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ABSTRACT 

Melting and solidification of pure metals and alloys are important research areas due to its 

practical applications, where the study of dynamic evolution of the interface offers a 

challenging task to the researchers. For the last two decades, lattice Boltzmann method 

(LBM) has been extensively used to model transport phenomena for melting and 

solidification problems involving complex boundary at the phase interface because of high 

computational efficiency and cost effectiveness of LBM.  

In the present work double distribution function (DDF) with single relaxation time 

based lattice Boltzmann method (LBM) is used to perform the solid-liquid phase change 

simulation. D2Q9 lattice stencil is used for the prediction of flow and thermal field. However, 

in order to overcome numerical instabilities for simulation of low Pr fluids, modification of 

lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes 

equation and the energy equation are proposed in this study. The present work reports 

development of a lattice Boltzmann model to overcome the numerical instability associated in 

handling convection in low Pr fluids. This modification has been employed to analyze very 

low Pr liquid metals Pr ∈ [0.001, 0.1]. In a systematic analysis, the thermo-fluidic behavior 

of liquid metals in the melt zone is examined in a square cavity at a wide range of Rayleigh 

number Ra ∈ [10
4
,10

6
]. Transport phenomena in a side heated cavity undergoing melting has 

been reported where wall and interface heat flux, melting rate and  length of interface was 

studied up to a Rayleigh  number of 10
6
.  

In next part of the work, the melting dynamics has been studied for investigating the 

flow instability in the melt zone. The parameters are taken as Prandtl number in the  range of 

0.005-0.05 and Rayleigh number between 10
5
-10

6
. The presence of different flow circulation 

in the melt zone is investigated as the flow transition is observed from steady to transition 

regime. The time series plots of velocity components in the entire melt zone are investigated 

and peak frequency mapping is performed using Fast Fourier Transform (FFT) analysis to 

characterize the non-linear flow dynamics in an evolving melt one.  

In corner melting/solidification, heating or cooling is performed on two adjacent sides 

of the cavity. Studies on corner melting for bottom side heated and top side heated melting 

were undertaken where the related physics was explored and improved melting phenomena 

was noted. The improved melting performance was explored for corner melting and at the 

same time the complex physics of natural convection under corner melting could be unveiled. 

The natural convection effect in corner melting problem is investigated based on enthalpy 
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based lattice Boltzmann model (ELBM). The investigation is performed for two distinct 

cases. In the first one the left wall and the bottom wall form the corner (case 1). The 

counterpart is where the right wall and the top wall form the corner (case 2). The main focus 

of the work includes capturing the effect of natural convection in melt zone and predicts the 

evolution of the melt zone dynamics. The effect of Rayleigh number in the range of Ra=10
2
 -

10
7
 on the convective flow field is evaluated for a typical parametric values of Stefan number 

of 0.01 and Prandtl number of 0.025. Results show distinct convection rolls which also 

include Rayleigh-Benard cells at the melt zone for the cases under investigations. Evolution 

of flow fields in the melt zone has been described by presenting sets of isotherms and 

streamlines. The modified lattice Boltzmann model to simulate melting in low Pr materials 

was also applied in the case of corner melting problems for very low Pr number liquid metals 

Pr ∈ [0.001, 0.01]. The main focus of the work includes the tracing of transient interface 

movement, calculation of average heat flux at the interface; determine the effect of natural 

convection in melt zone, distribution of isotherms in the cavity and variation of average melt 

fraction with time.  

As solidification process has numerous applications in metallurgy, geology and other 

disciplines where environment may not be always predictable and the boundary conditions 

may vary with time and space, investigation of mushy region dynamics and segregation 

within an alloy is of special interest where the progress of LBM is still very limited. A hybrid 

LBM is developed to study the solidification phenomena of Ni-Cu alloy in which the flow 

field is simulated using LBM combined with finite different method (FDM) to solve for 

thermal and species continuity equation. In the present work, 2-D simulation of Ni-Cu (50-

50%) alloy has been taken up to understand the effect of boundary conditions on the 

morphology of mushy region dynamics. Capability of the code is demonstrated to a limited 

extent due to huge demand on computation time. 

To summarize, the thesis demonstrated the capability of LBM for solution of solid to liquid 

phase change problems. A modified LB model is developed to handle low Pr materials. 

Studies were performed for melting in side heated cavities as well as for corner melting. 

Corner solidification and segregation of binary alloy are the other highlights of the work.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 General Overview 

Problems involving melting and solidification have attracted considerable attention due to its 

large number of industrial applications such as casting of metals, thermal heat storage, 

processing of materials, wire and metal coating, food conservation, additive manufacturing, 

growth of crystals, matrix composites and cryosurgery as well as natural processes such as 

formation of crust and magma, evolution of iceberg and many others (Danaila et al., 2014; 

López et al., 2013; Pielichowska and Pielichowski, 2014; Wang et al., 2010). Mathematical 

modeling of melting and solidification is a challenging task to the research community as it 

involves prediction of moving boundary at the solid-liquid interface and tackling the 

associated physical and computational complexities near the phase interface. For alloys, 

additional difficulties are encountered during solidification of alloy, a mushy zone is formed 

in which fractional amount of solid and liquid both coexist. Accurate investigation of mushy 

zone where solid-liquid phases coexist is very difficult as the controlling parameters 

drastically change during solidification. Considering the high cost of experiments, numerical 

simulation has become indispensable to accurately focus on the underlying physics during 

both melting and solidification problems. In last decades, the significant progress of particle 

based simulation methods over conventional continuum based methods has become 

noteworthy (Miller et al., 2001; Rao et al., 2013; Shibuta et al., 2017; Song et al., 2016; Liwei 

Zhang et al., 2021) in investigating melting and solidification. Lattice Boltzmann method 

