techniques are applied to the EEG signal before classification.

4.3.1.1 Motor Imagery

The EEG signal is band-pass filtered at 8-24 Hz to isolate the ERD/ERS phenomenon associated

with MI brain patterns. Because of the effectiveness of Common Spatial Patterns (CSP) [38] in

discriminating Motor Imagery tasks, we use CSP filters in a multiclass one vs rest scheme to

project the EEG data along directions that maximise the differences between MI classes. The
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Figure 4.2: The common EEG classification network architecture. Two separate instances of this
network are used to classify MI and P300 signals with different network dimensions.

processed EEG signal (Y ) is expressed as,

Y =WX (4.1)

where, X is a Channels (C) × Time (T ) matrix of the band-pass filtered EEG data and W is the

L×T CSP projection matrix, with L spatial filters.

4.3.1.2 P300 ERP:

P300 brain signal is characterised by a positive going peak around 300 ms after the onset of the

target stimulus. A Chebyshev type I bandpass filter is used to filter the raw EEG signal between

1-10 Hz, to reduce the background noise. Next, the information relevant to the P300 ERP is

isolated from the EEG data using Principal Component Analysis (PCA) [262]. PCA maps the

signal to a lower dimensional space by extracting the K Eigenvectors from the EEG data that

contain the most information for P300 responses. The lower dimensional signal S is expressed

as,

S = PX (4.2)

where, X is a Channels (C)× Time (T ) matrix of the band-pass filtered EEG data and P contains

the K eigenvectors as rows.

4.3.1.3 Feature Extraction and Classification

Convolutional Neural Networks (CNNs) have become extremely popular for EEG classification

tasks due to their much higher accuracy compared to traditional linear classifiers. The processed

2D EEG data matrix is fed into 3 Convolutional and maxpooling layers to learn high-level infer-
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ences from the data and a 1D feature vector is generated from the feature map by Global Average

pooling and Flatten operations. The resulting vector is classified by a series of fully connected

(FC) and dropout layers. The pooling and dropout operations prevent over-fitting. Two different

instances of CNN having the same architectures and layers (as stated above) is used to classify

Motor Imagery and P300 brain patterns respectively. The common CNN architecture used for

the classification purpose is shown in Fig.4.2. Minor adjustment is done where the final FC layer

contains 3 neurons for MI classification and 2 neurons for P300 detection. For Motor Imagery,

no MI pattern is detected if the probability of a particular EEG input does not exceed 0.5 for any

of the classes.

4.3.2 Object Detection and Centroid Calculation

In order to select our desired object, we first need to identify all the objects present in an image.

Such object identification is carried out by a state-of-the-art object detection network, called

Mask R-CNN [253] that can detect objects in a variety of closely positioned and overlapping

layouts. For each input RGB image, the network predicts the class, bounding box and segmen-

tation mask for every object visible in the image. We calculate the centroid (Xc,Yc) of each

object as,

Xc = ∑
i
(Xi/n) Yc = ∑

i
(Yi/n) (4.3)

where (Xi,Yi) is the position of the i-th pixel in its segmentation mask which contains n pixels in

total.

4.3.3 Gripper Alignment

The automatic positioning step allows us to reduce the cognitive load on the subject by making

the system perform the precise position control task of reaching and grasping the desired object

autonomously. The Kinect placed on the fifth axis of the robot arm, is equipped with an RGB

camera and a depth sensor, which together provide the X and Y coordinates of the target object’s

centroid (obtained in the object detection and centroid calculation step) and its distance from

the sensor. The centroid coordinates (x′,y′,z′) measured from the Kinect frame are then trans-

formed with reference to the base of the robot arm as shown in Fig.4.3. The new coordinates of

the centroid (x,y,z) with respect to the base frame can be obtained from Equation 4.4.
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 (4.4)

where, c = (cx,cy,cz) is the position vector from the origin of the base frame to the kinect frame

and R = [ri j] is the rotation matrix, determined from the configuration (position and orientation)

of the fifth link with reference to the base frame. Once the position of the centroid is known in

terms of the base frame, the robot arm reaches the object in two stages.
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Figure 4.3: Relative position of the object from kinect frame and robot base frame.

In the first stage, the arm approaches the destination location (x,y,z− δz), where δz is a

fixed offset distance above the centroid position along Z-axis. The robot arm employs an inverse

kinematic model, which utilizes the D-H parameters of the robot arm to find the required joint

movements for reaching the destination. Since axes of the last three joints intersect at a point

in the IRB 120 robot, only the first three joints contribute towards determining the position. For

the destination position and the initial position of the end effector, (xd ,yd ,zd)
T and (x0,y0,z0)

T

respectively, the required joint movements of the first three joints can be obtained from the

following expression. xd

yd

zd

=0 Qi

x0

y0

z0

 (4.5)

where 0Qi=0T1.1T2...i−1Ti and i = 1,2,3. Here i−1Ti is the transformation matrix for link i. Thus

for a given destination co-ordinate, required joint movement is obtained by knowing the i−1Ti

from below expression; xd

yd

zd

=
(

0T1.
1T2...

i−2Ti−1

)
.i−1Ti.

x0

y0

z0

 (4.6)

Once the destination is reached, the 5th link is tilted downwards to orient the Kinect in a

fixed angular offset with the vertical, to obtain a top view of the desired object to calculate the

gripper configuration using our grasp detection network.

After the grasp rectangle is predicted and the desired object is re-identified by its class,

the second stage of the approach is initiated. The coordinates (xc,yc,zc) of the center of the

grasp rectangle, calculated with respect to the base frame, is chosen as the grasping point. The

gripper opening is fixed according to the rectangle width. Now, the orientation of the grasp

rectangle determines the rotation of the gripper about the normal to the image plane (Kinect
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axis). An illustrative picture of the grasp rectangle is shown in Fig.4.4. Now, the robot uses its

inverse kinematics to achieve the particular orientation. The last three joint variables θ4, θ5, θ6

is obtained by solving the rotation matrix 3R6 in a similar manner described in Eq (4.6), where
3R6=3R4

4R5
5R6. With this configuration, the gripper approaches the object along the normal and

grasps the object as described in [255] and [254].

Figure 4.4: 5-D rectangular representation of a gripper configuration. Here, (x,y) denotes the center
of the grasp rectangle, w, and h represent the width of the gripper opening and height of the gripper
plates respectively and θ is the orientation of the grasp rectangle with respect to the horizontal
direction

4.3.4 Grasp Detection

In our use case, we need to predict grasps for multi-object overlapping scenes. This is signif-

icantly more difficult than non-overlapping or single object cases, due to partial occlusion by

overlapping objects and the need for affiliation between object and predicted grasp. The grasp-

ing success rates of previous works ([263], [264], [265]) in this domain are too low for use in

reliable human assistant systems. The absence of a repository for the cited implementations to-

gether with the availability of depth information at our disposal, motivated us to design a novel

grasp prediction network, that would ensure a high physical grasping accuracy for our use case.

