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Abstract 

Induction motors are robust and reliable, yet they are liable to various faults. Unplanned process 

downtime caused by machine failure can result in exorbitant costs. The economic losses of the 

process downtime caused by an unexpected outage of the machine exceed the machine 

maintenance costs considerably. If there are any electrical or mechanical faults in the machine, 

some abnormalities in the system are discovered, so fault prediction is critical to protect the 

machine from an unplanned shutdown. 

There are limited numbers of skilled specialists for monitoring processes in the plants. Human 

experts are also unable to identify the exact type of fault due to different types of measurement 

data. The classification of fault is intended to determine the kind of fault that occurred in the 

machine and to distinguish the causes of the observed abnormal conditions. Following the 

determination of the fault condition, the necessary actions will be taken immediately to 

troubleshoot the problem and reduce economic loss by avoiding an unscheduled machine 

shutdown. Identification of unknown fault patterns in induction motors is a challenging task in 

modern industries. Vibration analysis technique and motor current signature analysis technique 

are two popular techniques for fault identification in the rotating machine, but conventional 

systems are not adequate to identify unknown faults, and it is very difficult to distinguish the 

fault types if more than one fault occurs in the machine. Therefore, a sophisticated and 

intelligent fault classification system needs to be developed to reduce dependency on human 

beings. 

In this research, a robust fault classification system has been developed to identify multiple 

unknown fault patterns using different fault classifiers. Unknown faults have been classified 

among the trained known classes of six known faulty induction motors and one healthy 

induction motor. The unsupervised method of fault classification using current signature 

analysis does not need any system modelling but does need accurate training. 

Experiments were carried out using a data acquisition system to collect data samples (amplitude 

vs. time) of current signals from various faulty induction motors and one healthy induction 

motor under various loading conditions. Data samples were also taken from unknown faulty 

induction motors under various loading conditions. 

Intelligent fault classification needs two steps: first, the features are extracted from the input 

signals, and then the features are fed to the classifier. Dimension reduction of features is 

essential for reducing computation times and memory storage of an algorithm to make the 
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classification process simpler. Simultaneously, it is important to retain the most important 

features from the data and delete the redundant ones. Principal component analysis (PCA)-

based feature extraction and dimension reduction techniques have been found to be more 

efficient than all other dimensionality reduction techniques in terms of classification accuracy. 

PCA can play an important role for feature extraction and dimension reduction in the current 

signature analysis method, while in the post processing stage; classifiers can be used for the 

classification of faults in induction motors. Features are extracted using PCA individually from 

faulty current signals in the time domain, FFT spectrums of current signals, wavelet 

coefficients of decomposed current signals, and cross correlated signals to compare the 

classification accuracies and sensitivities of different signals processing techniques. Various 

classifiers have been used for fault classification, such as nearest neighborhood, SVM, DDAG, 

and PNN. 

Among various groups of known faults, the technique of the nearest neighbourhood has been 

used to find the unknown faults. PCA transformations of current signals in the time domain 

and PCA transformations of current signals' FFT spectra were used separately to make the 

classifications. The graph shows the two-dimensional characteristics of each phase current 

signal as well as the signal spectra. The "nearest neighborhood" minimum distance rule is used 

to classify and authenticate the three unknown faults in both domains. To determine which 

classification approach is better, the sensitivities of the two have been compared. 

Faults have also been classified by applying multiclass SVM, and the DDAG technique has 

also been applied to overcome the drawbacks of the OAO pairwise SVM classification method, 

where training data and test data have been kept at the same load. ANNs can handle multi-class 

problems by producing probabilities for each class, but ANNs can also overfit if training goes 

on for too long—a problem that SVMs do not have. SVM models are easier to understand. 

There are different kernels in SVM that provide a different level of flexibility. Classifications 

have been performed using the features of the time domain and the features of the frequency 

domain both to select the better one and to select the best SVM kernel for fault classification.  

The nonlinear kernels are providing better classification accuracy than the linear kernel, and 

there is a limitation of the linear kernel for fault classification in the time domain, but the linear 

kernel is able to classify faults in the frequency domain. The reason for the inability of the 

linear kernel to classify faults in the time domain has been explained using the linear regression 

method. 
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The faults are classified in the time-frequency domain also, and wavelet transforms are 

normally used for time-frequency domain analysis. For many types of signals, a variable 

window size is required according to the frequency to increase flexibility. It applies a variable-

sized windowing technique. A shorter time interval and a longer time interval are used for the 

analysis of high-frequency components and low-frequency components of a signal, 

respectively. Signal analysis using the wavelet transform is very effective for dealing with local 

aspects of a signal, like breakdown points, trends, and self-similarity. The selection of the most 

optimal mother wavelet is a challenge when performing a task using wavelets because the same 

signal produces different results when applied to different mother wavelets due to their 

different coefficient reconstruction, de-noising, feature extraction, and component separation 

from the time domain and frequency domain signals, respectively. There are several mother 

wavelets that are used for fault analysis of induction motors. The optimal mother wavelet has 

been selected among various mother wavelet families for decomposition of current signals 

because optimal mother wavelets need to be selected for the current signature-based fault 

analysis method. The optimal level of decomposition must also be selected because, after a 

certain level of decomposition, the quality of the de-noised signal may be reduced due to data 

reduction. The optimal mother wavelet, including the optimal decomposition level, has been 

selected depending on the results of four parameters. Following the selection of the best mother 

wavelet, the current signals of all faulty motors were decomposed to classify three unknown 

faults using multi-resolution analysis. After that, the three unknown faults were classified using 

the multi-resolution analysis (MRA) technique of wavelets. Statistical features are extracted 

from the approximate and detail coefficients of decomposed signals at each level, and the 

Euclidean norm of each feature parameter has also been calculated. The unknown faults have 

been authenticated by calculating the norm differences. 

SVM provides nearly 100% classification accuracy for fault classification in the frequency 

domain using the RBF kernel, where feature data from trained and test classes are kept under 

the same loading condition. P. Gangsar and R. Tiwari investigated the importance of fault 

prediction performance using a load independent classifier because finding test and training 

data at the same load is not always possible. 

 The probabilistic neural network (PNN) has been used for fault classification in different 

domains, where the training of the model has been carried out with faults and the number of 

fault current signatures recorded at no load condition only, but the testing of the model is 

carried out with current signatures of unknown faults at three loading conditions. PNN is a type 
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of neural network that is faster than a multilayer perceptron network and uses Bayes' optimal 

classification to generate accurate predicted target probability scores. PNN networks are 

relatively insensitive to outliers. PNN networks generate accurate predicted target probability 

scores. Faults have been classified by extracting the features through PCA transformation from 

current signals, FFT spectrums of current signals, and approximate coefficients of decomposed 

current signals at different levels for comparative study. The wavelet decomposition level has 

been found to have the highest classification accuracy. The values of the spread parameter have 

been varied from 0.2 to 0.8 to tune the PNN during training because the classification 

performance of the PNN varies due to changes in the spread parameter. The appropriate value 

of each spread parameter was estimated after comparing classification accuracy for each spread 

parameter. 

Different signal processing techniques have been applied to detect faults in induction motors 

through current signature analysis, but cross correlation is also a signal processing technique 

that has been applied for fault analysis in induction motors. The cross-correlation technique is 

the sequence between two input signals that measures the extent of similarity between these 

two signals, and the idea of a cross-correlation based feature extraction technique is new in 

pattern recognition problems. Cross correlation has been used in this work to detect faults in 

the induction motors, and the sensitivities of cross correlated signals with other signals have 

been compared. Cross correlated signals have been developed to find the degree of correlation 

between the current signals of healthy motors and the current signals of faulty motors. The 

cross-correlation technique has been applied earlier for fault classification of transformer 

winding, monitoring for gearbox fault, and stator winding fault, but this technique has not been 

applied to detect multiple types of fault patterns in induction machines.  

Three unknown types of faults were classified and authenticated using features of signals from 

different domains, such as time domain signals, cross-correlated signals, FFT spectra, and time-

frequency domain (DWT) signals in multiple decomposition levels, using the nearest-

neighborhood classification method. The features are extracted from every type of signal using 

the PCA transformation. Sensitivity depends on the magnitudes of the nearest distances; the 

higher the distance, the lower the chance of misclassification due to the large data boundary. 

The sensitivities of every type of signal have been compared, and it has been shown that the 

sensitivity of fault classification does not depend on the level of wavelet decomposition. 

Key words: PCA, FFT, Wavelet transform, cross correlation, MRA, nearest neighborhood, 

SVM, DDAG, and PNN. 
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Introduction 

1.1 Introduction 

 

Induction motors are the workhorse of modern industry. Because of the lower cost and increased 

longevity of the components, fault prediction of induction machines is becoming more important. The 

detection of a fault in an electric machine and the identification of its type are imperative for 

preventing the failure of the motor [1, 2]. 

 

Faults can be detected after processing the input signals of a rotating machine, and various techniques 

are successfully applied to predict the rotating machine fault, such as (a) motor current signature 

analysis (MCSA) [3-5], (b) vibration analysis technique [6-9], (c) temperature monitoring [10], and 

(d) partial discharge [11]. While current signature analysis is a beneficial and less expensive technique 

compared to the others because electrical signals are easier to analyze, vibration analysis and motor 

current signature analysis are both common techniques for defect diagnosis in induction machines. 

The vibration analysis technique requires more expensive sensors, whereas several electrical sensors 

are not needed to sense electrical signals. The vibration analysis technique can correctly analyse 

various types of mechanical related faults, but it has a limitation in detecting electrical related faults. 

Motor current signature analysis is also a popular fault analysis technique that is used not only to 

detect electrically related faults but also mechanical faults in induction motors. The method of fault 

analysis by motor current signature is gaining popularity for the identification of different types of 

faults at low cost because multiple electrical sensors are not required to sense electrical signals. 

 

The classification of fault is intended to determine the kind of fault that occurred in the machine and 

to distinguish the causes of the observed abnormal conditions. Following the determination of the 

fault condition, the necessary actions will be taken immediately to troubleshoot the problem and 

reduce economic loss by avoiding unscheduled machine shutdown. The conventional methods for 

different fault analysis in the motor are time-based and spectrum-based signal analysis from current 

and vibration signals [12]. The signal processing of current signature analysis for fault detection has 

recently gained much attention because a typical mathematical model is not needed in this technique. 
 

Many studies are available for the diagnostic strategy of signal processing that has been introduced to 

point out the faults in the machines. To detect anomalies associated with rotating machine operation 

and bearing problems, the decision tree has been presented (Yang, Park, Kim 2000; Sugumaran, 

Muralidharan, Ramachandran 2007; Sun, Chen, Li 2007; Lim, Yang, Kim 2000). ANNs (Samanta, 

Al-Balushi 2003; Nandi and Jack 2002; Al-Balushi, Samanta, Al Araimi 2006), ANFIS (Lei, He, Zi, 

Hu 2007), FALCON [13], and fuzzy logic (Lindh, Ahola, Spatenka, Rautiainen 2004) have previously 
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been used to diagnose the state of machines with relatively high accuracy. In most cases, vibration 

data has been utilised to measure mechanical faults in motors. In addition to these signal processing 

and analysis techniques in the time domain or frequency domain, the development of an appropriate 

model for a motor running under faulty conditions provides an alternative way for fault diagnosis. 

Analytical superfluity is used to detect faults in an induction motor model (Kim, Parlos, Lesecq, and 

Gentil 2002). 

 

The modelling of an induction motor from a mathematical equation is another way of doing fault 

diagnosis. When the induction motor is running under different loading conditions, the electrical 

behaviour of the motor can be observed using a mathematical model. It can identify flaws in the rotor 

bar and stator winding that are electrical in nature. However, this method requires the development of 

an accurate mathematical model, which suffers from uncertainties in practical applications. Fault 

classification using an unsupervised method through current signature analysis (e.g., PCA, SVM, and 

K-NN) does not need any system modelling but does need accurate training (Casimir, Boutleux, 

Clerc, and Yahoui 2006). The test data sample can be classified among many trained data samples. It 

has been seen from the literature review that an artificial intelligence (AI)-based fault classification 

system helps us identify the types of faults and also the faulty locations because there are fewer 

experts in the industry for the quick identification of faults very quickly [14].The methods of feature 

selection provide a way to better understand and improve prediction performance reducing data 

computation time in machine learning or pattern recognition applications [15]. Feature selection from 

current signal data of faulty motors is essential to classify the faults because significant features 

provide an exact description of the condition of the faults, their diagnosis, and their prognosis [16]. A 

statistical feature extraction technique has been used here to extract relevant features from current 

signals, reducing the dimensions, and the features are fed into different classifiers. A feature 

extraction process called principal component analysis (PCA), which is based on statistical learning 

theory, has been used here for feature extraction and dimension reduction from the current signals [17, 

18] of motors with different faulted conditions. PCA has been used because it extracts exact features, 

reducing irrelevant variables, and is more accurate compared to other dimension reduction techniques 

[19]. 

 

In this work, current signals have been used for different unknown faults of induction motors. 

Different signal processing techniques in the time domain, frequency domain (FFT), and time-

frequency domain have been used to make better fault analysis systems by selecting the optimal 

mother wavelet and optimal decomposition level. Fault identification through multi-resolution 

wavelet analysis has also been applied in different loading conditions to identify multiple types of 

faults. The cross-correlation technique has also been applied to detect various types of faults, and the 

sensitivities of signals in the time domain, frequency domain, and time-frequency domain have been 

compared with cross-correlated signals for fault analysis. It has been shown that the sensitivity of 
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fault analysis can be increased by applying the cross-correlation technique. Fault classification has 

been performed using multivariate statistical analysis, multiclass SVM, and PNN, with relevant 

features extracted by PCA from current signals. The classification performances in time domain, 

frequency domain, and time-frequency domain at different levels have been compared. Multiclass 

SVM, including the DDAG technique based classifier, has been used to make the classification 

system more robust for any type of fault classification, and performance analysis of linear and 

nonlinear kernels is performed to select the best one. The benefits of a probabilistic neural network 

(PNN) over an artificial neural network (ANN) have been discussed, and PNN is also used to classify 

unknown faults.  

 

1.2 Objective of the thesis 
 

The main goal of this research work is to conduct a thorough analytical analysis on the use of 

different machine learning algorithms and different signal processing techniques to identify and 

categorise the different kinds of induction machine problems. As a result, a thorough review of the 

literature has been conducted to determine the shortcomings of the currently used fault diagnosis 

methods. The background motivation of this thesis work stems from research efforts to meet the 

growing need for the use of AI approaches to fault classification, which can now be done more 

accurately than with traditional schemes. As a result, this effort has significant socioeconomic effects 

and increases the need for engineering advancements. 

With the following work plans in mind, it has been suggested to create some original fault 

categorization methods: 

 Development of robust fault classification system to detect multiple unknown faults in 

induction motor. 

 To perform unsupervised fault classification to overcome the drawbacks of supervised 

classification. 

 Classification of faults through DDAG to overcome the drawbacks of multiclass SVM and to 

select best kernel. 

 Selection of optimal mother wavelet including the level for different fault analysis through 

current signals and the classification of unknown faults through MRA of wavelet. 

 Comparison of different signal processing techniques to compare the sensitivities of these 

signal processing techniques for fault analysis. 

 Development of robust fault classification system using PNN to overcome the drawbacks of 

ANN. 

The two steps of the common fault diagnosis system are feature extraction and fault recognition. 

The feature vectors are fed into AI-based classifiers to identify fault patterns.  Statistical features 

extraction technique has been applied to extract features in time domain, frequency domain and 
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time-frequency domain and to unknown faults in these three domain using same classification 

model for comparative analysis. 
 

1.3 Fault diagnosis of Induction Motor 

 

The key elements of industry are rotating electrical machines. The unplanned shutdown brought on by 

a machine failure might be quite expensive. Unplanned machine shutdowns result in increased energy 

losses and overall economic losses. Maintenance is necessary not only to avoid unplanned shutdowns, 

but also to extend component life. The aim of this chapter is to introduce the reader to various fault 

diagnosis techniques that have been reviewed. There are four stages in the condition monitoring 

system: measurement, data preparation, feature extraction, and classification. 

 

1.3.1 Purposes of fault diagnosis of induction machines 
 

Before an unscheduled shutdown, a fault diagnosis is required to predict the need for machine 

maintenance [20]. The vibrations or current signals are measured at selected time intervals from the 

machines, and after that the analysis is made either in the laboratory or in the field. Advanced fault 

diagnosis techniques are required for fault diagnosis and analysis. It provides a warning about 

incipient failure at a very early stage and the locations where advanced diagnostics are required. 

 

The machine's condition can be predicted online as well. This technique is essential to monitor the 

motor if any electrical or mechanical fault has occurred in any location of a machine [21, 22]. 

Observing the nature of the conditions, the expert can decide whether maintenance of the system is 

required or not to avoid an unscheduled shutdown of the machine and to increase the machine's 

lifetime. The block diagram of the fault prediction system has been shown in Fig. 1.1. A fault 

prediction system is essential in the industrial environment for the following reasons: 

 Safety: monitor machine operation and performance parameters and independently shut down 

the machine if necessary. 

 Production assurance: identify developing faults to avoid unscheduled outages and assist 

operations planning. 

 Predictive maintenance: Optimize maintenance planning and costs with predictive 

maintenance. 

 Quality control: Quality control is the monitoring of the production system to prevent flaws 

in the product.  
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Figure 1.1: General block diagram of a fault diagnosis system 

 

1.4 Faults in induction machines 

 

Studies on induction machine failures have identified the most common failure mechanisms. These 

are categorised according to the components of the machine — stator faults, bearing faults, rotor 

faults, and other faults [23]. Fig. 1.2 represents the classifications of different types of faults in 

induction motors. 

 

Figure 1.2: Classification of different type of faults induction motor 

 

1.4.1 Causes of faults occur in induction motor 
 

Unscheduled shutdown of a motor due to faults can result in downtime costs in industries, as well as 

flaws in products. Faults normally occur in the stator, rotor, bearing, and other parts of a motor. There 

are a few causes of the faults that occurred in the motor, the causes may be electrically related, 

mechanically related, or environmental related. 

 

(i) Causes of broken rotor bar fault: It is referred to as the "broken rotor bar fault" of the motor if one 

or more bars are partially cracked or broken. A broken rotor bar fault occurs in the induction motor 
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due to a number of reasons [24]. The causes are (a) manufacturing flaws, (b) thermal stress, (c) 

frequent motor starts at rated voltage, (d) mechanical stress, and (e) metal fatigue in the rotor bar. The 

rotor bar may experience additional stress due to the massive end rings of the rotors, which also 

generate strong centrifugal forces. If any rotor bar is damaged, there will be an uneven distribution of 

phase currents. This asymmetry of current will cause overheating in the cracked region of the rotor if 

the motor is operated for an extended period of time, which could result in the bar breaking. 

 

(ii) Causes of rotor unbalance: If the alignment of the rotor is not in the center, known as air-gap 

eccentricity, the air-gap between the stator and rotor will not be similar. The air-gap eccentricity is 

shared by other rotor flaws, like the bowed rotor fault and the rotor mass unbalance fault. Rotor 

unbalance will cause numerous problems with the motor. 

 

(a) The dynamic eccentricity caused by mass unbalance creates oscillations in the air gap length. 

(b) Due to changes in flux density in the air gap, the oscillation in the air gap length alters the induced 

voltage in the winding. 

(c) The frequencies of current produced by induced voltage depend on the frequency of the air gap 

flux density harmonics [25, 26]. 

 

(iii) Causes of bearing fault: Typically, rotating electrical machines use ball or rolling type bearings. 

There are some mechanical and electrical problems that create bearing faults. There are several causes 

of bearing faults, such as improper lubrication, overloading, manufacturing defects, improper 

mounting, etc. Another cause of bearing related faults is electrical erosion. The high rate of voltage 

rise and the high switching frequencies create some capacitive discharge currents. The combination of 

high frequency currents and capacitive discharge currents induces bearing currents and shaft voltages. 

When the voltage hits a specific level, it discharges via the bearings to earth. When the threshold 

voltage is reached and a discharge takes place during that period, the obstacle of lubricant film 

thickness is overcome. Because the voltage is not controlled in motors, it increases once again like a 

capacitor would, which causes electrical erosion. Any electrical erosion that affects a bearing in an 

electrical motor can result in early bearing failure and bearing damage. The faulted bearing can be 

detected by stator current signature analysis [27]. 

 

(iv) Causes of stator winding fault: Insulation breakdown is typically the cause of a stator winding 

fault [28, 29]. One type of stator winding defect is a coil-to-coil fault (short circuit between two 

single-phase coils), along with turn-to-turn, phase-to-phase, coil-to-ground, and open circuit failures. 

These fault types may be caused by mechanical stress, thermal stress, electrical stress, or 

environmental stress. The degree of these strains will determine if stator defects develop. Stator 

winding faults create high vibration and supply voltage transients, which reduce the life of the stator 

winding. If the maintenance is done correctly and the motor is well designed, the stress will be 

reduced.  



Chapter 1  Introduction 

7 

 

1.5 Literature Survey 
 

Various faults are occurring in the electric machines due to overload, frequent motor starts and stops, 

insufficient lubrication, and inadequate cooling. The reliability of motors needs to be improved due to 

their significant positions in applications. The statistical occurrences of the most common types of 

faults are listed in Table 1.1, according to IEEE Standard 493-1997. Induction motors are robust and 

reliable; yet, they are liable to various faults. These faults are primarily categorised as stator faults, 

rotor faults, bearing faults, and other faults; the IEEE and EPRI surveys [30, 31] are shown in Fig. 

1.3. 

Table 1.1: Statistics of motor faults/failure modes 

 

Fault types 

Number of faults 

DC 

motors 

Wound 

rotor 

motors 

Synchronous 

motors 

Induction 

motors 

All motors 

Stator winding 

faults 

Does not 

appear 

 

6 

 

16 

 

75 

 

97 

Bearing faults 2 10 2 152 166 

Rotor faults 3 4 1 8 16 

Brushes or Slip 

rings 

2 8 6 Does not 

appear 

16 

Shaft faults Does not 

appear 

2 Does not 

appear 

19 21 

Faults in 

external device 

 

1 

 

1 

 

7 

 

10 

 

19 

Other faults 2 1 9 40 52 

 

 

  

(a) (b) 

 

Figure 1.3: IEEE and EPRI survey for various types of faults 
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1.5.1 Existing fault diagnosis techniques 
 

Induction motor defects can be predicted using a variety of monitoring techniques, including vibration 

analysis, motor current signature analysis, lubricating oil analysis, thermal monitoring, and partial 

discharge. These techniques are important for the detection of faults, and the applications of these 

techniques to detect various types of faulty components in a motor have been shown in Table 1.2. 

Apart from these techniques, artificial intelligence-based techniques have been successfully used to 

detect electrical and mechanical faults in induction motors. 

 

(a) Vibration analysis: The vibration analysis technique is the most commonly used in fault diagnosis 

systems. All rotating machines produce vibration in their running condition. In a healthy state, the 

vibration range is small, but when a fault occurs due to a change in the dynamic process, the machine 

produces excessive vibrations. Vibration-based problem identification is the most precise method for 

assessing the general state of a rotating system. Several sensors mounted on various machine elements 

are used by this system to store a significant amount of data [32–34]. Depending on the position of the 

sensor, significant noise variations may arise throughout the measurement process. Mikhail Tsypkin 

has demonstrated that vibration analysis is an effective and practical method for identifying various 

types of mechanical and electromagnetic faults in induction motors. 

 

(b) Thermal monitoring: Thermal monitoring is an indirect method that can be used to detect bearing 

faults and some stator faults. The temperature rises in the faulty region due to the stator fault (turn to 

turn), but the incipient fault detection might be too slow before it progresses into a more severe fault. 

Due to the machine's bearing issue, which can be identified by thermal monitoring, the increased 

bearing wear raises the temperature and friction in that specific area. The parameters are estimated by 

measuring the local temperature of the machine. The value of the current in the stator winding will be 

very high if a stator turn-to-turn fault occurs, which will produce excessive heat. Destruction is 

possible if the necessary action is not taken in that situation. The thermal model of an electric motor 

has been introduced by the researchers. 

 

(c) Lubricating Oil Analysis: For offline defect identification, oil analysis is often conducted via oil 

sample collection. Online sensors are being used more frequently nonetheless to protect the oil's 

purity, [35]. Characterization of parts is only done for abnormalities. In the case of significant filter 

pollution, part characterization, oil contamination, or changes in component characteristics, it can 

provide a clear indicator of components with excessive wear. Reduction of wear due to metal-to-metal 

contacts can be achieved using lubricating oil. Several parameters influence the friction and wear of 

gears. Lubricating oil analysis looks at several oil qualities to find the most cost-effective time 

between oil changes and signs of fault development. The most important ones are: 
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 Content of water 

 Viscosity 

 Contamination of particles 

 Additives 

 

(d) Motor Current Signature Analysis: In order to find mechanical and electrical flaws in rotating 

machinery, a popular fault detection technique called Motor Current Signature Analysis (MCSA) is 

performed. MCSA's effort focuses on stator current spectral analysis to detect abnormal conditions 

caused by various electrical or mechanical faults. The goal of MCSA is to examine harmonics in the 

stator current since these harmonics are directly related to rotational flux components. Faults in the 

motor flux distribution, whether electrical or mechanical, result in the creation of new rotational flux 

components. MCSA assistance was used to identify the following:  

 

 Health of stator winding 

 Static and dynamic air gap eccentricity 

 Coupling health including belted, geared and direct  

 Issues of load 

 System load and efficiency 

 Health of bearing 

 

Fault analysis through MCSA is less expensive because electrical signals are simpler to measure than 

other signals, and it does not require multiple expensive sensors.  

 

(e) Partial Discharge: In liquid or solid dielectrics, conductor-dielectric interfaces, fractures, gaps, 

inclusions, or bubbles inside liquid dielectrics are the typical places where partial discharge starts 

[36]. 
 

A partial discharge (PD) can occur due to defects in the material, surface contamination, incorrect 

application, the ageing of the material, or improper installation with material damages. Partial 

discharge testing is used to indicate the failure of a motor. If left undetected, it can eventually 

deteriorate the electrical insulation completely, which is one of the causes for forced outages of 

motors and generators. PD measurement and monitoring are reliable methods that can be used to 

diagnose the condition of the insulation of a motor, effectively detecting the weak points in the 

insulation system. 
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Table 1.2: Techniques to detect various types of faulty components in the motor 

 

Technique 

Faults 

Insulation 

 

Stator 

winding 

Rotor 

winding 

 

Rotor 

eccentricity 

 

Bearing 

 

Vibration  Analysis No No Yes Yes Yes 

MCSA No Yes Yes Yes Yes 

Lubricating oil 

analysis No No No No Yes 

Thermal 

monitoring Yes Yes Yes No No 

Partial Discharge Yes No No No No 

 

 

1.5.2 Fault detection using signal processing techniques 

 

Faults are detected with the help of different signal processing techniques from the last few decades. 

The signals may be vibration, current, or temperature. The signals are processed in three different 

domains: time, time-frequency, and frequency. 

 

(a) Fault detection using time domain signals: Time-domain signal analysis is used to look for 

irregular changes in machine characteristics over time. These methods are simple to implement and 

calculate, but they have a low fault sensitivity. Park’s transformation is a time-domain method by 

which current vectors are obtained to form a fault indicative circle [37]. Three current sensors are 

needed for this procedure, and it is unable to identify the fault's kind. Another well-liked time-domain 

fault identification technique that examines the symmetry of the motor is sequence component 

analysis [38, 39]. A model-based fault detection technique is applied in the time domain where fault 

occurrence is indicated by changes in certain parameters, such as rotor resistance or the unusual 

output of models [40]. Using a model-based fault detection technique, electrical-related defects can be 

located. Measured signals, including defect information, are subtracted from the output of the model 

of healthy motors [41]. The application of a different model for defective induction motors enables a 

comprehensive study of the machine's input current and voltage [42]. 

 

(b) Fault detection using signals of frequency domain: Additional frequency components are 

generated in the form of various spectra from vibration or current signals due to various machine 

faults. The Fast Fourier Transform (FFT) is the most straightforward tool for examining the spectral 

characteristics of data. Signals that have undergone pre-processing can be used with FFT, such as FFT 

on extended Park's vectors [43], instantaneous power [44], and air-gap torque [45]. FFT cannot be 

used for non-stationary signals because it does not provide time information. FFT has some 

drawbacks, such as spectral leakage, a long measurement period, and low resolution. 
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(c) Fault detection using signals of time-frequency domain: Analysis of non-stationary data can be 

done using cutting-edge time-frequency domain signal processing techniques. These methods are used 

to perform accurate continuous spectral analysis of a machine's dynamic properties. It offers a 

constrained moving temporal window that consistently treats non-stationary signals. Wavelet 

transform (WT), which has better time-frequency characteristics and is more adaptable than other 

time-frequency analyses, is the most often used time-frequency analysis [46]. WT, also known as 

wavelet packet decomposition, divides the signal into approximate and detailed frequency levels using 

low-pass and high pass filters. 

1.5.3 Artificial intelligence based fault classification 

 

Artificial intelligence (AI) techniques, including deep learning and machine learning, are important 

data driven methods for fault classification [47]. By analysing the representative system condition, 

fault classification determines the machine's operational status and the type of breakdown. Artificial 

intelligence has been used successfully to detect electrical, mechanical, and other faults in induction 

motors. Automation of the diagnostic process has been made possible by the use of AI tools in the 

fault analysis of electrical motors and drives. Additionally, it aided in early and accurate detection and 

the use of human expertise. Previously, statistical learning classifiers such as the Bayesian classifier 

[48], the K-nearest neighbour algorithm [49], the support vector machine [50], and the artificial neural 

network [51] were widely used for fault classification in rotating machinery. Recently, deep learning 

techniques have begun to be applied to fault diagnosis [52]. In the upcoming years, artificial 

intelligence will broaden the scope of fresh research on the subject. In artificial intelligence, 

unsupervised learning and supervised learning are the two main methods. 

 

Supervised learning: A supervised learning approach employs labelled data sets to train algorithms 

for accurate data classification [53]. An algorithm is used to accurately classify test data in 

classification issues. Linear classifier, MLP, and random forest are the common types of classification 

algorithms. 

 

Unsupervised learning: Faults can be classified using supervised learning techniques, but pre-

processing of the data is no less than a big challenge because it needs to be constantly updated and its 

computation time is vast. Unsupervised knowledge acquisition solves the problem by classifying the 

records without the use of labels. It is substantially less complicated to add the labels as soon as the 

facts have been classified. Finding styles in records that might be impossible to discover through 

conventional strategies is substantially aided by using them. Unsupervised fault classification requires 

exact training without exact modelling of machines. Unsupervised fault classification can be 

performed using multiclass SVM, PNN, and adaptive fuzzy systems. 
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1.6 Organisation of the thesis 

 

Chapter 1: The Necessity of Fault Prediction for Induction Motors has been described, and 

conventional fault analysis techniques are also described here. A review of the literature reveals that 

new techniques must be applied to traditional techniques in order to make fault classification 

techniques more robust and achieve high classification accuracy. The necessity of AI, has led to the 

application of machine learning based techniques in the time domain, the frequency domain, and the 

time-frequency domain to increase the robustness of classification techniques. 

 

Chapter 2: This chapter describes different statistical feature extraction techniques for fault 

classification. Different signal processing techniques in the time domain, time-frequency domain, and 

frequency domain have been described, and the advantages of wavelet transformation for fault 

analysis have been demonstrated. Classification through multivariate statistical analysis has been 

described. Methods of classification through artificial intelligence and machine learning techniques, 

viz., SVM, ANN, have been demonstrated in this chapter. 

 

Chapter 3: The unknown faults of induction motor authentication through classification using the 

nearest-neighborhood classification method have been discussed using data analysis. Three unknown 

faults are classified phase-wise, and each fault is authenticated if the results of all three phases are the 

same. The process is applied for the three feature extraction technique. First, features are extracted 

from current signals by PCA transformation, after which the peak frequency of each phase signal is 

considered a fault feature and features are extracted from the FFT spectrum by PCA transformation. 

Three faults are classified and authenticated using three feature extraction techniques to compare the 

sensitivity of the three feature extraction techniques. 

  

Chapter 4: Faults classification and authentication using multiclass Support Vector Machines (SVM) 

following Decision Directed Acyclic Graphs (DDAG) have been demonstrated in this chapter. The 

DDAG technique has been applied to overcome the drawbacks of conventional SVM techniques. 

Three unknown faults have been classified using five types of kernels to select the best one, including 

the spread value. This procedure of fault classification has been applied to the time domain feature 

and the frequency domain feature. The best kernel has been selected after comparing the success rates 

of fault classification in three loading conditions. 

  

Chapter 5: Fault analysis in the time-frequency domain (Wavelet) has been demonstrated in this 

chapter. This chapter also describes the limitations of FFT and STFT, as well as the benefits of 

wavelet transformation. Initially, the best mother wavelet function and level were chosen for the 

current signal-based fault analysis of an induction motor, and all signals were decomposed for the 

unknown fault analysis. Multi resolution analysis (MRA) has been demonstrated for induction motor 
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fault analysis. Three unknown type faults have been authenticated using the MRA norms in three 

different loading conditions. The changes in values of normative differences are checked. 

  

Chapter 6: The fault classification of ANN has been demonstrated, and the advantages of PNN over 

ANN have also been demonstrated. Three features are extracted from signals' time domain, time-

frequency domain, and domain using PCA transformation, and PCs values from all three domains are 

fed into PNN to classify three unknown faults in three loading conditions. The performances of three 

domains for fault classifications have been shown. 

  

Chapter 7: The applications of the cross correlation technique and its advantages for induction motor 

fault classification have been discussed. Three unknown faults have been classified using the "nearest-

neighborhood" classification method by extracting the features from cross-correlated signals in 

different loading conditions. It has been shown that the sensitivity of cross-correlated signals is 

greater than that of other time domain, frequency-domain, and time-frequency domain signal 

analyses. 

  

Chapter 8: The outcomes of different fault classifiers have been discussed, and the robustness of all 

the classifiers has been compared. The classification accuracy of feature extraction from signals from 

various domains was compared, and the sensitivities of various feature extraction techniques were 

also discussed. Lastly, the future scope of the work has been included. 



Chapter 2  Different Methods of Fault Classification 

14 

Chapter 2 

Different Methods of Fault Classification 

 

2.1 Statistical Analysis 
 

The field of science known as statistics is concerned with the concepts and procedures for gathering, 

analyzing, and interpreting such data. Like mathematics, it is a scientific approach or tool that is used 

to manage numerical data in situations where measurement or counting is feasible. 

 

2.1.1 Skewness 
 

If a frequency distribution is symmetrical around the mean, or when values of the variable that are 

equally spaced from the mean have equal frequencies, the distribution is said to be symmetrical. The 

"extent of asymmetry" in the data is referred to as "skewness." The term "skew" refers to a frequency 

distribution that is not symmetrical. Skewness literally means "asymmetry" or "lack of symmetry", 

and "asymmetrical" is what the word "skew" means. As a result, the skewness of a symmetrical 

distribution is zero. Skewness could also be favourable or unfavourable [54, 55]. 