(LBM), a novel technique arising out of kinetics based approach, has evolved as a versatile 

and powerful computational methodology for both fundamental research and engineering 

applications. The use of LBM for melting and solidification problems provide an alternative 

approach to assumption of no-slip boundary condition in conventional methods at the 

complex interface geometry through simple ‘streaming-collision’ assumptions (Chopard  and  

Droz, 1998). The straightforward parallelization of the main lattice Boltzmann (LB) 

algorithm due to successive repletion of the ‘collision-streaming’ steps (Nourgaliev et al., 

2003; Yang et al., 2000) offers significant advantage in computation.  
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1.2 Melting of Low Prandtl Number Substances  

For a variety of applications, including cooling systems (cooling of high-density power 

electronic devices, nuclear reactors), heat exchangers, metallurgical processes and 

solidification and melting of metals (such as development of crystals from melts, metal 

treatment, casting and welding), it is crucial to comprehend the dynamics of low Prandtl 

number (Pr) liquid metals under the influence of natural convection. Prandtl numbers of 

fluids describe the relative strength of momentum diffusivity (kinematic viscosity) to thermal 

diffusivity. For liquid metals, thermal diffusivity is relatively high and kinematic viscosity is 

low leading to low values of Pr. A low Prandtl number value indicates that heat diffusion is 

occurring in liquid metals significantly faster than momentum diffusion. The value of Prandtl 

number has significant impact on the flow field including boundary layer formation and heat 

transfer.  

Due to the instability of the solution, the numerical modelling of the impact of natural 

convection at liquid metals with very low Prandtl numbers (Pr=0.001 to 0.01) causes concern 

to the researchers. Researchers have  noted the difficulty in achieving stable solution for low 

Pr materials in closed cavities (Arcidiacono and Ciofalo, 2001; Bhattacharya and Basak, 

2021; Kosec and Šarler, 2013; Mohamad and Viskanta, 1991; Sammouda et al., 1999; Sheriff 

and Davies, 1979) as lower Pr introduces higher non-linear effect. These studies also 

forecasted the oscillatory behavior of the results in terms of dependent variables like velocity 

and average Nusselt number (Mohamad and Viskanta, 1993; Sammouda et al., 1999).  

However, several metals have quite low values of  Pr e.g., Pr of Gallium (Ga), Mercury 

(Hg), Sodium (Na), Potassium (K) and Lithium (Li) are 0.022, 0.021, 0.013, 0.01 and 0.005 

respectively in decreasing order (Bejan, 2013; Lyon and Poppendiek, 1951). Many of them 

are of special importance in semiconductor industries and find use in automobiles, energy, 

telecommunication and aerospace sectors.  

In cavity melting problem while melting occurs from side heated wall or bottom walls the 

density difference induces natural convection in the melt zone. Thermal gradient in 

differentially heated cavity provokes the formation of Rayleigh-Benard cells which appears 

in melt zone. The moving melting boundary moves towards normal to the direction of heat 

flux and the melt zone grows with time. The fluid flow transition from conduction to 

convection is governed by Rayleigh number (Ra) while Pr plays an important role in 

development of instability of the flow field. The convective instability arises in melt zone due 
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to the combination of Ra-Pr relationship for liquid metals (Bejan, 2013). The convection cell 

sizes and oscillating nature of the fluid flow components owing to effect on the dynamics of 

melting boundary. Quantification of the flow instability in the melt zone explains the 

oscillation nature of velocity components. The transient evolution of the melt zone promotes 

the internal kinetic energy which is related to the effective melted area.  

1.3 Corner Melting 

The term ‘corner melting’ involves melting which occurs due to heating of two adjacent walls 

of the cavity. Corner melting owing to natural convection in an enclosure leads to more 

complicated situation as a consequence of interaction of buoyancy forces, conduction and 

gravity field in the melt zone. In case of corner melting, the direction of gravity is oblique to 

the overall gradient in the cavity as the heated walls form an L-shaped zone facing other two 

sides at lower temperature. While melting phenomena are studied for decades, investigations 

on corner melting are reported only in this millennium (Lee and Tzong, 1991; Lin and Chen, 

1997; Rathjen and Jui, 1971). The effect of natural convection in melt zone is the main 

concern of corner melting problem. The corner melting could be in two different ways: the 

top-bottom walls temperature gradient and the gravity force direction are parallel but opposite 

to each other for case 1 while the temperature gradient and the gravity force direction are 

parallel with same direction for case 2. Thus case 1 and case 2 refer to ‘corner melting heated 

from bottom’ and ‘corner melting heated from top’ respectively. Distinct convection rolls at 

the melt zone for the cases under investigations is the main concern of the study. Evolution of 

flow fields in the melt zone has been described by a set of isotherms and streamlines for both 

the cases. 

1.4 Solidification of Alloy 

Solidification of binary alloy causes phase separation into three distinct zones, namely solid, 

two phases or mushy region, and liquid phase or melt zone. As the melting point of 

components forming alloy are different, solidification takes place over a range of temperature 

causing a non-uniform distribution of components in the mushy region. This phenomenon is 

called macro segregation. Solidification of pure metal and alloy follows different physics as 

shown the following Fig. 1.1. 
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Figure 1.1: (a) Schematic of pure metal solidification and (b) Schematic of an alloy 

solidification process. 

Figure 1.1 shows that a mass of molten alloy kept in a rectangular cavity losing heat from left 

wall. Other boundaries are insulated. Solidification starts from the left wall through which 

heat is lost. The boundary of the solid phase grows towards right. Adjacent to the right 

boundary of solid phase a zone develops where solid crystals and liquid coexist together. 

Near the solid boundary amount of solid formation is dense which gradually tails off on the 

right and smeared with the liquid zone.  