While the previous approaches use only RGB information, we use the RGB-D images from the

Kinect and a deeper feature extractor to improve accuracy. In order to maintain a fast enough

execution speed for user convenience, we predict only one grasp rectangle for each region of

interest (ROI) instead of multiple rectangles, unlike the previous methods. Our proposed Over-

lapping Object Grasping Network (OOGNet) generates a grasp rectangle, bounding box, and

object class for each object in the image thus associating each predicted grasp with its object.

The architecture of the OOGNet is shown in Fig.4.5. Similar to [255], we represent a gripper

configuration by a grasp rectangle (G) with 5 parameters as,

G = {x,y,w,h,θ} (4.7)

where (x,y) denotes the center of the grasp rectangle, h denotes the height of parallel plates,

w denotes the maximum distance between parallel plates, and θ denotes the orientation of the
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Figure 4.5: Architecture of our proposed Overlapping Object Grasping Network (OOGNet).The
network takes an RGB-D image of multiple overlapping objects as input and predicts the class,
bounding box and a 5-D grasp rectangle for each object in the image

grasp rectangle with respect to the horizontal axis of the image.

4.4 Grasp Detection Network

Our proposed network takes an RGB-D image as input and generates multiple ROI proposals

for objects present in the image. Each ROI is then fed into three parallel branches that perform

object classification, bounding box regression, and grasp prediction. The object classifier and

bounding box regressor branches are similar to that of Fast R-CNN [110] in structure. The

grasp predictor branch regresses to the 5 parameters of a grasp rectangle for each object class.

The following sections detail the architecture of our network in two stages that describe the

generation of object ROIs from the input image and the prediction of grasp rectangles from each

ROI.

4.4.1 Object proposals:

The first stage of the network generates object ROI proposals from the input RGB-D image. The

single-channel input depth image is converted to a 3-channel image by the grayscale to RGB

conversion method. The 3-channel depth map and the RGB image are each fed into identical

and parallel feature extractors. We use ResNet-101 [112] as the backbone of our feature extractor

network. The skip connections in the Residual block allow us to use deeper networks that learn

high-level features without degradation of accuracy. The feature extractor in this stage contains

the first 23 layers of ResNet-101. Feature maps of size 28×28×512 extracted from the depth

and RGB inputs are concatenated to form a merged feature map of size 28×28×1024. A Region

Proposal Network (RPN) similar to that used by Faster R-CNN [111] is used to generate 9 (3
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scales and 3 aspect ratios) Object ROI proposals for each location in the combined feature map.

Each ROI is characterized by an objectness score (2 probabilities) and 4 parameters (x′,y′,w′,h′)

denoting the bounding box location, where (x′,y′) specifies the top-left corner of the box and w′

and h′ denote width and height respectively. The RPN is trained in a similar fashion to [111]

with the same loss function.

4.4.2 Grasp prediction branch:

Each variable-sized ROI generated from the RPN is fed into an ROI pooling layer together

with the merged features to produce a smaller feature map of fixed spatial size (14×14). Three

parallel branches share the pooled ROI feature map as input. The grasp branch contains a ResNet

feature extractor that learns grasp-specific inferences from the object ROIs. Here the feature

extractor contains the last 51 layers of ResNet-101. The grasp feature maps of size (7×7×2048)

from the last convolutional layer of ResNet-101 are pooled by an average pooling layer and fed

into three fully connected layers with ReLU activation. Each fully connected (FC) layer except

the final one is followed by a dropout layer to reduce overfitting. The final FC layer outputs 5×k

grasp parameters, for the k object classes. Thus the grasp branch predicts a grasp rectangle for

each class of object from the input object ROI.

4.4.3 Loss Function:

OOGnet generates three outputs, one from each branch. For each ROI, the classification branch

predicts the softmax probabilities p = (pi|∀i ∈ [0,k]) of the object belonging to the k+1 classes;

k object types and one background class denoting no object is present in the ROI. Here, pi

denotes the softmax probability of the object belonging to class i. The bounding box and grasp

branches regress to the bounding box parameters ti = (x′i,y
′
i,w
′
i,h
′
i) and the grasp parameters

Gi = (xi,yi,wi,hi,θi) respectively for each of the k object classes, where i indexes the ith class.

The labels for each ROI include a ground truth class u, a ground truth bounding box regres-

sion target v, and a ground truth grasp rectangle regression target g. Extending the loss in [110]

we define a multitask loss Ltotal on each ROI to jointly train for classification, bounding box

regression, and grasp prediction.

Ltotal(p,u,v, ti,g,Gi) = Lcls(p,u)+λ [u≥ 1]Lbox(tu,v)

+λ
′[u≥ 1]Lgrasp(Gu,g) (4.8)

Here, Lcls(p,u) = − log pu is the classification loss. Lbox is the bounding box loss defined over

the predicted box parameters tu = (x′u,y
′
u,h
′
u,w

′
u) for the ground truth class u and the ground truth

box parameter tuple v. The grasp loss Lgrasp is added to the Lcls and Lbox losses defined in Fast

R-CNN [110] to simultaneously train for grasp predictions. Lgrasp is defined over the ground

truth grasp rectangle tuple g = (gx,gu,gw,gh,gθ ) and the predicted predicted grasp rectangle

Gu = (xu,yu,wu,hu,θu) for the groundtruth class u. Both Lbox and Lgrasp are smooth L1 losses.
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For Lgrasp the Smooth L1 loss is expressed as,

Lgrasp(Gu,g) = ∑
j∈x,y,w,h,θ

(smoothL1(G
j
u−g j)) (4.9)

where

smoothL1(x) =

0.5x2, if |x| ≤ 1

|x|−0.5, otherwise,
(4.10)

Smooth L1 loss is used because of its robustness to outliers as pointed out by [110]. The Lbox

loss is defined similarly to Lgrasp. The Iverson bracket indicator function [u≥ 1] is defined as,

[u≥ 1] =

1, if u≥ 1

0, otherwise
(4.11)

Labeling the background class as 0 together with the Iverson function allows the network to

ignore the bounding box and grasp losses when the ROI is predicted to be the background.

This is essential as there is no object and hence no graspable region in the image background.

The hyper-parameters λ and λ ′ are the loss weights. They tune the relative weightages of the

different loss terms. We use λ = λ ′ = 1 for our experiments. The ground-truth regression targets

for both the bounding box and grasp rectangle are also normalized to have zero mean and unit

variance.