 

2.1.2 Kurtosis 
 

The term "kurtosis" describes how "peaky" the frequency curve is. The average, dispersion, and 

skewness of two distributions may be identical, but one may have a greater concentration of values 

close to the mode and a stronger peak in the frequency curve than the other. Kurtosis is the term for 

these properties of the frequency distribution [54, 55]. Kurtosis can only be measured using moments, 

i.e., 

Kurtosis = 3
4
4 



m
                                           (2.1) 

Here, and 4m  denote the standard deviation and fourth central moment, respectively. 

 

2.1.3 Median 

The median is the middle-most value of a set of observations when the observations are ordered in 

order of magnitude. The formula can be used to obtain it from a grouped frequency distribution or to 

perform straightforward interpolation in a cumulative frequency distribution [56]: 

                                                (2.2)   

where,  is the median class's lower border, N is its overall frequency, F is its cumulative frequency 

corresponding to , fm is its frequency, and c is its width. 



Chapter 2  Different Methods of Fault Classification 

15 

The median provides the value of the most central observation, making it in some ways the true 

indicator of central tendency. Extreme values have no effect on it, and a frequency distribution with 

open-end classes makes it simple to calculate. 

 

2.1.4 Mode 
 

Mode is the value of a given set of observations that happens with the maximum frequency. As a 

measure of central tendency, it occasionally represents the true characteristics of the frequency 

distribution. It has the most potent typical or fashionable value. If the frequency distribution is 

straightforward, the mode can only be determined visually. However, it is challenging to identify the 

mode precisely in the case of a clustered frequency distribution. In most cases, the following formula 

is used to calculate it [57]: 

                                                (2.3) 

Here, is the decrease boundary of the modal magnificence, is the frequency distinction between 

the modal class and the magnificence earlier than it,  is the frequency distinction between the modal 

elegance and the magnificence after it, and e is the not unusual width between the lessons. 
 

The formula is only usable when all classes have the same width. Mode also has some idiosyncrasies. 

Mode does not exist when all observations happen with equal frequency. Once more, if two or more 

values occur with the highest frequency, there are several modes. 

 

2.2 Multivariate statistical analysis 
 

The word "multivariate" means to involve multiple dependent variables but have the result in one. 

This clarifies why multivariate problems are the norm in the actual world. Multivariate 

analysis (MVA) is a statistical procedure that can be applied in different fields for data analysis 

involving multiple types of observation or measurement. It might also entail resolving issues where 

many dependent variables are examined alongside other factors at the same time. Type 1 error 

probabilities can be decreased using multivariate analysis. Multivariate approaches can make it harder 

to interpret the test results, so sometimes univariate analysis is chosen. Because researchers frequently 

speculate that a particular outcome of interest is affected or influenced by several factors, this form of 

analysis is preferred [58]. 
 

Different types of multivariate statistical analysis such as principal component analysis (PCA), 

nearest-neighborhood distance, correlation, and regression have been applied here. 

 

2.2.1 Nearest distance neighborhood classification method 
 

The process of classification aims to find a model or function describing and distinguishing data 

classes or concepts. The aim of classification is to use the derived function to predict the label of data 

points with unknown class labels. For the classification task, input data is a collection of observations. 
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Each observation, also known as an example or instance, is denoted by (x, y), where x is the vector of 

attributes and y is the class label or category of the observation. The Euclidean distance is the most 

common distance metric used in low dimensional data sets [59]. It is also known as the L2 norm. The 

Euclidean distance is the usual manner in which distance is measured in the real world, whereas the 

Manhattan distance tends to be more robust to noisy data. There are several techniques used for 

classification, such as nearest neighbour classification methods, cluster analysis, and 

multidimensional scaling methods, which are based on measures of similarity between objects. 

Instead of measuring similarity, dissimilarity between the objects will also give the same results. For 

measuring dissimilarity, one of the parameters that can be used is distance. This category of measures 

is also known as separability, divergence, or discrimination measures. A distance metric is a real-

valued function d, such that for any point (x, y), 





m

i

iijjj yxyxd
1

2)(),(                                        (2.4) 

where xj and y are m-dimensional vectors that are denoted by ),.....,( 21 jmjjj xxxX   and 

),....,( 21 myyyY   represent the m attribute values of two vectors. The goal is to find similarities 

between data according to the characteristics found in the data and group similar data objects into 

clusters. Similarity is typically expressed in terms of a distance function, such as: d (i, j) [60]. 

Distances are normally used to measure the similarity or dissimilarity between two data objects. 

According to the nearest neighborhood classification rule, if x’s are the data points representing 

observations for known objects and y is the same for unknown object, then y will be similar to any 

xj’s, when 
min),( DyxdD jj   

 

2.2.2 Principal component analysis 

 

Principle component analysis (PCA) is a feature selection method that is widely used to obtain 

dominant information from multi-dimensional data sets [61, 62]. According to mathematics, principal 

component analysis (PCA) is an orthogonal linear transformation that changes the coordinate 

(variable) system of the data in such a way that the largest variance by some projection of the data is 

found to be on the first coordinate (the first principal component), the second largest variance on the 

second coordinate, and so on. The benefit of PCA is that the data's dimensions are often reduced to 

two or three [63]. From multi-dimensional datasets, the original data space, X, is divided into much 

fewer dimensions by PCA. The highest variances in the data set are described by a hyperplane in the 

lower dimension. Measurements are projected onto this hyperplane to produce new coordinates 

known as scores. It is simple to identify a significant aspect of an unknown variable from a group of 

variables in this lower dimension and variables. The original data X can be represented as a linear 

combination of a set of m orthonormal vectors iu  
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



m

i

iiuZX
1

                                      (2.5) 

Here, the coefficients iz  can be found in the following equation: xuz T

ii  . The outcome is a 

rotation of the coordinate system from the initial data set, x, to the new set of coordinates, z. Only a 

portion (k<m) of the fundamental vectors is maintained in order to minimize the size of the data set. 

Each vector x is then roughly represented as 



d

i

ii

M

i

ii ubuzx
11

~ . The Principal components are 

the vectors 
iu , which correspond to the eigenvectors of the data set's covariance matrix. The major 

components and coefficients 
ib should be selected so that, on average, the original vector x is best 

approximated. If we choose the vectors 
iu  that correspond to the biggest eigenvalues of the 

covariance matrix, the sum of squares of the errors over the entire data set is reduced. The original 

data set, which is represented in fewer dimensions after PCA transformation (typically 2-3). 

Given, 


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11211                                                  (2.6) 

Here, each row in x is one measurement, and the number of columns m is equal to the length of the 

measurement sequence. Because the original data set has a high dimension, we use principal 

component analysis to create a new data set with a reduced dimension. The procedure described above 

is used to compute the covariance matrix C = cov (X). Its orthonormal basis's ( ]....[ 21 muuuU  ) 

eigenvalues λ and eigenvectors iu  are such that, 1UU T . By using the eigenvalues of the matrix C, 

this transformation creates a new data matrix with a smaller dimension, where choosing the greatest 

values λ corresponds to the principal components with the most significance. To ensure successful 

class separation, the number of PCs to be selected must be adequate. Low-contribution principal 

components (low values of  ) should be ignored. The first k number of PCs is to be considered new 

features, while the remaining (m-k) components are to be ignored. By doing so, we are able to create 

the new data matrix D, which has the dimensions n × k and new feature variables as ijz indicated by: 


















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11211                                                   (2.7) 

PCA Algorithm: 

Input: [X] n × d, original data set.  

Output: Transform matrix R, Reduced dimension data set, z 

i) Standardize the d-dimensional dataset using the following: 
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Mean,       

SD:          

Standardized data,  ‘ for i=1,2,….d  

ii) Compute the covariance matrix:     

  

iii) Compute eigenvalues e1,e2,…….ed of COV and sort them in descending order. 

iv) Compute matrix V which satisfies : 

v)  , where D is the diagonal matrix of eigenvalues of COV.     

vi) Form eigenvectors (also called Principal components) 

vii) Compute reduced dimension data set z : 

 for i = 1, 2,….., k, where , where,  

R is the first k columns  of V 

 

2.2.3 Correlation 

A statistical tool that can be used for induction motor defect analysis is correlation analysis. The term 

"correlation" is used to describe how strongly two variables are related. If changes in one variable's 

magnitude frequently correspond with changes in the other variable's magnitude, then two variables 

are said to be correlated. Positive correlation is a term used to describe two variables when j tends to 

rise as i rises. The variables are said to be negatively linked if j tends to decline as i rises. The 

variables are referred to as uncorrelated if changes in the values of i have no effect on the values of  j. 
 

The supplied set of n pairs of observations on the two variables i and j is denoted by (i1 j1), (i2 j2),....(in 

jn). The correlation coefficient between variables i and j is then indicated by the symbol  [64]. 

ji

ji
q



),cov(
                           (2.8) 

Here, cov (i, j) stands for the covariance of i and j and i  and j are the standard deviations of i and j, 

respectively. The Pearson's product-moment formula is used to calculate the linear correlation 

between variables i and j. There are numerous more ways to write the formula for . Equation 2.8 is 

formed by inserting the explicit expression for cov (i, j) , i  and j and multiplying the numerator and 

denominator by n. 









22 )(2.)(

))((

jjii

jjii
q

                                               (2.9) 

Now expanding the expression 
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Again the numerator and denominator are multiplied by n, and since  iin and  jjn , it 

can be written 

  

  
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                                  (2.11) 

The numerical value of q cannot be more than 1 because the correlation coefficient q is in between -1 

and +1. 

 

2.3 Support Vector Machine 
 

Support vector machine is a statistical learning theory to solve the problem of pattern recognition in 

classification problems. Classification is performed by finding the separating hyperplane, which 

separates the functions linearly and nonlinearly. SVM finds a hyperplane for isolation in the feature 

space to classify unknown feature points in the space. 

 

2.3.1 Linear Function 
 

SVM generates an input-output function mapping from the set of labelled training data. These features 

are extracted from input, and the main goal of SVM algorithms is to use a function to divide the 

training data set (x1, y1), (x2, y2), …,(xn, yn) into 2 classes (+1,-1) and produce a classifier. In this case, 

xi is the feature vector and yi€{+1, -1} is the class vector. It separates the classes by a hyperplane and 

is given by 

(wT.X) + b = 0                                                                     (2.12) 

 

Here, X denotes the feature vector; xi are called patterns or examples; w is the weight vector, and b is 

the bias. If and only if,  

(wT.X) + b>0 when yi =+1 and (wT.X) +b<0 when yi = -1    (2.13) 

the hyperplane [(wT.X)+ b] separates the data. 

 

In order to be qualified as a better classifier, the distance between the hyperplanes or margin (2/||w||) 

should be as large as possible [65, 66]. The optimal separating hyperplane maximizes the sum of 

projected distances over it from the nearest data point in each class. These data points are called 

support vectors and are shown in Fig. 2.1(a). 

 

2.3.2 Nonlinear Function 
 

The linear classifiers cannot be applied for the generation of non-linear decision boundaries. A non-

linear classifier is needed for obtaining better accuracy in many applications. The data is mapped from 

the input space X to a feature space G to derive a nonlinear classifier out of a linear classifier using the 

nonlinear function G : Xϕ (X).  The discriminant function is expressed as: 

)(Xf bXWT  )(                                                                                                      (2.14)  
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in the feature space. The representer theorem (Kimeldorf and Wahba, 1971) shows that (for SVMs for 

non-linear  case), 

)(
1

i

m

i

i XW 


                                                                                                                 (2.15) 

Here, is a weighing multiplier. Instead of optimizing W directly the value of can be optimized. The 

decision rule is now given by the discriminant function as:  

bXXXf i
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i 


)().()(
1

                                                                                             (2.16)  

The G (feature space) may be high dimensional, and the kernel function k (X, X’) can be utilized to 

make the computation simpler and more efficient. The kernel function, expressed as k (X, X’) = ϕ (X)T 

ϕ (X’) can be computed efficiently [67]. For linear SVM, the hyperplane separates the feature vectors 

into two sets of classes, but if the classes are not separable linearly, then the kernel trick is used to 

separate the classes using a hypersurface by increasing the number of dimensions. Three kernels are 

commonly used [68, 69]: 

(i) The polynomial kernel: k (X, X’) = (XTX’ +1)p , where p is the order of polynomial       (2.17) 

(ii) The linear kernel: k (X, X’) = (XTX’ +1) {p=1}                                                               (2.18) 

(iii)  The RBF kernel: k (X, X’) = exp (|X-X’|2/22)                                                                 (2.19) 

Here, the 2 is squared variance of the Gaussian function. 

 

 

Figure 2.1: (a) Linear SVM classification 

 

 

 

Figure 2.1: (b) Non Linear SVM classification 
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2.4 Artificial Neural Network (ANN) 
 

Based on their connection architecture, neural networks can be divided into two broad groups: 

feedforward (non-recurrent) and feedback (recurrent). Based on their architectural characteristics, 

feed-forward networks are further divided into four groups: multilayer perceptrons (MLPs), counter-

propagation networks, cerebellar model controllers, and radial basis function networks (RBF Nets). 

The application of MLPs is the only topic covered in this chapter. RBF Nets and Self-Organizing 

Feature Maps (SOFMs) are also briefly introduced. 

 

 

2.4.1 Multilayer Perceptron 
 

Neurons are organized into clusters termed “layers” in ANNs. In Fig. 2.2, the name "Multilayer 

Perceptron" denotes multiple layers of neurons. These layers are the input layer, the output layer, and 

the hidden layer [70]. 

 

Input Layer: It comprises a group of sensory components that take inputs from the outside world. 

 

Output Layer: The output layer is made up of neurons that convey the system's output to the user or 

outside world. 
 

Hidden Layer: Between the two layers, there are typically a number of hidden layers. 

 

The neuron in the input layer produces output when it receives input, and this output is then used as 

input by the neurons in the following layer. Up until the output layer is activated and its neurons fire 

their output to the surrounding environment, the process continues. 

 

Figure 2.2: Multilayer perceptron with a single hidden layer 

 

Radial Basis Function Network 

RBF nets are another form of feed-forward neural networks. Their architecture is very similar to the 

single hidden layer MLP shown in Fig. 2.2. The transfer functions of the neurons in the hidden and 

output layers, as well as the weight matrices of these layers, are what differentiate them [71]. 
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The net input to the network's hidden neurons is the vector distance between an RBF net's weight w 

and its input vector p, multiplied by the bias b. The transfer function of hidden neurons is Gaussian or 

bell shaped function given by the following expression: 

)()( xsqrtexF                                                                                                     (2.20) 

Here, x represents the vector distance between the hidden layer neuron's output, F(x), and its weight 

vector, w, and input vector, p, multiplied by the bias, b. The output layer neurons operate similarly to 

the output layer neurons in the MLP, except for the difference that their transfer function is purelin, 

(of the form y = mx + c), that the output layer is linear. Therefore, it is seen that the non-linearity in 

RBF nets is introduced due to the radial basis transfer function of the hidden layer neurons. 

 

Limitations of ANN: The primary issue with ANNs is the network's mysterious operation. ANN 

sometimes provides a puzzling solution but doesn't explain why or how it works. The network 

becomes less reliable as a result. 

 

2.5 Signal Processing techniques 

 

Many researchers have used various methods of signal processing to monitor the health of electrical 

devices (vibration monitoring, current monitoring, etc.). Signal processing can be broken down into 

three primary subcategories to detect various faults: spectrum estimating techniques, time-domain 

approaches, and time-frequency estimation. 

 

2.5.1 Spectral Analysis 
 

Techniques for spectral analysis are frequently employed in machine diagnosis. Non-parametric, 

parametric, and high resolution approaches can all be used for spectrum estimation. Non-parametric 

techniques are based on optimal band pass analysis and Fourier analysis. The traditional Fourier 

analysis technique has been applied in this work. The Fourier analysis is described below. 
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                                                                    (2.21)

 

where, x(t) can be represented the instantaneous value of current waveform. 

= Average value of signal,  = Angular frequency of fundamental component =  , T = Time 

period of the wave. 

 , 
                                                (2.22)

 

 

2.5.2 Fast Fourier Transform (FFT) 
 

A signal is classified as discrete-time or counting-time and may be periodic or non-periodic in nature. 

The discrete signal is formed from a continuous-time signal by sampling. A signal can be represented 
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in both frequency domain and time domain formats. In the frequency domain, a signal has one or 

more frequencies. In order to simplify a complicated signal for analysis, frequency domain analysis is 

required. A signal's Fourier transformation converts it from time-domain to frequency-domain 

(spectrum) [72,73]. 
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Discrete –Time Fourier Transform (DTFT): 
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The discrete Fourier Transform (DFT) is able to convert from a time-domain into a frequency domain 

spectrum using Fourier series for finite length signals. 

Assuming discrete signal of finite length sequence 1

0]}[{ 



N

nnx DFT of the signal is a sequence 

][kX for k=0,….., (N-1) as given by : 
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 The inverse DFT is given by: 

 NekX
N

nx jnk /][
1

][ 2 , n = 0.1, …. (N-1)                                                         (2.26) 

The Fast Fourier Transform reduces the complexity of the computation steps of the DFT by using an 

efficient algorithm.  The number of multiplicants present has a major impact on the evaluation time 

for DFT. While DFT requires N2 multiplication, FFT merely needs N log 2 (N). 

 

Two discrete Fourier transformations of length N/2 are taken into consideration by the FFT method, 

which is its main benefit. This decomposition can be applied repeatedly until only discrete Fourier 

transforms of individual points are left if N is a power of 2. 
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simple to see that as the computation moves forward, the identical values of 
nk

NW  are calculated 

numerous times. Thus, two N/2-point transforms, one on event input data and the other on odd input 

data, can be used to produce an N-point DFT. 

 

2.5.3 Time-frequency analysis (Wavelet) 
 

FFT can't be used to analyze non-stationary signals. The most popular method for analyzing non-

stationary signals is time-frequency analysis, and STFT can be employed in these circumstances. 

However, STFT has a drawback in that it consistently delivers resolution for all frequencies when 
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analyzing the entire signal within the same frame. The disadvantage of FFT and STFT is typically 

solved by using the wavelet transform [74]. The MRA gave rise to the wavelet transform, which 

computes the wavelet decomposition of the signal from its best scale approximation and is recognized 

for its ease of use and recursive filtering process. For a variety of reasons, the wavelet transform has 

recently emerged as one of the most promising mathematical techniques for signal processing. It has 

gained widespread acceptance in machine fault analysis for signal decomposition into a set of basic 

functions with variable window size; the basis functions are known as wavelets. It is possible to create 

the basis by stretching and compressing the "mother" wavelet ψ (t) [75,76]. 

   t,T
-T
S

t1
ψ t = ψ

S
                                                                                          (2.27) 

Here, "S" and "t" are the scaling and shifting parameters, respectively. The wavelet transform is 

separately computed for different time-domain signal segments at different frequencies. Wavelet 

coefficients are obtained, at the first level of signal decomposition by applying a mother wavelet. The 

repetition of this process depends on the scaling and translation of the mother wavelet. The mother is 

named due to fact that formation is the basis for various processes of transformation. A mother 

wavelet can be imagined as a windowed function that moves or shifts along the signal of a time-series 

from the time t = 0 to t =T. In the window, the portion of the signal is multiplied by the mother 

wavelet, and then it is integrated over all times to get the wavelet coefficients. The wavelet family is 

typically seen as the one that is most suitable for a given application since it can represent that signal 

with the fewest number of coefficients feasible. Every application would have one mother wavelet 

that would be most suited to it. Wavelet theory attempts to decompose spectra into high and low 

frequency content in an unusual way in order to simplify information extraction processes. Discrete or 

continuous wavelet transforms are also possible. Although the discrete signal is more effective with 

less computing time and fewer parameters than the continuous wavelet transform, it also requires 

more computation time [77]. DWT divides the signal into a collection of wavelet basis functions that 

are orthogonal to one another. 

 

 

Figure 2.3: Schematic diagram of the m-th level wavelet decomposition [162] 
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The mother wavelet is the original function, and the wavelet functions are scaled, translated, and 

dilated versions of this original function. There are different mother wavelet functions (Daubechies 

(db), Symlets (Sym), Coiflets (Coif)) that are used for different fault detection in the machines. The 

results of DWT-based decomposition are useful data contained in "approximate" and "details" parts, 

as shown in Fig. 2.3 [78].  The high frequency signal components are referred to as “detail”, while the 

low frequency signal components are referred to as “approximate”. When computing the "n"-level 

decomposition, higher detail parts are removed, which reduces the overall frequency of the resulting 

data. The DWT is implemented in this work to decompose a current signal into scales with resolutions 

of different time and frequency using a multi-resolution signal decomposition algorithm. 

 

2.5.4 Cross Correlation of time series signals 
 

The auto-correlation measures the similarity between a signal and its shifted version. The auto-

correlation gauges how similar a signal is to its shifted counterpart. The cross-correlation gauges the 

similarity between two signal types that are wholly different. Let x(t) and y(t) denote  a pair of real-

valued signals. Then the cross- correlation function of this pair of signals is defined as  






 dttytxtRxy )().()(                                                                          (2.28) 

where  is the time lag. 

 

If the two signals x(t) and y(t) are somewhat similar, then the value of the cross-correlation function 

Rxy() will be finite over some range of . Thus, cross-correlation gives the measure of similarity or 

coherence, between them [79]. If the signals x(t) and y(t) have complex values, the cross correlation is 

defined as follows [80]:  






 dttytxRxy )().()( *                                                         (2.29) 

 

It is important to note that if the two signals x(t) and y(t) are similar, the value of )(xyR  will be 

finite. If )(xyR = 0, then the two signals will not have any similarity between them. The cross-

correlation coefficients are the data samples (amplitude vs. time) of a cross-correlated signal.  
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Chapter 3 

Fault Classification using Multivariate Statistical Analysis 

 

Early fault detection in induction machines is essential to reduce downtime costs caused by 

unscheduled shutdown of the motor. It is also essential to protect the motor and increase the lifetime 

of the machine component. In this work, a novel mechanism for anticipating and categorising the 

problem has been developed. Three motors with three distinct loading circumstances and six different 

known types of faults, including one healthy motor, were used to gather three phase stator currents 

(amplitude vs. time). Fault classifications have been performed for both the time domain and the 

frequency domain both.The stator currents have been transformed by the fast Fourier transform (FFT) 

method. The principal components have been computed on raw data as well as the FFT spectrum. The 

relative distances have been calculated from scatter plots of different faulty machines and a scatter 

plot of unknown faulty machines. Comparing the distance matrices, the unknown faults have been 

authenticated following the minimum distance to the nearest neighbourhood criterion. Comparing two 

types of scatter plots, one using PCA of raw data and the other using PCA of the FFT spectrum, it has 

been concluded that the sensitivity of the FFT spectrum PCA yields is better. 

 

3.1 Introduction 

 Unscheduled shutdowns due to machine failure can cause enormous costs and reduce component life. 

Early fault detection of induction motors has become very necessary to reduce downtime costs and 

increase component lifetime. MCSA is a useful technique that is used to localise abnormal conditions 

in the motor using stator current spectral analysis. With the help of stator current signature analysis, 

different electrical and mechanical faults (different bearing problems, rotor misalignment, rotor 

broken bar, and other mechanical faults) can be detected [81–84]. Electrical signals are cheaper, 

simpler, and easier to measure and store than other types of signals (e.g., vibration, acoustic, etc.), so 

maintenance costs can be reduced by applying this technique. A pattern recognition technique has 

been used to detect a broken rotor bar fault in an induction motor using ‘K-Nearest Neighbors’ after 

extracting the features from current signals [85]. Using "K-Nearest Neighbors" to extract features 

from current waveforms, three types of faults in induction motors have been classified [86]. The 

nearest neighbour algorithm has been used with sequence component analysis for online stator fault 

analysis of rotating machines [87]. The nearest neighbour algorithm has been used to detect faults in 

current signals in the time domain, but it has not been used to detect faults in the time and frequency 

domains to compare the sensitivities of the two domains. This chapter discusses a feature extraction 

technique based on the FFT spectrum and, as a result, principal component analysis (PCA). The 

purpose of feature selection is to choose pertinent features that enable an accurate description of the 

defective condition and, as a result, defect classification, diagnosis, and prognosis. Feature extraction 
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procedures are used to extract the information from each fault condition [88]. These procedures allow 

for the determination of a machine's health status. It was created to make input features less 

dimensional for both supervised and unsupervised classification applications, and it can be used to 

choose features for machine fault classification. In this work, PCA was applied to three phase stator 

current samples as well as FFT spectrum samples to improve the accuracy of fault classification. 

 

3.2 Experimentation and Data Acquisition 
 

We have carried out the experimentation in the laboratory to capture three phase current signals under 

six different faulty induction motors and one healthy motor. The rating of each motor is 1 HP, 2 poles, 

and 60 Hz. Each known faulty motor's data was collected six times under three different loading 

conditions. A picture of a laboratory has been shown in Fig. 3.1(a), where experiments have been 

carried out. The data acquisition system has been represented by the block diagram shown in Fig. 

3.1(b); where the current signals are captured independently by a three phase power analyzer 

(Yokogawa WT 500) under three loading conditions. This ensures that variations in loading 

conditions are accounted for. The maximum inputs of the Yokogawa WT 500 are 40 Arms and 1000 

VRMS. Hall effect current sensors are used in this system because they allow the precise measurement 

of currents, providing accurate phase-shift information. The data samples from the unknown faulty 

motors are also collected six times at a time interval of 5 to 6 minutes, under three different loading 

conditions. The WT Viewer software is used on the PC to convert the current waveforms to numerical 

values, and the 1002 data samples of each phase current are stored in a "CSV" file format. 1002 

samples are discovered in 50 milliseconds, or 20,040 samples per second. These induction motors' 

data are gathered under three different loading scenarios, including: 

Loading condition 1: The motor is first operated in the no-load condition, that is, with no 

mechanical load attached to the motor shaft. 

Loading condition 2: As there is no electrical load linked to the generator and simply a DC 

generator (0.75 kW) coupled to the motor, the generator is free to operate at no load. 

Load condition 3: Finally, the generator is subjected to a 200 W electrical demand, (while the full 

load of the generator is 750 W. As a result, 200 W of additional electrical demand is 

applied to the motor while the generator operates as a mechanical load. 
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(a)  

 

(b) 

 
Figure 3.1: (a) Experimental setup [18] and (b) block diagram of data acquisition from experimental setup. 

 

 

3.3 Methods 
 

Harmonics are detected in the phase currents of the stator if an induction machine defect (mechanical 

or electrical) occurs. FFT is usually used to find out the spectra of stator currents (three-phase). The 

primary goal of this research is to identify an unidentified defect utilising raw sensor current data 

samples and FFT spectrum samples. The PCA transformation over stator current data and the stator 

current FFT spectrum are used to extract the characteristic features of known fault types. It was 

determined which type of analysis is more sensitive by comparing the relative distances among PCA 

scores of fault features in both cases. The methods are explained below. 

 

3.3.1Principal Component Analysis (PCA) 
 

An unsupervised multivariate statistical method known as principal component analysis alters the 

initial data received from an experiment in order to extract features and decrease dimensions. It is a 

linear dimensionality reduction technique that successfully reduces data dimensions without 

significantly reducing information [89]. PCA can also be used to compress data without sacrificing its 

usefulness. A subspace modelling technique known as PCA transforms the original data along a few 

chosen principal component directions that are orthogonal to one another and along which the data 

variability is greatest. The details about PCA with mathematical expression have been discussed in 

Chapter 2. 
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The features are extracted by PCA from the captured current signals of each induction motor in the 

time domain, after that, the FFT spectra of the current signals are computed, and again, the features 

are extracted from the spectra using PCA. The dimensions are reduced to two for each phase of each 

type of motor in both domains. 

 

3.3.2 Fast Fourier Transform (FFT) 
 

The Fourier transform can be used to convert a time-domain signal to a frequency-domain signal. For 

the purpose of easier analysis, a complex signal must be divided into simpler components using 

frequency domain analysis. This technique has been described in brief in Chapter 2. The FFT 

spectrum of each phase current signal of each induction motor has been computed by the FFT 

algorithm, and after that, features are extracted from the spectrum of each phase current signal by 

PCA transformation. Two principal components of the spectrum of each phase contain relevant 

feature information for each type of motor. 

 

3.3.3 Nearest distance neighbourhood 
 

A classification tool that is widely used to classify unknown data among multiple trained and known 

classes is nearest neighbour. The details about this technique have been described in Chapter 2. 

Euclidean distances are computed from an unknown class to each known class, and the unknown class 

is identified depending on the minimum value of the distance. Three unknown faults have been 

classified using the "nearest neighbor" neighbourhood classification method. Each fault will be 

authenticated if the detected classes for all three phases are the same. 

 

 

3.4 Result and Discussion 

 

The data samples of three-phase currents (amplitude vs. time) are collected from six known types of 

faulty induction motors (broken rotor bars (BR), rotor misalignment (RM), faulty bearings (FB), rotor 

unbalance (RU), single-phase voltage unbalance (VU), stator winding fault (SF)) and one healthy 

motor (HM) under three loading conditions as discussed in Section 3.2. Current data samples from 

three induction motors with three unknown faults are also randomly collected under three different 

loading conditions. In this work, PCA was applied for feature extraction from three phase stator 

currents as well as the FFT spectrum of currents from each motor to compare fault classification in 

time and frequency domains both. The classifications are performed in the time domain first, then in 

the frequency domain. The fault features are extracted from current data samples using PCA 

transformation, and the two Eigenvectors corresponding to the largest eigenvalues of each phase 

current of a motor are referred to as principal components (PC1 and PC2), which are significant 

features of each known and unknown type of fault. Three PC plots of each phase of each motor have 

been considered as one class, and the Euclidean distance of the PC score for a data set of unknown 

type with respect to all the PC values of known faults is then computed under three loading conditions 
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(Table 3.1–3.3). Using the "nearest neighborhood minimum distance classification rule," the unknown 

fault has been classified phase wise. Each unknown fault has been authenticated if the classification 

results for all three phases are the same. 

 

The FFT spectra are computed from the stator's current data set (known and unknown types of faults), 

and data samples are taken (amplitude vs. frequency) from the spectra. In a similar manner, PCs are 

computed for three phases. The three phase known and unknown PC scores are plotted for both cases 

(i.e., the stator current data set and the FFT spectrum of the stator current data set) (Fig. 3.3a, b). 

Then, the Euclidean distance between each PC value for known defects and the unknown type of data 

set is calculated. The unknown fault has been verified using the nearest neighborhood minimum 

distance categorization rule. PCA transformation of stator current data for all phases and FFT spectra 

of stator currents for all phases were used to validate the unknown-type faults. The three unknown 

faults resemble a broken rotor bar, a stator winding fault, and a faulted bearing because the broken 

rotor bar, the stator winding fault, and the faulted bearing are the fault types where the minimum 

relative distances of unknown fault circumstances occur in three phases for all loading conditions. 

 

   

(a) (b) (c) 

 

   

(a) (b) (c) 
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(a) (b) (c) 

 
Figure 3.2: Current signals in time domain and frequency domain of three faulty induction motors (Broken 

rotor bar(BR), Faulted bearing(FB), Stator winding fault(SF)) under loading condition 1 for (a) R phase (b) Y 

phase (c) B phase 

 

 

 

Figure 3.3: (a) PCA scatter plot of stator current data under loading condition 1, unknown 1=X [18] 

 

 

Figure 3.3: (b) PCA scatter plot of FFT spectrum of stator current data under loading condition 1, unknown 

1=X [18] 

*Note: HM (Healthy motor), BR= Bowed rotor, FB= Faulted bearing, RM=Rotor misalignment, RU=Rotor 

unbalance, VU=Single phase unbalance voltage, SF=Stator winding fault. 