1.4.1 Description of Mushy Layer 

In the mushy layer non uniform crystal structure of solidified materials coexists with the 

liquid phase. For alloy solidification, momentum, heat and mass transfer in mushy layer are a 

coupled complicated process. Investigation of mushy layer is important because distribution 

of components in solidified phase controls the mechanical and metallurgical property of alloy 

casting. As the flow is hindered by the porous zone formed by crystal structure present 

having different geometrical shapes, the path of fluid is tortuous rivulet like and surpassing 
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the tiny islands of crystal matrix. Depending on the extent of assumed formation of crystal 

growth in mushy region dendritic structure is formed. 

 

                                            

(a)                                  (b) 

                        Figure 1.2: Microstructure in mushy region (Porter et al., 2009). 

A detailed view of mushy region is shown in Fig. 1.2. At the interface of solid zone columnar 

growth of crystal (Fig. 1.2a) and branching off morphology (Fig. 1.2b) occurs which hinder 

the flow of liquid and two-phase flow with heat and mass transfer occurs. Due to the limited 

solubility of secondary phase which is also temperature dependent the solute is segregated in 

this zone as a result of diffusion and convection. 

1.5 Computation Schemes for Melting-Solidification Problems 

Figure 1.3 shows several available computational schemes which are deployed for modeling 

of melting and solidification of metals and alloys with melt flow. The flow field of the solid-

liquid phase change problems can be numerically simulated using either macroscopic or 

mesoscopic approach. 

 

Figure 1.3: Different computation schemes of melting and solidification.  
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The flow induced melting-solidification problems can be numerically modeled using 

macroscopic Navier-Stokes (NS) equation solver (Anderson et al., 2000; Chattopadhyay, 

2011; Dhar et al., 2014; Wintruff et al., 2001), which demands a large computational cost to 

the melting-solidification problems. In order to improve the computational efficiency 

(Chatterjee and Chakraborty, 2006; Jelinek et al., 2014; Sun et al., 2009; Zhang et al., 2018), 

LBM was introduced as an alternative of conventional methods to calculate the fluid flow in 

melt. The lattice Boltzmann method has a potential to solve the species transport problems 

ensuring robustness to describe the fluid flow and is capable of simulating complex fluid 

systems. In melting-solidification problems, the prediction of interface can be performed 

assuming ‘sharp’ or ‘diffuse’ interface. Several interface tracking methods are available to 

investigate melting-solidification phenomena. The research field is still evolving towards 

better understanding of the dynamics of interface between solid and liquid phases with an aim 

to accurately predict the structure of ‘diffuse’ or ‘sharp’ interface considering the local 

physics during melting and solidification (Chen et al., 2013; Hu et al., 2019a; Knutson and 

Noble, 2009; Liu et al., 2022).  

1.6 Lattice Boltzmann Modelling for Melting and Solidification 

Problems 

Melting and solidification studies are non-isothermal flow problems involving phase change 

in which energy transfer plays an important role. There are several LB coupled methods 

which are developed based on different interface tracking techniques to study interface 

dynamics in melting and solidification problems. A birds-eye view of different LB coupled 

models pertinent to melting and solidification problems is shown in Fig. 1.4. Generally, the 

LB modelling of solid-liquid phase change problems consists of two parts: a thermal lattice 

Boltzmann model for flow and thermal field and a second model for interface tracking. 

Enthalpy based LBM (ELBM), phase field based LBM (PFLBM) and immersed boundary 

based LBM (IBLBM) are the three main LB coupled interface tracking methods, which are 

used to investigate the melting and solidification phenomena.  
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Figure 1.4: Different LB methods for melting and solidification. 

In ELBM, the temperature field is solved using LB algorithm with either enthalpy or 

temperature as dependent variable and the interface is captured by calculating as well as 

updating enthalpy at each lattice node near interface vicinity in which the liquid fraction is 

implicitly obtained at the corresponding lattice node. In PFLBM, an auxiliary phase field 

variable across the diffuse interface is used to track the phase interface. Both ELBM and 

PFLBM involving finite thickness of interface, track the solid-liquid interface implicitly. In 

IBLBM, a sharp infinite thin interface is traced assuming Eulerian grids for flow field and 

Lagrangian grids for immersed boundary in the fluid. In thermal lattice Boltzmann model, 

two possible approaches have been used to study the flow and thermal part of the melting and 

solidification problems; one is the hybrid method in which LBM is combined with 

conventional methods like finite difference (FD), finite volume (FV) or finite element (FE) 

method (Chiappini et al., 2018; Fakhari and Lee, 2015; Ganaoui and Semma, 2009; Li et al., 

2020). The other approach involves using two separate distribution functions for flow and 

thermal field and is known as double distribution function (DDF) approach (He et al., 2019; 

Huang et al., 2013a; Samanta et al., 2022). 

In hybrid method, isothermal LB method is used to solve the flow field, along with finite 

difference method, finite volume method or any other numerical methods to simulate energy 

field (Chatterjee and Chakraborty, 2005; Li et al., 2014). Over past few decades, double 
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distribution function (DDF) based LB method has been extensively used to study phase 

transition involving melting and solidification. In DDF based approach, two distribution 

functions are used; the first one as the density distribution function for velocity in the flow 

field and another is the density distribution function for energy in the thermal field. The 

energy field for melting and solidification problems can be expressed in terms of temperature, 

internal energy or total enthalpy. A survey of literature clearly establishes the superiority of 

DDF approach, which is now the prevailing one for modeling solid-liquid phase change 

problems (Karlin et al., 2013; Li et al., 2018; Wang et al., 2020).  

While there exist different melting and solidification models for predicting solid-liquid 

interface with their capacities and limitations, in this work, we focus on enthalpy based lattice 

Boltzmann method for prediction of interface which is possibly the easiest for 

implementation, useful and popular numerical tool in generating solid-liquid interface.  