4.5 Experiments

4.5.1 Experimental Protocol

This section describes the experimental protocol employed in this study and highlights the key

steps of conducting the experiment.

Subjects : The present study employs ten volunteers showing no major illness in their recent

medical history. Out of ten volunteers, six were male and four were female. All the volunteers

belong to the age group of 18-35 with mean age of 30 years.The details of the experiment and its

objective were made clear to all volunteers and a consent form, stating their interest to participate

in the study, was duly signed by them. All the ethical and safety issues for employing human

subject in the experiment is maintained according to Helsinki Declaration 1970 later revised in

2000 [266].

EEG System: EEG signal is acquired from the subjects using a 21-channel mobile EEG

amplifier system. The amplifier has a sampling rate of 200Hz with built in notch filter at 50Hz

frequency. The present experiment follows the international 10-20 electrode positioning system

to place the EEG electrodes in the subjects’ scalp. Electrode position C3,C4,Cz placed over the

motor cortex region and P3,P4,Pz placed over the parietal region are used to capture the motor

imagery. The electrode position M1-M2(mastoid process) are used as contra-lateral referencing
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of all electrodes and Fpz is used as the ground position. P300 brain pattern is captured from the

electrode position Pz,Cz, and Fz.

Figure 4.6: Different stages of the robot manipulation in the testing session.Robot joints are marked
with green circles while the currently selected joint is highlighted in red along with their axis of
rotation.The dotted lines represent the axis of rotation.

A figure depicting the different instruments used in the experiment is given in Fig.4.7.

Communication Protocol: The EEG headset is wirelessly connected with a computer through

Bluetooth protocol. The computer runs a python API to capture the EEG data and processes it in

real-time, while another computer(placed in front of the subject) runs a Python script to capture

and process the Kinect data in real-time. Both the computers are connected to a server computer

using TCP/IP (creating TCP sockets in both server and client), where computers connected with

EEG and Kinect act as the clients. The server computer generates the control commands for

the robot based on the information provided by the computers connected with EEG and Kinect.

The control algorithm in the server is executed in the Robotstudio platform (by running an

ABB Rapid language script) which again communicates with the physical robot controller(IRC

5 controller with Robotware version 6) using UDP (UDP socket). Once the generated control

commands are sent to the robot controller, the robot joints are actuated and a specific task is

executed.

4.5.2 Training session

Training data for the classifier are obtained from ten subjects with the repetition of five sessions

for each subject with an inter-session gap of 30 minutes. Training session data are taken through-

out the fifteen days. Each session contains thirty trials. Each of the trials contains a visual cue of

instructions to the subject. The timing diagram of the visual instruction is illustrated in Fig 4.8.

At the beginning of the trial, a fixation cross appears in the visual cue for the 2s followed by a

blank screen of 2s. Now a visual cue containing the instruction of motor imagery appears on the
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Figure 4.7: Depiction of experimental scenario and different instruments used in the experiment.

screen. The subject performs the motor imagery either to select the link (feet imagery) or to turn

the virtual robot link in the given direction (left and right-hand imagery). Hence, the camera

mounted on the robot arm changes its FOV and now focuses on the objects on the table. Next,

the centre points of the objects start blinking in a random manner. A visual cue then appears on

the screen to facilitate the P300 training data acquisition. The visual cue contains the instruction

to the subjects to focus their gaze on a particular object. The subject develops the P300 brain

response whenever the centre point of that object is flashed.

BLANK 
SCREEN MI BLANK 

SCREEN P300

2s 2s 3s 2s 3s

Figure 4.8: Timing diagram of Training Session.

4.5.3 Testing Session

The testing session is more complex as no visual cue is shown and subject has to plan two steps

of operation (MI generation and developing P300) without any assistance. During the testing

session all the signal modalities are acquired with a moving window of 1s. An exception is

followed in case of MI signal acquisition, where the signal is acquired for 1s but last 0.2 s of

signal samples are considered for classification [183]. For better understanding the different

stages of the operation is illustrated through sketches in Fig 4.6 while the actual experimental

scenario is depicted through Fig.4.9 to Fig.4.12.
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Figure 4.9: Step1: The robot is at it’s initial
position and the subject uses his motor imagery
and P300 to rotate the robot arm and select the
desired object respectively.

Figure 4.10: Step2: The robot is just above the
desired object and determines the gripper con-
figuration.

Figure 4.11: Step 3: The robot has successfully
grasped the desired object.

Figure 4.12: Step4: Grasped object is picked
up by the robot to place it in other place.

4.6 Detailed Experimental Procedure of Robotic Grasp Prediction

4.6.1 Datasets

There is no publicly available RGB-D dataset for robotic grasp detection in multi-object scenes.

So, in order to train our model for overlapping multi-object scenes, we carefully collect a Multi-

Object RGB-D dataset and annotate it manually. For every object in a single image, we annotate

several possible grasp rectangles which are a comprehensive subset of all possible good candi-

dates. We take several images of the same set of objects with different orientation and pose. We

also include the affiliation between each grasp with corresponding objects using the index of the

object bounding boxes. Example images from the multi-grasp dataset is shown in Fig.4.13 to

4.18.

Our Multi-Object Grasping Dataset contains 784 images with 3-5 different objects in each

image. The objects are arranged in several overlapping and non-overlapping layouts. The dataset



116 4. Autonomous Grasping using BCI

consists of both RGB and depth images. We use the same Kinect as the depth sensor. There are

in total of 17 classes and different instances of each class are indistinguishable in nature. The

object bounding boxes and the grasp rectangles are manually annotated.

4.6.2 Pre-Training and Data Pre-processing

Similar to [267], we reuse the pre-trained weights of ResNet-101 on ImageNet [268] dataset to

avoid over-fitting. The new layer weights are randomly initialized with a zero-mean Gaussian

distribution with a standard deviation 0.02. The NaN values in the depth image are replaced

with zeros. The depth image is converted to a 3-channel image using the grayscale to RGB

conversion method and is rescaled to the 0-255 range. As both datasets are small, we perform

extensive data augmentations by randomly rotating, translating and changing the background

color for regularisation[269, 270, 271]. We also add noise, saturation, illumination and hue

randomly, to make the system robust to real conditions.

4.6.3 Training

We train the entire network end-to-end using Pytorch framework on an NVIDIA GTX 1080 Ti

GPU, with 16 GB dedicated memory, with CUDA-10 and cuDNN-7.5 installed. We randomly

divide the Multi-Grasping dataset in 4:1 ratio for training and testing. There are 2016 object

instances in training set and 758 object instances in the test set.