 

 



Chapter 3  Fault Classification using Multivariate Statistical Analysis 

32 

Table 3.1: (a)  Relative distances from PCA values of R phase of three unknown type fault to other known type 

faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 7.22 e-01 2.32 e+01 1.04 e+01 3.56 e+01 1.17 e+01 1.03 e+01 1.11 e+02 

Unknown 2 1.16 e+01 2.93 e+01 9.74 e+00 3.60 e+01 8.24 e-01 49.8117 1.27 e+02 

Unknown 3 1.85 e+01 4.59 e+00 1.61 e+01 5.38 e+01 2.61 e+01 1.86 e+01 1.28 e+02 

 

Table 3.1: (b)  Relative distances from PCA values of Y phase of three unknown type fault to other known type 

faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.12e+00 2.22e+01 9.52e+00 3.82e+01 1.06e+01 8.20e+00 1.18 e+02 

Unknown 2 1.17e+01 2.76e+01 8.17e+00 3.92e+01 6.88e-01 5.01e+00 1.28 e+02 

Unknown 3 1.82e+01 5.10e+00 1.52e+01 5.54e+01 2.35e+01 1.82e+01 1.34 e+02 

 

Table 3.1: (c)  Relative distances from PCA values of B phase of three unknown type fault to other known type 

faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.82e+00 2.61e+01 9.92e+00 4.16e+01 1.76e+01 9.30e+00 1.48 e+02 

Unknown 2 1.36e+01 2.97e+01 9.28e+00 4.12e+01 7.18e-01 7.03e+00 1.32 e+02 

Unknown 3 2.41e+01 5.01e+00 1.63e+01 6.23e+01 2.89e+01 2.03e+01 1.68 e+02 

 

Table 3.2: (a) Relative distances from PCA values of R phase of three unknown type fault to other known type 

faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.5995 22.8884 3.9768 94.5027 103.1037 68.1374 113.6055 

Unknown 2 100.7058 92.9978 101.0687 25.0383 1.2066 61.3489 128.2452 

Unknown 3 20.5799 1.4531 24.806 81.9012 95.0497 49.8117 129.1329 

 

 

 



Chapter 3  Fault Classification using Multivariate Statistical Analysis 

33 

Table 3.2: (b)  Relative distances from PCA values of Y phase of three unknown type fault to other known type 

faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.2146 20.6001 5.9223 93.8975 103.7712 68.1018 118.3885 

Unknown 2 104.0263 95.707 105.0827 25.404 1.0802 62.3524 128.5818 

Unknown 3 22.8048 1.3976 27.4239 81.307 95.9015 49.7853 134.1191 

 

Table 3.2: (c)  Relative distances from PCA values of B phase of three unknown type fault to other known type 

faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.3727 22.2749 4.5784 92.2276 101.5424 67.2517 106.9484 

Unknown 2 104.2143 95.9654 104.8171 26.6206 2.0132 64.749 121.6411 

Unknown 3 21.6528 1.1784 26.5209 79.1638 93.0589 48.1048 122.915 

 

Table 3.3: (a)  Relative distances from PCA values of R phase of three unknown type fault to other known type 

faults under loading condition 3 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.4127 132.254 46.4182 19.303 124.7827 134.3813 50.2508 

Unknown 2 122.1216 63.6129 136.2424 133.0553 1.4758 52.6507 166.808 

Unknown 3 130.0075 1.038 121.1312 131.8791 63.453 13.7633 159.7195 

 

Table 3.3: (b)  Relative distances from PCA values of Y phase of three unknown type fault to other known type 

faults under loading condition 3 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 0.9615 138.5961 42.5756 11.631 131.0308 138.0494 44.5876 

Unknown 2 132.676 54.7301 143.044 135.9958 1.2245 42.8111 165.8662 

Unknown 3 141.0888 2.1089 133.7722 139.4481 57.3165 14.1496 160.9616 
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Table 3.3: (c)  Relative distances from PCA values of B phase of three unknown type fault to other known type 

faults under loading condition 3 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 2.2566 142.2153 46.9363 22.2264 123.1654 141.9167 57.9345 

Unknown 2 124.3279 63.4372 132.7063 127.2282 2.2092 49.847 166.8238 

Unknown 3 141.9026 1.407 129.4168 135.6758 60.2704 14.158 166.1579 

 

Table 3.4: (a)  Relative distances from PCA values(FFT spectrum of current) of R phase of three unknown type 

fault to other known type faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 1.02e+01 1.91e+02 1.45e+03 1.47e+03 1.32e+03 1.43e+03 2.23 e+02 

Unknown 2 1.33e+03 1.34e+03 2.97e+02 1.70e+02 9.37e+00 2.08e+02 1.77 e+03 

Unknown 3 1.57e+02 2.22e+01 1.43e+03 1.49e+03 1.33e+03 1.44e+03 1.69 e+02 

 

Table 3.4: (b)  Relative distances from PCA values(FFT spectrum of current) of Y phase of three unknown type 

fault to other known type faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 2.09e+01 8.08e+01 1.39e+03 1.42e+03 1.25 e+03 1.40e+03 9.21e+01 

Unknown 2 1.25e+03 1.32e+03 1.49e+02 2.87e+02 2.03 e+01 1.63e+02 1.43e+03 

Unknown 3 5.62e+01 2.59e+01 1.45e+03 1.48e+03 1.31 e+03 1.46e+03 2.76e+01 

 

Table 3.4: (c)  Relative distances from PCA values(FFT spectrum of current) of B phase of three unknown type 

fault to other known type faults under loading condition 1 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 7.77e+00 1.39e+02 1.30e+03 1.35e+03 1.11 e+03 1.30e+03 1.57e+02 

Unknown 2 1.10e+03 1.11e+03 3.04e+02 3.20e+02 7.47 e+00 2.46e+02 1.23e+03 

Unknown 3 1.10e+02 1.76e+01 1.28e+03 1.38e+03 1.13 e+03 1.29e+03 1.41e+02 
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Table 3.5: (a)  Relative distances from PCA values(FFT spectrum of current) of R phase of three unknown type 

fault to other known type faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 15.594384 137.3293 60.03621 102.8263 190.1004 204.5873 1429.081 

Unknown 2 198.273 95.49092 158.0512 132.9904 14.48992 68.00124 1517.934 

Unknown 3 145.8354 13.73308 93.04992 53.52567 79.06988 56.99151 1433.986 

 

Table 3.5: (b)  Relative distances from PCA values(FFT spectrum of current) of Y phase of three unknown type 

fault to other known type faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 13.846215 419.4571 433.3394 418.9174 402.7677 494.9936 614.5629 

Unknown 2 499.2253 191.71147 108.4283 122.79723 16.649359 131.2715 817.9604 

Unknown 3 515.313 14.95786 99.18573 59.98965 181.10605 117.5465 822.1678 

 

Table 3.5: (c)  Relative distances from PCA values(FFT spectrum of current) of B phase of three unknown type 

fault to other known type faults under loading condition 2 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 16.40869 50.2007 101.354 66.83551 87.23706 64.54736 1041.903 

Unknown 2 69.21398 113.7942 43.01786 83.20518 14.8953 45.40862 992.6587 

Unknown 3 71.21319 18.06855 145.5587 103.9796 143.035 64.18779 1101.064 

 

Table 3.6: (a)  Relative distances from PCA values(FFT spectrum of current) of R phase of three unknown type 

fault to other known type faults under loading condition 3 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 12.94382 49.72954 101.721 67.09038 87.75611 64.73262 1042.368 

Unknown 2 69.06098 113.5819 42.74768 37.73544 13.74379 44.92019 993.1027 

Unknown 3 72.1 16.97086 146.5902 104.9144 144.117 65.194 1102.046 
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Table 3.6: (b)  Relative distances from PCA values(FFT spectrum of current) of Y phase of three unknown type 

fault to other known type faults under loading condition 3 

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 14.81389 137.5778 60.345 103.1495 190.1215 204.7745 1429.621 

Unknown 2 198.7243 95.26474 158.2755 132.8926 15.50021 67.02383 1517.244 

Unknown 3 146.1343 13.26528 93.26595 53.53943 79.80715 57.09818 1433.153 

 

Table 3.6: (c)  Relative distances from PCA values(FFT spectrum of current) of B phase of three unknown type 

fault to other known type faults under loading condition 3  

Unknown 

Type 

Fault Types 

BR FB RM RU SF VU HM 

Unknown 1 12.59438 137.3293 60.03621 102.8263 190.1004 204.5873 1429.081 

Unknown 2 197.9189 94.92545 157.5977 132.4495 14.54769 67.46773 1517.324 

Unknown 3 146.5485 15.52943 93.72269 54.0832 79.27418 56.52175 1433.617 

 

*Note: Loading condition 1: No Mechanical load, Loading condition 2: With D.C. generator as a mechanical 

load, Loading condition 3: 200 Watt electrical load connected to the generator (while full load of the generator 

is 750 W) 

 

According to the results tabulated in Tables 3.1-3.3 and 3.4-3.6, the relative distance metrics between 

the PCA score of an unknown type and the other known types are much less than that of the PCA 

score of the stator current spectrum. Applying this technique, unknown faults have been discovered in 

all cases where the minimal relative distances of unknown fault conditions exist with respect to 

known type faults. The relative distances of the PCA spectrum are greater than the relative distances 

of the raw data PCA value of stator currents, as shown in Tables 3-5 and 6-8.Thus, it may be 

concluded that feature extraction by PCA transformation of spectra is much more efficient and 

sensitive than that by PCA transformation of simple original data. 
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Chapter 4 

Fault Classification using SVM and DDAG 

 

This work attempts to develop a robust support vector machine (SVM)-based fault classification 

scheme for induction motors. Five different kernels, viz., linear, quadratic, polynomial, radial basis, 

and sigmoidal, are inspected using both the time and frequency domain signals of the three fault 

currents, and their classification performances are compared. Significant features were extracted in 

subspace using principal component analysis (PCA) in both the domains for six faulty induction 

motors, three unknown faulty motors, and one healthy motor. This multiclass classification problem 

was reformulated as a combined binary classification problem using the decision-directed acrylic 

graph (DDAG) algorithm to classify faults. To incorporate robustness into the classifier, each fault is 

authenticated by taking into account all three phases of current for three different loadings. Results 

revealed that the radial basis function based classifier evolved out to be the most effective among the 

SVM kernels, considering both time and frequency domain features, with classifier accuracy reaching 

almost 100% with FFT spectrums; hence, it was found to be optimal compared to the rest. Further, 

linear regression has been applied over the linear kernel function to authenticate faults. 

 

4.1 Introduction 
 

Identification and classification of faults in induction motors are important for the smooth operation 

of the system and the longevity of the motor. Besides, identification of the fault is important for 

elimination of the faulted portion and replacement of the same for fast restoration of the system and 

reliability of operation. Due to the richness and variability of signals, direct classification of different 

fault patterns is impossible. Pattern recognition is an unsupervised classification method that uses an 

algorithm to automatically recognise familiar patterns in unknown data quickly and accurately [90–

92]. An artificial intelligence based fault diagnosis system for rotating machines is gaining popularity 

due to its robustness and adaptive capability [93]. Several AI techniques have been proposed for fault 

classification of rotating machines over the past few years, such as expert systems [94], fuzzy logic 

[95], the hybrid FMM-CART model [96], artificial neural networks (ANNs) [97–99], and adaptive 

neuro-fuzzy inference systems [100, 101]. However, these methods have some limitations in their 

applications in real scenarios due to their local optimal solution, over-fitting, and low convergence 

rate [102]. When used to analyse the small training sample, these approaches likewise have low 

generalization. In the real world, the experts deal with several classes of faults for the fault 

classification of rotating machines. Multi-class problems can also be handled by ANN, but the system 

has some defects due to its complicated network, unstable network structure, and long training time 

[103]. SVMs do not have this type of problem, which is easier to understand, and the different kernels 
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of SVM provide a different level of flexibility. SVM has been developed for two class classification 

problems, but it can be applied to multiclass problems [104]. SVM surpasses ANN in classification 

and has better generalization performance, allowing it to generate decisions that are trustworthy for 

small samples of data [105]. The multiclass problem can be solved using two important algorithms in 

the SVM principle: "One Against One" (OAO) and "One Against All" (OAA).The OAO strategy is 

more suitable, more modular to speed up the decision making process by combining with other 

classifiers [106]. The OAO SVM is ineffective at classifying data because the number of SVMs grows 

super-linearly with the number of classes, and its evaluation time is lengthy if there are more than two 

classes. The drawbacks of OAO SVM can be solved by a decision-directed acyclic graph (DDAG), 

which removes the uncertainty of unknown data classification in pair wise classification because the 

data is classified depending on the maximum voting count of membership classes and maintains 

accuracy while reducing training and evaluation time [107]. The two steps of the common fault 

diagnosis system are feature extraction and fault recognition [108]. The feature vectors are the input 

for the AI-based classifiers that identify faults. PCA (Principal Component Analysis) has been used to 

extract relevant fault features from current signals, which provides a way to improve prediction 

performance, better understand data in pattern recognition applications while reducing computation 

time [109, 110]. PCA has been applied before to extract features from vibration signals of rotating 

machines in the time domain, and SVM has been used for fault classification [111–113]. A bearing 

fault diagnosis system has been presented based on bi-spectral features from vibration signals using 

SVM and PCA [114]. According to the literature, SVM-PCA is used to detect faults in a specific 

component of a rotating machine by extracting features from vibration signals in either the time 

domain or the frequency domain using a single type of kernel. It has been discovered that a robust 

classification system for various types of fault patterns (electrical or mechanical) has not been 

developed, instead of one that uses various types of kernels in the space of time domain features of 

current signals and frequency domain features of current signals both. Electrical and mechanical faults 

can be identified using current signature analysis at low cost because it does not require multiple 

sensors [115–117]. The present manuscript aims to not only develop a robust classification system 

using SVM and DDAG for any type of fault identification in the time and frequency domains but also 

analyse the classification performances of different types of kernels. The classifications are performed 

with multiple kernels rather than one because kernel selection is critical in SVM and directly 

influences classification performance due to sample separability [118]. P. Gangsar and R. Tiwari 

investigated the necessity that fault prediction performance using SVM be load independent because 

finding test data and training data at the same load is not always possible [119], but fault classification 

has been performed in this work keeping the training data and test data at the same load. 

 

In this work, the current signals of known, unknown faulty motors are collected at three different 

loads. For training the SVM-based classifiers, fault current signatures corresponding to broken rotor 
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bar, rotor misalignment, faulty bearing, rotor unbalance, single phase voltage unbalance, stator 

winding fault, and one healthy motor under different loading conditions were used. The frequency 

spectra of motor fault current change under time-varying speed conditions [120], so the frequency 

spectra of time-domain fault current signals are obtained using FFT. PCA was used to extract relevant 

features from three-phase current signals and separately extract from FFT spectra. These features are 

used to train the SVM using seven classes to perform the classification process. The fault 

classification algorithm is run for each phase, for each unknown class of fault, and for each loading 

condition. Linear, quadratic, polynomial, radial basis, and sigmoidal kernels are used individually to 

classify each unknown test sample phase-wise, and each kernel develops multiple classifiers for one 

phase using one vs. one SVM algorithm under one loading condition. The DDAG technique is used to 

make a graph structure, considering one classifier as a node, to classify the unknown data sample 

phase wise, accurately reducing evaluation time. The fault is authenticated if the classification results 

of the three phases are equal. Every nonlinear kernel (quadratic, polynomial, radial basis, and 

sigmoidal kernels) is able to authenticate three unknown faults in time domain based fault 

classification, but a linear kernel is unable to authenticate the unknown sample because the maximum 

number of membership classes have not been found in any particular class for all phases. The linear 

kernel, as well as the other nonlinear kernels, can authenticate each unknown fault in the frequency 

domain, and the classification accuracy of both linear and nonlinear kernels is higher in the frequency 

domain than in the time domain. The linearity of data samples of time domain features and the 

linearity of data samples of frequency domain features are calculated separately using the linear 

regression technique to understand the reason for the limitation of the linear kernel for fault 

classification in the time domain. Overall classification accuracies of both domains for three unknown 

fault classifications are compared under three loading conditions to select the best kernel among five 

for induction motor fault classification. 

 

4.2 Dimension reduction and feature extraction by PCA 
 

The work presented in this chapter uses principal component analysis (PCA) to extract features from 

the faulty signals. The mathematical expression of PCA has been described in Chapter 2, and the PCA 

algorithm has also been explained to describe how PCA is able to reduce the dimensions of extracted 

features. PCA is a statistical method that transforms the original data with high dimensions obtained 

from experiments to extract features and reduce dimensions. PCA has the inherent capability of 

reducing the dimension of a data set, preserving the most vital directions of variances in decreasing 

order of importance; thereby extracting the most important features from a multivariate data set. 

Besides, PCA requires less computational cost; and is therefore used widely in multivariate statistical 

analysis. 
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4.3 Feature extraction for classification in time domain and frequency domain 
 

The description about the conversion of signal to frequency spectrum has been described in Chapter 2. 

Fault classifications have been performed using the features of current signals in the time and 

frequency domains separately. The current signals are collected in amplitude vs. time mode, after 

which PCA has been applied for feature extraction and dimension reduction for fault analysis in the 

time domain. PCA have also been applied to extract features from FFT spectrums of current signals. 

The two principal components (PC1 and PC2) comprise the precise fault characteristics of the current 

signal and the FFT spectrum of each defective motor phase. Utilizing several SVM kernels, each 

unknown data sample from each phase has been categorized. 

 

4.4 Multiclass Classification by Pairwise SVM   

 

SVM has been developed for a two class classification problem, but additionally, it permits 

categorising data points into two types using binary information. The same method is applied to 

multiclass classification after dividing the problem into numerous binary classification problems [121, 

122].The feature space data obtained through PCA pre-processing is then trained by a pair-wise 

support vector machine (SVM) using the multiclass-OVO method. SVM is based on machine learning 

theory and provides a new method of classification with a small training sample [123].The multiclass 

SVM technique is very important to predict unknown faults among various types of faults. 

 

For multiclass classification having ‘k’ classes (k>2), the underlying principle is the classification into 

multiple binary classification problems, called a one-vs.-one (OVO) approach, A binary classifier per 

each pair of classes, which separates one class and other (k-1) classes respectively. However, in the 

SVM-OVO method,  number of hyperplanes separates each pair of classes [124]. The PCA 

scores of the unknown data are then classified using  times SVM nodes, which return either 

class 1 or class 2 as the output. The class results are then analysed using a confusion matrix. The 

results are further authenticated by evaluation method of Decision Directed Acrylic Graph (DDAG). 

Here, we have already explained the linear and nonlinear SVM classifiers required for the work 

presented in Chapter 2.The OVO SVM approach constructs possible all binary classifiers from n no of 

classes that are trained by pair of classes out of n classes, such that total   hyperplanes will result 

to separate each pair of classes. A graphical example has been shown in Fig. 4.1 to classify the 

unknown data sample ‘X’ among the four classes. There are 4(4-1)/2 = 6 classifiers which separate 

each pair of classes [125].  

The element j is excluded from the list if Fij>0 after pair-wise (i.e., i and j class and ). SVM 

classification, and this procedure is repeated until the last one is left to classify X. The unknown data 

sample is classified into the class that corresponds to the element number.  Thus It can be said that X 



Chapter 4  Fault Classification using SVM and DDAG 

41 

does not belong to class 4 if F14  > 0, and hence, it may belong to the other three classes. F12 < 0 does 

not belong to class 1. Thus, the remaining classes are class 2 and class 3. Again, it does not belong to 

class 3 as F23 > 0; hence, it could be inferred that the unknown data sample belongs to class 2. 

 

Figure 4.1: Pair-wise classification of unknown data point among multiple class 

 

4.5 Decision Directed Acyclic Graph (DDAG) 
 

A decision-directed acyclic graph (DDAG) has been introduced to overcome the disadvantages of the 

OVO SVM algorithm. It is similar to pair-wise SVM classification [126]. The node in the structure of 

the graph, represents activity by a binary classifier out of the total number of binary classifiers: . 

Using the OAO method,  pairwise data sets are trained with SVM. For each pairwise training, 

the data set corresponding to one of the classes or groups is given class label 1, and the data set for the 

rest of the groups is given class label 2.  

 

Following membership evaluation, the PCA score of the unknown faulty signal is tested against each 

SVM node in DDAG for detecting the class, as shown in Fig. 4.2. Each classifier provides one vote 

for its preferred class, and the final output is selected using the majority vote. One class will be 

selected as a final output when the DDAG is traversed from its root to its leaf at the bottom. The final 

output detect  number of decision classes for k class classification problem, which is the 

highest output value of the classifiers [127-129].  
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Figure 4.2: Illustration of an approach for finding the best out of four classes using DDAG 

 

DDAG Algorithm: 

There are two steps in DDAG algorithm: 

A) Creation of triangular DDAG graph with computed confusion matrix. 

B) Evaluation of membership counts of unknown PCA score with respect to each class. 

 

A) Creation of triangular DDAG graph: 

 

Input:  Read total no. of classes, N 

PCA score of known faulty signals, S (i , j), for i = 1,2,3,…., N; j = 1, 2  

Read PCA score of unknown faulty signal, SU [1, 2]  

Output: DDAG graph, Confusion matrix, C (i , j), for i = 1,2, ….N ,; j = 1,2,…, N 

i) For i = N to 2 

ii) For k = 1 to N-1 

iii) For binary SVM node, SVM (i-k)B, form the training data set : 

Class -1: X1 = [S (3*,N,1) S (3*N,2; S (3*N-1,1) S (3*N-1,2); S (3*N-2,1) S (3*N-2,2)] ;  

T1 = [1; 1; 1] 

Class-2: L = 1 + (k-1)*3 

X2 = [S (L, 1) S (L, 2) ; S (L+1, 1) S (L+1, 2) ; S (L+2,1) S (L+2,2)]; 

T2 = [2; 2; 2] 

iv) Set the kernel function to ‘linear’ or ‘polynomial’ or ‘quadratic’ or ‘radial basis ‘or ‘Sigmoid’. 

v) Train SVM (i-k) node with given inputs, outputs and kernel function. 

vi) Classify the unknown PCA score, SU with trained SVM (i - k). 

vii) Store the result of classification as 1 (true) or 2 (false) to C (i , k). 
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viii) End for 

ix) End for 

x) END 

 

B) Evaluation of DDAG graph by membership count. 

Input:  Read total no of classes, N 

Output: The membership counts of classification result of unknown w.r.t. known class classes, Count 

(1), Count(2)……Count(N) 

i) Set i =N; 

ii) Count – i = 0 

iii) For j = 1 to i-1 

iv) If (C(I , j) = = 1) 

v) Count - i = Count – i +1 

vi) End if 

vii) End for 

viii) For i = N-1 to 2  

ix) Count-i = 0 

x) For j = 1 to 2 

xi) If (C (i , j)= =1) 

xii) Count – i = Count – i +1 

xiii) End if 

xiv)  End for 

xv) If (C (i +1,j+1)==1) 

xvi)  Count – i =Count – i +1 

xvii) End if 

xviii) End for 

xix)  Count-1=0 

xx) For i =4 to 2 

xxi)  If  (C (i ,1)= =1) 

xxii) Count - 1= Count - 1+1 

xxiii) End if 

xxiv) End for 

.  
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4.6 Linear Regression 

 

In this work, we have used linear regression to estimate y as per the following expression: 

 =                                                                                                        (4.1)  

which is called the regression equation of the variable y on the variable x; and  =  =  ; 

where,  is the covariance between x and y. Similarly, the regression equation of x on y is 

 =                                                                                                         (4.2) 

where,  =  =  . Thus, substituting the values of byx and bxy, the regression equations 4.1 

and the equation 4.2 may also be re-written as 

 =  and   =                                                                                            (4.3) 

 

Thus, both regression equations are satisfied when x =  and y = ; implying geometrically that both 

the regression lines intersect at, the point ( , ). Typically, the two regression lines diverge but 

because they must always cross at ( , ), the line will be parallel when their slopes are equal, i.e., 

=  or, .  = 1; i.e, r2 = 1; or, r = . Usually, the two regression equations differ from 

one another. However, when r = 1, they become identical, and in this situation, the variables have a 

perfect linear connection. Regression equations simplify to  =   and  = , when r = 0, making it 

impossible to estimate either y or x using linear regression equations. 

 

4.7 Experimentation 
 

The experiment has been done on the same set up as illustrated in Chapter 3. The three phase currents 

are collected from six separate induction motors in a motor fault simulator laboratory running under 

six different fault conditions, viz., broken rotor bars (BRB), rotor misalignment (RML), faulty 

bearings (FBR), rotor unbalance (RUB), single phase voltage unbalance (VUB), stator winding fault 

(SWF), and one healthy motor (HML). The data were collected three times, once from all the faulty 

induction motors and once from three induction motors with an unknown class of fault. 

The experiment has been carried out with three separate loading conditions for the motors, in order to 

incorporate robustness into the design of the algorithm. The suggested approach has been developed 

and validated for the motor's three different loading conditions. 

 

4.8 Methodology of algorithm development 
 

In this work, six different fault current waveforms, as mentioned earlier, are collected from the 

induction motors as known fault classes, and those from the unknown class of faults are recorded 

randomly under three different loading conditions. Using FFT, which creates the fault current spectra 

from these time domain signals, the fault current signals in the time domain are further transformed 
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into the frequency domain. Then, using PCA, the fault features are derived from the time-domain 

current signals and the frequency-domain fault spectrum signatures. The two most vital eigenvectors, 

corresponding to the largest eigenvalues of each phase, denoted as the first and second principal 

components (PC1 and PC2) only, are considered in this work, as these are considered the most 

significant features of any signal. Three PC plots of each phase of each motor have been considered as 

one class, and each unknown type of fault has been classified phase wise using SVM. This paper 

investigates five different SVM kernels, including the linear kernel and four nonlinear kernels, namely 

quadratic, polynomial, radial basis, and sigmoid. This multiclass classification problem was 

reformulated as a combined binary classification problem using the decision directed acrylic graph 

(DDAG) algorithm to classify faults. The proposed model is further tested using three different loads 

on the motor in order to develop a robust classifier model. Each unknown fault has been authenticated 

if the classification results for all three phases are the same. The classification results are compared 

for different linear and nonlinear kernels to obtain the optimum kernel function in the present work. 

 

Figure 4.3: Work flow diagram of this work 

 

4.9 Result and Analysis  

Three PC scores for each phase of seven different classes of motors, including six separately faulted 

motors, are labelled with their class numbers as: A-BRB, B-FBR, C-RML, D-RUB, E-SWF, F-VUL, 

and G-HMR, respectively. The PCA scores obtained on the analysis of the three-phase fault current 

signals are considered with respect to pairwise faults (e.g., taking BRB and FBR together), and these 

are trained with SVM. The presented SVM model separates the PCs corresponding to the two fault 

classes by a hyperplane (kernel trick). The PC score pair, i.e., PC1 and PC2, of one unknown fault is 

then tested with an SVM classifier. In a similar manner, the PCA score of the same unknown fault is 

tested with all seven pair-wise considered SVM classifiers in the 21 classification process (i.e., 7(7-

1)/2 = 21). The 21 classifiers for seven classes in each phase are constructed by the OVO SVM 

algorithm. The 21 classifiers for R-phase have been shown in Figure 4.4 using the RBF kernel, when 

features have been extracted from time domain current signals under one loading condition. In the 

given subplots of each classifier, R1, R2, and R3 represent the PC values of the R-phase of one known 
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class of fault under three different loading conditions, considered as a single class of fault, and X is 

the PC plot of the same R phase of an unknown class of fault. 21 classifiers for the Y and B phases 

have also been developed similarly. 

  

(a) (b) 

 
 

(c) (d) 

 

  

(e) (f) 
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                                       (o)                                                                                                      (p) 
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(u)                                                                                                                      (v) 
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(w) 

Figure 4.4: Output plots of 21 binary classifiers of R-phase using RBF kernel in no mechanical load condition 

where unknown current data sample is the test sample; where, BRB: Broken rotor bar, FBR: Faulted bearing, 

RML: Misalignment rotor, RUB: Rotor unbalance, VUL: Single phase voltage unbalance, SWF: Stator winding 

fault, HMR: Healthy motor and ‘X’: unknown sample 

 

A Decision-Directed Acyclic Graph (DDAG) is applied to reduce the evaluation time of pair wise 

classification using 21 classifiers in each phase, considering each classifier as a node. The evaluation 

paths of DDAG for R phase, Y phase, and B phase using the RBF kernel have been shown in Fig. 4.5 

(a), Fig. 4.5 (b), and Fig. 4.5 (c), respectively; and the unknown sample has been classified for each 

phase depending on the maximum count of membership classes, which is (7-1) = 6. This classification 

process has been performed using other four types of kernels, viz., polynomial (3rd order), sigmoid, 

quadratic, and linear kernels, and the membership classes of three phases for the classification of 

unknown fault 1 under no load condition (load type 1) have been shown in Table 4.1(a), Table 4.1(b), 

and Table 4.1(c), respectively, using R, Y, and B phase current signals. The entire procedure has been 

applied again for the classification of unknown faults 2 and 3 as well. The membership classes for 

classification of unknown faults 2 and 3 using five kernels under no load condition have also been 

computed in a similar manner, and the membership classes for classification of unknown faults 2 and 

3 using five kernels in no load condition have been shown in Tables 4.2 (a,  b, c) and 4.3 (a,  b,  c), 

respectively. 
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Figure 4. 5: (a) Directed acyclic graph for detecting unknown fault 1 using RBF kernel under loading 1 

condition using R phase current signals 

 

 

Figure 4. 5: (b) Directed acyclic graph for detecting unknown fault 1 using RBF kernel under loading 

1condition using Y phase current signal 
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Figure 4. 5: (c) Directed acyclic graph for detecting unknown fault 1 using RBF kernel under loading 1 

condition using B phase current signals 

 

Table 4.1: (a) Membership classes for classification of unknown fault 1 using R phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 

RBF Kernel Sigmoid Kernel Quadratic 

Kernel 

Linear Kernel 

Class 

G(HMR) 

2: (G-D),(G-F) 1: (G-D) 1: (G-D) 2: (G-D),(G-E) 2: (G-D),(G-F) 

Class 

F(VUL) 

3: (F-B), (F-

D),(F-E) 

2: (F-D), (F-G) 3: (F-D),(F-E),(F-G) 3: (F-B), (F-

D),(F-G) 

2: (F-D),(F-E) 

Class 

E(SWF) 

2: (E-D),(E-G) 4 : (E-B), (E-D),(E-

F),(E-G) 

2: (E-D),(E-G) 3: (E-B),(E-

D),(E-G) 

2: (E-D),(E-G) 

Class 

D(RUB) 

0 0 0 0 0 

Class 

C(RML) 

5:(C-B),(C-

D),(C-E),(C-F), 

(C-G) 

5:(C-B),(C-D),(C-

E),(C-F), (C-G) 

5: (C-B),(C-D),(C-

E),(C-F),(C-G) 

5: (C-B),(C-

D),(C-E),(C-F), 

(C-G) 

5: (C-B), (C-

D),(C-E),(C-

F),(C-G) 

Class 

B(FBR) 

3 : (B-D), (B-F), 

(B-G) 

3 : (B-D), (B-F), 

(B-G) 

4: (B-D),(B-E),(B-

F),(B-G) 

2 : (B-D), (B-G) 4: (B-D),(B-

E),(B-F),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

 

Table 4.1: (b) Membership classes for classification of unknown fault 1 using Y phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

4: (G-B),(G-

C),(G-E),(G-F) 

3: (G-D), (G-E), 

(G-F) 

1: (G-D) 3: (G-D),(G-

E),(G-F) 

1: (G-D) 

Class 

F(VUL) 

3: (F-B),(F-

C),(F-E) 

2: (F-D), (F-E) 3: (F-D),(F-E),(F-G) 1: (F-D) 3: (F-D),(F-E),(F-

G) 
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

E(SWF) 

2: (E-B),(E-C) 1: (E-D) 2: (E-D),(E-G) 2: (E-D),(E-F) 2: (E-D),(E-G) 

Class 

D(RUB) 

5: (D-B),(D-

C),(D-E),(D-

F),(D-G) 

0 0 0 0 

Class 

C(RML) 

0 5:(C-B),(C-D),(C-

E),(C-F), (C-G) 

4: (C-D),(C-E),(C-

F),(C-G) 

5: (C-B),(C-

D),(C-E),(C-F), 

(C-G) 

5: (C-A),(C-

D),(C-E),(C-

F),(C-G) 

Class 

B(FBR) 

1: (B-C) 4: (B-D), (B-E), 

(B-F), (B-G) 

5: (B-C), (B-D),(B-

E),(B-F),(B-G) 

4: (B-D),(B-

E),(B-F),(B-G) 

6: (B-A),(B-

C),(B-D),(B-

E),(B-F),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

4: (A-D),(A-

E),(A-F),(A-G) 

 

 

Table 4.1: (c) Membership classes for classification of unknown fault 1 using B phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 0 0 0 0 

Class 

F(VUL) 

2: (F-C),(F-G) 3: (F-D),(6_5), 

(6_7) 

3: (F-D),(F-E),(F-G) 2: (F-D),(F-G) 4: (F-C),(F-D),(F-

E),(F-G) 

Class 

E(SWF) 

3: (E-C),(E-

F),(E-G) 

2: (E-D), (E-F) 2: (E-D),(E-G) 3: (E-D),(E-F),(E-

G) 

2: (E-D),(E-G) 

Class 

D(RUB) 

4: (D-C),(D-

E),(D-F),(D-G) 

1: (D-G) 1: (D-G) 1: (D-F) 1: (D-G) 

Class 

C(RML) 

1: (C-G) 5: (C-B),(C-D),(C-

E),(C-F), (C-G) 

4: (C-D),(C-E),(C-

F),(C-G) 

5: (C-B),(C-

D),(C-E),(C-F), 

(C-G) 

3: (C-D),(C-

E),(C-F) 

Class 

B(FBR) 

5: (B-C),(B-D), 

(B-E),(B-F), (B-

G) 

4: (B-D), (B-E),(B-

F), (B-G) 

5: (B-C), (B-D),(B-

E),(B-F),(B-G) 

4: (B-D),(B-

E),(B-F),(B-G) 

6: (B-A),(B-

C),(B-D),(B-

E),(B-F),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

5: (A-C),(A-

D),(A-E),(A-

F),(A-G) 

 

 

Table 4.2: (a) Membership classes for classification of unknown fault 2 using R phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

2: (G-A),(G-B) 3: (G-A),(G-B), (G-

F) 

0 4: (G-A),(G-

B),(G-D),(G-F) 

0 

Class 

F(VUL) 

3: (F-A),(F-B), 

(F-G) 

1 : (F-C) 2: (F-B),(F-G) 0 3: (F-A),(F-B),(F-

G) 

Class 6 : (E-A),(E- 6 : (E-A),(E-B),(E- 6 : (E-A),(E-B),(E-C), 6 : (E-A),(E- 5: (E-A),(E-
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

E(SWF) B),(E-C), (E-

D), (E-F), (E-

G) 

C), (E-D), (E-F), 

(E-G) 

(E-D), (E-F), (E-G) B),(E-C), (E-D), 

(E-F), (E-G) 

B),(E-C),(E-

F),(E-G) 

Class 

D(RUB) 

5: (D-A), (D-B), 

(D-C),(D-F), 

(D-G) 

5: (D-A), (D-B), 

(D-C),(D-F), (D-G) 

5: (D-A),(D-B),(D-

C),(D-F),(D-G) 

4: (D-A),(D-

B),(D-C),(D-G) 

6:(D-A),(D-

B),(D-C),(D-

E),(D-F),(D-G) 

Class 

C(RML) 

4 : (C-A), (C-

B),(C-F), (C-7) 

2 : (C-B), (C-F) 4: (C-A),(C-B),(C-

F),(C-G) 

4 : (C-A), (C-

B),(C-F), (C-G) 

3: (C-A),(C-

F),(C-G) 

Class 

B(FBR) 

1: (B-A) 2: (B-A), (B-F) 2: (B-A),(B-G) 1: (B-F) 3: (B-A),(B-

C),(B-G) 

Class 

A(BRB) 

0 2: (A-C),(A-F) 2: (A-F),(A-G) 2: (A-B),(A-F) 1: (A-G) 

 

 

Table 4.2: (b) Membership classes for classification of unknown fault 2 using Y phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

4: (G-A), (G-B), 

(G-C), (G-

D),(G-F) 

4: (G-A), (G-B), 

(G-C),(G-F) 

2: (G-B),(G-F) 5: (G-A),(G-

B),(G-C),(G-

D),(G-F) 

2: (G-B),(G-F) 

Class 

F(VUL) 

1: (F-B) 2 :(F-B),(F-C) 1: (F-B) 1: (F-B) 3: (F-A),(F-B),(F-

C) 

Class 

E(SWF) 

6 : (E-A),(E-

B),(E-C), (E-

D), (E-F), (E-

G) 

6 : (E-A),(E-B),(E-

C), (E-D), (E-F), 

(E-G) 

6 : (E-A),(E-B),(E-C), 

(E-D), (E-F), (E-G) 

6 : (E-A),(E-

B),(E-C), (E-D), 

(E-F), (E-G) 

6:(E-A),(E-

B),(E-C),(E-D),(-

F),(E-G) 

Class 

D(RUB) 

5: (D-A), (D-B), 

(D-C),(D-F) 

5: (D-A), (D-B), 

(D-C),(D-F), (D-G) 

5: (D-A),(D-B),(D-

C),(D-F),(D-G) 

4: (4_1), (4_2), 

(4_3),(4_6) 

5: (D-A),(D-

B),(D-C),(D-

F),(D-G) 

Class 

C(RML) 

3: (C-A), (C-

B),(C-F) 

1: (C-B) 4: (C-A),(C-B),(C-

F),(C-G) 

3 : (C-A), (C-

B),(C-F) 

2: (C-B),(C-G) 

Class 

B(FBR) 

0 0 0 0 0 

Class 

A(BRB) 

2: (A-B), (A-G) 3: (A-B), (A-C), 

(A-F) 

3: (A-B),(A-F),(A-G) 2: (A-B),(A-F) 3: (A-B),(A-

C),(A-G) 

 

Table 4.2: (c) Membership classes for classification of unknown fault 2 using B phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

5: (G-A),(G-

B),(G-C),(G-

D),(G-F) 

5: (G-A), (G-B), 

(G-C), (G-D), (G-

F) 

5: (G-A),(G-B),(G-

C),(G-D),(G-F) 

5: (G-A),(G-

B),(G-C),(G-

D),(G-F) 

6: (G-A),(G-

B),(G-C),(G-

D),(G-E),(G-F) 

Class 

F(VUL) 

0 0 0 1: (F-D) 2: (F-A),(F-B) 

Class 6 : (E-A),(E- 6 : (E-A),(E-B),(E- 6 : (E-A),(E-B),(E-C), 6 : (E-A),(E- 5: (E-A),(E-
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

E(SWF) B),(E-C), (E-

D), (E-F), (E-

G) 

C), (E-D), (E-F), 

(E-G) 

(E-D), (E-F), (E-G) B),(E-C), (E-D), 

(E-F), (E-G) 

B),(E-C),(E-

D),(E-F) 

Class 

D(RUB) 

4: (D-A),(D-

B),(D-C),(D-F) 