The application of LBM in binary alloy solidification problem has been taken widely because 

of its computational efficacy compared to the other traditional methods such Finite 

Difference Method (FDM), Finite Volume Method (FVM) etc. Literature shows there are lots 

of study has been performed to investigate alloy solidification using hybrid LBM to 

investigate the morphology of the microstructure in which LBM is coupled with conventional 

FDM, FVM etc (Medvedev and Kassner, 2005) (Selzer et al., 2009) (Chatterjee and 

Chakraborty, 2005; Li et al., 2014). while the dynamics of mushy region with macro-

segregation has been studied a few (Kosec and Šarler, 2013; Ohno and Sato, 2018a). The 

solidification study of Ni-Cu alloy has been performed using hybrid LBM in which the flow 

field is modelled using LBM and FDM is used to solve thermal and solute balance equations.  

1.7 Motivation of Work  

The focus of the current work is to develop simulation methodology for melting and 

solidification and extend the ability of lattice Boltzmann model (LBM) for application in low 

Pr solid to liquid phase change problem. While existing thermal LBM is used for the studies 

for the case of Pr =0.025, the lattice Bhatnagar-Gross-Krook (LBGK) model has been 

modified in the current research by adding correction terms to the density and energy 

distribution functions. This modification has been employed to analyze melting of very low 

Pr number liquid metals Pr ∈ [0.001, 0.1].  
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While going through the open literature in the area of concern, it is evident that the problem 

of ‘corner melting’ demands further attention as relatively fewer studies has dealt with this 

problem. The scope of improved melting performance could be explored for corner melting 

and at the same time the complex physics of natural convection under corner melting could 

be unveiled.  

After performing the melting and solidification study globally, the dynamics of melting 

boundary has been investigated for low Prandtl number liquid metals. Dynamic transition of 

melting boundary and topography amplitudes appears as a result of the ongoing melting of 

the solid. The interface dynamics and the thermo-fluidic behaviour in a planer cavity are 

performed using modified lattice Boltzmann simulation. 

The application of LBM on alloy solidification problem is yet to be matured as only a couple 

of works had been done using hybrid LB model to study the mushy zone in binary alloy 

solidification problem. The dynamics of mushy zone with macro-segregation study using 

hybrid LBM was reported in a few methods (Contrino et al., 2014; Lallemand and  Luo, 

2003). A hybrid LBM is developed to study the solidification phenomena of Ni-Cu alloy in 

which the flow field is simulated using LBM and finite different method is used to solve for 

thermal and species continuity equation. The extension of the LB model coupled with FDM 

is used to perform the simulation which reduces the computational cost of the simulation.  

1.8 Thesis Organization 

The present thesis contains seven chapters. The content of the chapters are discussed below: 

 In the first chapter, a brief introduction has been given on the solid-liquid phase 

change of metals and alloys in general. Application of LBM to study the melting 

behaviour of low Prandtl number liquid metals in closed cavity, flow instability of 

low Pr liquid metals, melting from two adjacent walls (corner meting) and 

solidification of binary alloy are discussed eventually. Different numerical modelling 

techniques for melting-solidification problems and a brief about importance of lattice 

Boltzmann modelling for solid-liquid phase change problems are introduced.  

 Chapter two which includes an extensive literature review on application of LBM on 

melting and solidification is subcategorised into two sub-sections. The first part of 

this chapter presents a state of art survey for research activities on melting and 

solidification problems focusing on melting of low Pr liquid metals, convective 

instability of low Pr liquid metals in the melt zone, corner melting and solidification 
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for a wide range of Pr number and binary alloy solidification. The second part of the 

chapter covers literatures on the application of lattice Boltzmann models for melting 

and solidification problems.   

 Chapter three deals with the development of basic lattice Boltzmann modelling 

(LBM) of heat transfer and fluid flow related to solid-liquid phase change problems. 

Initially, the basic lattice Boltzmann structure for flow and heat transfer problem has 

been discussed with implementation of boundary conditions and in the next section 

the LB modelling is extended for solid-liquid phase change problems. Modification of 

the LB methodology for simulation of low Pr is presented finally. 

 In chapter four melting of low Prandtl number liquid metals is discussed using 

modified lattice Boltzmann modelling. The effect of natural convection in the melt 

zone has been investigated for low Prandtl number liquid metals with a range of Pr ∈ 

[0.001, 0.1]. After the global study of low Pr liquid metals melting, the dynamics of 

melting boundary has been investigated in terms of flow instability arisen in the melt 

zone. A flow instability mapping has been performed in the melt zone and the 

oscillating velocity field is quantified using Fast Fourier Transform (FFT) analysis.  

 Chapter five deals with the flow physics involving corner melting and solidification 

problem of pure substances. The effect of natural convection in the melt zone is 

performed for two distinct cases. In the first one the left wall and the bottom wall 

form the corner (case 1). The counterpart is where the right wall and the top wall form 

the corner (case 2). The effect of natural convection in melt zone and predicts the 

evolution of the melt zone dynamics has been discussed in this section. The 

application of corner melting problem with low Pr liquid metals has been studied in 

the next part of the section. 

 In chapter six solidification of Ni-Cu binary alloy has been investigated using hybrid 

lattice Boltzmann method. Three different types of temperature boundary conditions 

at the cold wall are considered. The flow field in the liquid zone, the solute 

distribution and the distribution of solid fraction in the mushy zone has been 

predicted. Macro segregation in the mushy region has been analysed and discussed in 

this section.  

 Chapter seven briefly describes the conclusions drawn from the analysis that is done 

in preceding chapters. Then the future scope of studies is also presented in this 

chapter. 
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CHAPTER 2 

STATE OF ART 
 

The study of melting and solidification phenomena in solid liquid phase change problems has 

become a popular research interest to the researchers due to its wide applications in thermal 

energy storage systems, freezing of foods, metallurgical solidification processes (Du et al., 

2021; Tong, et al., 2017; Năstase et al., 2016; Ren et al., 2017; Zorrilla and Rubiolo, 2005). 