The training process is divided into two stages. First, we train the RPN using the input

images and ground truth Object proposals as described in [111]. Next, the complete network

is trained end-to-end. The pre-trained ResNet is fine-tuned using stochastic gradient descent

(SGD) optimizer with the hyperparameters set as: initial learning rate = 0.0001, mini batch size

= 16, momentum = 0.9, and the maximum number of epochs = 30. We divide the learning rate

by 10 every 10000 iterations.

4.7 Results

4.7.1 Performance of EEG Classifier

The performance of the proposed EEG classifier networks is evaluated on the basis of four

metrics - Classification Accuracy (CA), True Positive Rate (TPR), False Positive Rate (FPR),

and Cohen’s kappa index (κ) which are defined as -

CA =
T P+T N

T P+T N +FP+FN
= pa (4.12)

T PR =
T P

T P+FN
= Sensitivity (4.13)
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Figure 4.13: Example image 1 from multi
grasp dataset

Figure 4.14: Example image 1 with multiple
grasp rectangles

Figure 4.15: Example image 2 from multi
grasp dataset

Figure 4.16: Example image 2 with multiple
grasp rectangles

Figure 4.17: Example image 3 from multi
grasp dataset

Figure 4.18: Example image 3 with multiple
grasp rectangles

FPR =
FP

FP+T N
= 1−Speci f icity (4.14)

κ =
pa− pe

1− pe
(4.15)

where, TP is the true positives, TN is the true negatives, FP is the false positives, FN is the

false negatives, pe is the chance of agreement that is expected and pa is actual percentage of
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agreement. The random accuracy, pe, is calculated as

pe =
(T N +FP)(T N +FN)+(FN +T P)(FP+T P)

(T P+T N +FP+FN)2 (4.16)

The Classification Accuracy shows the percentage of trials in the test data that have been

correctly classified. TPR and FPR show the ability of the classifier to correctly detect the true

positive and true negative instances out of total positive and negative instances respectively.

Cohen’s kappa index is a inter-rater reliability measure of categorical items and it is used to

assess the reliability of the classifier.

It can be seen from Table 4.1 that the proposed classifier outperforms both linear and non-

linear classification methods for both MI and P300 classification. While a standard CNN works

better than linear classifiers, pre-selection of features followed by a CNN achieves the best

results with CA, TPR, FPR, and κ values of 95.58%, 0.96, 0.05, 0.91 for MI and 96.30%,

0.91, 0.03 and 0.90 for P300. Better results for CSP and PCA compared to other techniques are

expected as per our literature-supported intuitions about MI and P300 EEG respectively.

The metric values for 10 subjects have been reported in Table 4.2, for both MI and P300

classification, to highlight the interpersonal variance in the performance of our classifier. As we

can see, the average values of CA, TPR, FPR and κ are 95.58%, 0.96, 0.05, and 0.91 respectively

for MI classification, while for P300 detection, they are 96.3%, 0.91, 0.03 and 0.90 respectively.

It is evident from the standard deviation values (written below the CA metric), that the inter-trial

variation in the classifier performance is very small for both MI and P300 detection, indicating

the high reliability and robustness of our proposed classifier, though the P300 detection system

shows more reliability than MI detection system.

4.7.2 Statistical Validation of the Classifiers

Classifiers are statistically validated using Friedman statistical test. The Friedman test is a non-

parametric test (does not hold the assumption that the data come from a normal distribution) that

determines if there exists any significant difference between the classifier performance based on

any selected parameter and ranks them according to it. Here, we have considered two different

parameters, Accuracy and Reliability(kappa score), and performed the Friedman test separately

for each of these parameters. The test considers a null hypothesis that assumes the performance

of the classifiers under testing is equal based on the selected parameter, hence the sum of their

ranks, which are assigned based on their performance, are also equal. Under the null hypothesis,

Friedman statistic is distributed as χ with n− 1 degrees of freedom, where n is the number of

classifiers under testing. Mathematically the Friedman statistic is computed as below;

χ
2
F =

12
Ln(n+1)

n

∑
i=1

R2
i −3L(n+1) (4.17)

where L is the number of data-set (we considered data-set averaged over all the sessions for each

of the participating subjects, hence L=10) , n is the number of classifiers under testing and Ri is

the rank sum of the classifier which was determined by summing all the ranks it got from all the
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Table 4.1: Comparative Study of Different EEG Classifiers

Classifiers with Optional Performance Metrics
EEG Pre-processing CA (%) TPR FPR κ

MI LSVM [272] 85.80 0.85 0.07 0.83
KSVM-RBF Kernel [273] 87.55 0.86 0.06 0.86

IT2FS [274] 90.54 0.88 0.06 0.88
GT2FS [275] 90.65 0.89 0.04 0.87
BPNN [276] 89.82 0.86 0.08 0.82
CNN [277] 92.26 0.92 0.04 0.89

STFT [278] + CNN 94.32 0.94 0.05 0.90
DWT [279] + CNN 94.75 0.95 0.04 0.90
CSP [38] + CNN 95.58 0.96 0.05 0.91

P300 SWLDA [44] 90.23 0.84 0.07 0.83
LSVM [272] 90.81 0.86 0.05 0.86

KSVM-RBF Kernel [273] 92.56 0.90 0.05 0.88
BPNN [276] 89.80 0.84 0.04 0.86
CNN [277] 93.95 0.90 0.04 0.90

ICA [280] + CNN 95.12 0.91 0.04 0.90
MRMR [281] + CNN 94.05 0.90 0.03 0.89
PCA [262] + CNN 96.30 0.91 0.03 0.90

data-sets based on the performance on that data-set. The values of χ2
F is obtained separately for

each category of signal (MI and P300) and compared with the critical value of the χ2
F (α = 0.95).

If the obtained value crosses the critical value, we conclude that a significant difference exists

between the performance of the classifiers and the classifiers can be ranked as per the cumulative

rank sum. The classifier having the lowest cumulative sum is considered as the best-performing

classifier.

MI classifier validation: During the MI classification process, performance of the proposed

classifier is compared with eight other classifiers, hence we consider n=9 and L=10 in this case.

The statistical test is carried out in two phases, in the first phase we ranked the performance of

the classifiers based on accuracy, and in the second phase we ranked them based on kappa score.

The cumulative sum of the ranks are obtained and put into (4.17) separately for two cases and

in each case the obtained χ2
F value exceeds the critical value. Detailed results are given in Table

4.3.