4: (D-A), (D-B), 

(D-C),(D-F) 

4: (D-A), (D-B), (D-

C),(D-F) 

3: (D-A), (D-B), 

(D-C) 

4: (D-A),(D-

B),(D-C),(D-F) 

Class 

C(RML) 

3: (C-A), (C-

B),(C-F) 

2: (C-B), (C-F) 3 : (C-A), (C-B),(C-F) 3 : (C-A), (C-

B),(C-F) 

3: (C-A),(C-

B),(C-F) 

Class 

B(FBR) 

2: (B-A), (B-F) 2: (B-A),(B-F) 1: (B-F) 1: (B-F) 0 

Class 

A(BRB) 

1: (A-F) 2: (A-C),(A-F) 2: (A-B),(A-F) 2: (A-B),(A-F) 1: (A-B) 

 

 

Table 4.3: (a) Membership classes for classification of unknown fault 3 using R phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

5: (G-A),(G-

C),(G-D),(G-

E),(G-F) 

1: (G-D) 1: (G-D) 5: (G-A),(G-

C),(G-D),(G-

E),(G-F) 

1: (G-D) 

Class 

F(VUL) 

2: (F-D), (F-E) 2: (F-D), (F-G) 3: (F-D),(F-E),(F-G) 1: (F-D) 3: (F-D),(F-E),(F-

G) 

Class 

E(SWF) 

1: (E-D), 3: (E-D),(E-F),(E-

G) 

2: (E-D),(E-F) 2: (E-D),(E-F) 2: (E-D),(E-F) 

Class 

D(RUB) 

0 0 0 0 0 

Class 

C(RML) 

4: (C-A),(C-D), 

(C-E),(C-F) 

4: (C-D), (C-E),(C-

F),(C-G) 

5: (C-A),(C-D), (C-

E),(C-F),(C-G) 

3:(C-D), (C-

E),(C-F) 

5: (C-A),(C-

D),(C-E),(C-

F),(C-G) 

Class 

B(FBR) 

6 : (B-A), (B-

C), (B-D), (B-

E), (B-F),(B-G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

6 : (B-A), (B-C), (B-

D), (B-E), (B-F),(B-

G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

Class 

A(BRB) 

3: (A-D), (A-

E),(A-F) 

5: (A-C), (A-D), 

(A-E),(A-F),(A-G) 

4: (A-D), (A-E),(A-

F),(A-G) 

4: (A-C),(A-D), 

(A-E),(A-F) 

4: (A-D),(A-

E),(A-F),(A-G) 

 

Table 4.3: (b) Membership classes for classification of unknown fault 3 using Y phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel Quadratic Kernel Linear Kernel 

Class 

G(HMR) 

5: (G-A),(G-

C),(G-D),(G-

E),(G-F) 

1: (G-D) 1: (G-D) 3: (7_4),(7_5),(7_6) 1: (G-D) 

Class 

F(VUL) 

4: (F-A),(F-C), 

(F-D), (F-E) 

4: (F-C), (F-D), 

(F-E),(F-G) 

3: (F-D),(F-E),(F-G) 2: (6_3),(6_4) 3: (F-D),(F-

E),(F-G) 

Class 

E(SWF) 

3: (E-A),(E-

C),(E-D) 

3: (E-D),(E-F),(E-

G) 

3: (E-C),(E-D),(E-G) 4: 

(5_1),(5_3),(5_4),(5_6) 

3: (E-C),(E-

D),(E-F) 
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel Quadratic Kernel Linear Kernel 

Class 

D(RUB) 

0 0 0 0 0 

Class 

C(RML) 

1: (C-D) 2: (C-D),(C-F) 3: (C-D),(C-F),(C-G) 2: (3_4),(3_7) 3: (C-D),(C-

E),(C-F) 

Class 

B(FBR) 

6 : (B-A), (B-

C), (B-D), (B-

E), (B-F),(B-

G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

6 : (B-A), (B-C), (B-

D), (B-E), (B-F),(B-

G) 

6 : (B-A), (B-C), (B-

D), (B-E), (B-F),(B-G) 

5: (B-C),(B-

D),(B-E),(B-

F),(B-G) 

Class 

A(BRB) 

5: (G-A),(G-

C),(G-D),(G-

E),(G-F) 

5: (A-C), (A-D), 

(A-E),(A-F),(A-

G) 

5:  (A-C), (A-D), (A-

E),(A-F),(A-G)  

4: (A-C),(A-D), (A-

E),(A-F) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

Table 4.3: (c) Membership classes for classification of unknown fault 3 using B phase current signals in time 

domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 0 1: (G-D) 0 0 

Class 

F(VUL) 

2: (F-D),(F-G) 3: (F-D), (F-E),(F-

G) 

3: (F-D),(F-E),(F-G) 1: (F-D),(F-G) 6: (F-A), (F-B), 

(F-C),(F-D),(F-

E),(F-G) 

Class 

E(SWF) 

3: (E-D),(E-

F),(E-G) 

2: (E-D),(E-G) 2: (E-D),(E-G) 3: (E-D),(E-F),(E-

G) 

2: (E-D),(E-G) 

Class 

D(RUB) 

1: (D-G) 1 : (D-G) 0 1: (D-G) 1: (D-G) 

Class 

C(RML) 

4: (C-D),(C-

E),(C-F),(C-G) 

4: (C-D), (C-E),(C-

F),(C-G) 

5: (C-A), (C-D),(C-

E),(C-F),(C-G) 

4:(C-D), (C-

E),(C-F),(C-G) 

3: (C-D),(C-

E),(C-F) 

Class 

B(FBR) 

6 : (B-A), (B-

C), (B-D), (B-

E), (B-F),(B-G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

6 : (B-A), (B-C), (B-

D), (B-E), (B-F),(B-

G) 

6 : (B-A), (B-C), 

(B-D), (B-E), (B-

F),(B-G) 

4: (B-C),(B-

D),(B-E),(B-G) 

Class 

A(BRB) 

5: (A-C),(A-

D),(A-E),(A-

F),(A-G) 

5: (A-C), (A-D), 

(A-E),(A-F),(A-G) 

4: (A-D), (A-E),(A-

F),(A-G) 

4: (A-C),(A-D), 

(A-E),(A-F),(A-

G) 

5: (A-B),(A-

C),(A-D),(A-E), 

(A-G) 

 

It is observed from the above three tables that the unknown fault 1 resembles a broken rotor bar type 

fault (Class A: BRB fault) except with the linear kernel function. The other nonlinear kernels give 

identical classification results in favour of the BRB fault using the current signals of all three phases. 

 

Similarly, the nonlinear kernels detect maximum membership classes of class E for unknown fault 2 

and class B for unknown fault 3, respectively; although the membership classifications are not 

illustrated here in details. From the table, it can be said that unknown fault 1, unknown fault 2, and 

unknown fault 3 resemble a broken rotor bar, a stator winding fault, and a bearing fault, respectively. 

But the linear kernel again fails to detect the same class for all phases. Hence, the four nonlinear 

kernels, viz., the polynomial kernel, the RBF kernel, the sigmoid kernel, and the quadratic kernel, 

have been considered further, discarding the linear kernel function. All three unknown faults have 

been further authenticated using these four nonlinear kernels under two other loading conditions; 
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where, the results have been unanimous in each of the cases, and match identically with the results 

obtained with no load classification. 

 

Fault classifications have further been performed in the frequency domain as well, in order to provide 

more authentication to the results. The frequency spectra are constructed using the current signals of 

known classes of faults and the unknown fault induction motors under three different conditions. Fast 

Fourier Transform (FFT) has been used to obtain the frequency domain spectrums. Fault features are 

extracted from FFT spectrums using PCA and these features are used to classify three unknown faults 

using OVO SVM through DDAG.  The detected membership classes have been shown for unknown 

fault type 1 in Table 4.4 (a), Table 4.4 (b) and Table 4.4 (c) respectively using R, Y and B phase 

current signals. The membership classes of three phases for detection of unknown fault 2 and 

unknown fault 3 has also been shown in Table 4.5 (a. b, c) and Table 4.6 (a, b, c) respectively. 

 

 

It is observed from the above three tables that the unknown fault 1 resembles a broken rotor bar type 

fault (Class A: BRB fault) except with the linear kernel function. The other nonlinear kernels give 

identical classification results in favour of the BRB fault using the current signals of all three phases 

are constructed using the current signals of known classes of faults and unknown faulty induction 

motors under three different loading conditions. The frequency domain spectra were obtained using 

the Fast Fourier Transform (FFT). Fault features are extracted from FFT spectra using PCA, and these 

features are used to classify three unknown faults using OVO SVM through DDAG. The detected 

membership classes have been shown for unknown fault type 1 in Tables 4.4(a), 4.4(b), and 4.4(c), 

respectively, using R, Y, and B phase current signals. The membership classes of three phases for the 

detection of unknown fault 2 and unknown fault 3 have also been shown in Tables 4.5 (a, b, c.) and 

4.6 (a .b, c.), respectively. It is again observed from these tables that the results obtained using the 

frequency domain features match identically with the results obtained using the time domain features, 

as described in Tables 4.1 (a,  b, c), 4.2 (a,  b,  c), and 4.3 (a,  b, c) respectively using R, Y, and B 

phase signals. But, most importantly, it is found that the classification results obtained using the 

frequency domain features listed in Tables 4.4, 4.5, and 4.6, are similar when using the four nonlinear 

kernels, as well as the linear kernel. Hence, linear kernels are also yielding correct classification using 

the frequency domain fault features, which was not true using the time domain features. 
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Table 4.4: (a) Membership classes for classification of unknown fault 1 using R phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 5: (G-B),(G-C),(G-

D),(G-E),(G-F) 

0 0 0 

Class 

F(VUL) 

5: (F-B),(F-

C),(F-D),(F-

E),(F-G) 

4: (F-B),(F-C),(F-

D),(F-E) 

5: (F-B),(F-C),(F-

D),(F-E),(F-G) 

2: (F-C),(F-G) 5: (F-B),(F-C),(F-

D),(F-E),(F-G) 

Class 

E(SWF) 

2: (E-D),(E-G) 2: (E-B),(E-D) 2: (E-D),(E-G) 3: (E-B),(E-F),(E-

G) 

3: (E-C),(E-

D),(E-G) 

Class 

D(RUB) 

2: (D-C),(D-G) 1: (D-B) 2: (D-C),(D-G) 4: (D-B),(D-

E),(D-F),(D-G) 

1: (D-G) 

Class 

C(RML) 

3: (C-B),(C-

E),(C-G) 

3: (C-B),(C-D),(C-

E) 

2: (C-E),(C-G) 4: (C-B),(C-

D),(C-E),(C-G) 

2: (C-D),(C-G) 

Class 

B(FBR) 

3: (B-D),(B-

E),(B-G) 

0 4: (B-C),(B-D),(B-

E),(B-G) 

2: (B-F),(B-G) 4: (B-C),(B-

D),(B-E),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

 

Table 4.4: (b) Membership classes for classification of unknown fault 1 using Y phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 0 3: (G-D),(G-E),(G-F) 0 2: (G-D),(G-E) 

Class 

F(VUL) 

3: (F-D),(F-

E),(F-G) 

1: (F-G) 2: (F-D),(F-E) 5: (F-B),(F-C),(F-

D),(F-E),(F-G) 

4: (F-C),(F-D),(F-

E),(F-G) 

Class 

E(SWF) 

2: (E-D),(E-G) 2: (E-F),(E-G) 1: (E-D) 3: (E-C),(E-

D),(E-G) 

2: (E-C),(E-D) 

Class 

D(RUB) 

2: (D-C),(D-G) 3: (D-E),(D-F),(D-

G) 

0 2: (D-C),(D-G) 1: (D-C) 

Class 

C(RML) 

3: (C-E),(C-

F),(C-G) 

5: (C-B),(C-D),(C-

E),(C-F),(C-G) 

4: (C-D),(C-E),(C-

F),(C-G) 

1: (C-G) 1: (C-G) 

Class 

B(FBR) 

5: (B-C),(B-

D),(B-E),(B-

F),(B-G) 

4: (B-D),(B-E),(B-

F),(B-G) 

5: (B-C),(B-D),(B-

E),(B-F),(B-G) 

5: (B-C),(B-

D),(B-E),(B-

F),(B-G) 

5: (B-C),(B-

D),(B-E),(B-

F),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

 

Table 4.4: (c) Membership classes for classification of unknown fault 1 using B phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 3: (G-B),(G-C),(G-

F) 

0 4: (G-B),(G-

C),(G-E),(G-F) 

0 

Class 

F(VUL) 

1: (F-G) 2: (F-B),(F-C) 1: (F-G) 1: (F-B) 1: (F-G) 

Class 

E(SWF) 

4: (E-B),(E-

C),(E-F),(E-G) 

4: (E-B),(E-C),(E-

F),(E-G) 

4: (E-B),(E-C),(E-

F),(E-G) 

3: (E-B),(E-

C),(E-F) 

4: (E-B),(E-

C),(E-F),(E-G) 

Class 4: (D-C),(D- 5: (D-B),(D-C),(D- 5: (D-B),(D-C),(D- 5: (D-B),(D- 5: (D-B),(D-
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

D(RUB) E),(D-F),(D-G) E),(D-F),(D-G) E),(D-F),(D-G) C),(D-E),(D-

F),(D-G) 

C),(D-E),(D-

F),(D-G) 

Class 

C(RML) 

2: (C-F),(C-G) 1: (C-B) 3: (3_2),(3_6),(3_7) 2: (C-B),(C-G) 3: (C-B),(C-

F),(C-G) 

Class 

B(FBR) 

4: (B-C),(B-

D),(B-F),(B-G) 

0 2: (B-F),(B-G) 0 2: (B-F),(B-G) 

Class 

A(BRB) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), 

(A-G) 

6: (A-B),(A-C),(A-

D),(A-E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

6: (A-B),(A-

C),(A-D),(A-

E),(A-F), (A-G) 

 

Table 4.5: (a) Membership classes for classification of unknown fault 2 using R phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

2: (G-C),(G-F) 3: (G-A),(G-C),(G-

F) 

2: (G-C),(G-F) 3: (G-A),(G-

C),(G-F) 

3: (G-A),(G-

C),(G-F) 

Class 

F(VUL) 

0 1: (F-C) 0 0 0 

Class 

E(SWF) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-

G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

D(RUB) 

4: (D-A),(D-

C),(D-F),(D-G) 

3: (D-C),(D-F),(D-

G) 

4: (D-A),(D-C),(D-

E),(D-G) 

4: (D-A),(D-

C),(D-E),(D-G) 

4: (D-A),(D-

C),(D-E),(D-G) 

Class 

C(RML) 

1: (C-F) 0 1: (C-F) 1: (C-F) 1: (C-F) 

Class 

B(FBR) 

5: (B-A),(B-

C),(B-D),(B-

F),(B-G) 

5: (B-A),(B-C),(B-

D),(B-F),(B-G) 

5: (B-A),(B-C),(B-

D),(B-F),(B-G) 

5: (B-A),(B-

C),(B-D),(B-

F),(B-G) 

5: (B-A),(B-

C),(B-D),(B-

F),(B-G) 

Class 

A(BRB) 

3: (A-C),(A-

F),(A-G) 

3: (A-C),(A-D),(A-

G) 

3: (A-C),(A-F),(A-G) 2: (A-C),(A-F) 2: (A-C),(A-F) 

 

Table 4.5: (b) Membership classes for classification of unknown fault 2 using Y phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 3: (G-A),(G-B),(G-

C) 

0 3: (G-A),(G-

B),(G-C) 

0 

Class 

F(VUL) 

4: (F-A),(F-

B),(F-C),(F-G) 

4: (F-A),(F-B),(F-

C),(F-G) 

4: (F-A),(F-B),(F-

C),(F-G) 

4: (F-A),(F-B),(F-

C),(F-G) 

4: (F-A),(F-B),(F-

C),(F-G) 

Class 

E(SWF) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-

G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

D(RUB) 

5: (D-A),(D-B), 

(D-C),(D-F),(D-

G) 

5: (D-A),(D-B), (D-

C),(D-F),(D-G) 

5: (D-A),(D-B), (D-

C),(D-F),(D-G) 

5: (D-A),(D-B), 

(D-C),(D-F),(D-

G) 

5: (D-A),(D-B), 

(D-C),(D-F),(D-

G) 

Class 

C(RML) 

2: (C-A),(C-G) 0 2: (C-A),(C-G) 1: (C-A) 2: (C-A),(C-G) 

Class 

B(FBR) 

3: (B-A),(B-

C),(B-G) 

1: (B-C) 3: (B-A),(B-C),(B-G) 2: (B-A),(B-C) 3: (B-A),(B-

C),(B-G) 

Class 

A(BRB) 

1: (A-G) 2 : (A-B),(A-C) 1: (A-G) 0 1: (A-G) 
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Table 4.5: (c) Membership classes for classification of unknown fault 2 using B phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

1: (G-F) 3: (G-B),(G-C),(G-

F) 

0 2: (G-B),(G-F) 2: (G-B),(G-F) 

Class 

F(VUL) 

0 1: (F-B) 1: (F-G) 1: (F-B) 1: (F-B) 

Class 

E(SWF) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-

G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

D(RUB) 

3: (D-B),(D-

F),(D-G) 

4: (D-B),(D-C),(D-

F),(D-G) 

4: (D-B),(D-C),(D-

F),(D-G) 

5: (D-A),(D-

B),(D-C),(D-

F),(D-G) 

5: (D-A),(D-

B),(D-C),(D-

F),(D-G) 

Class 

C(RML) 

4: (C-B),(C-

D),(C-F),(C-G) 

2: (3_2),(3_6) 3: (C-B),(C-F),(C-G) 4: (C-A),(C-

B),(C-F),(C-G) 

4: (C-A),(C-

B),(C-F),(C-G) 

Class 

B(FBR) 

2: (2_6),(2_7) 0 2: (B-F),(B-G) 0 0 

Class 

A(BRB) 

5: (A-B),(A-

C),(A-D),(A-

F),(A-G) 

5: (A-B),(A-C),(A-

D),(A-F),(A-G) 

5: (A-B),(A-C),(A-

D),(A-F),(A-G) 

3: (A-B),(A-

F),(A-G) 

3: (A-B),(A-

E),(A-F) 

 

Table 4.6: (a) Membership classes for classification of unknown fault 3 using R phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

3: (G-A),(G-

D),(G-F) 

4: (G-A),(G-

D),(G-E),(G-F) 

4: (G-A),(G-D),(G-

E),(G-F) 

3: (G-A),(G-

D),(G-E) 

3: (G-A),(G-

D),(G-E) 

Class 

F(VUL) 

2: (F-A), (F-D) 1: (F-A) 5: (F-A),(F-C),(F-

D),(F-E),(F-G) 

1: (F-A) 2: (F-A),(F-D) 

Class 

E(SWF) 

4: (E-A),(E-

D),(E-F),(E-G) 

3: (E-A),(E-

D),(E-F) 

1: (E-A) 4: (E-A),(E-

D),(E-F),(E-G) 

4: (E-A),(E-

D),(E-F),(E-G) 

Class 

D(RUB) 

1: (D-A) 2: (D-A),(D-F) 2: (D-A),(D-E) 2: (D-A),(D-F) 1: (4_1) 

Class 

C(RML) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

3: (C-A),(C-D),(C-E) 5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

Class 

B(FBR) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

A(BRB) 

0 0 0 0 0 

 

Table 4.6: (b) Membership classes for classification of unknown fault 3 using Y phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 0 1: (G-D) 0 2: (G-D),(G-E) 

Class 

F(VUL) 

4: (F-A),(F-

D),(F-E),(F-G) 

3: (F_D),(F-E),(F-

G) 

3: (F_D),(F-E),(F-G) 3: (F_D),(F-

E),(F-G) 

1: (F-D) 

Class 2: (E-D),(E-G) 2: (E-D),(E-G) 1: (E-D) 2: (E-D),(E-G) 1: (E-F) 
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Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

E(SWF) 

Class 

D(RUB) 

1: (D-G) 1: (D-G) 0 1: (D-G) 1: (D-E) 

Class 

C(RML) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

5: (C-A),(C-D), (C-

E),(C-F),(C-G) 

5: (C-A),(C-D), (C-

E),(C-F),(C-G) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

5: (C-A),(C-D), 

(C-E),(C-F),(C-

G) 

Class 

B(FBR) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-

G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

A(BRB) 

3: (A-D),(A-

E),(A-G) 

4: (A-D),(A-E),(A-

F),(A-G) 

4: (A-D),(A-E),(A-

F),(A-G) 

4: (A-D),(A-

E),(A-F),(A-G) 

4: (A-D),(A-

E),(A-F),(A-G) 

 

Table 4.6: (c) Membership classes for classification of unknown fault 3 using B phase current signals in 

frequency domain under loading condition 1 

Membership 

class 

Polynomial 

Kernel 
RBF Kernel Sigmoid Kernel 

Quadratic 

Kernel 
Linear Kernel 

Class 

G(HMR) 

0 0 3: (G-A),(G-D),(G-E) 0 3: (G-A),(G-

D),(G-E) 

Class 

F(VUL) 

5: (F-A),(F-

C),(F-D),(F-

E),(F-G) 

5: (F-A),(F-C),(F-

D),(F-E),(F-G) 

5: (F-A),(F-C),(F-

D),(F-E),(F-G) 

4: (F-C),(F-D),(F-

E),(F-G) 

5: (F-A),(F-C),(F-

D),(F-E),(F-G) 

Class 

E(SWF) 

2: (E-D),(E-G) 3: (E-A),(E-D),(E-

G) 

2: (E-A),(E-D) 1: (E-G) 2: (E-A),(E-D) 

Class 

D(RUB) 

2: (D-A),(D-G) 1: (4_7) 0 2: (4_5),(4_7) 0 

Class 

C(RML) 

4: (C-A),(C-

D),(C-E),(C-G) 

4: (C-A),(C-D),(C-

E),(C-G) 

4: (C-A),(C-D),(C-

E),(C-G) 

4: (C-A),(C-

D),(C-E),(C-G) 

4: (C-A),(C-

D),(C-E),(C-G) 

Class 

B(FBR) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-

G) 

6: (E-A),(E-B),(E-

C),(E-D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

6: (E-A),(E-

B),(E-C),(E-

D),(E-F),(E-G) 

Class 

A(BRB) 

2: (A-E),(A-G) 2: (A-E),(A-G) 1: (A-D) 4: (A-D),(A-

E),(A-F),(A-G) 

1: (A-D) 

 

4.9.1 Classification accuracy 

Each unknown class of fault is examined six times for each phase individually, using each type of 

kernel for all three loading conditions. As a result, the total number of test cases for each unknown 

fault classification using a single kernel is (6 faults x 3 loadings) = 18. If one kernel is able to 

correctly classify the test class of fault N number of times for all the three phases out of a total of 18 

times, then the success rate of classification or the classification accuracy of that particular kernel for 

one class of fault becomes as follows: 

 

Using both the time domain and frequency domain characteristics, the classification success rate is 

computed for each kernel under three distinct loading conditions. The results are shown in tables 4.7 

(a) and (b), respectively. 
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Table 4.7: (a) Accuracy of classification using different kernels under different loading conditions 

when features are extracted from fault current signals in time domain 

 
Loading condition 1  

Kernel Quadratic 
Polynomial  

(3rd order) 
Sigmoid Linear RBF 

Unknown fault 1 72.23 83.34 83.34 33.34 88.88 

Unknown fault 2 72.23 83.34 83.34 33.34 88.88 

Unknown fault 3 66.66 77.78 83.34 27.78 83.34 

 
Loading condition 2 

Unknown fault 1 72.23 83.34 83.34 38.89 88.88 

Unknown fault 2 72.23 83.34 83.34 33.34 88.88 

Unknown fault 3 72.23 83.34 88.88 33.34 88.88 

 
Loading condition 3 

Unknown fault 1 77.78 88.88 88.88 38.89 88.88 

Unknown fault 2 72.23 83.34 88.88 44.45 88.88 

Unknown fault 3 72.23 83.34 83.34 33.34 88.88 

Overall Accuracy (%) 72.23 83.34 85.12 35.19 88.26 

Table 4.7: (b) Accuracy of classification using different kernels under different loading conditions when 

features are extracted from fault current signals in frequency domain 

 
Loading condition 1 

Kernel Quadratic 
Polynomial  

(3rd order) 
Sigmoid Linear RBF 

Unknown fault 1 83.34 94.44 94.44 77.78 94.44 

Unknown fault 2 88.88 88.88 94.44 83.34 100 

Unknown fault 3 83.34 94.44 94.44 72.23 100 

 
Load condition 2 

Unknown fault 1 88.88 94.44 94.44 83.34 100 

Unknown fault 2 88.88 94.44 100 77.78 100 

Unknown fault 3 83.34 94.44 94.44 72.23 100 

 
Loading condition 3 

Unknown fault 1 83.34 94.44 94.44 77.78 100 

Unknown fault 2 88.88 94.44 94.44 83.34 100 

Unknown fault 3 88.88 94.44 94.44 77.78 100 

Overall Accuracy (%) 86.42 93.82 95.06 78.4 98.76 

 

The above results are represented graphically in Figure 4.6 illustrating a comparative analysis of the 

classification accuracies obtained using different kernel functions subject to three different loadings on the 

motor.  
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Figure 4.6: Mean classification accuracies of kernels for three unknown faults under three loading conditions 

The three different loading variations, as described in section4.7 are illustrated as below: 

Loading condition 1: No Mechanical load. 

Loading condition 2: I.M with D.C. generator as a mechanical load. 

Loading condition 3: A 200 Watt electrical load connected to the output of generator (while the full 

load             of the generator is 750 W) 

The following observations are made from the above results: 

 It is observed that the RBF kernel yields the highest accuracy of classification in the present 

case, considering all three different loadings. The classification accuracy reaches 100% in all 

cases, irrespective of the unknown fault type or the load on the motor. Hence, the RBF kernel 

is selected as the best performing kernel function for this work. 

 It is further observed that the mean accuracy of classification, for all the kernel functions, 

including the linear kernel, has improved significantly using the frequency domain features 

compared to the time domain features. Thus, extracting PCA features from frequency domain 

spectrums of various fault currents was discovered to be a superior method when compared to 

direct analysis of time domain fault current waveforms. 

 The performance of a linear kernel in terms of the accuracy of classification of the motor is 

very poor (in the range of 35%) using direct time domain analysis; and the same has increased 

to in the range of 78% using frequency domain features; although, this accuracy of 

classification is still much poorer compared to the highest accuracy achieved using a RBF 

nonlinear kernel (in the range of 100%). 

 Apart from the RBF kernel, other nonlinear kernel functions such as the sigmoid and the 

polynomial  

Third-order kernel functions also yield appreciable classification accuracy in the range of 

95% and 94%, respectively. Hence, these could also be considered for analysis. 
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4.9.2 Regression analysis 

 

We have further analysed the results for the comparison of linearity between the features of the time 

domain and the features of the frequency domain using linear regression. The linear regression 

coefficients are estimated using the above results obtained using both domain features. 

 

The coefficient of linear regression (r) has been calculated using expression (4.4) as mentioned in 

Section 4.6 for each unknown type of fault, keeping two known classes of faults simultaneously. 

While r = 1, they end up identical, and in this situation there is a precise dating between the variables; 

and while r = 0, it can be said that the variables are beyond estimation from the linear regression 

equations. If the value of r with two major PC values is close to 1, it implies that the plots are linearly 

separable. The different values of linear regression coefficients for the classes BRB-FBR, with three 

unknown faults, are illustrated in Tables 4.8 (a) and 4.8 (b) from time and frequency domain analysis 

under different loading conditions. The graphical representations of the linear regression lines are 

shown in Figs. 4.7 and 4.8 for time and frequency domains, respectively. 

 

Table 4.8: (a) Linear regression coefficients of BRB-FBR with three unknown faults using time domain feature 

Loading 

conditions 

BRB-FBR with unknown type 1 BRB-FBR with unknown type 2 BRB-FBR with unknown type 3 

R phase Y phase B phase R phase Y phase B phase R phase Y phase B phase 

Load 1 0.2696 0.2154 0.2968 0.2206 0.1982 0.1435 0.2748 0.3242 0.2923 

Load 2 0.2056 0.2912 0.2738 0.1845 0.1284 0.1663 0.3242 0.3653 0.4007 

Load 3 0.2457 0.2614 0.2932 0.2011 0.2143 0.1941 0.3008 0.3314 0.3982 

 

Table 4.8: (b) Linear regression coefficients of BRB-FBR with three unknown faults using frequency domain 

feature 

Loading 

conditions 

BRB-FBR with unknown type1 BRB-FBR with unknown type 2 BRB-FBR with unknown type 3 

R phase Y phase B phase R phase Y phase B phase R phase Y phase B phase 

Load 1 0.9188 0.9276 0.9074 0.7923 0.8152 0.8013 0.7255 0.7381 0.7892 

Load 2 0.8830 0.8961 0.9182 0.8575 0.8882 0.8991 0.7732 0.7425 0.7802 

Load 3 0.8932 0.9165 0.9043 0.8241 0.8654 0.8549 0.7523 0.7652 0.7992 

 

  



Chapter 4  Fault Classification using SVM and DDAG 

64 

(a) (b) 
 

 
(c ) 

 

Figure 4.7:  PC plots of BRB-FBR using time domain features of three phase currents with the unknown 1 by 

linear kernel (a) R phase (b) Y phase (c) B phase 

  

(a) (b) 

  

 

  (c) 

 

Figure 4.8:  PC plots of BRB-FBR using frequency domain features of three phase currents with the unknown 1 

by linear kernel (a) R phase (b) Y phase (c) B phase 

 

It is observed from the above figures and tables that the correlation coefficients obtained from the 

frequency domain features are closer to 1 (with a mean correlation coefficient of 0.84, considering all 

the three phases and the three different loading conditions); whereas, those obtained from the time 
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domain features are much less than 1 (with a mean correlation coefficient of 0.26, considering all the 

three phases and the three different loading conditions). As a result, the slope of the regression line is 

close to 45 degrees, as seen in all of the sub-figures in Fig. 4.8; however, the slopes of the regression 

line, as seen in Fig. 4.7 with time domain features, are lying non-uniformly at different angles for 

different phases, and none of these lines is close to 45 degrees because the correlation coefficients are 

far from unity.  
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Chapter 5 

Fault Classification using time-frequency domain analysis 
 

 

Current signature analysis is used successfully for induction motor fault detection. A common 

mathematical tool for assessing fault signals is the wavelet transform. However, choosing the right 

mother wavelet is the main challenge with wavelet analysis. Additionally, choosing the best level of 

decomposition is crucial since as the level of decomposition rises, so do the complexity and 

computation time. In order to get a result that is noticeably accurate while maintaining a minimal 

degree of complexity, we have developed a method to select the optimal mother wavelet and 

decomposition level for fault current signals of three phase induction motors. Here, we analyse the 

results using mother wavelets from the Daubechies (db), Symlets (Sym), and Coiflets (Coif) groups 

and decompose fault current signals of three phase induction motors up to five levels. In order to add 

robustness to the model, we also varied the motor's loading in three distinct steps. We also examined 

the four main quality metrics—signal to noise ratio (SNR), peak signal to noise ratio (PSNR), 

correlation coefficient (CC), and root mean square error (RMSE)—and came to the conclusion that 

Symlet5's mother wavelet decomposed at level 4 was the best option. The current signals of seven 

motors having different faulty conditions are decomposed in multiple levels using the optimal mother 

wavelet function for unknown fault classification following multi resolution analysis (MRA) of the 

wavelet. The unsupervised fault classification has been performed in different loading conditions, and 

the sensitivity of fault classification has been checked at different levels of decomposition. 

 

5.1 Introduction 
 

Wavelet transform is a powerful technique that has seen widespread application in signal analysis and 

detection, particularly in signal detection and classification for fault type identification. Additionally, 

as there are many different types of mother wavelet and it might be challenging to make the best 

choice, making an optimal mother wavelet selection and selecting the optimal level of decomposition 

is crucial. Knowing the ideal mother wavelet and level of decomposition beforehand makes it easier 

to analyse fault waveforms with the least amount of effort, which cuts down on computing time and 

complexity. To improve fault identification, the discrete wavelet transform (DWT) divides the signal 

into several wavelet coefficients ('approximation' and 'detail').The accuracy of fault analysis depends 

on the best mother wavelet choice. Mother wavelets were previously used to detect L-G ground faults 

while examining various fault resistance levels [133]. M. F. Faizal discussed the significance of 

choosing mother wavelets that closely match each other to identify voltage sags [134]. Using the 

minimal description length (MDL) criterion, the optimal mother wavelet has been chosen to compress 

the power disturbance signal, and the inside permanent motor protection and interior permanent 
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synchronous motor drive systems have both been subjected to the same criterion [135–138]. The 

mother wavelet has been used to de-noise the partial discharge signal, with the maximum correlation 

coefficient value as a criterion (PD) [139, 140]. The optimal mother wavelet for bearing failure 

identification utilising vibration signals has been chosen using Energy to Shanon Entropy criteria 

[141, 142]. For one sort of fault detection in rotating machinery and power systems, researchers used 

one type of criterion to choose the best mother wavelet. They don't use many criteria to choose the 

best mother wavelet while assessing machine three phase current data for various types of defects. 

Based on the characteristics of the signal to be processed, selecting the best decomposition level is 

another crucial task. A signal's level of resolution can be used to identify faults since some sub-bands 

of the signal may have relevant information. However, the quality of the de-noised signals may be 

diminished if the wavelet's decomposition level is set too high because the amount of data would be 

drastically decreased. The selection of an indication is crucial for determining the best level to detect 

failures. For the purpose of detecting problems in the bearing and gearbox, respectively, researchers 

chose periodic impulses and GA as indicators from the signals in the time domain using DWT [143, 

144]. Gear fault diagnostics has utilised gear meshing frequencies as an evaluation criterion [145]. 

Twenty mother wavelet functions were considered when choosing the optimal mother wavelet for this 

study's six types of defective conditions and one healthy condition. For the analysis, samples of stator 

current data from various defective (electrical and mechanical) induction motors are gathered. Signal 

to noise ratio (SNR), root mean square error (RMSE), peak signal to noise ratio (PSNR), and 

correlation coefficient have all been used to pick the mother wavelet. Distorted three-phase stator 

currents of motors with various fault situations, including the healthy one, are decomposed in several 

layers using a number of mother wavelet functions (db2-db10, sym3-sym8, and coif1-coif5). The 

decomposed signals are then reassembled using a reconstruction program. The signal to noise ratios 

(SNR), peak signal-to-noise ratios (PSNR), root mean square errors (RMSE), and correlation 

coefficients are calculated from the actual and reconstructed signals for each type of motor current 

signal at different decomposition levels. The optimal mother wavelet among the twenty mother 

wavelets given above has been selected based on the highest values of SNR, PSNR, correlation 

coefficient, and lowest values of RMSE for three phase current signals of all types of motors at all 

decomposition levels. Applying the same method, the same results were obtained under three different 

loading circumstances.  The optimal level of decomposition has been selected based on the absolute 

values of the accuracy parameters and the difference in the level of decomposition. 