Melting and solidification problems involves two phase heat transfer, evolution of phase 

change boundary, fluid flow dynamics in uneven geometry, transient evolution of melt zone 

and associated energy kinetics. The energy needed to transform a solid into a liquid during 

melting is provided by heat propagation from a heated boundary wall. When heat is removed 

during solidification, with the removal of latent heat the phases switch from liquid to solid. 

Melting and solidification of pure metals shows a distinct interface between solid-and liquid 

phases while a mushy region is formed during alloy solidification. As the position of the 

moving interface in solid-liquid phases is unknown a priori, the solution procedure for 

prediction of the interface is inherently difficult. The major concerns to simulate the melting 

and solidification problems are the prediction of transient phase change boundary which is an 

outcome of thermodynamics of phase transformation.  

2.1 Literature Survey on Melting and Solidification 

A brief state-of-art on solid-liquid phase change is first placed. Many conventional 

macroscopic based methods had been applied to investigate the melting and solidification 

problems, such as Finite Difference Method (FDM), Finite Volume Method (FVM), and 

Finite Element Method (FEM) (Chessa et al., 2002; Lacroix and Voller, 1990; Voller et al., 

1990). The phenomena of melting in the natural convection regime in cavity were studied 

over the years. Several experimental and numerical investigation of melting and solidification 

in closed cavity had been done by many researchers for pure metals and alloys (Chakraborty 

et al., 2003; Dhar et al., 2014; Gau and Viskanta, 1986; Voller et al., 1989; S. Wang et al., 

2010; Wolff and Viskanta, 1988). Lattice Boltzmann method (LBM), a mesoscopic model 

based on kinetic theory is economically efficient for flow modelling as compared to 

conventional Navier-Stokes solver. Naturally LBM has become a popular tool due to its 

simple mathematical formulation consisting of streaming and collision steps, scope of 



12 
 

parallelization and lower CPU time (Samanta et al., 2022). Different mathematical 

modellings and numerical techniques for conduction melting (Chatterjee and Chakraborty, 

2005; Jiaung et al., 2001) and natural convection melting (Huang et al., 2013a; Huo and Rao, 

2017; Jourabian et al., 2013; Rui et al., 2020a) were reported using different system 

configurations (Azad et al., 2021; Daniele Chiappini, 2021; D. Gao and Chen, 2011; Q. Li et 

al., 2021; Sharma et al., 2017) subjected to various heat flux and temperature boundary 

conditions (Dai et al., 2018; Gu et al., 2019; Hasan and Saha, 2021b; Huang et al., 2013a; 

Huo and Rao, 2015). Melting studies in square or rectangular cavity using LBM, focusing on 

the flow and thermal characteristics in the melt zone subjected to temperature gradient at 

different walls such as melting from bottom (Dai et al., 2018; Hasan and Saha, 2021b; Rui et 

al., 2020b), and melting from side walls of the cavity (Huang et al., 2013b; Huber et al., 

2008; Huo and Rao, 2015; Rui et al., 2020b) were reported in literature. These two categories 

of problems were well attended so far experimentally and computationally by number of 

workers. Recently, an extensive review article on solid-liquid phase change using lattice 

Boltzmann method has been reported by (Samanta et al., 2022) in which melting-

solidification involving physics of pure metal and alloys has been systematically presented 

covering vast literature on different pure lattice Boltzmann models and hybrid models.  

In this section literatures pertaining to the problems undertaken in this thesis are reviewed. 

The topics are i) Melting of phase change in low Prandtl number liquid metals, ii) Corner 

melting and solidification and iii) Solidification of binary alloy. 

 

2.1.1 Melting of Phase Change in Low Prandtl Number Liquid Metals 

Several researchers were conducted extensive research on natural convection phenomena in 

the melt zone experimentally and numerically (Azad et al., 2022; Mrinmoy Dhar et al., 2014; 

Gau and Viskanta, 1986; Jones et al., 2006; Mallya and Haussener, 2021; S. Wang et al., 

2010; Wolff and Viskanta, 1987). In this context, phase change in low Prandtl number 

materials deserve special attention in which the flow and thermal behavior in melt zone has 

been investigated in a wide range Pr ∈ [0.001, 0.1]. Due to the instability of the solution, the 

numerical modelling of the impact of natural convection at liquid metals with very low 

Prandtl numbers (Pr=0.001 to 0.01) causes concern to the researchers. Researchers had  noted 

the difficulty in achieving stable solution for low Pr materials in closed cavities (Arcidiacono 

and Ciofalo, 2001; Bhattacharya and Basak, 2021; Kosec and Šarler, 2013; Mohamad and 

Viskanta, 1991; Sammouda et al., 1999; Sheriff and Davies, 1979) as lower Pr introduces 
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higher non-linear effect. These studies also forecasted the oscillatory behavior of the results 

in terms of dependent variables like velocity and average Nusselt number (Mohamad and 

Viskanta, 1993; Sammouda et al., 1999). Lattice Boltzmann method (LBM) is increasingly 

being popular in simulation of fluid flow and heat transfer problems over time. A number of 

studies had been documented the use of the LBM for low Pr fluid flow issues (Bawazeer et 

al., 2019; Hussein et al., 2016; Li et al., 2016; Nabavizadeh et al., 2020; Sahraoui et al., 2020; 

Samanta et al., 2020). Some of them addressed the issue of numerical instability by 

modifying the lattice Boltzmann approach for low Prandtl numbers fluids (Bawazeer et al., 

2019; Li et al., 2016). Li et al. (Li et al., 2016) investigated the oscillatory behavior at low Pr 

fluids in a differentially heated cavity for Pr ∈ [0.005, 0.01] and Ra ∈ [10
4
, 10