P300 classifier validation: Performance of the proposed P300 classifier is evaluated over 10

data-sets (L=10) and compared with seven other classifiers (n=8). The statistical test is carried

out in the same manner as described above. The result is given in Table 4.3. It is evident from

the result that obtained χ2
F value exceeds the critical value in each case.

As the obtained χ2
F value exceeds the corresponding critical value in every cases, we conclude

that the null hypothesis is rejected in each case. Hence, the performance of the classifiers can be

evaluated by their cumulative ranks and the classifier with the lowest rank has the best perfor-

mance.
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Table 4.3: Results of Friedman Statistical Test

Category Parameter

χ2
F

value
obtained
from test

Critical
χ2

F
Value

Null
Hypothesis
Accepted/
Rejected

MI
Accuracy 71.52

16.91
Rejected

Kappa 61.66 Rejected

P300
Accuracy 65.13

15.50
Rejected

Kappa 33.03 Rejected

In the MI classification process, our proposed classifier achieved the lowest cumulative rank of

13 for both the accuracy and kappa score. In the case of the P300 classification process, our

proposed classifier got the lowest cumulative ranks of 13 and 12 for accuracy and kappa score

respectively. Hence, in each case, the proposed classifier performs best among others.

4.7.3 Performance of Grasp Prediction Network

In order to evaluate the performance of our model on the Multi-Object Grasping Dataset for

object overlapping scenes, we need to take into account both object detection and grasp rect-

angle regression performances, since object-grasp affiliation requires accurate classification and

localisation of the objects in the image. For our task, we use an mAP based metric called mAPg

defined in [263, 264, 265]. A detected object-grasp pair is labeled successful if:

1. the object is classified correctly and the predicted object bounding box has an IOU higher

than 0.5 with the ground truth bounding box

2. the detected grasp is labeled as a good grasp according to the rectangular metric defined

in [254], subject to the following criteria:

• the difference between the predicted grasp angle (orientation) and ground truth grasp

angle is less than 30.

• the Jaccard Index(J) between ground truth grasp rectangle (g) and predicted grasp

rectangle (G), as defined below, is more than 0.25.

J(G,g) =
(g∩G)

(g∪G)
(4.18)

1. Performance on Multi grasp dataset: The previous works [263, 264, 265] on simultane-

ous object detection and grasp prediction have not made their code or architectural details

public, ruling out any possibility of re-creation. While they have reported mAP scores

on the VMRD dataset defined in [282], the absence of depth data prevents us from eval-

uating our network on VMRD. So, in order to provide proper context to the performance

of our network in overlapping object scenes, we select a combination of a state-of-the-

art object detector, Faster-RCNN [111] and two state-of-the-art grasp detection models,
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Figure 4.19: Example image 1 with predicted
bounding boxes.

Figure 4.20: Example image 1 with predicted
grasp on each corresponding object.

Figure 4.21: Example image 2 with predicted
bounding boxes.

Figure 4.22: Example image 2 with predicted
grasp on each corresponding object.

Figure 4.23: Example image 3 with predicted
bounding boxes.

Figure 4.24: Example image 3 with predicted
grasp on each corresponding object.

Figure 4.25: Example image 4 with predicted
bounding boxes.

Figure 4.26: Example image 4 with predicted
grasp on each corresponding object.

Figure 4.27: Example image 5 with predicted
bounding boxes.

Figure 4.28: Example image 6 with predicted
grasp on each corresponding object.
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GR-Convnet [259] and FCGN [260] including all the architecture variations of the latter.

Since these combined networks have no implicit grasp-object affiliation, the grasp rect-

angle with a confidence score higher than 0.25 and centre closest to the object bounding

box center is associated with each detected object. Since our dataset contains RGB-D

images, we evaluate the FCGN model, equipped for 3 channel inputs on both RGB and

RGD modalities while the GR-Convnet is evaluated on RGB-D as intended by its authors.

Table 4.4 demonstrates that our model outperforms the other models by a large margin

with an mAP score of 80.4%. Although the GR-ConvNet is shown to be quite effective

at handling cluttered object scenes, our network still beats it in terms of performance.

The improvement can be explained in part by the increased effectiveness of our model

in dealing with the partial occlusion of objects in case of overlapping layouts, and in

part by the simplistic object-grasp affiliation scheme used in the absence of an implicit

association in case of the combination models. While FCGN has a higher mAP for RGB

input compared to RGD, the mAP of the FCGN model (69.5%) has also increased from

that reported by [263] on VMRD (54.5%). The reason for this increase may be attributed

to the fact that the overlapping object layouts in our Multi grasp dataset are relatively

less complex than that in VMRD due to our precondition for object visibility as stated in

Section 4.2. An execution speed of 11.1 fps for our model is more than sufficient for user

convenience. The improvement in speed over the FCGN model, in spite of having a deeper

feature extractor, can be explained by our choice to generate only object proposals instead

of predicting multiple object and grasp candidates. Performance of the grasp prediction

of the OOGNet is represented with few example images in Fig.4.19 to Fig.4.28.

Table 4.4: Evaluation on Multi-Grasp Dataset

Algorithms mAPg (%) Speed (fps)
Faster-RCNN [111] (RGB) + GR-ConvNet [259] (RGB-D) 72.1 46.9

Faster-RCNN [111] (RGB) + (ResNet-50) FCGN [260] (RGB) 64.5 11.9
Faster-RCNN [111] (RGB)+ (ResNet-50) FCGN [260] (RGD) 63.3 11.9

Faster-RCNN [111] (RGB) + (ResNet-101) FCGN [260] (RGB) 69.5 10.2
Faster-RCNN [111] (RGB) + (ResNet-101) FCGN [260] (RGD) 68.2 10.2

OOGNet (RGB-D) 80.4 11.1

2. Physical Evaluation: In order to ascertain how well the grasp predictions translate to

successful physical grasps in real world, we perform extensive experiments. In the exper-

imental set-up, the robot arm is positioned a fixed distance above a plane surface contain-

ing either a single object or multiple objects in a variety of overlapping layouts, with the

Kinect mounted on its 5th axis and tilted downwards. Our network takes an RGB-D image

of the top view of the objects as input from the Kinect and generates a class prediction,

bounding box, and grasp rectangle for each object in the image. For a multi-object layout,

a particular object is selected to be grasped. The predicted grasp rectangle is converted to

a gripper pose; the arm approaches and grasps the target object as described in [255] and
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Table 4.5: Results of Physical Grasping Experiments
Grasp Prediction Success rate Grasp Execution Success rate
Single Multiple Single Multiple

Banana 10/10 10/10 10/10 10/10
Headphone 10/10 10/10 9/10 9/10
Can 10/10 10/10 10/10 10/10
Stapler 10/10 10/10 10/10 10/10
Spectacle 10/10 10/10 10/10 10/10
Spoon 10/10 9/10 10/10 9/10
Box 10/10 10/10 10/10 10/10
Mask 9/10 9/10 9/10 8/10
Apple 10/10 10/10 10/10 10/10
Mouse 10/10 10/10 10/10 10/10
Torch 9/10 9/10 9/10 10/10
Glue Stick 10/10 10/10 10/10 10/10
Mobile Charger 10/10 9/10 10/10 9/10
Battery Box 10/10 10/10 10/10 10/10
Total 98.6% 97.1% 97.8% 96.4%

[254]. The experiment is performed on 10 different objects, with 25 trials for grasping

each object in both single and multi-object overlapping layouts.