 

5.2 Limitations of FFT, STFT and advantages of wavelet 

 

The wavelet transform is a common tool in image and signal processing. The Fast Fourier Transform 

(FFT) converts a signal from the time domain to the frequency domain, changing our perception of 

the signal from amplitude vs. time to amplitude vs. frequency. FFT is a mathematical tool for 

converting a signal from the time domain to the frequency domain. Because FFT often translates time 
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to the frequency of signals and vice versa but does not give simultaneous time and frequency 

information, it is extremely successful in solving problems involving the location of frequency. The 

transformation process from time domain to frequency domain of a signal loses time information. It is 

not efficient for representing discontinuities due to its limited frequency bandwidth and time duration. 

FFT is not suitable to detect the transient characteristics of a signal: drift, abrupt changes, and trends, 

which are the most important parts of the signal. It represents a signal with a few coefficients. The 

short-term Fourier transform (STFT) can be used to evaluate non-stationary signals and improve the 

performance of the FT, which offers time-frequency informative data. Due to its use of a single 

window with consistent resolution across all frequencies for the duration of the signal analysis, STFT 

has this limitation. The time window of STFT is fixed for all the frequencies, by analysing a signal 

within a set time window, it distinguishes between a signal's temporal and frequency components by 

analysing a signal within a predetermined time range. The wavelet transform is used for fault analysis 

accuracy to address the shortcomings of FFT and STFT, and it has gained widespread acceptance in 

signal processing [146, 147]. It has been shown that wavelet analysis can improve fault diagnosis 

[148]. For many types of signals, a variable window size is required according to the frequency to 

increase flexibility. Wavelet analysis is similar in spirit to the Fourier transform, but it has significant 

advancements for signal processing. It applies a variable-sized windowing technique. For the study of 

a signal's high- and low-frequency components, respectively, a window of a shorter and longer time 

interval is used. It is particularly efficient to deal with the local features of a signal, such as trends, 

breakdown sites, and self-resemblance, through signal analysis utilising the wavelet transform. 

Additionally, wavelet analysis has the ability to eliminate noise from a signal or compressed signal. 

 

5.3 Signal decomposition using mother wavelets 

 

The wavelet family is typically thought to be the most appropriate for particular applications because 

it can represent any signal with the fewest number of coefficients possible. Shifting the window in 

time, signal multiplication, integration, and integration are the steps that make up the computation of 

the continuous wavelet transform [149]: 

                                                                                       (5.1) 

where, f(t) is the input signal, S is the scale, is the translation, (t) is the function of transformation 

called the mother wavelet, given by 

                                                                                                                (5.2) 

The parameters of translation  and scale   are chosen to sample the CWT on a dyadic 

grid to get discrete wavelet transform (DWT) coefficients as: 

                                                                                                  (5.3) 
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Using successive low pass and high pass filters, DWT seeks to extract information from the spectra by 

splitting them into high- and low frequency components, represented by: 

                                                                                          (5.4) 

                                                                                            (5.5) 

 

where the outputs of the low pass and high pass filters, which have impulse response values of r and 

q, respectively, are  and  While the "detail" (cD) part of the signal also contains low 

frequency components, the "approximate" (cA) signal does not [150,151]. Higher detail sections are 

eliminated when computing the 'm'-level decomposition, which lowers the overall frequency of the 

resulting data. The mother wavelet is the original function, and the wavelet functions are scaled, 

translated, and dilated versions of this original function. The signals in the current work were divided 

into five decomposition levels using mother wavelets from the Daubechies (db), Symlets (Sym), and 

Coiflets (Coif) families. Below is a description of the mother wavelet families.  

 

5.3.1 Mother wavelet 

 

Monique P. Fargues compared the orthogonal and non-orthogonal wavelet for denoising applications 

for SNR levels, several sample sizes, and thresholding schemes, and he has shown that orthogonal 

wavelet transforms usually have better denoising performances than the non-orthogonal [152].  The 

orthogonal decomposition is useful for the non-stationary signal, whose variance depends on the 

window of the data under consideration. Its decomposition provides information on the variability of 

wave height with time at different timescales [153]. The orthogonal wavelet transform is able to 

detect abnormal transients due to early damage to a component, and it uses a fast algorithm that 

decomposes the current or vibration signal into the minimum number of wavelet series. That’s why 

the orthogonal wavelet transform is very useful for machine fault analysis [154]. For fault analysis, 

various orthogonal wavelets (Haar, Daubechies, Symlet, and Coiflet) are typically used [155]. The 

haar (db1) wavelet is not hired here because it cannot be used for distorted continuous signal 

processing as it isn't continuous and is created via a sequence of rescaled "square-formed" capabilities 

combined. 

 

5.3.1.1 Daubechie Wavelet 
 

The Daubechies wavelet family is gaining popularity due to its compact and orthogonal support 

abilities, which are used for feature analysis. Daubechies' wavelet family has been used to get details 

more accurately than others. This wavelet has similarities to QRS complexes and has a low-frequency 

energy spectrum. The Daubechies wavelet is smoother than the Haar wavelet, which uses overlapping 

windows. There are four wavelet and scaling coefficients in the Daubechies D4 transform. 
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Figure 5.1: Daubechies wavelet family. 

5.3.1.2 Symlet wavelet 

Daubechies proposed the Symlet wavelet family as an orthogonal and nearly symmetrical set of 

wavelets as modifications to the DB family. The properties of the Symlet wavelet family and the 

Daubechies wavelet family are similar. The Symlet wavelet family's denoising performances are 

effective. In practice, Symlet wavelets are chosen with an even number of wavelets as Daubechies. 

The signal performance is better with Symlet wavelet, and the signal to noise ratio of a reconstructed 

or denoised signal can be improved using Symlet wavelet. 

 

Figure 5.2: Symlet wavelet family. 

5.3.1.3 Coiflet wavelet 

The Daubechies wavelet served as the basis for Coiflet's creation. It employs windows that overlap 

considerably and has an even higher processing overhead. Since it employs six scaling and wavelet 

function coefficients, an increase in pixel averaging and differencing results in a smoother wavelet 

and greater versatility in a number of signal processing approaches. Both the scaling function and the 

wavelet function have 2N moments that are equal to zero. A support of length 6N-1 is shared by the 

two functions. The filter has the same organisational principles as Haar and Daubechies. The Coiflet 

wavelet employs the mirror method as well. 

 

Figure 5.3: Coiflet wavelet family 
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5.4 Experimentation 
 

The experimentation has been performed on the same set up as illustrated in Chapter 3. The three 

phase current signals are collected from six induction motors with six known types of fault conditions: 

broken rotor bars (BR), faulted bearings (FB), misaligned rotors (RM), rotor unbalance (RU), stator 

winding fault (SF), single phase voltage unbalance (VU), and healthy motors (HM) under three 

loading conditions. The loading conditions have been explained in Chapter 3 (section 3.2). 

 

5.5 Determination of optimal mother wavelet 

 

Even though DWT performs satisfactorily, choosing the best mother wavelet to perform a task 

involving wavelets can be difficult because the same signal yields different results when applied to 

various mother wavelets due to its various feature extraction, de-noising, component separation, and 

reconstruction of coefficients from the frequency domain and time domain signals. As a result, the 

performance of the induction motor's fault analysis can be affected by the choice of the mother 

wavelet function. 
 

5.5.1 Current signal reconstruction based on wavelet decomposition 

The decomposition analysis is described in DWT, and the other half of the story is how the actual 

signal can be restored to its original state using the signal's deconstructed components without losing 

any information. This name of the process is called "synthesis of reconstruction." The mathematical 

manipulation of the process of reconstruction is called the inverse discrete wavelet transform (IDWT). 

The process of wavelet reconstruction consists of filtering and up-sampling. Up-sampling (or 

interpolation) is done by padding zero between every two coefficients. The filters' design for 

decomposition and reconstruction is based on a well-known technique called "quadrature mirror 

filters." The reconstructed approximations and details are the actual constituents of the original signal. 

In fact, it is found when the approximate coefficient vector cA1 and detail coefficient cD1 are 

combined because the coefficient vectors are produced with the help of down-sampling. Before 

combining the approximations and details, reconstruction is necessary. The process can be extended 

to the multi-level component analysis; all of the components of the reconstructed signal are found to 

have similar relationships. That is, the original signal can be reassembled in several ways. 

 

Figure 5.4 Signal reconstruction after decomposition 
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5.5.2 Accuracy parameters to select the optimal mother wavelet and optimal decomposition level 

 

The inverse discrete wavelet transform (IDWT), which reconstructs the signal without losing any 

information, assembles the deconstructed components of the signal. The discrete wavelet transform 

(DWT) breaks down the signal into detailed and approximate coefficients. In the current study, we 

compared the original and recreated signals and used four accuracy metrics to measure how closely 

the signals were rebuilt. These are shown below: 

Root Mean Square Error (RMSE): The current sample of the original and reconstructed signal has 

been used for analysis, and the square root of the mean square error has been computed. The mean 

squared error (MSE) measures the average of the squares of deviations or errors, i.e., the difference 

between the original and reconstructed signal. The RMSD or RMSE is found by taking the square root 

of MSE [156]. RMSE is estimated as follows: 

Mean square error =
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where, M is the length of the signal, and x(p) is the p-th sample data of the current signature for the 

provided type of fault  and )(~ px is the p-th sample data of reconstructed signal. 

If the RMSE value is lower, a mother wavelet's de-noising performance will be improved. Under three 

different loading situations, RMSE has been determined for each level of decomposition and for each 

of the 20 numbers of mother wavelets indicated above. 

Signal to Noise Ratio (SNR): SNR, or signal-to-noise ratio, is a measurement of how strong the 

preferred signal is in comparison to background noise. SNR directly impacts the performance of the 

denoising of a mother wavelet function. The smaller the MSE, the greater the SNR, and the better the 

denoising effect. To raise the SNR, noise reduction is necessary. The signal strength is stronger in 

comparison to the noise levels when the SNR value is higher. 

 

The following expectations are made for this accuracy measure, which is used to assess the de-noising 

effectiveness of any particular mother wavelet [157, 158]: 

                                                                                    (5.8) 

 

For each of the five levels of decomposition, the SNR between the denoised signal and the noise 

produced by each defective motor is computed. 

 

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Deviation_(statistics)
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Peak Signal to Noise Ratio (PSNR): The peak magnitude of a signal and the mean square error 

between the original signal and the reconstructed signal produced after decomposition are used to 

quantify it as another way to measure standard distortion, as follows [159]: 

                                                                                           (5.9) 

Here, MAX is the maximum possible value of the signal, and MSE is the mean square error of the 

reconstructed signal. The quality of the reconstructed signal will be better with a lower value of MSE 

and a higher value of PSNR. 

 

Statistical correlation: A statistical tool that determines the strength of a link between variables is 

correlation analysis. The correlation coefficient (q) between two variables j and i for an n-pair of two-

dimensional observations, represented as (i1 j1), (i2 j2), (i3 j3), (in jn) etc., is defined as [160]:  

Correlation coefficient (q)                       (5.10) 

The signals of current and vibration from the rotating machine carry a lot of information about 

different fault conditions. Statistical parameters for different fault conditions can be found by 

statistical analysis of the acquired current signals. The parameters, called statistical features, carry 

information about time domain signals about the different fault conditions. The features are also used 

to detect faults, and some of the features can be used individually to distinguish between healthy and 

faulty components. Major information about the fault situation is carried by the current signals. 

Therefore, in order to identify the best mother wavelet, we computed the correlation coefficients 

between the original signal and the wavelet decomposed signal [161]. The block diagram that 

represents the steps of correlation coefficients from different mother wavelet families has been shown 

in Fig. 5.5. 

 

Figure 5.5: The correlation block diagram between the noisy and de-noised signals using mother wavelet 

families [162] 

5.5.3 Flow of Work  

The suggested work is designed to investigate two distinct topics: choosing the best mother wavelet 

and choosing the best level of decomposition for categorizing the fault pattern of a three-phase 

induction motor. The work's primary objective is to choose the best mother wavelet from a set of 

twenty options, including db2 to db10, Symlet3 to Symlet8, and Coif1 to Coif5. The second challenge 
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is determining the optimal level of waveform decomposition for the fault current in order to categorise 

the motor failure. Six different faults have been applied to a specific three phase induction motor in 

order to suit both purposes. The data from the motor's normal operation is also taken into account. As 

previously established, these defects include BR, FB, RM, RU, SF, and VU. These errors have been 

tested under three distinct loading scenarios, including no load, generator load, and motor load using a 

200 W generator. Four accuracy parameters, such as SNR, RMSE, PSNR, and CC, have been used in 

the subsequent study of the three phase line fault currents. The outcomes are clearly demonstrated in 

the following two segments. 

 In this study, we have described a method for selecting the optimum mother wavelet for six 

different classes of induction motor problems using three phase line current signals. The work 

for choosing the ideal level of wavelet decomposition of the signal has been further extended. 

The work presented here is intended to investigate two specific topics: identification of the 

best mother wavelet and identification of the best level of decomposition, in order to 

categorise the fault pattern of a three phase induction motor. 

 The six various faults have been executed in order to fulfill both of the objectives, and the 

data in a healthy state is also taken into account. As previously established, these faults 

include BR, RM, FB, SF, RU, and VU. Data samples of current signals are collected from six 

dysfunctional and one healthy motors, as shown in the experiments section. 

 Finding the optimal mother wavelet among 20 options, such as db2 to db10, Coif1 to Coif5, 

and Sym3 to Sym8, is the first duty of the work. The best way to describe this is that it's like a 

game of hide-and-seek for the intrepid traveler. The decomposed signal of each level of each 

type of motor has been reconstructed using approximation coefficients. Since the Haar (db1) 

wavelet family is made up of a series of rescaled "square-shaped" functions joined together 

and is not continuous, it cannot be used for the analysis of distorted continuous signals. The 

optimal mother wavelet for this application was chosen out of 20 mother wavelets from the 

daubechie family (db2-db10), the symlet family (sym3-sym8), and the coiflet family (coif1-

coif5). 

 Four criteria for accuracy form the basis of the selection procedure. When the three-phase 

currents are analysed using the twenty different mother wavelets mentioned above, the four 

different parameters, including the signal-to-noise ratio (SNR), peak signal-to-noise ratio 

(PSNR), correlation coefficient (CC), and root mean square error (RMSE), are seen to vary 

for the six different faults and the motor's healthy condition. 

 An approach for choosing the optimal mother wavelet was previously put forward in [162]. 

However, the authors only considered two factors—RMSE and correlation coefficient—after 

examining the line current signals of faulty motors. In addition, the motor was evaluated 

under a single loading scenario, and the approach stated in [162] only used one degree of 

decomposition. As a result, the current work aims to thoroughly analyse and develop a 
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reliable method for selecting the optimal mother wavelet. As a result, we have added two 

more useful components to the current study: altering the motor's workload and varying the 

degree of wavelet decomposition. 

 We were able to obtain the data by adjusting the load on the motor in three steps: no load, 

generator load, and motor with generator running with an additional electrical load of 200 W. 

For twenty distinct mother wavelet numbers, we also divided the current signals into five 

stages of decomposition for six different faults and one healthy motor. Four accuracy 

parameters, such as SNR, PSNR, RMSE, and CC, have been used in the subsequent study of 

the three phase line fault currents. 

 The entire method of analysis has been illustrated in graphical form, as shown in Fig. 5.6. 

 

Figure 5.6: Work flow diagram of this work 

 

5.5.4 Result to determine the optimum mother wavelet 

In the first section of the investigation, the variations of the four different parameters, including the 

signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), correlation coefficient (CC), and root 

mean square error (RMSE) values, are observed for the six different faults and the motor's healthy 

condition. These characteristics were derived by employing twenty different mother wavelets with 

five levels of decomposition to analyse the three-phase currents. The reconstructed signals after the 

first level of decomposition of three phase currents have been shown in Figs. 5.7, 5.8, and 5.9 for 

broken rotor bars, stator winding faults, and faulted bearings, respectively. It is also possible to 

modify the load on the motor in three independent stages, starting with no-load and moving on to 

loading the motor with the generator's dead mechanical weight and then 200 W of electrical load. 

 

In order to compare the fluctuations of all other elements, such as loading, mother wavelet, level of 

decomposition, and phase, with the variations of the four accuracy parameters, the broken rotor fault 

(BR), one of the most common failures encountered in induction motors, is taken into consideration. 

After that, changes to these parameters are displayed sequentially alongside changes to other 

variables. With five levels of wavelet decomposition and twenty mother wavelets, Fig. 5.10 shows an 

example instance that demonstrates how the SNR parameter changes for the BR fault solely under 

these three loadings. 



Chapter 5  Fault Classification using time-frequency domain analysis 

76 

 

  
(a) (b) 

 
(c ) 

Figure 5.7: Reconstructed signal after first level decomposition of broken rotor bar fault under loading 1 

condition,(a) R phase, (b) Y phase, (c) B phase 

 
 

(a)  (b) 

 

 
(c) 

 

Figure 5.8: Reconstructed signal after first level decomposition of stator winding fault under loading 1 

condition, (a) R phase, (b) Y phase, (c) B phase 
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(a)  (b) 

 

 
(c ) 

 

Figure 5.9: Reconstructed signal after first level decomposition of faulted bearing under loading 1 condition, 

(a) R phase, (b) Y phase, (c) B phase 

 

Figure 5.10 Using R phase line current data, a comparison is made to show how the SNR for a BR fault varies 

with 20 different mother wavelets (Mother wavelet Index 1 to 9: db2 to db10; 10 to 15: Symlet3 to Symlet8; 16 

to 20: Coif1 to Coif5), all five levels of wavelet decompositions (L1, L2, L3, L4, and L5), and three different 

loading conditions (loading condition 1, loading condition 2, loading condition 3) 

When the results of Fig. 5.10 are compared, it becomes clear that there is a significant difference 

between the mother wavelets, notably up to level 3 wavelet decomposition (L3) for each of the three 

loading circumstances. According to careful observation, the Mother Wavelet Index of 12 for the 

Symlet5 mother wavelet consistently generates the highest SNR among the competitors. Particularly 

at the lowest levels of decomposition, this is clearly seen. With level-5 wavelet decomposition, the 

SNR values vary so little that it is practically unnoticeable (L5). Similar to this, Figs. 5.11, 5.12, and 

5.13 show the variations in RMSE, PSNR, and CC for BR faults, respectively, together with 

variations in the other parameters. 
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Figure 5.11: Using R phase line current data, a comparison was made to show how the RMSE for a BR fault 

varied with 20 different mother wavelets (Mother wavelet Index 1 to 9: db2 to db10; 10 to 15: Symlet3 to 

Symlet8; 16 to 20: Coif1 to Coif5), all five levels of wavelet decompositions (L1, L2, L3, L4 and L5), and three 

different loading conditions (loading condition 1, loading condition 2, loading condition 3)  

 
Figure 5.12: Using R phase line current data, a comparison is made between the PSNR variation for BR fault 

using 20 different mother wavelets (Mother wavelet Index 1 to 9: db2 to db10; 10 to 15: Symlet3 to Symlet8; 16 

to 20: Coif1 to Coif5), all five wavelet decomposition levels (L1, L2, L3, L4 and L5), and three different loading 

conditions (loading condition 1, loading condition 2 and loading condition 3) 

 
Figure 5.13: Using R phase line current data, a comparison is made to show how the CC for a BR fault varies 

with 20 different mother wavelets (Mother wavelet Index 1 to 9: db2 to db10; 10 to 15: Symlet3 to Symlet8; 16 

to 20: Coif1 to Coif5), all five levels of wavelet decompositions (L1, L2, L3, L4 and L5), and three different 

loading conditions (loading condition 1, loading condition 2 and loading condition 3) 
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Fig. 5.11 makes it abundantly evident that the Mother Wavelet Index 12 consistently has the lowest 

RMSE under practically all conditions, independent of variations in loading or the degree of wavelet 

decomposition of the signal. Up until, say, level 3, this variance is once again predominant. 

Thereafter, an increasing consistency of the values is seen. No matter the degree of decomposition, the 

Mother Wavelet Index: 12, which is the Symlet-5 mother wavelet, consistently has the highest PSNR 

values, as seen in Fig. 4. However, the correlation coefficients, as seen in Fig. 5.13, are the least 

variable under all three loadings, regardless of the mother wavelet or the degree of decomposition. 

Further observation reveals that Fig. 5.13's bar diagrams are more uniform and that most of them 

deviate from one another by very small margins. Because of this, the Symlet5 mother wavelet does 

not have supremacy over the others, as was the case with the SNR, RMSE, and PSNR parameters, as 

illustrated in Figs. 5.10, 5.11, and 5.12, respectively. Therefore, it can be concluded that although the 

correlation coefficient has a narrower margin of variation than the others—SNR, RMSE, and PSNR—

it is still an adequate accuracy measure for identifying the optimal level in the suggested task. As a 

result, we took into account this important statistical characteristic for the analysis that follows. 

 

Various other defects have also undergone sequential analysis. Fig. 5.14 shows the SNR values 

derived using R-phase line current signals for the variation of all six possible faults under no-load 

conditions. Once more, it is shown that additional faults also point to Symlet5 as the best mother 

wavelet because it consistently produces the highest SNR levels across nearly all six faults, depending 

on the level. The variation in SNR levels is once again noticeable in the lower levels of wavelet 

decomposition, up to level 3, and then progressively becomes uniform thereafter; thus, the conclusion 

drawn from Fig. 5.10, which only considers the BR fault, also applies to other faults. This is distinctly 

observed in Fig. 5.14. 
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Figure 5.14: Comparison using 20 different mother wavelets (Mother wavelet Index 1 to 9: db2 to db10; 10 to 

15: Symlet3 to Symlet8; 16 to 20: Coif1 to Coif5), all five levels of wavelet decompositions, under loading 

condition 1, and R phase line current data to show variation of SNR for variation of all six faults (a) BR, (b) FB, 

(c) RM, (d) RU,(e) SF and (f) VU 

Fig. 5.14 depicts the observations described above using only R phase current data and no load 

circumstances for the various faults. We further examined each of the faults in a similar way for each 

of the three loading scenarios and with each of the three phase current signals using twenty different 

mother wavelets with five levels of decomposition. It has been noted that for each of the fault classes, 

Symlet5 mother wavelets typically yield the best value for each parameter. The number of optimal 

cases acquired with Symlet-5 mother wavelet and the number of optimal cases acquired with any 

other mother wavelet were compared in our data comparative study. With regard to the classes of 

errors in Table 5.1, we have specifically illustrated the results. It should be noted that we considered 

20 mother wavelet numbers and 4 accuracy metrics for each of the 7 types of faults and the healthy 

state. Each parameter is further examined for 3 different loading circumstances, 5 levels of 

decomposition, and all three-phase current signals. As a result, each fault class's total number of 

observations is as follows: 

The number of observations for each class of fault = (3 loading conditions) × (current signals of 3 

phase) × (5 decomposition levels) × (4 accuracy parameters) = 180 
 

These results are summarized further and described graphically in Fig. 5.15 (a), and the magnified 

form of Figure 5.15 (a) is shown in Fig. 5.15 (b), which shows a prominent comparison of the optimal 

results obtained with Symlet5 or any others. 
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Table 5.1: Results of observations with optimum parameter found with Symlet5 mother wavelet under six 

different fault conditions, one healthy condition and the overall representation; considering all parameters 

together (SNR, RMSE, PSNR and CC), all three phases and all five levels of wavelet decomposition 

Fault Class BR FB RM RU SF VU HM 

Mother wavelet Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth 

Number of optimum parameters 169 11 173 7 175 5 174 6 169 11 177 3 169 11 

Percentage of optimum parameters 93.89 6.11 96.11 3.89 97.22 2.78 96.67 3.33 93.89 6.11 98.33 1.67 93.89 6.11 

 

Figure 5.15: (a) Considering all parameters (SNR, RMSE, PSNR, and CC), all three phases, and all five levels 

of wavelet decomposition, the comparison shows the percentage of observations under six different fault 

conditions, one healthy condition, and the overall representation with the optimum parameter found with 

Symlet5 mother wavelet (b) magnified view of Fig. 5.15 (a) 

Fig. 5.15 (b) shows that in more than 95% of the total observed cases, Symlet5 is used to achieve the 

best accuracy parameter value when SNR, RMSE, PSNR, and CC are taken into account together. 

Additionally, Symlet 5 considers all fault types, decomposition levels, phases, and motor loading. 

From these findings, Symlet5 is deduced to be the ideal mother wavelet with a greater than 95% 

confidence level. Additionally, it is noted that even for individual faults like BR and FR, the accuracy 

of the best findings in favour of Symlet5 is close to 94% (as seen in Fig. 5.15(b)), with the maximum 

accuracy being above 98%. (for a VU fault). As a result, the standard deviation of these final results 

for individual mistakes, as shown in Fig. 5.15(b), is similarly close to 1.833%, which is noteworthy 

from all angles. 

These overall results from Table 5.1 and Fig. 5.15 are divided into four categories according to the 

pattern of load, current phase, accuracy parameter, and decomposition level. These categories are 

independently detailed in tabular representations in tables 5.2, 5.3, 5.4, and 5.5. Fig. 5.16, which 

shows the accuracy of improved parameters separately for the four different components stated above, 

was created by again summing these data. 
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Table 5.2: For seven different fault patterns and three variation in loading conditions, detailed results are shown 

that demonstrate the number of fault parameters that Symlet5 mother wavelet can handle at their optimum level. 

These results take into account all of the parameters (SNR, RMSE, PSNR, and CC), all three phases, and all five 

levels of wavelet decomposition. 

Pattern of load 
BR RM FB SF RU VU HM 

Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth 

Loading 1  52 8 58 2 57 3 52 8 58 2 57 3 59 1 

Loading 2 57 3 60 0 59 1 60 0 56 4 60 0 54 6 

Loading  3 60 0 57 3 57 3 57 3 60 0 60 0 56 4 

Table 5.3 : For seven different fault patterns and variation of all three phases, detailed results are shown that 

demonstrate the number of fault parameters that Symlet5 mother wavelet can handle at their optimum level. 

These results take into account all of the parameters (SNR, RMSE, PSNR, and CC), all three phases, and all five 

levels of wavelet decomposition. 

Phase 
BR RM FB SF RU VU HM 

Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth 

     R Phase 58 2 56 4 59 1 57 3 56 4 57 3 56 4 

     Y Phase 55 5 59 1 55 5 58 2 59 1 60 0 54 6 

     B Phase 56 4 60 0 59 1 54 6 59 1 60 0 59 1 

Table 5.4 : For seven different fault patterns, against the variation of all fault parameters (SNR, RMSE, PSNR, 

and CC), detailed results showing the number of optimum fault parameter levels found in favour of Symlet5 

mother wavelet are shown. These results take into account all three phases, all three loading conditions, and all 

five levels of wavelet decomposition. 

Parameter of 

Accuracy 

BR RM FB SF RU VU HM 

Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth 

SNR 42 3 43 0 44 0 42 0 44 0 44 0 43 0 

RMSE 41 4 44 0 44 0 41 0 44 0 44 0 43 0 

PSNR 44 1 44 0 42 0 44 0 43 0 45 0 41 0 

CC 42 3 44 0 43 0 42 0 43 0 44 0 42 0 

Table 5.5 : For seven different fault patterns and variation of all five levels of wavelet decompositions, detailed 

results are shown that demonstrate the number of fault parameters that Symlet5 mother wavelet can handle at 

their optimum level. These results take into account all of the parameters (SNR, RMSE, PSNR, and CC), all 

three phases, and all five levels of wavelet decomposition. 

Level of 

decomposition 

BR RM FB SF RU VU HM 

Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth Sym5 Oth 

Level 1 32 4 36 0 36 0 36 0 32 4 36 0 35 1 

Level 2 34 2 32 4 34 2 36 0 36 0 33 3 32 4 

Level 3 36 0 36 0 35 1 36 0 36 0 36 0 34 2 

Level 4 36 0 36 0 33 3 30 6 34 2 36 0 34 2 

Level 5 31 5 35 1 35 1 31 5 36 0 36 0 34 2 
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Figure 5.16: Comparison showing the percentage of observations with the Symlet5 mother wavelet's optimal 

parameter under changes in (a) motor loading, (b) electrical phase, (c) fault parameters (SNR, RMSE, PSNR, 

and CC), and (d) wavelet decomposition levels; remaining parameters in each case are taken into account 

collectively 

 

The percentage of observations with the ideal parameter discovered using the Symlet5 mother wavelet 

with modifications in loading, phase, accuracy parameters (SNR, RMSE, PSNR, and CC), and levels 

of wavelet decomposition, can be seen by carefully observing the subfigures of Fig. 5.16. The key 

observations are listed as follows: 

 Fig. 5.16 (a) shows that the loading condition 3 with a 200 W electrical load applied to the 

generator has the highest optimised parameter accuracy with Symlet5, followed by the no-

load condition and generator load (Loading Condition 2). (Condition of loading 1). These 

levels are near 97% for loads 3 and 2, but are shown to be close to 93.5% for load 1. 

 Fig. 5.16 (b) shows that phase B generates the best accuracy, around 97%, as contrasted to 

phases R and Y, which have these levels at or near 95%; nevertheless, the margin is running 

about between 95% and 97%, which is essentially equivalent and has only minimal efficacy. 

Additionally, it demonstrated that the Symlet5 mother wavelet provided the greatest results 

for the accuracy parameter, being approximately 95% accurate even in the worst case 

scenario. It also showed that all three line currents produce results that are nearly equivalent. 

 Fig. 5.16 (c), which contrasts the outcomes of the four distinct accuracy parameters, can be 

used to make a similar argument. It demonstrates that CC has the lowest accuracy, which is 

also more than 95%, and PSNR has the highest accuracy, exceeding 96%. This difference's 

margin is very small in all respects. Therefore, Symlet5 is the most precise mother wavelet 

with more than 95% precision, even in the worst-case scenario, according to all four metrics. 

 Fig. 5.16 (d) displays a comparison of the percentage of ideal parameters for five different 

levels of decomposition. Level 3 appears to produce the greatest proportion of observations 

that support Symlet5. The lowest accuracy is found at level 2, which is likewise near 94%, 

whereas this level of accuracy is close to 99%. As a result, it is also demonstrated that 

Symlet5 is generally invariant with respect to the level of wavelet decomposition with respect 

to the number of observations. 

 



Chapter 5  Fault Classification using time-frequency domain analysis 

84 

Thus, taking into account all four study factors, it can be concluded that Symlet5 mother wavelet 

produces the largest percentage of the optimal parameter. Therefore, it can be said that Symlet5 is the 

best mother wavelet for the investigation of induction motor faults that has been proposed. 

 

5.6 Determination of optimum level of wavelet decomposition 

 

The selection of the optimal level of decomposition is also an important task because the quality of 

the de-noised signal may be reduced after a certain level of decomposition due to data reduction 

[163]. Determining the best amount of decomposition based on the type of data being processed is so 

crucial. 

After identifying Symlet5 as the ideal mother wavelet as described in the analysis above, the next 

stage of the proposed work's analysis entails determining the ideal level of wavelet decomposition. As 

a result, we have examined the best observations for each factor. These variables include the three 

phases, all three fault classes (BR, RM, FB, RU, VU, SF), one healthy condition, four accuracy 

measures (SNR, PSNR, CC, and RMSE), and all three loading conditions. These four accuracy 

metrics are plotted against each of the five decomposition levels for each of the seven fault classes for 

each of the three loading situations, as shown separately in Figs. 5.17, 5.18, 5.19, and 5.20. Given that 

Symlet5 mother wavelet was already determined to be the best option in the previous section. In order 

to observe the fluctuations of the four accuracy parameters for all seven faults and one healthy motor 

under three distinct loading conditions, we increased the decomposition level using Symlet5 mother 

wavelet exclusively for the fault current signals from level 1 to level 5. 

 

 
Figure 5.17: SNR values comparison of seven fault for five levels of decomposition classes using Symlet5 

mother wavelet over the line R fault current waveforms in three different loading conditions, (a) loading 1 

condition, (b) loading 2 condition, and (c) loading 3 condition 

 
Figure 5.18: Using the Symlet5 mother wavelet over the R line fault current waveforms under three loading 

conditions, (a) loading condition 1, (b) loading condition 2 and (c) loading condition 3, the root mean square 

errors (RMSE) for seven fault classes for five wavelet decomposition levels are compared 
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Figure 5.19: PSNR values for seven classes of faults were compared for five levels of decomposition using 

Symlet5 mother wavelet over the line R fault current waveforms under three distinct loading conditions: (a) 

loading condition 1, (b) loading condition 2 (c) loading condition 3 

 

Figure 5.20: Using the Symlet5 mother wavelet over the line R fault current waveforms under three loading 

conditions, (a) loading condition 1, (b) loading condition 2and (c) loading condition 3, CC values for seven 

classes of faults for five wavelet decomposition levels were compared 

From the graphs above, it can be seen that several of the curves have a tendency to saturate around the 

decomposition level 5. From level 4 forward, some of the curves also start to saturate early; 

nevertheless, some of these continue to show a slight upward tendency even until level 5. Overall, it 

can be concluded that level 5 is nearly ideal because it is then that the changes in the accuracy 

parameters start to saturate and the computing complexity doesn't rise noticeably. When we 

investigated changes to the same parameters using current signals of Y phase and B phase, we 

discovered a similar tendency of the curves. As previously indicated, we also changed the motor's 

load in three phases and looked into those changes. In sub-figures (b) and (c) of each of the figures 

from Fig. 5.17 to Fig. 5.20, we have plotted these data for each of the four accuracy metrics for both 

generators with no load and generators with a 200 W load, and once again, we have found similarities. 

More importantly, we have noticed that, rather than heading towards saturation, the signal degradation 

is persisting more in the event of higher loadings. 

To pinpoint this gradual shift in the parameter values, additional research has been done. This is done 

by using the Symlet5 mother wavelet to calculate the difference in parameter values derived from the 

subsequent stages of wavelet decomposition, and then presenting this incremental change in 

parameter values in two-dimensional graphical plots for the four quality parameters from Fig. 5.21 to 

Fig. 5.24. The difference in the level of decomposition is shown on the x-axis of each of these plots, 

i.e. 

Difference in the level of decomposition (i) = Level (i+1) – Level (i) 
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And the y-axis displays the difference in accuracy parameter values for each modification in level of 

decomposition, i.e., 

The accuracy parameter value for the difference in the decomposition level (i) is equal to the 

difference ofthe accuracy parameter value for the (i+1)-th level and the accuracy parameter value for 

the i-th level. 

 

Figure 5.21: Using the Symlet5 mother wavelet over the line R fault current waveforms under three different 

loading conditions, (a) loading condition 1, (b) loading condition 2 and (c) loading condition 3, incremental 

SNR changes for seven fault classes for five levels of decomposition were compared 

 

Figure 5.22: Comparison of incremental changes in RMSE values of seven fault classes for five decomposition 

levels using Symlet5 mother wavelet over the line R fault current waveforms under three different loading 

conditions, (a) loading condition 1 (b) loading condition 2 and (c) loading condition 3  

 

Figure 5.23: Comparison of incremental PSNR changes of seven fault classes for five decomposition levels 

using Symlet5 mother wavelet over the fault current waveforms of R phase under three different loading 

conditions, (a) loading condition 1, (b) loading condition 3, (c) loading condition 3 
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Figure 5.24: Comparison of incremental CC changes of seven fault classes for five decomposition levels using 

the Symlet5 mother wavelet over the line R fault current waveforms under three different loading conditions, (a) 

loading condition 1, (b) loading condition 2, (c) loading condition 3 

These graphs demonstrate that the majority of the curves associated with distinct fault circumstances 

start to saturate from level 4 onward as these incremental curves, which represent the differential 

change in values, begin to flatten gradually. For all accuracy metrics and all faults, this tendency 

towards saturation is particularly evident for faults executed under no load conditions. In fact, we find 

that the curves practically reach saturation at level 4 and higher. Similar outcomes are discovered 

when phases Y and B are also explored. 