5
]. The 

simulation was performed using double multi-relaxation time (MRT) based thermal LBM and 

focused on the oscillatory behavior of heat flux. Bawazeer et al. (Bawazeer et al., 2019) 

applied a modified lattice Boltzmann model incorporating a constant term to the relaxation 

parameter to enhance the stability of the numerical scheme. Using modified LBM they 

investigated the thermo-fluidic instability at low Pr. All of the aforementioned investigations 

look towards low Pr fluids without phase transition. Comparatively, only a few studies were 

done on the melt zone natural convection effect for liquid metals with very low Pr numbers 

(Dai et al., 2018; Hasan and Saha, 2021b; Hu et al., 2017; Huang et al., 2013b; Huber et al., 

2008; Huo and Rao, 2015; Lu et al., 2019; K. Luo et al., 2015; Rui et al., 2020a; Samanta et 

al., 2023; Xu et al., 2019). It is shown from the earlier studies that the investigation was 

limited to a specific Prandtl number range, which is primarily employed for a certain liquid 

metals. Table 2.1 summarizes the range of Rayleigh number and Prandtl number in which 

phase change studies are reported. It can be noted from the table that the phase change 

behavior for metals are mostly studied for Pr ≥0.02 and only one work reports studies at Pr = 

0.01.  

Table 2.1: Range of Pr and Ra in literature. 

References Prandtl Number Rayleigh Number 

(Hasan and Saha, 2021a) 0.025 6708,11708,21708 

 (Dai et al., 2018) 0.02 2.5x10
4
-5x10

4
 

(Huang et al., 2013b) 0.02 2.5x10
4
-2.5x10

5
 

.(Rui et al., 2020a) 0.02 2.5x10
4
 

 (Lu et al., 2019) 0.02 2.5x10
4
 

.(P. Xu et al., 2019) 0.02 2.5x10
4
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 (Huber et al., 2008) 0.02 5x10
4
-6.8x10

6
 

 (Hu et al., 2017) 0.01 5x10
4
 

However, several metals have quite low values of Pr e.g., Pr of Gallium (Ga), Mercury (Hg), 

Sodium (Na), Potassium (K) and Lithium (Li) are 0.022, 0.021, 0.013, 0.01 and 0.005 

respectively in decreasing order (Bejan, 2013; Lyon and Poppendiek, 1951). Many of them 

are of special importance in semiconductor industries and find use in automobiles, energy, 

telecommunication and aerospace sectors.  

2.1.2 Corner Melting and Solidification 

Corner melting and solidification refers to the cases where two adjacent sides forming a 

corner is heated or cooled for heat removal. While melting phenomena are studied for 

decades, investigations on corner melting are reported only in this millennium (Lee and 

Tzong, 1991; Lin and Chen, 1997; Rathjen and Jui, 1971). (Rathjen and Jui, 1971) presented 

an analytical solution of heat conduction with melting in a semi-infinite corner. An enthalpy 

based formulation for phase change materials with a large thermal diffusivity jump across the 

interface was investigated by (Lee and Tzong, 1991). In their work they validated their results 

with the exact solution developed by (Rathjen and Jui, 1971) for a solidification phenomenon 

in a two dimensional corner. Two-dimensional nonlinear phase-change problem with the 

irregular geometry was investigated by (Lin and Chen, 1997) in which the position of phase 

change interface was validated with the above results. (Jiji et al., 1970) conducted a two 

dimensional solidification study using internal and external corners analytically as well as 

numerically to evaluate influence of Stefan number (Ste) on melt zone aspect ratio and 

predicted an asymptotic relationship between them. The above mentioned corner melting 

problems are conduction driven. Recently, a comparison of convection melting in a square 

cavity had been studied with double adjacent heating walls, and double opposite heating 

walls  with other walls were adiabatic by (Rui et al., 2020b). They compared the melt fraction 

for these two different situations and reported the transient temperature profiles in the cavity.  

2.1.3 Solidification of Binary Alloy 

During solidification of alloy, a mushy zone is formed in which fractional amount of solid 

and liquid both coexist. The morphology during solidification results in different 

microstructures in the form of dendrites, equi-axed or columnar growth. The hybrid LBM 

model for binary alloy solidification can be categorised as enthalpy based lattice Boltzmann 

model (ELBM) and phase field based lattice Boltzmann method (PFLBM). The morphology 

structures in the two phase zone, the growth kinetics of dendrites were simulated widely 
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using PFLBM (Chen et al., 2021; Sakane et al., 2020; A. Zhang et al., 2019). However a few 

study of mushy zone dynamics, macro-segregation in the mushy region had been investigated 

using hybrid LBM (Ohno and Sato, 2018a). Due to this physical non-uniformity 

mathematical description of mushy layer was complicated and had been analysed by many 

researchers and nicely covered by (Prescott and Incropera, 1996) and mathematical 

description and numerical technique was broadly covered by (Zhu et al., 2008). While macro-

segregation is a critical issue in material processing, the progress here is still limited with 

mesoscopic methods such as LBM. 

2.2 Literature Survey on Application of LBM on Melting and Solidification 

The mesoscopic, kinetic approach based lattice Boltzmann method (LBM) has been 

successfully applied as a numerical tool to study the phase transition phenomena from the last 

two decades. The applications of LBM for solid-liquid phase change of pure metals can be 

categorized based on the prediction of ‘sharp’ or ‘diffuse’ interface between the solid-liquid 

phases. Interface tracking methods for solid-liquid phase change problems can be categorized 

as immersed boundary (IB) based LBM has been used for prediction of sharp interface while 

enthalpy based lattice Boltzmann method (ELBM) for diffuse interface. Several works were 

reported assuming zero velocity at the solid-liquid interface in the solid-liquid phases using 

IBLBM (Huang and Wu, 2014; Zhao et al., 2019). In ELBM total enthalpy is updated in each 

lattice node with time which combines the sensible heat and latent heat. ELBM as an 

interface tracking technique covers a vast applications of solid-liquid phase change problems 

due to its computational efficiency which does not requires finer grid spacing near interface. 