Table 4.5 shows the success rates for both the grasp prediction and execution for each object in

single and Multi-object scenes in a benchmark scale of 10 as used in [52][55] . For single object

cases, our model reached a 98.6% prediction success rate and a 97.8% success rate for physical

grasping over all objects. On the other hand for Multi-object scenes, our network achieved a

staggering 96.4% success rate for physical grasping and a 97.1% success rate for prediction. The

results are calculated over 10 trials chosen randomly from the original 25 trials, to remove any

biases present in the manual arrangement or positioning of the objects in single and multi-object

settings. This highlights the effectiveness and reliability of our proposed network in performing

real-world grasping tasks for a variety of object arrangements.

Table 4.6: Performance Comparison the Proposed System with Existing Hybrid Closed Loop BCI
Schemes

Performance Metric MI+ErrP
[34]

SSVEP+MI+P300
[33]

Proposed Method

Success rate (%) 85.6 90.2 93.4
Steady state error (%) 2.1 0.2 0.05

Settling Time (s) 31 24 15.92
Peak Overshoot (%) 4.9 4.2 0
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Table 4.7: Online performance results

Sub Method 1 Method 2 Proposed

[34] [33] Method

AccBCI AccSys AccBCI AccSys AccBCI AccSys

S1 79.16 68.75 89.58 83.33 85.41 85.41

S2 85.41 79.16 81.25 81.25 91.66 87.5

S3 83.33 72.91 85.41 83.33 87.50 85.41

S4 85.41 79.16 87.50 79.16 91.66 89.58

S5 85.41 72.91 83.33 81.25 93.75 91.66

S6 87.50 79.16 75.00 72.91 95.83 91.66

S7 79.16 68.75 62.50 58.33 85.41 83.33

S8 83.33 72.91 81.25 75.00 89.58 87.50

S9 75.00 66.66 72.91 70.83 83.33 79.16

S10 81.25 70.83 85.41 79.16 93.75 89.58

Avg 82.50 73.12 80.41 76.45 89.79 87.08

Table 4.8: Comparison between different modules of the proposed system
Proposed
Module

Average
Execution Time (s)

Average
Success Rate (%)

Human
Involvement

Object Localization 7.18 94.1 Yes
Object Selection 2.85 95.0 Yes

Automatic Positioning 3.22 99.8 No
Grasping 2.64 96.2 No

Overall System Performance 15.92 93.4 -

4.7.4 System Performance

The overall position control performance of the BCI system is assessed here using few popular

metrics arrived from control system literature. The metrics viz. success rate, settling time, peak

overshoot, and steady-state error are considered to evaluate the system performance. Formal

definitions of the metrics are given below.

Success rate: It expresses the number of successful attempts out of the total attempts made

by the robot to reach the desired object. An attempt is regarded as successful only when the

robot is able to grasp the desired object properly.

Steady state error: It indicates the maximum positional deviation of the robot end effector

from the desired position in the infinite time range.

Settling Time: Time taken by the system to reach and stay within 2% of steady-state position.
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Peak Overshoot: The maximum deviation of the response from its desired position. It is

expressed as a percentage change from its final response.

Performance of the overall system is given in Table 4.6 and the online performance is pro-

vided in Table 4.7 . In both cases, the result is also compared with the performance of the two

recent state-of-the-art works [207][19] which fall under the category of hybrid closed loop BCI

and employs manual trajectory planning. Table 4.6 reports the overall success rate of the system

by counting the number of times the subject is able to reach the desired position however the

subjects are allowed to retake their decision if their intent is miss-classified at any stage. Table

4.6 focuses more on how the proposed control and planning method affects the overall system

performance. On the other hand, Table 4.7 is obtained by following an online protocol that re-

jects the entire trial if miss-classification occurs at any stage of a trial and considers a trial to be

successful only if all the stages of it are successful. The accuracy of the BCI and overall system

are reported separately to provide insight to the readers on how the BCI performance affects the

overall system accuracy.

Time taken by each module of the present work and their individual success rates are reported

in Table 4.8. The last row denoting total system performance provides the average performance

of the entire system when all the modules work together, which is not equal to the numerical

average of each module. The above table also indicates the human involvement in each of the

modules. Hence the time taken by the first two modules is greatly affected by human behav-

ior whereas the time taken by the last two modules is affected by the velocity of the robot arm

and the shape of the object selected by the subject. Sub-components of the system that govern

the real-time behavior of the system are described below along with the execution time. Object

localization module includes detection of Motor signals that require approximately 0.38 s includ-

ing signal acquisition for 0.3s and classification time of 0.08s. The robot actuation time is 0.01s.

The rest of the time is accounted for the control of the robot arm by the human subject to select

the desired FOV. Next, the object selection step aims to choose the target object when multiple

objects are present in the FOV. This includes object detection using Mask RCNN ( 0.1s), Cen-

troid calculation ( <0.01s) and P300 detection ( 0.58s= signal acquisition for 0.5s+classification

time 0.08s). The rest of the time is taken by the human subject to decide which object he/she

wants to choose. The Positioning step aims to estimate the 3D coordinates of the target object

using a 2-D spatial location and a 2-D depth map. Co-ordinate estimation takes an average of

0.05s. Reaching the estimated position by the robot arm depends on the end effector velocity

and the distance between the present and estimated position. Lastly, the final gripper configu-

ration is estimated using our proposed OOGNet architecture. This module takes approximately

0.1s (11fps) and gripper actuation time is 0.01s The total gripping time depends on the size and

shape of the object selected by the human.

It is apparent from Table 4.6 that the success rate of the proposed method is increased in a

significant margin of 3.2% and from the traditional BCI-based success rate reported previously

[207] . The overall success rate is found to be 93.4%. The steady-state error is also drastically

reduced to 0.05% along with the settling time which is further reduced to 15.92s. The proposed

method shows no overshoot or undershoots in either of the experiment due to the over-damped
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Figure 4.29: Box plot of sub-scales of the NASA-TLX study reported by ten participating subjects.
The upper row represents the raw TLX scores whereas the lower row represents the adjusted TLX
scores.
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response of the robot end effector. The absence of human involvement in the gripper positioning

phase and invoking autonomous positioning modules have eliminated the oscillation of the robot

end-effector around the targeted object, which is otherwise reported in the existing literature.