Since the present study aims to identify the optimal degree of wavelet decomposition of the signal, we 

have made a trade-off between the saturation of the accuracy parameters and the computing 

complexity of the analysis. As a signal's level of breakdown rises, processing complexity rises 

quickly. Therefore, to build a straightforward and less complicated model, the level of decomposition 

should be as low as is practical. We have observed once again that the parameter values are not 

precisely saturating, even after level 5 of decomposition has been reached, despite the fact that the rate 

of change in parameter values is decreasing, particularly in the no-load situation. Level 4 is clearly the 

ideal level under the no-load scenario, owing to the saturation of the accuracy parameters and the fact 

that the complexity of analysis increases sharply with level of decomposition. 

 

However, the pattern for the other two loading types is just slightly different. The four figures above 

show that, for a small number of faults and a small number of coefficients, the rate of change in 

parameter values has decreased gradually up to level 4; that is, for the transition from level 3 to level 

4, the difference in parameter values is in a falling mode; however, following that, the gap in 

parameters unexpectedly climbs somewhat rather than becoming more saturated. In particular, for 

larger loads and for all the accuracy measures, it suggests that the SNR, PSNR, and CC have 

decreased with higher descent, and the RMSE has similarly increased starting at this level 4. This 

abrupt decline is also shown from Fig. 5.17 to Fig. 5.20, which is where it is seen through close 

inspection. The quality of the reconstructed signal has predictably dropped due to this tendency of 

abrupt parameter value drops starting at level 4, and this has come at the expense of increased 

computational complexity. More crucially, comparing sub-figures (b) and (c) of each of Figs. 5.21 to 
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5.24 will show that from no load to generator load, and eventually more in the case of additional 200 

W loading, there has been an increase in this propensity of sharp dips in accuracy parameter values. 

From this, it may be inferred that as the degree of breakdown increases, accuracy decreases more 

quickly with an increase in motor workload. Therefore, it may be concluded that level 4 is the best 

level of decomposition for the present work, especially when considering the motor's various loads. 

 

5.7 Multi Resolution Analysis (MRA) 

According to the integer number of the discrete step in scale and translation, indicated by q and r, 

DWT provides a number of wavelet coefficients. If 0c  and 0e the segmentation step sizes for the 

scale and translation respectively, the scale and translation of RMS of these parameters will 

be
qcc 0  and q

cree 00 . From now on, the discrete wavelet coefficients are given by 

--------- (5.6) 

where, the discrete wavelet with scale and translation is indicated by the notation . The 

high pass and low pass filters of MRA are collectively referred to as the MRA high pass and low pass 

filters, respectively. This is how the MRA technique is typically described. 

 
Figure 5.25 : Idea of multi resolution analysis of wavelet. 

To categorise the three different groups of errors in the time-frequency domain in this work, we used 

wavelet analysis. The Symlet5 mother wavelet is used to deconstruct the three phase current 

waveforms of all defective induction motors, including the healthy one, up to the fifth level of 

decomposition. Fig. 5.25 depicts the wavelet-based signal decomposition methodology. The 

information provided by d1 is situated in the frequency range between F/4 and F/2 since the sampling 

frequency of the original signal is F. The signal d2 transmits the signal data between the frequency 

bands F/8 and F/4. Similar to d2, d3 transmits data in the frequency region between F/16 and F/8. The 

remaining information of the original signal between 0 and F/16 is retained at the approximation level 

(a3). As a result, extracting critical information from the original signal into multiple frequency bands 
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while also matching the information to the relevant time frame is simple.The approximate coefficients 

of each decomposed current signal are used to extract the features. 

The three phase original current signals of each motor are decomposed by the Symlet5 mother 

wavelet function at different decomposition levels to get information in different frequency bands. 
 

5.8 Fault classification using multi resolution analysis (MRA)  

In recent years, the wavelet transform has emerged as one of the most rapidly developing 

mathematical and signal processing methods due to a number of distinguishing advantages. In order to 

compute the wavelet decomposition of the signal from its best scale approximation, MRA gave rise to 

the wavelet transform, which is renowned for its simplicity and recursive filtering process. The 

discrete wavelet transform's multi-resolution analysis divides a signal into various time-frequency 

components while also establishing a suitable criterion for identifying the noise within each 

component. In MRA, the approximate and detail coefficients are monitored for each level by 

computing different feature parameters with statistical tools. It has been widely used in image 

processing, but few works have been done in the domain of electrical system fault analysis. Numerous 

analyses have been done using wavelets for fault diagnosis of electrical systems in the time-frequency 

domain, but it has been observed that very few analyses have been done for fault diagnosis using 

MRA based statistical tool monitoring. MRA of DWT is suitable to detect abnormalities in power 

systems by identifying harmonic frequencies in a small range (1.5625-3.125 Hz to 49.2–902 Hz) 

[164] and also in the range of 0.05 Hz [165,166].MRA has been used for brush loose contact analysis 

in AC locomotive systems, extracting features from DWT coefficients (approximate and detailed) of 

current signals by statistical tools to select the best fit level, and these three tools have also been used 

for  inner turn fault analysis of traction motors [56, 167]. The best fit level selection has been done 

using MRA of DWT based kurtosis, skewness, RMS, mode, mean, and median values for fault 

analysis in solar-wind microgrids, and these parameters have been used to optimise level for line to 

ground fault detection in HVDC systems [57, 168]. It is also used to detect supply unbalance in a 3 

phase induction motor and to detect the presence of harmonics in the current spectrum of an arc 

furnace transformer [169, 170]. Additionally; it has been applied to the static switch in microgrids for 

fault localization, classification, and detection, employing MRA of DWT and a Taguchi-based 

artificial neural network (ANN) [171]. Multiresolution decomposition of DWT, including a few 

statistical tools, has been applied to compute statistical indices of total harmonic distortion of current 

and voltage signals, and after that, the input feature parameters have been fed to a random forest based 

classifier to classify faults in microgrids [172]. It has been seen from previous work that MRA has 

been used to extract relevant features from input signals for one type of fault identification of motors 

[173], transformers, and microgrids. 

The motivation of this work is to identify three different types of faults in induction motors by 

extracting statistical features using MRA of DWT and a norm based classification system. Three 
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phase current signals have been collected from six motors with six different types of known faults, 

including one healthy motor, and current signals from three motors with three unknown types of faults 

under different loading conditions. Three phase current signals have been decomposed into multiple 

levels using the DWT algorithm, and Skewness, Kurtosis, RMS value, Median, and Mode have been 

computed from approximate and detail coefficients. The feature matrices of skewness, kurtosis, RMS 

value, median, and mode have been constructed from approximate and detailed coefficients of three 

phase current signals in multiple decomposed levels, but it is essential to reduce the rank of the matrix 

for the classification problem [174]. The Frobenius norm has been used [175] to convert each 

multidimensional feature matrix to a scalar value. The composite norm of each MRA feature 

parameter of each faulty motor has been computed, and the norms of 10 feature parameters of each 

faulty motor have been found. The total norm of all norms for each faulty motor has been computed, 

and the norm differences are calculated from one unknown faulty motor to all known faulty motors. 

The unknown fault has been identified based on the minimum value of the norm difference. The fault 

classification process has been applied to identify three unknown faults for multi decomposition 

levels, and the same process has also been applied under different loading conditions. The sensibilities 

of norms have also been verified with the changing of decomposition levels. 

 

Figure 5.26: Work flow diagram of fault classification through MRA of wavelet 

 

Kurtosis, Skewness, RMS ,Median and  Mode values  for MRA: 

The mathematical expression of Kurtosis, skewness has been discussed in Chapter 2 along with the 

square root of the arithmetic mean of the square of the function that defines the continuous waveform, 

which is the r.m.s. value of a set of values. 

R.M.S =                                         (5.11) 

where T is the time period of a signal and f(t) is the current signal. The current signals have been 

decomposed into multiple levels using high pass and low pass filters. The statistical feature 
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parameters skewness, kurtosis, and r.m.s. value have been computed from the approximate and detail 

coefficients of each level of decomposed current signals. There are three phases of each type of motor, 

and the composite matrices for the three phases of skewness, kurtosis, and r.m.s. value of each type of 

motor have been made using these feature parameters of 1st level to i-th level decomposed signals as 

follows: 

                                                                                        (5.12) 

                                                                                      (5.13) 

                                                                                          (5.14) 

 

Here, S is the matrix of skewness for assessment of approximate and detail coefficients: skewness 

of approximate coefficients and detailed coefficients of DWT at the i-th decomposition level. K is 

the matrix of kurtosis for the assessment of approximate and detail coefficients, which are 

kurtosis of the approximate coefficient and detail coefficients of DWT at the i-th decomposition 

level. are the r.m.s. values of the approximate coefficients and detailed coefficients of DWT at the 

i-th decomposition level, and R is the r.m.s. matrix. Consider three phase system  

(i) For R phase :  etc. 

(ii) For Y phase: :  etc. 

(iii) For B phase:  etc. 

The composite skewness matrix of approximate coefficients are: 

                                                                        (5.15) 

The composite skewness matrix of detailed coefficients are: 

                                                                       (5.16) 

The composite kurtosis matrix of approximate coefficients are: 

                                                           (5.17) 

The composite kurtosis matrix of detailed coefficients are: 
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                                                                     (5.18) 

The composite r.m.s value of approximate coefficients are: 

                                                                             (5.19) 

The composite r.m.s value of detailed coefficients are: 

                                                                           (5.20) 

The mathematical expression for Median and Mode have been discussed in Chapter 2.  

Median and mode have been computed from the approximate and detail coefficients of decomposed 

current signals at multiple decomposition levels. Following that, composite median and mode 

matrices were constructed for each type of motor using the feature parameters of decomposed three-

phase current signals from the first to the i-th level.  

 

                                                                           (5.21) 

                                                                             (5.22) 

 

As the wavelet decomposition level is 7, so the maximum values of i is 7. 

Here,  are median of approximate coefficient and detailed coefficients of DWT at i-th 

decomposition level.  are mode of approximate coefficient and detailed coefficients of 

DWT at i-th decomposition level. 

Consider three phase system  

(iv) For R phase :  etc. 

(v) For Y phase:  etc. 

(vi) For B phase:  etc. 

The composite median matrix of approximate coefficients are: 

                                                             (5.23) 
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The composite median of detail coefficients are: 

                                                            (5.24) 

The composite mode of approximate coefficients are: 

                                                          (5.25) 

The composite mode of detailed coefficients are: 

                                                        (5.26) 

For R-phase: 

                                                               (5.27) 

 

For Y-phase: 

                                                                   (5.28) 
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For B-phase: 

                                                                   (5.29) 

Fault classification using Norm: 

The Frobenius norm of a matrix is defined as , where tr is  a matrix's 

trace, or the sum of its diagonal entries. The Frobenius norm is useful for measuring of the root-mean-

square(RMS) gain of the matrix, its average response along given mutually orthogonal directions in 

space. It does not capture the error variance well; it only captures the average effect of noise. If a 

noise vector has a finite set of directions that are represented by the standard basis such as e1, e2,... 

en, the average value of the square error norm is:  

                                                                                      (5.30) 

 

 is the ithcolum of B. The above quantity can be written as . 

                                     (5.31) 

Here,  is the Frobenius norm of B. The p x n matrix B's Frobenius norm, also known as the 

Euclidean norm, is calculated as the square root of the sum of the absolute squares of the matrix's 

elements [176]. 

The composite MRA is given by:  

                                                          (5.32) 

where  and   are the norms of  respectively. 

The norm of composite MRA is:                         (5.33) 

Multiple decomposition levels are used to decompose the three-phase current signals of six faulty 

motors named broken rotor bars (BR), rotor misalignment (RM), faulted bearing (FB), stator winding 

fault (SF), rotor unbalance (RU), single phase voltage unbalance (VU), and one healthy motor. 
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The feature matrix of kurtosis, median, mode, skewness, and RMS value have been made individually 

from approximate and detailed coefficients of decomposed three-phase current signals at different 

levels. The norms can be calculated from the MRA matrix for three phases, which contain 30 features 

(10 features for each phase) for each type of fault. The norm differences can be calculated from one 

norm of an unknown fault to other norms of known faults. The unknown fault can be identified 

depending on the minimum value of the norm difference. 

Here, the Frobenius norm has been computed from each feature matrix, and 10 norms for each type of 

fault have been formed to identify the norm value of each feature matrix of  each unknown fault close 

to each feature norm of each known fault. 

Each norm of a feature matrix is a scalar value, but an unknown fault cannot be authenticated from 10 

scalar values. The norm differences need to be computed for the norm of each unknown fault 

compared to the norms of other known faults to authenticate each unknown fault. If the 10 norms are 

combined to form a composite single matrix, then the norm can be found from the matrix of 10 norms 

as follows: 

The matrix norms for all three phases' above features are computed as follows:  

1)  

2)  

3)  

4)  

5)  

6)  

7)  

8)  

9)  

10)  

 

                                                                                      (5.34) 

                                                                                 (5.35) 

The norms of the composite norm matrix have been computed for known and unknown faults, and the 

norm differences of two composite norm matrices (NCA1 and NCA2) have been computed to find out 

the similarity between them as follows: 
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                                                                                (5.36)     

The norm differences from each unknown fault to known faults have been found, and each unknown 

fault has been authenticated based on the minimum value of the norm difference. 

 

5.8.1 Results for fault classification using MRA 

 

The data samples of three phase currents (amplitude vs. time) are collected three times from induction 

motors with six known types of faults (broken rotor bars (BR), rotor misalignment (RM), faulty 

bearings (FB), stator winding faults (SW), rotor unbalance (RU), single-phase voltage unbalance 

(VU), and one healthy motor (HM) in three loading conditions. Additionally, six random current data 

samples from induction motors with three unidentified problems are obtained under three different 

loading circumstances. The three loading conditions are described in the experimentation section of 

the chapter. 

The current signals of each faulty motor and one healthy motor are decomposed into 3rd, 4th, 5th, 6th, 

and 7th levels using the Symlet5 mother wavelet function. Initially, three unknown types of faults were 

classified using MRA in multiple decomposition levels under one loading condition, and then the 

same process was used to classify. The feature matrices of skewness, kurtosis, median, mode, and 

RMS value for each phase of each type of motor have been constructed by extracting features from 

the approximate and detail coefficients of the 1st-3rd decomposed level, 1st -4th decomposed level, 1st -

5th decomposed level, 1st to 6th decomposed level, and 1st -7th decomposed level individually. The 

composite feature matrices for each feature of each fault type have also been formed at different 

decomposition levels using statistical feature parameters of approximate and detail coefficients for the 

three phases of each fault type. Norms have been computed from each feature matrix of each fault 

type to convert each feature matrix to a scalar value. 10 norms of 10 feature parameters (5 feature 

parameters for approximate coefficients and 5 feature parameters for detail coefficients) for each type 

of faulty motor have been found, and a norm matrix for each type of faulty motor has been formed 

using the 10 feature parameters. The norm feature parameters of each type of motor, including three 

unknown types of faulty motors (X1, X2, and X3), have been presented in Table 5.6 (a) for 

decomposition levels from 1st to 5th under one loading condition. The X1, X2, and X3 are the 

unknown types of faults 1, 2, and 3, respectively. From Table 5.6 (a), it has been seen that every 

feature of the 10 features of unknown fault 1, unknown fault 2, and unknown fault 3 is similar to the 

features of broken rotor bar fault, stator winging fault, and faulted bearing, respectively. However, 

unknown faults cannot be authenticated from the feature parameters of multiple dimensions, so it is 

essential to convert the features of multiple dimensions to a scalar value because all the data are 

correlated. Again, the norm of 10 norms has been computed for each type of motor in the norm matrix 

to convert multidimensional features to single dimensional features. The norm differences of one 

unknown type of motor to other known types of motors have been calculated, and each unknown type 
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of fault has been identified based on the minimum value of the norm differences of one unknown type 

to other known faults. Table 5.6 (b) shows the norm differences between three classes of unknown 

type faults and other known classes for the first through fifth decomposition levels. From the distance 

table, it has been seen that unknown type fault 1 (X1), unknown type fault 2 (X2), and unknown type 

fault 3 (X3) resemble broken rotor bars, stator winding faults, and faulted bearings, respectively. 

Tables 5.6(a) and 5.6(b) show that the classification results are identical. Tables 5.7 (a, b) and 5.8 (a, 

b) show the results of applying the fault identification process to other two loading conditions for the 

first to fifth decomposition levels. The classification results are the same under the other two loading 

conditions as well. The composite norms of MRA feature parameters for different types of faulty 

motors with unknown type fault 1 under loading condition 1 have been shown in Fig. 5.27 for 1st to 5th 

level decomposition. 

 

The classification process was also applied to other decomposition levels, and the minimum values of 

norm differences were calculated individually for three unknown types of faults in different 

decomposition levels (1st to 3rd, 1st to 4th, 1st to 5th, 1st to 6th, and 1st to 7th) under three loading 

conditions to test the sensitivities of norm differences with changing decomposition levels. The results 

have been reflected in the bar chart (Fig. 5.28). 

 

 

Table 5.6: (a) Composite norms of feature parameters of known type and three unknown type of faults under 

loading condition1(1st to 5th level decomposition) 

 

 

 

Norm of  

feature 

parameters 

BR FB RM RU SF VU HM X1 X2 X3 

Norm of CSA 24.7802 23.9099 24.2131 24.0729 23.1781 23.4051 43.2746 24.78368 23.19097 23.91678 

Norm of CSD 0.5181 0.5253 0.5543 0.5847 0.6066 0.5611 0.8956 0.518205 0.607359 0.525521 

Norm of CKA 5.8276 5.8532 5.7482 5.9169 6.2129 6.2617 5.8738 5.827436 6.213889 5.852943 

Norm of CKD 0.1759 0.4206 0.3375 0.2958 0.5812 0.6766 0.4302 0.175722 0.582727 0.420342 

Norm of  CRA 3.9746 4.3079 3.8372 5.1769 4.5900 4.3189 1.8440 3.989913 4.601799 4.299742 

Norm of CRD 41.8165 34.8051 37.7747 38.3139 33.2339 41.8243 21.9103 41.79655 33.26309 34.65729 

Norm of 

CMnA 
3.2322 3.9806 3.5921 2.3433 4.0668 5.3933 10.0019 3.263673 4.189515 4.04281 

Norm of 

CMnD 
34.4752 33.9242 33.6328 34.4436 33.6452 34.7077 62.1901 34.43357 33.52997 33.83593 

Norm of 

CMdA 
0.2976 0.2844 0.3062 0.2940 0.3036 0.2887 0.5043 0.29677 0.301743 0.28446 

Norm of 

CMdD 
2.1447 2.1323 2.1847 2.3639 2.3400 2.3412 2.6664 2.143525 2.339623 2.12712 
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Table 5.6: (b) Differences of norm of three unknown type faults from known type faults when motors are 

running under loading condition 1 (1st to 5th level of decomposition) 

Unknown 

type 

Known fault types 

BR FB RM RU SF VU HM 

X1 
0.0336 

 
5.2607 3.4433 2.5945 6.6595 0.1448 19.6883 

X2 
6.7312 

 
1.4370 3.2544 4.1032 0.0381 6.5528 26.3860 

X3 
5.4359 

 
0.1417 1.9591 2.8079 1.2572 5.2575 25.0907 

 

Table 5.7: (a) Composite norms of feature parameters of known type and three unknown type fault under 

loading condition 2 (1st to 5th level decomposition) 

Norm of  

feature 

parameters 
BR FB RM RU SF VU HM X1 X2 X3 

Norm of CSA 

 
25.2069 24.8713 25.4462 24.8402 25.4680 24.8295 41.6617 25.2154 25.46603 24.87067 

Norm of CSD 0.5062 0.5800 0.6138 0.5462 0.5839 0.5802 0.8136 0.506291 0.584239 0.579911 

Norm of CKA 

 
6.7221 6.0190 6.1224 6.0153 6.0333 6.0732 5.9370 6.722458 6.033915 6.019044 

Norm of CKD 1.7357 0.6889 0.7652 0.7058 0.7503 0.7606 0.6924 1.735726 0.750391 0.68905 

Norm of  CRA 7.4022 2.9274 3.0218 4.1539 2.2740 4.4641 1.6878 7.329981 2.279704 2.958505 

Norm of CRD 82.0372 29.4640 24.1658 30.7249 22.7973 34.6153 16.2217 81.16689 22.76357 29.65494 

Norm of 

CMnA 
19.2255 7.5354 4.7328 7.6250 7.4811 7.6461 10.9035 19.26121 7.476762 7.546559 

Norm of 

CMnD 
34.9419 35.8986 36.6674 35.6299 36.2926 35.7708 59.6168 34.86665 36.20318 35.80774 

Norm of 

CMdA 
0.0575 0.2699 0.2826 0.2694 0.2881 0.2689 0.4520 0.058482 0.28857 0.268865 

Norm of 

CMdD 
1.6617 1.9559 2.0204 1.7711 1.8761 1.9767 2.2400 1.66205 1.874724 1.958642 

 

Table 5.7: (b) Differences of norms of three unknown type faults from known type faults under loading 

condition 2 (5th level decomposition) 

Unknown 

types 

Known fault types 

BR FB RM RU SF VU HM 

X1 
0.7729 

 
3.7726 4.1437 1.8816 4.0740 4.2943 23.5542 

X2 
4.0407 

 
2.8940 0.6918 3.4907 0.0802 5.9085 24.8189 

X3 
4.1466 

 
0.0475 2.2496 0.5492 2.8613 2.9670 21.8775 
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Table 5.8: (a) Composite norms of feature parameters of known type and three unknown type faults under 

loading condition 3(1st to 5th level decomposition) 

Norm of  

feature 

parameters 
BR FB RM RU SF VU HM X1 X2 X3 

Norm of CSA 

 
30.0926 29.5041 29.9962 29.5228 29.7330 29.8758 43.0912 30.0918 29.7335 29.5025 

Norm of CSD 

 
0.6115 0.6197 0.6568 0.6170 0.6453 0.5936 0.9308 0.611512 0.64586 0.61999 

Norm of CKA 

 
5.9869 5.9945 6.0162 6.1032 5.9904 6.0276 6.2630 5.987372 5.99109 5.99402 

Norm of CKD 

 
0.7213 0.7130 0.7007 0.7909 0.7063 0.6757 0.7473 0.721719 0.706616 0.71282 

Norm of  CRA 

 
2.5660 3.9665 3.2453 2.8848 2.9058 1.7226 1.3460 2.531197 2.85292 3.96688 

Norm of CRD 

 
20.5999 29.2010 27.7408 22.7851 26.4396 37.6668 21.1413 20.5305 26.34497 29.1200 

Norm of CMnA 

 
7.9671 7.6755 7.6567 9.3542 8.5706 7.7039 8.3577 7.983213 8.57200 7.66468 

Norm of CMnD 

 
42.7060 42.5388 42.8304 42.6244 42.2241 42.3600 62.7664 42.59888 42.0747 42.4366 

Norm of  CMdA 

 
0.2931 0.2856 0.2854 0.2884 0.3046 0.2987 0.4708 0.293469 0.30396 0.284331 

Norm of  CMdD 

 
1.9242 2.1706 2.1691 1.9837 2.1227 2.0496 2.6276 1.923377 2.12611 2.17480 

 

Table 5.8: (b) Differences of norms of three unknown type faults from known type faults under loading 

condition 3 (1st to 5th level decomposition) 

Unknown 

types 

Known fault types 

BR FB RM RU SF VU HM 

X1 
0.1048 

 
3.3776 3.0941 0.8126 2.0407 7.8510 22.7382 

X2 
1.7850 

 
1.4879 1.2044 1.0772 0.1510 5.9613 20.8484 

X3 
3.1598 

 
0.1130 0.1705 2.4520 1.2238 4.5864 19.4736 

 

  
(a) (b) 
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(c) (d) 

 

Figure 5.27: Composite norms of MRA of different type of faulty motors with unknown type fault 1 under 

loading  condition 1 for 1st to 5th level decomposition,(a) BR and FB, (b) RM and RU, (c) SF and VU, (d) HM 

and X= unknown type 1 

 

 
 

(a)  (b)  

 

 
(c) 

 
Figure 5.28 : Minimum values of norm differences for three unknown type of faults under three loading 

conditions at different decomposition levels, Wavelet 3: 1st -3rd level decomposition, Wavelet 4: 1st -4th level 

decomposition, Wavelet 5: 1st -5th level decomposition, Wavelet 6: 1st -6th level decomposition, Wavelet 7: 1st -7th 

level decomposition, (a) for X1(unknown type 1),(b) for X2 (unknown type 2) , (c)for X3(unknown type 3) 
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The three different loading variations, as described in Section 3.2, are illustrated as follows: 

Loading condition 1: The I.M. is running and no mechanical load is connected, Loading condition 2: 

I.M. has a mechanical load that is a DC generator, Loading condition 3: A 200 watt electrical load 

coupled to the generator's output (while the full load of the generator is 750 W). 

The Fig 5.28 represents the minimum values of norm differences for three unknown type of faults 

under three loading conditions at different decomposition levels (1st to 3rd level, 1st to 4th level , 1st to 

5th level and 1st to 7th level ) and the minimum values of norms differences are nor increasing or 

decreasing with the increase of decomposition levels. It can be said from the result that the sensitivity 

of norm difference does not depend on the level of decomposition. 
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Chapter 6 

Fault Classification using PNN in different domains 

 

A probabilistic neural network (PNN)-based robust classifier has been developed in this work for the 

classification and authentication of induction motor faults using the features of three domains. The 

decomposition level of the wavelet has also been selected to get the highest classification accuracy, 

and the optimal value of the PNN spread parameter has also been estimated in this work. Induction 

motors' three phase line currents are measured under three different loading conditions for six classes 

of defects and one healthy state. Time domain, time-frequency domain, and frequency domain 

features are analysed here using direct fault current signals, their FFT spectra, and wavelet transforms 

of the same, respectively; followed by principal component analysis (PCA). PNN is used to develop 

the final classifier using PCA features. The inclusion of variability in loading ensures robustness. The 

PNN model is further tuned with varying spread parameters to obtain the optimum level of accuracy, 

and the results are also recorded. The model presented here is found to detect faults with a mean 

accuracy exceeding 99%. The classification accuracy estimates, obtained using different schemes, are 

analysed and compared. Besides, this method incorporates a low-computation PNN architecture. High 

accuracy of fault classification combined with simplicity of analysis indicates its effectiveness for the 

diagnosis of various induction motor faults; as well as, its ease of implementation in developing real 

time condition monitoring and fault diagnosis schemes. 

 

6.1 Introduction 

The behaviours of induction motor current and torque are also studied using simulation modelling 

[177]; although these methods suffer from uncertainties in practical implementation. Artificial 

intelligence (AI)-based models are widely employed now-a-days for induction motor fault 

identification with a high success rate [47]. Supervised learning models, combined with other 

methodologies, have been used often for developing hybrid classifier models. Some of the methods 

include MLP [178, 179], adaptive neuro-fuzzy inference systems, Mahalanobis-Taguchi systems, 

deep neural networks [180], artificial neural networks (ANN), and support vector machines (SVM). 

Other models include modified forms of neural networks, such as the probabilistic neural network 

(PNN), which uses Bayes’ optimal classification to generate accurate predicted target probability 

scores [181–184] and is faster than a multilayer perceptron network. These methods primarily aim at 

feature selection by reducing noisy and irrelevant features; as well as the dimension of the fault 

signals; thereby, providing an exact description of the condition of faults, a diagnosis, and a prognosis 

. Statistical techniques are also used in abundance for feature extraction from signals [185]. Principal 

component analysis (PCA) is one such method, used widely in this domain of research. PCA allows 

for the reduction of dimensions by identifying the main directions of variation in a signal in the order 
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of importance. A statistical model such as PCA is often combined with supervised learning methods 

such as PNN to develop hybrid networks. The authors of [186–188] have extracted features through 

PCA and used the same with PNN to develop a classifier model for rotating machines for detecting a 

single class of fault; although a multiple fault detection algorithm was not taken care of. The authors 

of [187] have extracted features from a vibration signal through PCA in one domain to classify one 

type of fault, and the authors of [188] have also extracted features from the wavelet energy spectrum 

of a vibration signal through PCA to detect one type of fault. Current signals have not been used 

earlier to detect multiple types of fault patterns in rotating machines through PCA and PNN. In this 

work, the features are extracted from current signals in different domains through PCA not only to 

classify multiple unknown faults among trained classes in the frequency domain, time domain, and 

time-frequency domain individually using PNN but also to compare the classification performances of 

the features of these three domains. 

  

The work described here aims at classifying and authenticating unknown types of faults in induction 

motors; as well as identifying the location of the same. PNN is used in this work for developing the 

classifier for identifying three independent types of faults. Fast Fourier transform (FFT) and wavelet 

transform are applied here to transform the current signals into the frequency and time-frequency 

domains, respectively; followed by the application of PCA to extract final fault features from the 

signals separately. The time-frequency analysis has been done by decomposing the current signals 

into an optimum Symlet-5 mother wavelet; as it has been found in an earlier work, the Symlet5 

mother wavelet has the lowest values of RMSE and the highest values of correlation coefficient 

among the Daubechies wavelet family (db3-db10), the Coiflet wavelet family (Coif 1-Coif 5) and 

other Symlet wavelet families (Sym3-Sym8) for different electrical and mechanical faults of an 

induction motor [162]. These features, so extracted, are analysed using PCA and trained for six 

different classes of motor faults: faulted bearing, broken rotor bar, unbalanced rotor, misaligned rotor, 

stator winding fault, single phase voltage unbalance, and one healthy motor using the proposed PNN. 

The line currents are recorded from the inverter-fed three phase induction motor. The model has been 

validated for three unidentified faults under various loading scenarios. The experiments are conducted 

multiple times, and each unknown fault is carried out with three different loading conditions. The 

fault classification algorithm is run for each phase, for each unknown class of fault, and for each 

loading condition. This ensures generalisation of the model since it is observed that the frequency 

spectra of fault currents change under varying speed conditions [120, 189, 190]. Validation of the 

work is carried out using only three types of unknown faults. The performance of classification is 

assessed after calculating the success rate at different loading conditions for induction motors with 

features in the time domain, frequency domain, and time-frequency domain. Analysis of all three time 

domain, frequency domain, and time-frequency domain features for the assessment of classifier 

accuracies ensures the robustness of the model; especially considering load variability on the motor. 
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The model presented here doesn’t possess high computational complexity as is found with other 

supervised learning models, including complex neural networks, machine learning, and support vector 

machines, which are found in abundance in similar research. Thus, the present model could be applied 

to developing a real time fault classifier model. 

 

6.2 Feature extraction from signals in time domain, frequency domain and time-frequency 

domain 

 

Reduction of features is essential for reducing computation times and memory storage of an algorithm 

to make the classification process simpler. Simultaneously, it is important to retain the most important 

features from the data and delete the redundant ones. PCA is an efficient feature extraction and 

dimension reduction tool that reduces a large and diverse data set into the directions of the most 

variability, while retaining most of the variations. PCA orthogonalizes the vector components that are 

uncorrelated with each other, so that the components with the least variation contribute the most 

variation first. The training and test fault current signals from the induction motor are preprocessed by 

three major feature extraction methods. The time domain fault current signals are directly analysed 

using PCA. Further, the same fault current signals are processed using two major analysis techniques, 

such as the FFT and wavelet transform. These two models convert time domain signals into frequency 

and time-frequency domain spectra, which are then analysed using PCA to yield spectra features. 

Here, we have used the Symlet-5 mother wavelet and analysed the signals up to five levels of 

decomposition independently. In each of the cases, PCA is used to extract the final fault features in 

the form of PC scores. Two of the most important eigenvectors, denoted the first and second principal 

components (PC1 and PC2, respectively), for each phase, are computed by the PCA algorithm. The 

three phase PCs of a faulty induction motor and one healthy motor are fed to the PNN architecture for 

training. In each run, one unknown fault is tested using the trained PNN model and classified 

independently for the three phases. The three test fault features are fed sequentially to the PNN model 

to yield classification results. The major techniques used here are briefed in the subsequent sections. 

 

6.2.1 Feature extraction from current signals using PCA 

The collected current signals are collected from different types of faulty motors, and these current 

signals in the time domain have different types of harmonics. It is essential to extract relevant features 

of each type of fault from each phase of current signals, reducing the irrelevant features. PCA has 

been used here to extract features from each faulty current signal, reducing the dimensions. 

Dimensional reduction of retrieved features is also necessary to lighten the workload of processing 

data and strengthen the classifier [109]. Reduction of the input feature vector's size is crucial for 

streamlining the network model, which decreases recognition time and boosts recognition 

effectiveness. Principal component analysis (PCA)-based feature extraction and dimension reduction 

techniques have been found to be more efficient than all other dimensionality reduction techniques in 
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terms of classification accuracy. By expressing the variable space with a small number of orthogonal, 

uncorrelated variables that collectively include the majority of the primary variability, PCA is a 

method for extracting pertinent features and reducing the dimensionality of the variable space. The 

mathematical expression of PCA has been discussed in chapter 2. The principal components (PCs), or 

new variables, are created as a linear combination of starting features so that they are uncorrelated. 

The PCs are independent of one another and perpendicular to one another in Cartesian space. PCs are 

computed from each phase's current signals. The PCs are fed into PNN for unsupervised fault 

classification. 

 

6.2.2 Feature extraction from FFT spectrums using PCA 

Both the time domain and the frequency domain can be used to represent a periodic or non-periodic 

signal. By using the Fourier transform, a signal's time domain can be transformed into its frequency 

domain (spectrum). To simplify the analysis of a complicated signal and break it down into simpler 

components, a frequency domain analysis is required. The actual signal is converted to a discrete 

signal for continuous FFT analysis using a sampling technique. The description of the FFT and PCA 

algorithms in brief has been discussed in Chapter 2. The FFT spectra of each phase current signal 

from each type of motor are used to compute PCs. The proposed PNN model has been fed PCs of FFT 

spectra from known and unidentified faulty motors to classify unknown faults in the frequency 

domain. 

 

6.2.3 Feature extraction from Wavelet Coefficients using PCA 
 

The theory of wavelet has been discussed in chapter 2 and chapter 5. The concept of a mother wavelet 

has been discussed in Chapter 5, and Symlet5 has been selected as the optimal mother wavelet for 

induction motor fault analysis. Wavelet analysis decomposes the signal into ‘approximate’ and 

"detail" coefficients; where the low-frequency signal components are the ‘approximate’ coefficients 

and the high frequency signal components are denoted as the ‘detail’ coefficients. In this work, we 

have applied wavelet analysis to classify the three different classes of faults in the time-frequency 

domain. The three phase current waveforms of all faulty induction motors, including the healthy one, 

are decomposed multiple times using the Symlet-5 mother wavelet up to the 5th level of 

decomposition. Features are extracted from approximate coefficients from each of the decomposed 

current signals. Approximate coefficients from the decomposed signals have multiple dimensions, so 

PCA has been applied to extract exact fault features from the approximate coefficients, reducing 

multi-dimensional data to two dimensional data. To classify the unknown faults, the PCs from 

approximate coefficients of current signals of known and unknown faulty motors were fed into a 

PNN-based classifier. 
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6.3 Probabilistic Neural Network 

PNN is incredibly helpful for tackling many classification problems [191]. PNN can provide fast and 

precise operation for various fault classifications compared to radial basis function and feed forward 

neural networks [192]. The probability density function (PDF) is created using the Parzen window 

estimator, and the class with the highest probability is chosen as the anticipated output class [193]. 