(Wolf-Gladrow, 2004) first derived heat conduction equation using Lattice Boltzmann 

method. (De Fabritiis et al., 1998) developed a generalized meso-scopic LB model of 

solid/liquid phase transition in which two types of quasi-particles were used for different 

phases. In the LB model, was developed by (Miller et al., 2001), the interface boundary was 

traced using phase-field methodology. They showed a more elegant computational capability 

in treating the solid-liquid phase transition using only one type of quasi particle. The above 

works to track the interface were based on phase-field method. But extremely finer grid 

spacing is required to resolve the interface dynamics using phase–field method. However, in 

the enthalpy based methods, such finer grid spacing is not a requirement. 

 (Jiaung et al., 2001) first introduced ELBM stating solid-liquid phase change dominated by 

conduction. In their work, temperature based energy equation with non-linear source term 

was used which needed massive iterations. Subsequently, (Chatterjee and Chakraborty, 2008) 
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revised the model of (Jiaung et al., 2001) and extended their work through publishing a series 

of research works to investigate convection melting and crystal growth (Chatterjee and 

Chakraborty, 2005, 2006). (Huber et al., 2008) coupled convection and change of phase using 

double distribution functions to track interface movement using the total enthalpy. They 

performed modifications on (Jiaung et al., 2001) and applied to study melting in a cavity in 

presence of natural convection which reduce the iteration steps by choosing a proper 

relaxation time. (Huang et al., 2013a) introduced a new ELBM technique in which 

temperature in the energy equation was replaced by enthalpy so that the non-linear source 

term could be avoided. (Luo et al., 2016) reported that, choice between either temperature or 

enthalpy based energy equation did not impact on the solution accuracy very much. Recently, 

using the model developed by (Huber et al., 2008) melting efficiency in cavity was calculated 

under the influence of free convection by (Dai et al., 2018). A LB model describing the solid-

liquid phase change phenomena under constant heat flux was established by (Huo and Rao, 

2017). Lattice Boltzmann modelling of melting and solidification problems shows variety of 

numerical schemes while using collision operator based on single relaxation time, two 

relaxation time and multi relaxation time techniques. However, the application of single 

relaxation time is the most popular LB model for solving melting with natural convection 

used by number of investigators (Dai et al., 2018; Hasan and Saha, 2021b; Huang et al., 

2013a; Huang and Wu, 2014; Liu et al., 2022; Rui et al., 2020a). The advantage of total 

enthalpy based models for the numerical simulation of interface dynamics reduces the 

iterations in the presence of nonlinear source term in the energy equation (Huang et al., 

2013a; Luo et al., 2015).  

2.2.1 LB Coupled Interface Modelling  

Though there are several interface tracking methods available in literature for the prediction 

of moving interface dynamics in melting and solidification problems, LB coupled interface 

tracking methods find an extensive use for the prediction of solid-liquid interface because of 

its capability and wide use. Literature suggest that the application of lattice Boltzmann 

method on solid-liquid phase change of pure substances and alloys can be categorized into 

three major subsections according to the interface modeling: enthalpy based method, 

immersed moving boundary based method, and phase field based method (Huang and Wu, 

2015).  The application of different interface tracking methods coupling with LB model such 

as ELBM and IBLBM have been used in melting and solidification problems on pure 

substances and alloy. In enthalpy based method, the total enthalpy at each lattice node is 
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calculated in the phase change computational domain and the location of interface is 

predicted from the consideration of the liquid fraction. In phase field method, the interface is 

tracked using a phase field variable. Immersed boundary lattice Boltzmann method is a 

relatively new technique to predict sharp interface between solid-liquid phases (Huang and 

Wu, 2014; Zhao et al., 2019).  

The LB coupled interface tracking methods for pure substances and alloy materials cover 

enthalpy based method while immersed boundary based method investigate pure substance 

which are briefly discussed in the following subsections.  

2.2.2 Enthalpy Based Lattice Boltzmann Model (ELBM) 

Due to its simplicity and robustness, enthalpy method coupled with LBM  had been used by 

many researchers to simulate melting and solidification problems (Dai et al., 2018; Hu et al., 

2017; Huang et al., 2013b; Huang and Wu, 2015; Lu et al., 2019; Rui et al., 2020b; Xu et al., 

2019). In enthalpy based lattice Boltzmann method, total enthalpy is used to track the solid-

liquid interface in terms of liquid fraction. Figure 2.1 illustrates a schematic of solid-liquid 

phase change of pure metals during melting or solidification. 
lH and sH are the liquidus and 

solidus enthalpy, respectively.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Enthalpy-temperature relationship in melting or solidification phenomena 
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In enthalpy method, the enthalpy is calculated in the lattice nodes of the 

computational domain during melting and solidification. The isotherm at the two-phase 

interface indicates the interface temperature ( )mT which may be a straight line for pure metal 

melting or dotted line during undercooling.  

The energy equation in terms of temperature with a source term can be expressed as  

( T)
.( T ) .( T) q

p

p

m

m m T e

c
c k

t





     


u      (2.1) 

where, T  is temperature, 
p

c is specific heat, Tk  is thermal conductivity and eq is the energy 

equation source term.  