A similar trend is seen in online protocol results reported in Table 4.7 where the best overall

system accuracy and BCI accuracy are found to be 87.08% and 89.79% respectively for the

proposed method. Such an increase in BCI and overall accuracy may be attributed to the fact

that the proposed method uses minimal human intervention hence minimizing the error that

may arise from BCI decoding performance. The judicious selection of autonomous positioning

and grasping strategy also contributed to making the system more robust and highly accurate

compared to other methods reported in the table.

As per Table 4.8, the average success rate of the individual modules are found to be 94.1%,

95.0%,99.8% and 96.2% for Object localization, Object selection, Automatic positioning and

Grasping phase respectively.It is also noticed that when the subject performs each module con-

secutively in a single run, the overall success rate of the system slightly reduces to 93.4% which

is less than the numerical average of individual success rates.

Removing human interaction from the end-effector positioning and grasping phase has a signif-

icant effect on reducing the workload of the subject during real-time operation. The complex

planning procedure of aligning the robot end effector with the desired object imposes a heavy

workload on the subject. It also requires a significant amount of subject training and most of

the novice subjects are not able to do it with the required accuracy. Experiments [19][207] in-

volving such complex planning procedures are replicated in the laboratory environment and the

workload of the subject while operating under those schemes is compared with the present pro-

posed method. The main motivation behind providing this comparison study is to indicate the

quantitative difference in workload associated with pure cognitive control based state-of-the art

BCI approaches(the subject has to plan the entire robot trajectory for reaching and grasping) and

our proposed scheme (shared control-based approach where reaching and grasping phase were

made autonomous, minimizing overall human intervention).

Overall Workload assessment: Workload of the participating subjects was analyzed using the

NASA-TLX questionnaire survey developed by NASA Ames Research Center that allows to

asses the workload of the subjects operating various human-machine systems[251]. It assesses

the workload using a multidimensional rating system with six sub-scales: Mental Demands,

Physical Demands, Temporal Demands, Performance, Effort, and Frustration [252][130]. Each

sub-scale is divided into 20 equal intervals which represents the score 0-100. Subjects provide

ratings over each sub-scale for the task they were assigned. Here three BCI systems were com-

pared, hence the subject provided the rating for three tasks. Once the subject finishes the rating,

15 pairwise comparisons between the sub-scales are presented to them, where subjects need to

choose the sub-scale contributed most to their workload. The weight of a sub-scale is deter-

mined by the number of times it is chosen by the subject during a pairwise comparison task. The

overall score of the test is found by computing the weighted average of the sub-scales with the

weights determined above.

Here 10 participating subjects provided the rating for six sub-scales for each of the three BCI
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tasks. Hence a total of 180 responses (10 x 6 x 3)were recorded. Average ratings of each BCI

tasks for the six sub-scales are found by averaging the response over ten subjects. The result

is shown in Fig 4.29. The adjusted rating of each sub-scale is also reported in the above fig-

ure. RAW TLX scores reported in the first row of the figure reveal that Task 1 [19]imposed the

highest mental load and physical load on the subject, whereas Task 2[207] imposes the highest

temporal load. Task 3 (proposed strategy) has been the lowest in all of the above categories and

also demands the least effort from the subject to operate it. Task 3 is also found to have the

highest performance rating and lowest frustration rating. Adjusted TLX scores show a similar

pattern except for physical demand where it is found to be negligible in all three tasks. The

overall adjusted TLX scores of Task1 and Task 2 are found to be 62.49±4.59(mean± std) and

51.43±5.58 respectively whereas the overall score of Task3 is found to be 23.99±6.80 impos-

ing a least cognitive load on the participating subjects compared to the other manual trajectory

planning based state-of-the-art BCI robot manipulation techniques.

4.8 Conclusion

The main motivation of the present work was to relieve the subjects from the manual complex

trajectory planning of the robot arm in a BCI-based robot control scheme. Complex trajectory

planning is mainly involved in object reaching and grasping tasks, which are made autonomous

in the present scheme. The idea facilitates the precise grasping of any mentally selected object

without any human intervention hence reducing the cognitive load of the subject drastically.

The chapter also proposed a CNN-based novel robotic grasp detection network to predict the

accurate grasp in real time. The proposed network is able to work on overlapping scenes and

uses simultaneous object and grasp detection. The overall performance of the BCI system is

greatly improved from the recent state of the art where trajectory planning is entirely done by

human subjects. As an example steady-state error of the system is reduced to 0.05% and the

settling time is reduced to 15.92s. The results are substantiated by providing a comparison of the

cognitive load of participating subjects for the proposed scheme and other recent BCI schemes.

It was evident from the comparison that the present scheme imposes the least cognitive load

on the subject and hence more suitable than the scheme involving manual trajectory planning.

However, there exists an ample scope to further reduce the cognitive load of the subject by

suitably predicting the human behavior of selecting any object at any stage of operation and

assisting the human with autonomous navigational commands to reach the desired object. Such

a learning mechanism will reduce the need for multiple P300 generation that is used here for

selecting the desired object. Such a scheme uses fewer mental commands hence decreasing the

cognitive load and simultaneously increasing the real-time accuracy of the system.





Chapter 5

Conclusions and Future Research
Directions

This chapter aims at self-reviewing the targeted contributions of the individual chapters and

also motivations of the entire work undertaken in the thesis. The pros and cons of the proposed

techniques are reviewed, and possible techniques to be adopted to overcome the limitations are

also outlined. Scope of extension of the works undertaken is also narrated here in detail.
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5.1 Self-Review of the Thesis

The thesis proposes 3 distinct approaches for position control of a multi-link robot arm for pos-

sible rehabilitative applications of patients suffering from neuro-motor disabilities. Four distinct

brain signals, including ERD/ERS, ErrP, P300, and SSVEP are utilized to generate necessary

control commands for external activation of motors, positional overshoot detection, target ob-

ject selection, and link selection of the robot arm.