The input layer, pattern (or hidden) layer, and output layer make up the PNN architecture, as depicted 

in Fig. 6.1. The input layer receives the n-dimensional feature vector, x=(x1,x2,..xn).The neurons 

receive the feature input vector as input, and the neurons in the following hidden layer receive it as 

well. Thus, the entire feature vector x is input to each hidden layer node. When a test input is 

provided, the first layer computes the distances between the test input vector and the input vectors for 

training and also creates an error vector. 

A single sample xk’s PDF is written as follows: 

                                      (6.1) 

where,  is the smoothing (or spread) parameter for Gaussian function and n is the dimension of the 

input vector x and  is the Euclidean distance between the test vectors xk. 

and x. 

There are C output nodes since all of the Gaussians in a class feed their functional values into the 

same node of the output layer. A probability vector representing the average of the PDFs for C 

samples was created by adding these multivariate densities at the k-th output node as follows: 

                                              (6.2) 

The output is finally set to "1" for the input class with the highest joint PDF and "0" for all other 

classes. As a result, if pk (x) > pk’ (x) for every . then x is an unknown feature input that belongs 

to class k. The neuron in the decision layer uses the Bayes decision rule to evaluate if pattern x 

belongs to a class under the following conditions: , where k=1, 2,..., C, and 

c(x) is the estimated class of the pattern x. The maximum value of the sum functions f1(x), f2(x), and 

fk(x) determine which class out of the m classes will be chosen x. 
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Figure 6.1: The PNN architecture. 

 

The PCs of each phase of current signals, PCs of the FFT spectrum, and PCs of approximate 

coefficients are inputs to PNN to classify three unknown faults in the time domain, frequency domain, 

and time-frequency domain individually. Multiple PCs of each phase of each known faulty motor 

under no load condition are the trained known class, and PCs of each phase of each unknown faulty 

motor under three loading conditions are the test class. 

 

PNN Algorithm for classification: 

 

//  The number of examples is M, The number of classes is B, Mk are from class k 

//  the smoothing factor is  and e is the dimensionality of the training examples 

// the example to be classified is test_ example[e] 

// Examples[M][e] are the examples of training 

int PNN(int B, int M, int e, float test_ example[e], float Examples [M][e], float µ) 

{ 

int classify = -1; 

float lrgst = 0; 

float sumn[B]; 

// The pdf is computed by output layer for each class B 

for ( int k=1; k<=B; k++ ) 

{ 

Sumn [ k ] = 0; 

// The pdf is accumulated by Summation layer 

// for each example from the particular class k 

for ( int l=0; l < Mk; l++ ) 

{ 

float prdct = 0; 

// The  test example is multiplied by  Pattern layer by the weights 

for ( int n = 0; n < e ; n ++ ) 
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prdct += Examples[l][n]* test_ example[n]; 

prdct = ( product – 1 ) / ( µ*µ ); 

prdct = exp ( prdct ); 

sum[ k ] += prdct; 

} 

sum[ k ] /= Mk; 

} 

for ( int k = 1; k <= B; k ++ ) 

if ( sumn [ k ] > lrgst ) 

{ 

lrgst = sumn [ k ]; 

classify = k; 

} 

return classify; 

} 

 

6.3.1   Authentication of unknown faults using PNN 

 

In this study, we provide a wavelet, PCA, and FFT-based fault characteristics-based PNN-based fault 

classification model for three-phase induction motors. The current signals of R, Y, and B phases and 

their FFT spectra are analysed using PCA in order to extract major fault signatures; simultaneously 

reducing the dimensionality for ease of computation. Two-dimensional feature vectors, extracted 

using these schemes, for six classes of fault conditions, viz., failed bearing (FB), broken rotor bar 

(BR), Misalignment  rotor(RM), stator fault (SF), unbalanced rotor (RU), and single phase voltage 

unbalance (VU), along with one healthy condition (HM), corresponding to all three phases, are used 

to train the designed PNN model. These feature vectors are constructed using the PC scores of current 

signatures, their FFT spectra, and their wavelet coefficients. Faults, carried out under different levels 

of loading and unknown fault conditions, are used to test the present classifier as well as validate the 

trained PNN model. The classification accuracy is computed for multiple experiments using different 

methodologies and for different levels of decomposition for analysis using the wavelet transform. The 

steps of designing the motor fault classifier are illustrated with the help of a work flow diagram in Fig. 

6.2. 
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Figure 6.2: Work flow diagram of the work 

 

6.4 Experimentation 

The experiment was carried out using the same setup as shown in Chapter 3, and data of three-phase 

current signals were collected using six different faulty induction motors and one healthy motor. The 

current signals are captured independently by a three phase power analyzer (Yokogawa WT 500) 

when the motors are running at no load, or running as a prime mover to a DC generator with a 200-

watt electrical load connected to the output. This ensures that variations in loading conditions are 

accounted for. The data samples from unknown or faulty motors are collected four times at a time 

interval of 5 to 6 minutes, under different loading conditions. The data samples from six known and 

three unknown faulty motors are also collected six times at a time interval of 5 to 6 minutes, under 

three different loading conditions. 

 

6.5 Result and Analysis 

 

6.5.1 Analysis of fault features 

The experimental results were recorded for each of the six classes of faults and the healthy condition. 

The three-phase current waveforms at no load and under three major fault conditions are shown in 

Figs. 6.3–6.5. The 5th-level decomposed three-phase current signals of an induction motor under a 

broken rotor bar condition have been shown in Fig. 6.6. The two dimensional PC score plot of all the 

six faulty motors and one healthy motor, obtained by applying the PCA directly over the time domain 

fault signal is also shown in Fig. 6.7. 
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(a)                      (b)    (c) 

Figure 6.3: Three phase current signals of induction motor under broken rotor bar (BR) condition for (a) Phase 

R, (b) Phase Y and (c) Phase B 

 

 
(a)                      (b)    (c) 

Figure 6.4: Three phase current signals of induction motor under Stator winding fault (SF) condition for (a) 

Phase R, (b) Phase Y and (c) Phase B 

 

 
(a)                      (b)    (c) 

 

Figure 6.5: Three phase current signals of induction motor under Faulted bearing (FB) condition for (a) Phase 

R, (b) Phase Y and (c) Phase B 
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(a) (b) 

 

(c ) 
 

Figure 6.6:  Three phase 5th level decomposed current signals of induction motor using Symlet5 mother wavelet 

under Broken Rotor Bar (BR) condition for (a) Phase R, (b) Phase Y and (c) Phase B 

 

  

(a) (b) 
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(c) 

Figure 6.7: Three phase PC score plots of (a) Phase R, (b) Phase Y, (c) Phase B current signals of six fault 

classes and healthy motor at no load (loading 1) condition, as well as unknown fault 1(X1) at three different 

loading conditions; where, X1 is the unknown fault class in each sub-figure. The six fault classes are indicated 

by Class A: BR (Broken rotor), Class B: FB (Faulted bearing), Class C: Misaligned rotor), Class D: RU 

(Unbalanced rotor), Class E: SF (Stator fault), Class F: VU (Single phase voltage unbalance), Class G: HM 

(Healthy motor) 

 

Current signals in the time domain are once again converted to signals in the frequency domain and 

time-frequency domain using the FFT method and wavelet transform, respectively, up to five levels of 

decomposition. The FFT spectrum data and the wavelet coefficients are fed independently to the PCA 

algorithm to extract the final fault features in terms of PC scores. The score plots of the PCs obtained 

from the features of the FFT spectrum and wavelet approximate coefficients are shown in Figs. 6.8 

and 6.9, respectively. It should be mentioned here that for all the sub-figures of Fig. 6.7 to Fig. 6.9, 

R1, Y1, and B1 refer to the three phase PC score plots of unknown fault 1 (X1) under the first loading 

condition; similarly, R2, Y2, and B2 refer to the plots of the second loading condition, and R3, Y3, 

and B3 denote the plots obtained under the third loading condition. 

 

The three phase PC scores of time-domain current samples, FFT spectra, and wavelet approximate 

coefficients corresponding to each class of fault and a healthy condition are considered input vectors 

to three independent PNN models. The target vectors are assigned to seven classes, including six fault 

types and one healthy condition. These are numbered A (BR), B (FB), C (RM), D (RU), E (SF), F 

(VU), and G (HM), respectively. The necessity of fault prediction performance using a classifier 

should be load independent because finding test data and training data at the same load is not always 

possible, That’s why the training of the model is carried out with faults and the number of fault 

current signatures recorded at no-load condition (loading 1) only, but the testing of the model is 

carried out with current signatures of unknown faults at three loading conditions (loading 1, 2, and 3). 

Five PC scores of each phase of each known faulty motor at no load (total 5 x 7 = 35) are used for 

designing the classifier, and PC scores of each phase of each unknown faulty motor, under three 
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loading conditions, are used for testing the same. Three data points of X1 have been classified phase 

wise among 35 trained data points, and the success rate of classification or classification accuracy for 

X1 has been calculated depending on the total number of successful classifications of the three phases 

under each loading condition individually. The same procedure has been applied for unknown fault 2 

(X2) and unknown fault 3 (X3) to find the classification accuracy of other two unknown faults under 

each loading condition individually, the details have been explained below. 

 

 
 

(a ) (b) 

 

 

(c ) 

Figure 6.8: Three phase PC plots of FFT spectrums of (a) Phase R, (b) Phase Y and (c) Phase B current signals 

of six fault classes and healthy motor at loading 1 condition, as well as unknown fault 1 at three different 

loading conditions; where, X1 is the unknown fault 1 class in each sub-figure. The seven fault classes are 

indicated by Class A: BR (Broken rotor), Class B: FB (Faulted bearing), Class C: RM (Misaligned rotor), Class 

D: RU ( Unbalanced rotor), Class E: SF (Stator fault), Class F: VU (Single phase voltage unbalance), Class G: 

HM (Healthy motor) 
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(a ) (b) 

 

(c ) 

 

Figure 6.9: Three phase PC plots of wavelet first level approximate coefficients of (a) Phase R, (b) Phase Y and 

(c) Phase Bing current signals of six fault classes and healthy motor at no load condition(loading 1), as well as 

unknown fault 1(X1) at three different loading conditions; where, X1 is the unknown fault class in each sub-

figure. The six fault classes are indicated by Class A: BR (Broken rotor), Class B: FB (Faulted bearing), Class 

C: RM (Rotor Misalignment), Class D: RU (Unbalanced rotor), Class E: SF (Stator fault), Class F: VU (Single 

phase voltage unbalance), Class G: HM (Healthy motor) 

 

Apparent observation of the PC plots in Figs. 6.7–6.9 reveals that the three test score points are close 

to one of the seven signature fault score points. In order to establish this fact, these PC features are fed 

to the designed PNN model; thereby validating the same. Close observation reveals that the three 

unknown fault classes, viz., classes 1 (X1), 2 (X2), and 3 (X3), are close to the signature fault classes 

of class A (BR), class E (SF), and class B (FB), respectively, for all the three phases. Validation of the 

models is carried out with three phase motor fault current signals corresponding to three fault classes 

only; i.e., for BR (broken rotor), SF (stator fault), and FB (failed bearing) faults, respectively. Most 

importantly, loading is varied in three steps to develop the fault current signatures, and these signals 

are analysed using three different feature extraction models: direct time domain analysis followed by 

PCA, fast Fourier transform followed by PCA, and wavelet approximate coefficients followed by 

PCA. The motor is run with no mechanical load; next, the motors are run with a D.C. generator as a 

mechanical load and with a 360-watt electrical load connected to the generator. These data, which 
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correspond to variable loading conditions, are used to validate the models, whereas training was done 

using only fault features from the no load condition. 

 

6.5.2 Classifier outcomes 

We have further varied the spread parameter in the range 0.2, to 0.8, in steps of 0.2 to tune the PNN 

during training because spread value estimation is also an important task for PNN based classification 

[194]. This enables the incorporation of robustness into the classifier model. The classifications are 

performed multiple times in different loading conditions, changing the values of the spread of the 

PNN architecture to compare the success rates of classification, using the features extracted in the 

time, frequency, and time-frequency domains. The better technique is selected by comparing the 

classification accuracy rates.  

 

Data samples are collected 6 times from each unknown faulty induction motor with three different 

loading conditions. The test fault is classified for each of the 6 cases and for each phase individually. 

Thus, the total number of test cases for one loading condition of fault classification stands at 6 times 3 

phases, i.e., 18. The classification accuracy of the model is determined as follows: 

 

The classification accuracies are computed using the above expression for the three independent 

models: 

i) Time domain analysis of fault currents using PCA, followed by PNN,  

ii) Frequency domain analysis of fault current spectrums using PCA, followed by PNN and  

iii) Time-frequency domain analysis of fault currents with wavelet with five levels of 

decomposition using Symlet-5 mother wavelet, followed by feature extraction using PCA and 

classification using PNN 

 

The success rates are calculated for each of the three methods independently by changing the spread 

parameter of the PNN model for three different loading conditions. The overall accuracies of three 

unknown faults under different loading conditions and obtained with different spread parameters are 

also represented in Table 6.1. 
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Table 6.1: Classifier outcomes of three unknown type of faults using seven modes of feature extraction, under 

variable loading conditions and for variation in spread parameter of the PNN model 

Feature extraction 

method 

Loading Type 

Loading condition 1 Lading condition 2 Loading  condition 3 

Spread parameter 

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

PCA of current signals 69.14 81.48 85.18 82.71 71.6 80.24 85.18 80.34 71.6 82.71 85.18 81.48 

PCA of FFT spectrums 74.07 88.88 90.12 87.75 76.54 88.88 91.35 88.88 76.54 88.98 90.12 87.65 

PCA of L1 76.54 90.12 90.12 88.88 79.01 90.12 91.35 90.12 81.48 91.35 91.35 90.12 

PCA of L2 81.48 93.82 96.29 92.59 82.81 93.82 97.53 93.92 82.71 93.82 97.53 93.82 

PCA of L3 84.05 96.29 98.76 92.59 85.18 98.76 100 93.92 83.95 100 100 93.82 

PCA of L4 81.48 93.82 96.29 92.59 82.81 93.82 97.53 93.92 82.71 93.82 97.53 93.82 

PCA of L5 70.37 81.48 85.18 82.71 71.6 80.24 85.18 80.34 71.6 82.71 85.18 81.48 

Mean 76.73 89.41 91.71 88.55 78.51 89.41 92.59 88.78 78.66 90.49 92.41 88.88 

The three different loading variations, as described in Table 6.1, are illustrated as follows: 

Loading condition 1: No mechanical load,  Loading condition 2: Induction motor with a D.C. 

generator as a mechanical load,  Loading condition 3: A 200-watt electrical load connected to the 

output of the generator (while the rated load of the generator is 750 W). 

*Note: L1, L2, L3, L4 and L5 are the wavelet decomposition in level 1, 2, 3, 4 and 5 respectively. 

6.5.3 Analysis of results 

From Table 6.1, as well as the present scheme of work, it can be seen that there are three major 

parameters involved in this work. These are respectively the type of load, spread parameter, and 

feature extraction method. In this work, we have used three major modes of fault feature extraction 

from the induction motor fault current signals, which are direct time domain analysis of fault currents 

using PCA, frequency domain analysis of fault current spectrums using PCA, and time-frequency 

domain analysis with wavelet analysis using the Symlet-5 mother wavelet, followed by feature 

extraction using PCA. We have further experimented with five levels of decomposition for the 

wavelet transform. In addition, three types of faults are tested with the models to validate them. Thus, 

the analysis of the results is carried out in three folds, in order to illustrate the effect of these three 

governing parameters. 

 

We have first plotted the average classifier accuracy values against the spread parameters and 

analyzed the three loading conditions separately. We have kept the seven fault feature extraction 

modes, as described here, as the varying parameters of the plot. These are illustrated in Fig. 6.9. It is 

observed, for all three loading conditions and all seven fault feature extraction modes, that the 

classifier accuracy reaches the optimum level for the spread parameter of 0.6. 
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The above observation is emphasised further by plots in Fig. 6.10a, which show the grouped 

distribution of mean accuracy levels with respect to spread parameters when all seven feature 

extraction models are considered. Each group has sub-levels with different loading conditions. It is 

observed from Fig. 6.10a that the accuracy level is higher for a spread of 0.6, for almost all the 

loading conditions. All these accuracy levels corresponding to different loads are considered together 

to form a mean accuracy level, which is shown with a magnified accuracy scale in Fig. 6.11c. It is 

readily observed from here that the mean percentage accuracy of fault classification is highest for a 

spread value of 0.6. The mean accuracy of classification reduces on both sides of the spread level of 

0.6, i.e., as the spread level is either decreased or increased. Thus, it could be confirmed from here 

that a spread parameter of 0.6 is optimal for the present work. Hence, this analysis yields a vital 

inference regarding the tuning of the described PNN architecture. 

 

Figure 6.10: Mean variation of classification accuracy considering all the seven feature extraction models for 

variation in spread parameter and for variation in loading conditions, (a) Loading condition 1, (b) Loading 

condition 2, (c) Loading condition 3 

 
Figure 6.11: Mean variation of classification accuracy considering all the seven feature extraction models for 

(a) variation in spread parameter considering independent loading condition, (b) variation in loading 

conditions considering independent spread parameter, (c) variation in spread parameter considering all the 

three different loading conditions together 
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Another analysis is performed from a different perspective using the same set of results, with the 

variable parameter being the type of loading. This variation is shown in Fig. 6.10 (b). The three 

groups of accuracy parameters indicate the three different loading arrangements, and the sub-levels 

indicate the different spread parameters ranging from 0.2 to 0.8. It is observed from here that the 

pattern of accuracy levels is almost similar, irrespective of loading on the motor. This indicates a vital 

inference regarding the robustness of the model. It shows that the model presented here is robust 

enough to negate the disturbances caused by differences in loading on the motor, thereby, enabling the 

classifier to cater to diverse loading conditions. This is one of the key outcomes of the work described 

here. Thus, it is concluded from the above discussion that a spread of 0.6 produces the optimal level 

of classifier accuracy. Thus, we have considered this level of spread parameter as optimal for this 

work. 

 

Finally, we have analyzed the outcomes from the seven different feature extraction methods 

independently and compared the results. For the purpose of comparison, we have considered the 

classification accuracy values of the seven feature extraction methods obtained with a spread of 0.6 

only and discarded the rest. These results are plotted in magnified scale in Fig. 6.12, which shows a 

comparison of results obtained using seven models, followed by PNN. In this figure, we have also 

plotted the results obtained for different loading conditions and for three different classes of faults 

used for testing the same. This figure apparently shows that the results, obtained from the wavelet 

feature extraction method, especially for the 2nd, 3rd, and 4th levels of decomposition, are superior to 

the rest for most of the loading conditions. Wavelet level-3 decomposition produces nearly 100% 

classifier accuracy in almost all tested cases with varying loading and fault conditions. These results 

are summarized further, and the mean accuracy levels are computed considering all nine individual 

conditions in Fig. 6.12 (a). These mean accuracy values are plotted again in Fig. 6.12 (b), which 

clearly displays the superiority of results obtained with the 3rd level of wavelet decomposition 

compared to the rest of the levels; as well as, the direct time domain PCA or FFT-PCA model of 

feature extraction. Hence, level 3 wavelet decomposition is considered optimal for the present work. 

 
(a) 
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(b) 

Figure 6.12: Magnified view of mean variation of classification accuracy for the seven feature extraction 

models, (a) considering load type and class of fault independently, and (b) considering all load types and 

classes of faults together 

*Note: L1, L2, L3, L4 and L5 are the wavelet decomposition in level 1, 2, 3, 4 and 5 respectively. 

 

Thus, the work described is able to produce the best outcomes in terms of classification accuracy for 

the detection of three major classes of three phase induction motor faults. The presented PNN 

architecture is found to work best with a spread value of 0.6. It is observed from Fig. 6.12 (b) that 

classifier accuracy is increasing monotonically from level 1 to level 3, and decreasing thereafter. 

Hence, the wavelet's 3rd level of decomposition from the Symlet-5 mother wavelet has been chosen as 

the optimum feature extraction model for developing the most accurate classifier. Thus, the combined 

approach of wavelets for feature extraction, and PNN, for classifier design, has been found to be the 

final and optimum fault-discriminating model of the present work. 
 

The wavelet decomposition of the input signal reduces the noise to get exact time-frequency 

information about the particular type of fault. But as the level of decomposition increases, the chance 

of loss of information also increases. This is also evident from the present study. It could be observed 

from Fig. 6.12b that the classification accuracy of all classes of unknown faults is increasing from 1st 

level to 3rd level; but thereafter it decreases again under all loading conditions. Thus, level 3 of 

wavelet decomposition has been found to be the optimal level of decomposition in the present work. 

This is another key observation obtained from the present study. 
 

Both wavelet and PNN are well used methods in this field of research. Besides, the fault detection 

accuracy achieved using the optimum combinations of wavelet and PNN, as described before, is able 

to produce a classification accuracy of 99.6%, as is found from Fig. 6.12(b), which is very high. 

Besides, the experiments are carried out in real time hardware setups rather than simulation models; 

which nullifies the presence of errors that may creep in during software simulation of machine faults. 

As a result, this classifier could be used to develop a real-time fault classifier model for induction 

motors in the future. 
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Chapter 7 

Comparison of fault classification using different signal 

processing techniques 

 

Identification of faults in electrical machines is an integral part of their continuous and reliable 

operation. In this work, we have developed a scheme for the identification of faults in a three phase 

induction motor under three variable loading conditions. We have used the cross correlation method 

followed by principal component analysis (PCA) on the motor fault signals and analysed the PCA 

score features using the nearest neighbourhood criterion for fault authentication. We have also 

extracted features directly from the fault current signals, in the frequency domain using fast Fourier 

transform (FFT) and in the time-frequency domain using wavelet transform, followed by analysing 

the features using PCA. A comparison of results revealed that cross correlation produced the least 

distance from the true class in most cases, providing the highest authentication of faults. The 

sensitivities of wavelet decomposition at different levels have also been verified, and it is found that 

the results are almost insensitive to the level of decomposition. Besides, in several cases, wavelet 

analysis of the fault signals was also less effective compared to other methods of analysis. Several 

other faults were used to validate the results. 

 

7.1 Introduction 
 

The research is carried out for multiple fault detection of induction motors by extracting features from 

different types of signals, and the sensitivities of these signals have been compared after analysing the 

faults. Previously, time domain analysis, time-frequency analysis, and frequency domain analysis of 

current or vibration signals were used to detect electrical or mechanical faults in rotating machines. 

Cross correlation is also another signal processing technique that is used in this work to detect faults 

in the induction motors, and the sensitivities of cross-correlated signals with other signals have been 

compared. Experiments have been performed for motor current signature analysis (MCSA) to collect 

three-phase current data samples from six different faulty induction motors, three unknown faulty 

motors, and one healthy induction motor under different loading conditions. Cross-correlated signals 

have been developed to find the degree of correlation between the current signals of healthy motors 

and the current signals of faulty motors. FFT, DWT have also been applied to find the frequency 

spectra of current signals and to decompose the current signals at different levels of decomposition for 

time-frequency analysis. Features are extracted by PCA transformation from the cross-correlated 

signals, current signals in the time domain, FFT spectra, and approximate coefficients from the 

decomposed signals. Using four different feature extraction techniques and the low-cost, low-

calculation-time neighbourhood classification method, three different types of unknown faults were 
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identified among the mixture of various types of faults. The classifications have been performed 

phase-wise for every feature extraction technique under three different loading conditions. Each fault 

pattern has been identified if the classification results of the three phases are the same. The sensitivity 

of feature extraction from each type of signal depends on the magnitude of the minimum distances 

from unknown faults to known faults. The sensitivities of four types of signals have been compared 

by calculating the mean minimum distances of three phases for each type of unknown fault under 

three loading conditions. The best feature extraction technique has been selected by comparing the 

mean minimum distances, and the advantages of the cross-correlation technique have been discussed. 

 

The classification of fault is intended to determine the kind of fault that occurred in the machine and 

to distinguish the causes of the observed abnormal conditions. Following the determination of the 

fault condition, the necessary actions will be taken immediately to troubleshoot the problem and 

reduce economic loss by avoiding an unscheduled machine shutdown. The conventional classification 

system consists of two steps: first, the features are extracted from the input signals, and the feature 

vectors are fed to the classifier [195]. In machine learning or pattern recognition applications, feature 

extraction from the input signal is critical for improving classification performance while reducing 

data computation time. Time-based and spectrum-based signal analysis from current and vibration 

signals are the conventional methods for different fault analysis in the motor [12].Time domain 

analysis [196], FFT-based frequency domain analysis [197], and DWT-based time-frequency analysis 

[198, 199] have been used for induction motor fault identification and extracting relevant features. 

Previous references show that current signature analysis in the time domain, time-frequency domain, 

and frequency domain has been applied individually to detect particular types of faults in induction 

machines, but these techniques have not been applied simultaneously to detect multiple faults in 

induction machines. The correlation based feature extraction method is superior to other conventional 

methods in fault classification systems due to its characteristics of eliminating irrelevant noise content 

in the signal [200, 201]. The cross-correlation technique assesses the degree of similarity between two 

input signals through the sequence between them, and the concept of a cross-correlation-based feature 

extraction technique is novel in the field of pattern recognition [202, 203]. Earlier features from cross-

correlated signals have been applied as input to classifiers like SVM, K-NN, and ANN for biomedical 

applications [204–207]. Cross-correlation-based feature extraction techniques have been applied to 

the fuzzy means algorithm with wavelet networks and ANN based classifiers to classify the dynamic 

insulation faults in transformer windings [208, 209]. Cross correlation has been applied for condition 

monitoring of rotating machines [210], for gearbox fault monitoring [211], for stator fault monitoring 

[212], and for covering faults and decision-making stages of induction machines [210]. The 

correlation technique has also not been applied to detect multiple types of fault patterns in induction 

machines. Three unknown types of faults were classified and authenticated using features of signals 

from different domains, such as time domain signals, cross-correlated signals, FFT spectra, and time-
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frequency domain (DWT) signals in multiple decomposition levels, using the nearest-neighborhood 

classification method. A comparative study has also been illustrated for the sensitivity analysis of 

these feature extraction techniques in the fault classification of induction motors. The nearest-

neighborhood classification method was used here to classify unknown faults among multiple classes 

because it has several advantages over other classifiers, including being very simple to implement, 

being robust to classify if classes are not linearly separable, and being extremely cheap to update 

online as new instances of known classes are supplied [213].An experiment has been performed to 

collect current data samples three times from six induction motors with six faulty conditions, viz., 

broken rotor bars, rotor misalignment, faulted bearing, stator winding fault, rotor unbalance, single 

phase voltage unbalance, and one healthy motor in three loading conditions. It has been seen that the 

frequency spectra of motor fault current change under time varying speed conditions [214]. Fault 

classification has been performed using current signature analysis because both electrical and 

mechanical faults can be identified using motor current signature analysis [215, 216]. Data samples 

from three unknown type faulty motors are also collected three times in three different loading 

conditions. The cross-correlation technique was used to determine the degree of correlation between 

healthy motor current signals and faulty motor current signals. FFT and DWT are also applied to find 

the frequency spectrum of current signals and time-frequency information of current signals at 

different decomposition levels. The time-frequency analysis has been done by decomposing the 

current signals into an optimum Symlet-5 mother wavelet and comparing the values of the RMSE and 

correlation coefficient; it has been described in an earlier work. The Symlet5 mother wavelet has the 

lowest values of RMSE and highest values of correlation coefficient among the Daubechies wavelet 

family (db3-db10), the Coiflet wavelet family (Coif1-Coif5), and other Symlet wavelet families 

(Sym3-Sym8) for different electrical and mechanical faults of induction motors [162]. A PCA-based 

dimensionality reduction technique has been applied to current signals in the time domain, cross 

correlated signals, frequency spectra, and wavelet coefficients at different decomposition levels 

because PCA gives higher accuracy for fault classification among various dimensionality techniques 

[217]. 

 

The nearest neighbour (NN) rule is one of the most straightforward classification decision-making 

processes [218]. A sample is classified based on the classification of its closest neighbor. It can be 

demonstrated that this rule's probability of mistake, when applied to large samples, is less than twice 

the optimal error; as a result, it has a lower probability of error than any other decision rule [219]. 

Cross correlation and k-nearest neighbor were previously used for transmission line fault detection 

[220]. 

In the work described here, each unknown sample is classified phase wise following the minimum 

distance to the nearest neighborhood criterion, and the fault is also authenticated if the results for the 

three phases are the same. The procedure is applied for four types of feature extraction techniques 
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individually, not only to classify multiple unknown faults of induction motors in various domains but 

also to compare the sensitivities of the cross-correlation technique with those of the other three feature 

extraction techniques. The four techniques are able to authenticate the faults, but the magnitude of the 

nearest distances is not equal for every feature extraction technique. The sensitivity of fault 

classification for these feature extraction techniques depends on the magnitudes of the nearest 

distances; the higher the distance, the lower the chance of misclassification due to the large data 

boundary. The sensitivities of fault classification for these four feature extraction techniques have 

been compared, and the best feature extraction technique has been selected among the four depending 

on the magnitude of the nearest distance. The sensitivities of wavelet decomposition at different levels 

have also been verified. 

 

7.2 Methods Applied 
 

PCA has been used not only for feature extraction but also for the dimension reduction of input 

signals. The two principal components (PCs) are considered the exact fault features of each phase, and 

the PC plots of the three phases of each type of motor are considered one class. The mean of the three 

phase plots of each type of motor is calculated, and the Euclidean distances are calculated from one 

centroid to another. The details of all the techniques are explained below. 

  

7.2.1 Feature extraction from current signals 
 

Fault detection through time domain signal analysis is implemented to check for abnormal changes in 

machine features over time. Electrical related faults can be identified using model based fault 

detection techniques. This technique necessitates the creation of precise mathematical models, which 

suffer from uncertainties in real-world applications. Current signature analysis allows for fault 

classification utilising an unsupervised approach without the necessity for system modelling; all that 

is required is accurate training. The test data sample can be classified among many trained data 

samples. Unsupervised fault classification in the time domain has been performed here through PCA 

based feature extraction and dimensionality reduction techniques. The mathematical expression of 

PCA has been explained in Chapter 2, and it has been used to minimise the dimensions as well as 

extract features from signals. The PCA has been used to extract features and reduce the dimension of 

features in current signals from known-faulty motors, which are used for trained classes, while 

features from unknown-faulty motors are used for test classes. The two PCs are computed from each 

phase's current signals. 

 

7.2.2 Feature extraction from FFT spectra 
 

Additional frequency components emerge in the form of various spectra as a result of vibration or 

current signals generated by various machine faults. Fast Fourier Transform (FFT) is the simplest way 

to explore the spectral properties of signals. The theory of the fast fourier transform (FFT) has been 
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demonstrated in Chapter 2. The amplitude vs. frequency spectra of the current signals of known and 

unknown faulty motors have been computed using the FFT algorithm. PCA has been used to extract 

features by reducing the dimensions of the FFT spectra of current signals. 

  

7.2.3 Feature extraction from wavelet coefficients 
 

Analysis of non-stationary data can be done using cutting-edge time-frequency domain signal 

processing techniques. These methods are used to perform an accurate continuous spectral analysis of 

the dynamic properties of a machine. It offers a limited moving temporal window in which non-

stationary signals are treated as constant. The most popular time-frequency analysis method is wavelet 

transform (WT), which has better time-frequency characteristics and is more flexible than other time 

frequency analysis methods. The discrete wavelet transform was covered in Chapter 2. The current 

signals of faulty motors and healthy motors are decomposed multiple times using the Symlet5 mother 

wavelet function. There will be approximate and detailed coefficients for each level of the 

decomposed signal, and features are extracted from the approximate coefficients of each decomposed 

signal by PCA transformation for classification of unknown faults in the time-frequency domain 

among the trained classes of known faults. Earlier researchers have extracted features from wavelet 

coefficients and applied PCA for fault classification and location tasks [221]. 

  

7.2.4 Feature extraction from cross-correlated signals 

In Chapter 2, the theoretical explanation and mathematical derivation of cross correlation techniques 

are detailed. The cross-correlation approach compares two input signals in a way that gauges how 

similar they are to one another. Cross-correlated signals of each faulty motor have been developed by 

computing the sequence between the phase current signals of a healthy motor and those of each faulty 

motor for the purpose of eliminating irrelevant noise content from the phase current signals of each 

faulty motor. The extracted features from cross correlated signals have multiple dimensions, so it is 

essential to find exact fault features by reducing the dimensions. PCA has been used to extract 

features from cross correlated signals, reducing the multiple dimensions to two dimensions because 

two PCs contain the exact fault features of each faulty signal. 

 

7.2.5 Classification through nearest distance neighbourhood 

Classifiers based on nearest neighbours classify a test pattern by using some or all of the patterns in 

the training set. Finding the similarities between each pattern in the training set and the test pattern is 

essentially what these classifiers do. This is done in the following way: 

The nearest neighbor algorithm assigns the class label of a test pattern's nearest neighbor. Let's say 

there are n training patterns: (X1, θ1), (X2, θ2), ..., (Xn, θn),where Xi is a classifier based on the nearest 

neighbour, and θi is the class label for the i-th pattern. 
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If P is considered as the test pattern, then if [ distance (P, Xk) ] = min {distance (P, Xi)} where i = 1, 

2,..., n; then pattern P is assigned to the class θk associated with Xk. 

Now, assuming a test pattern exists, it is necessary to calculate the separation between P and each 

training pattern. Let the distance between training pattern X (X1, X2) and P (P1, P2) be the Euclidean 

distance, given by: 

                                                     (7.1) 

The PC plots of three phases of one fault type are considered a single class, and the Euclidean 

distances are calculated from the mean of a particular class to the centroid of another class. The mean, 

considering all the three phases, is computed as shown in Fig. 7.1. The mean is computed by 

considering the mean of the coordinates of the three vertices of the triangle. Hence, the coordinate of 

the mean obtained from the results by analysing the three values of R-phase only is found as: 

 

R1 = {PC1 (R1), PC2 (R1)}; 

R2 = {PC1 (R2), PC2 (R2)}; 

R3= {PC1 (R3), PC2 (R3)}; 

where, R1, R2and R3 are the centroids obtained by analyzing the values of red phase respectively and 

PC1(i)is the coordinate of the principal component obtained from the analysis of the i-th number of R-

phase; where, i = R1, R2 and R3. 

Hence, the mean (M) would have coordinates of: 

 (7.2) 

Similarly, the means for three values of Y phase and B phase have been calculated. The test class is 

identified by computing the least Euclidean distance from mean of any specified class and the test 

class, as described graphically in Fig.7.1. 
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Figure 7.1:  Identification of fault class using the vector distance of the means of all specified classes from the 

mean of the test class 

 

7.3 Methodology of algorithm development 

The present work is based on the cross correlation analysis of the fault signals, although several other 

tools have also been used here for extracting the major fault features, and the combined analysis has 

been used here to finally identify the most suitable technique in this regard. The cross-correlation 

method is applied directly over the time domain fault signals in order to obtain the degree of 

correlation between the current signals of healthy motors and those of faulty motors. In addition, the 

fault signals have been subjected to discrete wavelet transforms (DWT) and fast Fourier transforms 

(FFT). Following the use of each of these techniques, PCA is used to extract significant features in 

terms of the principle components (PCs) in descending order of variances. PCA is also applied 

directly over the fault signals to extract the features directly before applying cross correlation, FFT, or 

DWT filters. Because PCA considers only the most important directions of variation in the fault 

signals, it ensures a dimension reduction of the input signals. The two most important principal 

components (PC1 and PC2), which bear the most significant fault information, are considered fault 

features of each phase  and  PC plots of three phases are constructed individually, which is considered 

the fault signature of each of these fault classes. The mean of the three PC scatter plots of each fault 

class is calculated, and the Euclidean distances are calculated between the means of each class and 

that of the test fault. The entire method of analysis has been illustrated graphically in Fig. 7.2. 
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Figure 7.2: Flow diagram of this present work 

 

FFT converts time-domain fault current signals into frequency spectrums, and wavelet analysis 

decomposes the fault waveforms into different decomposition levels to produce a time-frequency 

spectrum. PCA has been used over these cross correlated signals, current signals in time domain, FFT 

spectra, and approximate coefficients from decomposed signals to extract time domain, frequency 

domain, and time-frequency domain features of the different fault signatures, which have been 

effectively analysed. Wavelet analysis is also applied in the present method in the following way: The 

current signals of faulty motors and healthy motors are decomposed multiple times using the Symlet5 

mother wavelet function, as this has been found optimal in similar research as cited in [162]. Features 

are extracted from the approximate coefficients of each decomposed signal. Finally, in each of the 

steps, the PCA-extracted features have been analysed using the nearest-neighbor neighbourhood 

model to identify the closest fit of the test signal to one of the fault prototypes. This is done in the 

following way. 

Three times, under three different loading conditions, the three-phase current waveforms from six 

induction motors with known faults (broken rotor bar or BR fault, rotor misalignment or RM fault, 

faulty bearing or FB fault, faulty stator winding or SW fault; rotor unbalance or RU fault, and single-

phase voltage unbalance or VU fault) and one motor with no known faults (HM) were collected. A 

cross-correlation technique has been performed between each class of faulty current signal and the 

healthy current signal. This is followed by reducing the dimensions of the cross-correlated signals into 

their two most significant dimensions using PCA. The first two principal components, PC1 and PC2, 

are assigned to the eigenvectors corresponding to the largest eigenvalues of each phase current of a 

motor, which are considered the most indispensable features of each known and unknown class of 

fault. The FFT spectra of each phase of each faulted motor have been computed thereafter. Time-

frequency analysis of current signals has been performed using DWT at five decomposition levels. 
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Using the PCA transformation, features are extracted from current signals, FFT spectra, and 

approximate coefficients of decomposed signals at each level. Three PCs, corresponding to each of 

the red, blue, and yellow phases of each faulty motor, have been considered as one class, and each 

unknown fault has been classified using the nearest distance neighbourhood classification method, 

discussed in the next section. 

  

7.4 Experimentation 

The experiment has been done on the same set up as illustrated in Chapter 3. The three phase currents 

are collected from six separate induction motors in a motor fault simulator laboratory running under 

six different fault conditions, viz., faulty bearing (FB), broken rotor bar (BR), rotor unbalance (RU), 

rotor misalignment (RM), stator winding fault (SW), single phase voltage unbalance (VU), and one 

healthy motor (HM). The data were collected for all the faulty induction motors as well as for three 

induction motors with unknown faults. The experimentation has been carried out with three separate 

loading conditions for the motors in order to incorporate robustness into the design of the algorithm. 

The motors are initially run under no mechanical load; next, they are coupled to a DC generator, and 

this DC generator works as a mechanical load on the motor; and finally, the generator is loaded with 

an electrical load of 200 watts, which in turn works as an enhanced load on the motor. The suggested 

approach has been developed and validated for the motor's three different loading scenarios. The data 

samples from the three unknown faulty motors are also collected three times at a time interval of 5 to 

6 minutes, under three different loading conditions. 

 

7.5 Result and Discussion 
 

Classifications are performed for three phases individually for authentication of each unknown fault. 

Three loading conditions are tested sequentially in this work. The means of three PCs of each known 

class, including one unknown class for all types of signals, have been displayed in Figs. 7.3 – 7.14 

under one loading condition. Euclidean distances from the mean of an unknown class to the means of 

other known classes are computed phase-wise, initially under one loading condition. This technique is 

applied subsequently to classify three unknown types of faults (X1, X2, and X3) under three different 

loading conditions using four feature extraction techniques. The Euclidean distances so found are 

reported phase-wise in Tables 7.1, 7.2, and 7.3 for X1, X2, and X3, respectively. Faults are 

authenticated if the Euclidean distances so found are the least for all three phases. 
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(a)  (b) (c ) 

Figure 7.3: Means of PCA score plots of current signals for known faults and one unknown class under loading 

1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X1: unknown 1 

 

   

(a) (b) (c ) 

 
Figure 7.4: Means of PCA score plots of current signals for known faults and one unknown class under loading 

1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X2: unknown 2 

   
(a)  (b)  (c ) 

 
Figure 7.5: Means of PCA score plots of current signals for known faults and one unknown class under loading 

1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X3: unknown 3 

   
(a)  (b)  (c ) 

Figure 7.6: Means of PCA score plots of cross correlated signals for known faults and one unknown class under 

loading 1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X1: unknown 1 
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(a) (b) (c) 

 
Figure 7.7: Means of PCA score plots of cross correlated signals for known faults and one unknown class under 

loading 1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X2: unknown 2 

   
(a)  (b)  (c ) 

Figure 7.8: Means of PCA score plots of cross correlated signals for known faults and one unknown class under 

loading 1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X3: unknown 3 

 

   
(a)  (b)  (c ) 

 
Figure 7.9: Means of PCA score plots of FFT spectrums for known faults and one unknown class under loading 

1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X1: Unknown fault type 1 

   
(a) (b) (c) 

 
Figure 7.10: Means of PCA score plots of FFT spectrums for known faults and one unknown class under 

loading 1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X2: Unknown fault type 2 
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(a ) (b) (c) 

 
Figure 7.11: Means of PCA score plots of FFT spectrums for known faults and one unknown class under 

loading 1 condition for (a) R phase, (b) Y phase, (c) B phase respectively; X3: Unknown fault type  

 

   

(a)  (b)  (c ) 

Figure 7.12: Means of  PCA score plots of  wavelet approximate coefficients at first decomposition level for 

known faults and one unknown class under loading 1 condition for (a) R phase, (b) Y phase, (c) B phase 

respectively; X1: Unknown fault type 1 

 

   

(a) (b) (c ) 

Figure 7.13:  Means of  PCA score plots of  wavelet approximate coefficients at first decomposition level for 

known faults and one unknown class under loading 1 condition for (a) R phase, (b) Y phase, (c) B phase 

respectively; X: Unknown fault type 2 
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(a) (b) (c ) 

Figure 7.14: Means of  PCA score plots of  wavelet approximate coefficients at first decomposition level for 

known faults and one unknown class under loading 1 condition for (a) R phase, (b) Y phase, (c) B phase 

respectively; X: Unknown fault type 

Table 7.1: The Euclidean distances from X1 (unknown fault pattern 1) to other known classes using different 

feature extraction methods under loading 1 condition 

Phase Method BR FB RM RU SF VU HM 

R
 P

h
a

se
 

PCA of Cross 

Correlation 206.939 30136.867 17538.558 56418.324 120774.835 83706.567  ----- 

PCA of 

Current signal 0.112 21.793 8.654 60.527 38.997 5.146 63.253 

PCA of FFT 4.594 137.329 60.036 102.826 190.100 204.587 1429.081 

 PCA of W1 1.219 104.555 1.647 2.526 84.279 22.207 48.924 

 PCA of W2 1.107 106.502 1.825 2.448 85.295 22.340 49.382 

PCA of W3 1.261 109.859 1.648 2.581 86.796 22.188 50.479 

PCA of W4 1.356 116.646 1.684 2.682 90.146 22.212 52.467 

PCA of W5 1.326 129.309 2.027 2.685 96.656 22.490 56.230 

Y
 P

h
a

se
 

PCA of Cross 

Correlation 260.460 29207.782 15162.699 167542.530 120077.165 82940.442  ----- 

PCA of 

Current signal 0.517 8.830 6.158 60.970 39.887 6.630 29.950 

PCA of FFT 6.357 33.811 23.824 146.969 112.229 134.691 1399.219 

 PCA of W1 0.666 27.354 3.993 2.301 86.859 24.888 48.186 

 PCA of W2 1.111 28.418 4.837 3.039 88.624 25.892 48.677 

PCA of W3 1.360 29.047 4.847 3.160 91.252 26.379 48.962 

PCA of W4 1.653 30.536 5.011 3.356 96.737 27.624 49.275 

PCA of W5 2.080 33.494 5.391 3.724 107.158 30.109 49.825 

B
 P

h
a

se
 

PCA of Cross 

Correlation 201.526 29279.558 16645.178 53146.507 114855.976 79891.231  ---- 

PCA of 

Current signal 0.287 8.071 3.506 21.868 38.824 46.404 47.685 

 PCA of W1 5.531 206.988 113.886 55.996 109.444 204.151 1239.975 

 PCA of W2 1.194 83.984 95.214 96.223 23.832 84.826 123.016 

PCA of W3 1.664 83.571 94.731 95.735 23.958 84.422 122.663 

PCA of W4 1.709 83.568 94.653 95.660 24.497 84.416 122.805 

PCA of W5 1.897 83.882 94.662 95.656 26.157 84.699 123.417 

 PCA of W1 1.884 84.386 94.801 95.795 28.753 85.169 124.447 
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Table 7.2: The Euclidean distances from X2 (unknown fault pattern 2) to other known classes using different 

feature extraction methods under loading 1 condition 

Phase Method BR FB RM RU SF VU HM 

R
 P

h
a

se
 

PCA of Cross 

Correlation 120430.340 109353.830 130156.481 70098.927 185.964 72132.479  --- 

PCA of 

Current signal 32.008 33.618 40.397 36.871 0.159 27.542 78.960 

PCA of FFT 197.919 94.925 157.598 132.449 14.548 67.468 1517.324 

PCA of W1 86.416 46.338 84.138 86.992 2.195 70.298 111.945 

PCA of W2 87.215 46.866 84.899 87.772 2.145 71.122 113.568 

PCA of W3 89.478 48.434 87.080 89.999 3.011 73.255 117.134 

PCA of W4 92.606 51.451 90.081 93.074 3.581 76.200 122.972 

PCA of W5 98.188 56.433 95.440 98.554 4.079 81.585 133.864 

Y
 P

h
a

se
 

PCA of Cross 

Correlation 119460.708 112964.341 111589.107 54882.577 236.908 75937.489  --- 

PCA of 

Current signal 37.976 37.176 42.305 39.478 0.522 26.661 36.852 

PCA of FFT 120.220 151.486 104.023 226.012 6.923 236.243 1465.008 

PCA of W1 87.935 69.892 86.791 88.237 1.568 71.926 116.177 

PCA of W2 89.901 71.361 88.715 90.195 2.192 73.497 118.056 

PCA of W3 92.593 72.974 91.292 92.876 2.295 75.265 120.527 

PCA of W4 98.568 76.753 97.049 98.848 2.248 79.329 125.866 

PCA of W5 108.771 83.234 106.879 109.031 2.615 86.301 135.516 

B
 P

h
a

se
 

PCA of Cross 

Correlation 113749.153 102740.929 123522.971 66371.827 216.610 68336.480  ----- 

PCA of 

Current signal 29.819 33.182 38.215 27.796 0.347 33.354 69.377 

PCA of FFT 104.553 127.909 38.212 104.993 4.486 117.140 1296.463 

PCA of W1 25.076 65.838 81.670 83.128 1.121 67.172 103.460 

PCA of W2 25.673 65.392 81.342 82.808 1.531 66.751 103.013 

PCA of W3 26.384 65.241 81.423 82.910 1.698 66.611 102.866 

PCA of W4 26.471 65.602 81.925 83.424 1.525 66.957 103.400 

PCA of W5 29.286 65.462 82.865 84.448 1.586 66.864 103.115 
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Table 7.3: The Euclidean distances from X3(unknown fault pattern 3) to other known classes using different 

feature extraction methods under loading 1 condition 

Phase Method BR FB RM RU SF VU HM 

R
 P

h
a

se
 

PCA of Cross 

Correlation 30478.712 207.599 47807.025 39191.432 109137.588 57812.401  -- 

PCA of 

Current signal 22.039 0.238 16.545 39.464 24.212 12.844 64.888 

PCA of FFT 146.548 14.529 93.723 54.083 79.274 56.522 1433.617 

PCA of W1 105.621 1.365 104.192 105.634 44.689 98.231 143.850 

PCA of W2 107.241 1.085 105.771 107.240 45.305 99.818 146.183 

PCA of W3 110.759 1.653 109.180 110.728 45.954 103.001 150.833 

PCA of W4 117.423 1.760 115.669 117.334 48.065 109.285 159.985 

PCA of W5 128.981 1.833 126.932 128.797 51.733 120.212 176.217 

Y
 P

h
a

se
 

PCA of Cross 

Correlation 28539.752 247.096 39555.929 154627.200 113059.767 60292.828  ------ 

PCA of 

Current signal 11.273 0.079 19.766 39.970 24.879 13.850 50.363 

PCA of FFT 28.140 6.364 49.604 132.899 140.087 110.071 1388.069 

PCA of W1 25.861 1.222 24.022 27.391 68.029 2.919 48.644 

PCA of W2 26.322 2.132 24.447 27.768 68.266 3.635 49.901 

PCA of W3 27.611 2.021 25.638 29.018 70.000 3.951 50.731 

PCA of W4 28.687 2.066 26.524 30.023 74.204 3.661 51.968 

PCA of W5 32.560 2.045 30.064 33.786 80.681 4.570 55.313 

B
 P

h
a

se
 

PCA of Cross 

Correlation 29187.488 198.692 45842.409 36554.290 103191.203 54646.073  ------ 

PCA of 

Current signal 8.139 0.378 12.355 32.005 28.459 24.695 41.080 

PCA of FFT 193.654 9.958 93.052 218.292 122.263 20.872 1241.166 

PCA of W1 86.215 1.256 23.835 26.163 68.161 2.367 38.103 

PCA of W2 86.799 1.823 23.948 26.282 68.678 2.601 37.603 

PCA of W3 87.013 1.973 23.863 26.210 68.911 2.198 37.747 

PCA of W4 87.147 1.974 24.497 26.866 68.958 1.962 38.182 

PCA of W5 87.508 1.964 26.205 28.615 69.069 2.071 38.758 

 

*Note: Loading condition 1: The motor is initially operated in a no-load condition, meaning that it 

has no mechanical load attached to its shaft. 
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Loading condition 2: Next, the generator runs freely at no-load since it is coupled to the motor simply 

as a DC generator and not as an electrical load. As a result, only the generator's mechanical load—

also known as the generator load—is applied to the motor shaft. 

Loading condition 3: Finally, the generator is subjected to a 200 W electrical load. Consequently, the 

generator's mechanical load and an additional 200 W of electrical load are applied to the motor, 

while the rated load of the generator is 750 W. 
 

The wavelet decompositions at levels 1, 2, 3, 4, and 5 are denoted by W1, W2, W3, W4, and W5, 

respectively. 

 

The classification results under one loading condition are the same for four feature extraction 

techniques as per the data in tables 7.1, 7.2, and 7.3. From the distance tables, it has been seen that 

X1, X2, and X3 resemble broken rotor bar fault, stator winding fault, and bearing fault, respectively, 

because the minimum distance is found from one unknown fault pattern to a particular known class 

among other known classes, and other unknown fault patterns are authenticated following the same 

process. The classification results are the same for all phases of all types of feature extraction 

techniques under the other two loading conditions as well. 

 

The mean value of minimum distances for three phases of each unknown type fault has been 

calculated using the expression as follows: 

 

The sensitivities of different feature extraction techniques for fault classification depend on the 

magnitude of minimum Euclidean distances, if the distance increases, then there is less chance of 

misclassification. Wavelet signals have been decomposed up to 5 levels and features extracted from 

the approximate coefficients of the decomposed signals, and each fault has been classified phase wise 

for each decomposed level. We have further analysed the results obtained from the above experiments 

and represented the results in graphical form, as shown subsequently. Figs. 7.15, 7.16, and 7.17 

represent the PCA score distances between one particular set of test data and the different classes of 

faults using direct fault current waveforms, cross-correlated signals, and features extracted from FFT 

spectrums, respectively. 
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Figure 7.15:Three phase PCA score distances of 

unknown fault pattern 1 using fault current signals 

under three different loading conditions (a) Loading 

1, (b) Loading 2 and (c) Loading 3 

 

Figure 7.16: Three phase PCA score distances of 

unknown fault pattern 1 using features of cross 

correlation under three different loading conditions (a) 

Loading 1, (b) Loading 2 and (c) Loading 3 

 

 

 

Figure 7.17: Three phase PCA score distances of unknown fault pattern 1 

using features of FFT spectrums under three different loading conditions 

(a) Loading 1, (b) Loading 2 and (c) Loading 3 

 

The individual set of columns of each of these sub-figures represents one class of fault, and the 

distances are also shown for the red, yellow, and blue phases individually. It can be seen from this that 

the fault test case is the closest to a class 1 fault, which is a BR or broken rotor fault. This particular 

observation is evident from all three figures, which represent three different loading patterns. It is also 

observed that this particular inference could be drawn from the features extracted either by analysing 

the current waveforms directly (Fig. 7.15), the cross-correlated signals (Fig. 7.16), or the FFT 

spectrum based approach (Fig. 7.17). A closer observation of these three figures reveals that cross 

correlation produces the maximum difference between the PC distances between the true class and all 

other classes. This is observable from Fig. 7.16, where we find that the column heights for R, Y, and 
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B phases corresponding to class 1 (BR fault) are minimum for cross correlation feature analysis (Fig. 

7.16), compared to the same column heights for direct current signal analysis (Fig. 7.15) or FFT 

spectrum analysis (Fig. 7.17). This indicates that the test class resembles the true class the closest, 

which is BR fault or class 1, compared to all other fault classes using cross correlation features. As a 

result of the current experiment, it is concluded that the cross-correlation features followed by PC 

score nearest distance analysis produce the best results for classifying induction motor faults, even 

when loading patterns vary, yielding the highest sensitivity among all the discussed feature extraction 

methods. 

  

We further expanded our analysis to the time-frequency domain, where we applied wavelet 

transformation to extract the fault features from the fault current waveforms, followed by a nearest 

neighbourhood analysis using the PC scores. These are shown in Fig. 7.18. 
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Figure 7.18: Three phase PCA score distances of unknown fault pattern 1 using features of wavelet 

approximate coefficients using five levels of decomposition under three different loading conditions, (a) Loading 

1, (b) Loading 2 and (c) Loading 3 

 

We have used five level of decomposition using the wavelength transformation and observed the PC 

distances between the test fault and each other class of fault. These PC distances are plotted in three 

sub-figures of Fig. 7.18 for three different loading conditions. It is observed from these Figures that 

the test class produces least PC distance for the 1st training class, which is BR or Broken rotor fault, 

compared to the other similar classes; thereby confirming the test fault to be BR. But, more 

importantly, the difference in column height between the true class and other classes are not as 

prominent as compared to the previous features incorporating direct current waveform analysis, which 

is a time domain analysis, cross correlation which is again a time domain analysis or FFT spectrum 

analysis which is a frequency domain analysis. This is more prominently observed for load 1 and load 

3 wavelet features where we find that the test class is also closer to fault class 3 and fault class 4, apart 

from being closest to the true class which is class 1(BR or broken rotor fault). Thus, the inference of 

the predicted class is not found as convincing as it was using features of direct current signal, cross 

correlation or FFT spectrum. Hence, wavelet feature extraction method is least preferred compared to 

the other methods used in this work.  

This observation is found true for all levels of decomposition as well as for all three phases. Further 

analysis of the graphical representation reveal that there is not much of difference in PC nearest 

neighborhood distance as the level of decomposition is increased; i.e., sensitivities of wavelet based 

features are not changing appreciably with the increase in decomposition levels. Thus, it is further 

concluded that the level of decomposition doesn’t possess a major role in extracting fault features in 

the case of classifying induction motor faults. 
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Chapter 8 

Conclusion 

8.1 Conclusion 

Three unknown type faults have been authenticated by PCA transformation of stator current data for 

all phases and FFT spectra of stator currents for all phases. Major feature parameters could be 

extracted, reducing dimensions, by using the principal component analysis method to improve the 

accuracy of fault classification. The three unknown faults resemble broken rotor bars, stator winding 

faults, faulted bearings because the minimum relative distances of unknown fault conditions occur 

with respect to fault type as broken rotor bars, stator winding faults, and faulted bearings, 

respectively, in three phases for all loading conditions. According to the results tabulated in Chapter 

3, the relative distance metrics between the PCA score of an unknown type and the other known types 

are much less than those between the PCA score of the stator current spectrum and the other known 

types. The minimum relative distances of unknown fault conditions occur in all cases with respect to 

known-type faults, and this technique has detected unknown faults. The sensitivity of fault analysis in 

both domains (time domain and frequency domain) can be identified from the magnitudes of relative 

distances. From the tables of relative distances, it has been seen that the relative distances of the PCA 

spectrum are greater than the relative distances of the raw data PCA value of stator currents.  

Table 8.1: Comparison of nearest neighborhood classification with some previous work 

Literature  Features Classifier Fault Classification 

[85] Extracting the features from 

current signals in time domain 

K-NN Broken rotor bar 

[86] Current Waveforms K-NN has been used 

for decision criteria 

Bearing fault, stator fault, and rotor 

fault 

[87] Spectral analysis of symmetrical 

current components 

K-NN Stator winding fault 

This work  Feature extracted from current 

signals in time domain and FFT 

Spectrums using PCA. 

Nearest 

Neighborhood 

(a) Broken rotor bar fault, stator 

winding fault and bearing fault have 

been classified using the features in 

both domain. 

(b) PCA transformation of spectrum 

is much efficient and sensitive than 

that by PCA transformation of simple 

original data. 

Thus, it may be concluded that feature extraction by PCA transformation of spectra is much more 

efficient and sensitive than that by PCA transformation of simple original data. The comparison of 

nearest neighbourhood based classification with previous works is given below. 
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Discriminant analysis and multi-class support vector machines have been used in this work to 

improve classification problems with higher accuracy. In the present work, we also developed a 

scheme for the performance study of different SVM kernels for fault classification of induction 

motors. Earlier fault classifications have been performed using one type of kernel and in one domain, 

but classifications have not been performed in different domains or using different kernels. The aim of 

this work is to develop a robust classifier that can classify the machine fault pattern among the trained 

and known classes and authenticate any type of fault if the known classes are more than seven. We 

have also selected the best SVM kernel for induction motor fault classification in both domains by 

comparing the classification accuracy of both domains under three different loading conditions. Six 

different types of faults, including healthy conditions, have been considered for developing a scheme 

for classifying faults. The fault current signals were analysed using the principal component analysis 

(PCA) method in both time and frequency domains (using Fast Fourier Transform, i.e., FFT) to 

extract the two major most directions of variation of the fault signals, in terms of principal 

components 1 and 2, respectively. The classification results are examined after these features are 

further analysed using five different SVM kernels, including the linear kernel. This multiclass 

classification problem was reformulated as a combined binary classification problem using the 

decision directed acrylic graph (DDAG) algorithm to classify faults. The loading on the motor is also 

varied in three steps in order to incorporate robustness into the classifier. The classification 

performances of five different kernels were compared in both the time and frequency domains, and it 

was discovered that the RBF kernel produces the highest classification accuracies in both domains, 

taking into account all loading conditions; thus, it is considered optimal in the proposed work. It is 

further observed that the mean accuracy of classification is higher (in the range of 90%) with 

frequency domain features, compared to the accuracy obtained with frequency domain features (in the 

range of 73%), considering all five SVM kernels and three different loadings. Hence, classification 

using features extracted from the FFT spectrum is found to be better than feature extraction from time 

domain signals directly. Besides, linear separation is difficult using time domain features due to the 

scattering of PC values of time domain signals, but it is possible in the space of frequency domain 

features. Considering the high accuracy of classification achieved using an SVM kernel on the fault 

current frequency spectrums in the proposed work, the method is well implementable for real life 

applications. 

 



Chapter 8  Conclusion 

141 

 

Table 8.2 : Comparison of SVM based classification with some previous work 

Literature Features Classifier Fault 

classification 

Accuracy 

[112] The start-up transient 

current and DWT with 

nonlinear feature 

reduction using kernel 

ICA and kernel PCA. 

SVM OVA Bowed rotor, 

broken rotor bars, 

faulty bearing, 

eccentricity, phase 

unbalance. 

80.95% using ICA, 78.75% 

using PCA, 83.33% using 

kernel ICA, 76.19% using 

kernel PCA 

[113] Extracted features 

from Vibration signals 

using PCA with 6 

dimensions. 

SVM 

OVO(polynomial 

and RBF) 

Rolling bearing 97.21% 

This work Extracted features 

from current signals 

and FFT spectrums of 

the current signals 

using PCA with 2 

dimensions. 

SVM 

OVO(Linear, 

RBF, Polynomial, 

Quadratic , 

Sigmoid kernel) 

Bearing, Stator 

winding, Broken 

Rotor bar 

(a) 

35.19%(Linear),88.26%,(RBF) 

83.34%(polynomial),72.23%(q

uadratic),85.12%(Sigmoid)  

(extracting features from signals 

in time domain) 

(b) 78.40% (Linear), 99.38%, 

(RBF) 93.82% (polynomial), 

86.42% (quadratic), 95.06% 

(Sigmoid)  (extracting features 

from signals in frequency 

domain) 

 

In order to classify faults in three-phase induction motors, an effort has been made to determine the 

optimal mother wavelet and optimal degree of wavelet decomposition. The work's primary objective 

is to choose the best mother wavelet from a set of twenty options, including db2 to db10, Symlet3 to 

Symlet8, and Coif1 to Coif5. The second challenge is finding the optimal level of waveform 

decomposition for the fault current for categorization of the motor failure is the second challenge. The 

load has been changed, and the motor has been tested under all three loading conditions: with no load, 

with the generator acting as the only mechanical load, and with an extra 200 W load on the generator 

acting as indirect loading on the motor. In previous work, the minimum description length (MDL) 

criterion [135–138], the correlation coefficient criterion [139, 140], and the energy to Shanon entropy 

criteria [141–142], were only one type of criteria applied to choose the optimal mother wavelet for 

compression of a power disturbance signal, de-noising a partial discharge (PD) signal, and bearing 

fault detection using a vibration signal, respectively. The signal-to-noise ratio (SNR), root mean peak 

signal to noise ratio (PSNR), square error (RMSE), and correlation coefficient (CC) are four accuracy 

parameters that we took into consideration in order to find the best solution for reading the optimal 

mother wavelet and the optimal level of wavelet decomposition. To get the three phase fault current 

signals, we took into account six possible induction motor faults, including broken rotor bars (BR), 
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misaligned rotors (RM), faulted bearings (FB), stator winding faults (SF), rotor unbalance (RU), 

single phase voltage unbalance (VU), and one healthy motor. According to the proposed study, level 4 

is found to be optimal, and Symlet5 is the optimal mother wavelet to use, which strikes a balance 

between computational complexity and getting the efficient wavelet level. In the multi resolution 

analysis method, the features of the current signatures of a faulty motor are captured over all the 

phases after decomposing into different wavelet levels. Here, 7 levels are considered during 

decomposition. DWT is a frequency-based transform that is performed on wavelets. It divides the 

signal at each level into two sub-bands: the low frequency band and the high frequency band. Also, 

each sub-band can be decomposed into two sub-bands. In multi resolution analysis, the statistical 

features of the current signature of a faulty motor at each level of wavelet decomposition are 

computed, which are skewness, kurtosis, RMS value, mode, and median of approximate and detail 

wavelet coefficients. The primary objective is to detect the characteristic features of faults of different 

types in low- and high frequency bands without losing significant information. In multiresolution 

analysis, the MRA matrix includes the various aforesaid feature parameters based on approximate and 

detailed wavelet coefficients at different decomposed levels. The dimensions of each data object 

(item) are the qualities (features) in the data, and they can be thought of as an n-dimensional vector. 

Thus, utilising common vector-based similarity measures like the Manhattan distance and Euclidean 

distance, the vector representations enable the computation of the distance between pairs. A norm is a 

means to gauge a vector's, a matrix's, or a tensor's size. The L2 norm, also known as the Euclidean 

norm, is the most commonly used norm and is provided by   . The shortest distance 

from the origin is measured by the L2 norm. If there is less space between two objects, they are said to 

be similar, and the opposite is true. The norm of the MRA matrix of the data set related to an 

unknown fault is compared with that of known faults (i.e., BR, FB, RM, RU, SF, VU, and HM) for 

authentication. If the difference between the norm and the known fault is the least, then the match is 

found, and it is inferred that the unknown fault is similar to the known fault. 

A robust classification model using PNN has been developed for the detection of multiple faults in 

induction motors, applying features in the time domain, time-frequency domain, and frequency 

domain. Training of the model has been carried out with faults and the number of fault current 

signatures recorded at no load condition only, but testing of the model is carried out with current 

signatures of unknown faults at three loading conditions. The optimal decomposition level to get the 

highest classification accuracy has also been found in this work, including the optimal value of the 

spread of PNN. The trained classes were seven in this work, but any unknown type of fault can be 

identified if the number of trained classes is more than seven. In this work, a fault classification 

method has been proposed using a probabilistic neural network (PNN)-based model. The model uses 

principal component score features obtained from three different analysis methods, such as direct 
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analysis of time-domain fault current signals, frequency-domain analysis using a Fast Fourier 

Transform (FFT)-based approach; and finally a time-frequency domain method incorporating wavelet 

transform. Classification has been achieved by analysing each phase independently as well as for 

three different loading conditions. The spread parameter has been varied experimentally in the initial 

phase of the work, and the optimal value has been found to be 0.6. Finally, we have compared the 

classification accuracy obtained from the features of the three modes of feature extraction. The 

classifier accuracies are also compared for different levels of wavelet decomposition. It is observed 

from the results that the time-frequency domain analysis incorporating the 3rd level of decomposition 

of three phase current signals using wavelet analysis is able to produce the highest classification 

accuracy of 99.6%, which is higher compared to independent time or independent frequency domain 

analysis. The wavelet decomposition of the input signal reduces the noise to get exact time-frequency 

information of the particular type of fault, but if the decomposition level increases after a certain level 

of decomposition, there is a chance of information loss from the current or vibration signal. That’s 

why the classification accuracy of all types of unknown faults is increasing from the 1st level to the 3rd 

level, but after the 3rd level of decomposition, the classification accuracy is decreasing under all 

loading conditions, as shown in the figures mentioned above. High accuracy of classification, 

simplicity in analysis, insensitivity to variability of loading, and ease of implementation all prove the 

ability of the proposed model as a robust classifier for induction motor faults.  

Table 8.3:  Comparison of PNN based classification with some previous work 

Literature  Features Classifier Fault classification Accuracy 

[187] Four dimensional 

features extracted from 

vibration signals using 

PCA. 

PNN Bearing fault 91.25% 

[188] Wavelet energy 

spectrum of vibration 

signal process by PCA 

with three dimensions. 

PNN Bearing fault 97.5% 

This work Two dimensions 

features are extracted 

using PCA from time 

domain signals, FFT 

spectrums and  

approximate 

coefficients of wavelet. 

PNN Broken rotor bar 

fault, bearing fault 

and stator winding 

fault. 

Overall accuracy is 99.6% of 

three faults using the features of 

third level wavelet 

decomposition under three 

loading conditions. 

 

The proposed model also has the potential for application with other three-phase machines. Both 

wavelet and PNN are well used methods in this field of research. Besides, the fault detection accuracy 

achieved using the optimum combinations of wavelet and PNN, as described before, is able to 

produce a classification accuracy of 99.6%, which is very high. Besides, the experiments are carried 
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out in real-time hardware setups rather than simulation models, which nullifies the presence of errors 

that may creep in during software simulation of machine faults. Thus, the proposed classifier could be 

implemented in the future to develop a real-time fault classifier model for induction motors. 

 

A fault protection scheme for three-phase induction motors has been developed. The algorithm is 

tested under different loading conditions on the motor. Feature extraction has been carried out using 

time domain, frequency domain, and time-frequency domain analysis at multiple levels, using direct 

analysis of a time domain signal, the Fast Fourier Transform (FFT), and wavelet transform, 

respectively, and cross-correlated signals. Cross correlation has also been used for rotating machine 

condition monitoring for gearbox fault monitoring [210], stator fault monitoring [211], and covering 

fault and decision-making stages of induction machines [212], but not for detecting multiple types of 

fault patterns in induction machines. Principal component analysis (PCA) has been applied over the 

extracted features to identify the key directions of variation of the features for respective faults, 

followed by a nearest neighbourhood analysis of the PCA distances between the test fault and each 

fault class to classify the fault. Apart from that, the sensitivities of current signals in different domains 

have also been considered in the proposed work. The central tendency of the fault dataset has been 

computed by computing the mean of the given dataset of multiple features for each phase of the faulty 

motors. It is observed that the mean value of features from cross-correlated signals provides the 

highest Euclidean distances for all cases compared to feature extraction methods from signals in the 

time domain, frequency domain, and time-frequency domain; hence, cross-correlation of signals 

yields the highest sensitivity. It is also found that the sensitivities of wavelet-based features have 

minimal variation with an increase in decomposition levels. 

 

8.2 Future Scope 

 

The different fault patterns have been identified through an unsupervised classification process that 

extracts features from current signals from different faulty induction motors. The characteristics of 

motor voltages and currents can be used to train and test classifiers in the future. Future research can 

also be done to create a more reliable fault classification system using raw data that contains the 

vibration spectrum in addition to the stator current spectrum for all phases. Electrical and mechanical 

faults can both be identified using current signature analysis, but mechanical faults can be identified 

more accurately using the vibration analysis technique alone. Further fault classifications must be 

carried out by extracting the features from vibration signals and current signals independently, and 

comparing the classification results of all the classifiers employed in this work. Additionally, it is 

proposed that modelling of defective induction motor parameters may result in a different supervised 

method of fault authentication. 
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SVM has been used to detect faults, and its RBF kernel is providing greater classification accuracy for 

fault classification using the features of current signals in the time domain and the frequency domain 

both. A similar procedure can be used to classify faults using PNN. It will be difficult to distinguish 

between the two types of faults when electrical and mechanical faults occur simultaneously in a 

machine. For this reason, classifications must be made utilising features from both current signals and 

vibration signals separately. Convolutional neural networks (CNN) are another method that can be 

applied as a classifier. Another alternative for identifying issues with different power system 

components, such as synchronous generators and transformers, is to use an SVM, PNN, or CNN-

based algorithm. 

 

It is necessary to choose the optimal mother wavelet and optimal level of decomposition for the 

vibration signals coming from various malfunctioning induction motors. The classifiers for fault 

classification can be trained using the characteristics of the coefficients of decomposed vibration 

signals. Using different feature characteristics of decomposed vibration signals, the MRA approach 

can also be used to classify faults. 
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