Chapter 2 is concerned with an important problem of 3-dimensional position control of an

end-effecter by controlling the position of individual links of a robot arm. The link selection here

can be done randomly as desired by the human subject participating in the experiment. Link se-

lection is here performed by acquiring the SSVEP response of the brain to different flickering

frequency signal sources attached with the individual link. Once a specific link is selected for

position control, the link actuation is accomplished by one brain signal, called ERD/ERS (or in

general MI). The response to the mental desire for movement (or motor imagery (MI)) is trans-

lated to motion-related commands to undertake the initial clockwise/counter-clockwise motion

of the selected link with a fixed pre-defined velocity. After the selected link crosses the de-

sired target position, an ErrP and/or P300 are liberated indicating the possible positional error

(or oddball situation). The BCI system on detecting the zero-crossing in positional error, com-

mands the robotic link to reverse the direction and reduce its speed until positional error is less

than a pre0defined threshold. The merit of the above scheme includes;

1. Zero/Low steady-state error.

2. Small Overshoot.

3. High Stability margin.

4. Giving user the choice to select the number of zero-crossing before terminating the link

motion.

5. Robust design

The system introduced above utilizes only zero-crossing positions of the link/end-effecter,

but cannot measure the magnitude of positional error at any instant of time. This limitation has

been overcome in the second scheme introduced in Chapter 3.

The second scheme introduced in Chapter 3 is concerned with fuzzy control of the robot

arm. The attractive part of this design lies in sensing the magnitude of positional overshoot

or undershoot with respect to the final target position. An exact measurement of positional

overshoot or undershoot is not possible, an approximate measurement is done and expressed as a

fuzzy quantifier such as SMALL, LARGE or MEDIUM error. The fuzzified error is then utilized

to determine the fuzzy angular displacement of the selected robotic link. The experiment uses a

few landmark positions around the target and flickering sources were mounted over the landmark

positions. The subject initiates the robot link movement with motor imagery brain commands

and whenever the link crosses the desired target an ErrP signal is liberated from the brain to

indicate the occurrence of error, which in turn freezes the link movement. Once the movement
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is stopped, the subject focuses on the flickering LED mounted at the nearest landmark position

to generate SSVEP response in their brain. The system identifies the magnitude of the error

and the relative position of the end-effector with respect to the target position by decoding the

corresponding SSVEP signal. The error magnitude and relative position of the end-effecter are

utilized by the previously defined fuzzy controller to take the corrective action to bring back the

end-effecter at the target position. The scheme proposed in Chapter 3 overcomes the limitations

of Chapter 2 but it has a limited scope of application as it is designed for a fixed target position.

Chapter 4 overcomes the limitations of Chapter 3 as it takes care of user-fixed targets by

camera vision. The scheme enables the subjects to select their desired object by using their

mental commands. Additionally, the scheme made the reaching and grasping phase of the robot

arm autonomous, hence the subjects were relieved from creating the trajectory of the robot arm

with their cognitive effort. Such an autonomous movement of the robot also facilitates high

precision control which couldn’t be achieved only with human effort.

The scheme employs a depth-sensing camera mounted at the end of a 6-DOF robot arm to

capture the surrounding environment of the robot. The user was given the liberty to change the

camera position using their mental commands to bring the desired object into its field of view

(FOV) by observing the camera feedback on a digital monitor placed near them. The subject

used Motor Imagery signal to rotate the 1st and 5th link of the robot, which in turn changes

the camera position to cover the entire 3D surrounding environment. Once the target object is

visible on the monitor, the subject stops issuing mental commands (MI). The target object (in

the presence of other objects) visible on the screen was selected using the P300 brain command.

Now the vision-based auxiliary controller takes charge and guides the robot to reach the target

position and grasp the desired object with high accuracy. The proposed control policy also

helped to reduce the cognitive load of the participating subject to a great extent.

5.2 Possible Extension of the Current Research Outcome

The brain-inspired controller design presented in Chapter 2 is formulated as a linear system, and

so is realized in s-domain using the transfer function approach. Such linear approximation of the

controller has limitations from the point of view of stability analysis. There exists ample scope

of extension of the brain-inspired controller model as a nonlinear system. A brief outline of the

possible extension of the model is given below for the sake of the convenience of the readers and

the completeness of the thesis.

Let θr be the reference angle and θc be the desired angle of motion of the target. Let the

angular positional error signal e = θr−θc. We define 2 alternative non-linear models for speed-

setting of the mentally actuated controller. Fig. 5.1 and 5.2 provide the schematic of controller

dynamics and the closed-loop control structure. The control strategy can be expressed as below;

θ̇m = K;e(t)≥ δ (5.1)

=−K;e(t)≤ δ (5.2)

= 0;−δ < e(t)< δ (5.3)
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Figure 5.1: Schematic of Controller Dynamics 1

MotorBrain-actuated Controller

Figure 5.2: Closed-loop control structure with Controller 1

Alternatively, we can model controller speed by the following formulation. Figure 2 (a) and

(b) provide an alternative formulation of the controller and the overall control loop.

θ̇m = αe(t); |e(t)| ≥ δ (5.4)

=−K;e(t)≤ δ (5.5)

= K;e(t)≥ δ (5.6)

It is apparent from Fig. 5.2 and 5.4 that the stability of the closed-loop control would be

greatly influenced by the controller dynamics. Several methods of stability analysis, including

phase-trajectory analysis, Describing function approach, and Lyapunov stability approach are

applicable to the present application.

The fuzzy logic approach for controller design is realized with Mamdani-type fuzzy reason-

ing. There is ample scope for controller modeling using Takagi-Sugeno approach. The future

work will focus on Takagi-Sugeno modeling of the fuzzy controller. The merit of the Takagi-

Sugeno controller lies in its inherent stability analysis, which, however, is not available for the

Mamdani approach.

Secondly, the fuzzy logic approach proposed does not have a provision for rule adaptation. This

requires provisions for autonomous learning when existing rules do not fire for lack of instanti-

ation by the existing database.
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Figure 5.3: Schematic of Controller Dynamics 2

MotorBrain-actuated Controller

Figure 5.4: Closed-loop control structure with Controller 2

Thirdly, the fuzzy control strategy requires labeling the workspace of the robot to approxi-

mately determine the magnitude of the positional error signal. Such labeling is not feasible for

a big workspace. So, alternative automation needs to be designed to determine the magnitude of

positional error.

The third control strategy presented in Chapter 4 undertakes the control action in 2 phases.

In the first phase, the BCI-system is utilized to make the system identify the target object, and

then employ the auxiliary control strategy to reach the target position to grasp the desired object.

Here, the human subject participating in the BCI-loop loses control in the second phase, as

the auxiliary controller is given full autonomy to execute the control actions for reaching and

grasping. The future extension of the work may offer more controlling power to the human

subject for possibly better performance of the control system in accordance with the planning

and decisions generated by the experimental subject. Conveying the decision of the subject to

the auxiliary controller as and when needed, however, needs to be addressed in future research.
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