The energy equation source term eq  in Eq. (2.1) which is a function of latent heat enthalpy 

can be expressed as  (Filippova and Hänel, 2000): 

 
 q .

m

e m m

H
H

t




 
   



 
 
 

u                (2.2) 

where H  is the latent enthalpy of the nodes in the computational domain. Assuming no 

latent enthalpy change in liquid for pure metal, the second term of the Eq. (2.2) can be 

neglected, so qe
 becomes  

   
q

m m l

e

H f

t t

    
   

 
               (2.3) 

where,   is the latent heat of the phase change and lf  is fraction of  liquid, given as 

  /lf H                     (2.4) 

Combining energy equation, Eq. (2.1) and source term, Eq. (2.3), the advection-diffusion 

equation (2.5) with a source term for solid-liquid phase change of pure substance is obtained 

as follows. 

 ( )
( ) ( )

p

p

m m l

m m T

c T f
c T k T

t t

  


 
    

 
u                (2.5) 

Among the earlier studies on solid-liquid phase change, (Jiaung et al., 2001) treated Eq. (2.3) 

as a heat conduction problem with phase change omitting the convection term, leading to the 

form  
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 ( )
( )

pm m l

T

c T f
k T

t t

   
   

 
                 (2.6) 

The non-linear source term in the Eq. (2.6) can be solved explicitly requiring massive 

iterations.  

The total enthalpy ( )H  is expressed by sensible enthalpy and latent heat, 

p lH c T f                     (2.7) 

Calculating enthalpy using Eq. (2.7), the liquid fraction can be obtained as:  

s
l

l s

H H
f

H H





                             (2.8) 

lH and sH  are the liquidus enthalpy and solidus enthalpy respectively.  

 (Chatterjee and Chakraborty, 2006) revised the enthalpy model adopting a modified enthalpy 

updating scheme which was thermodynamically consistent. (Huber et al., 2008) developed a 

LB model modifying the collision step assuming ( ) p iH c Tx  where, iT  is initial temperature 

for better numerical accuracy and proposed a range of relaxation time to reduce 

computational cost by reducing the number of iterations. (Eshraghi and Felicelli, 2012) 

proposed an implicit formulation to deal with latent heat source term in the energy equation 

as in Eq. (2.2). They expressed liquid fraction in terms of macroscopic and mesoscopic 

parameters of energy model. (Huang et al., 2013b) was first to propose a total enthalpy based 

LB method combining the source term Eq. (2.3) with Eq. (2.1). The energy equation Eq. (2.1) 

can be modified in terms of total enthalpy as Eq. (2.9).  

 
   

H
. T . T

m

m p m Tc k
t





   


u                (2.9) 

The non-linear energy source term in this way leads to convergence. The macroscopic total 

enthalpy can be obtained summing the distribution functions. The temperature can be 

calculated from the total enthalpy as follows 
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A modified form of  specific heat was introduced by (Huang and Wu, 2015) where the total 

enthalpy based LB method was improved so that the equation could be solved without 

iterations. The modified forms of thermal conductivity )( Tk and specific heat )( pc were 

calculated in terms of liquid fraction by 

(1 )T l s l lk f k f k                             (2.11) 

, ,(1 )p l p s l p lc f c f c                             (2.12) 

where, subscripts ' 's  and ' 'l  indicate the solid phase and liquid phase, respectively. A 

‘magic’ parameter ( ) of magnitude ‘one fourth’ was proposed by (Huang and Wu, 2015) by 

setting relaxation parameters as 0 2er   and 
1

j

g

r


  and has to satisfy the relationship: 

  
1 1 1 1 1

2 2 4e jr r

  
       

  

                                (2.13) 

To accurately realize the no-slip velocity condition at the diffusive interface, adaptive mesh 

refinement (AMR) technique based LB scheme was proposed by (Huang and Wu, 2016) 

considering finer grids near interface vicinity and coarser grids at the bulk. Recently (P. Xu et 

al., 2019) extended two dimensional enthalpy based LB method to solve axisymmetric 

solidification process in the heat exchange method (HEM) based crystal growth system with 

convective boundaries. (Huo and Rao, 2017) proposed quasi-enthalpy method in which 

temperature is divided into two steps: ‘prediction’ (for melting) and ‘consumption’ (for 

solidification) which was able to capture the interface location at the solid-liquid interface 

accurately. (W. Zhu et al., 2017) extended the LB model developed by (Huber et al., 2008) to 

study solid-liquid phase change in three dimensional cavities and observed a significant 

difference between the results of three dimensional and two-dimensional during the initial 

stage of phase change. A MRT based LB model was proposed by (D. Li, Tong, et al., 2017) 

to study the influence of Rayleigh number and Prandtl number on three dimensional melting. 
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A total enthalpy based LB model combining with smoothed profile method was developed by 

(Hu et al., 2017) to simulate 3D convection melting. Naturally the researchers are focusing on 

the aspect of improving accuracy and striving for better CPU performance. A notable recent 

work of (Noyola-García and Rodriguez-Romo, 2021) was the development of a Python based 

new solver for use in  NVIDIA GPU device with CUDA technology to solve MRT-LB based 

phase change problem.   
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2.2.3 Immersed Boundary Lattice Boltzmann Model 

Immersed boundary based lattice Boltzmann method (IBLBM) focuses on the moving 

boundary as sharp interface and the location of the thin interface is tracked explicitly 

assuming Lagrangian grids. (Feng and Michaelides, 2004) introduced IBLBM to simulate 

particulate flow. Subsequently, IBLBM were developed and used for isothermal and non-

isothermal fluid flow problems (Zhiqiang Chen and Wang, 2020; Delouei et al., 2015; Dong 

et al., 2018; Kang and Hassan, 2011). (Huang and Wu, 2014) applied immersed boundary 

thermal lattice Boltzmann method (IBTLBM) to investigate the effect of surface forces at the 

immersed boundary of the solid-liquid phase interface including ‘momentum force’ due to 

velocity and the ‘energy force’ due to temperature. (Huang et al., 2013b) studied melting in 

square cavity in the presence of natural convection in which the phase interface was traced 

updating total enthalpy on the moving interface based on immersed moving boundary method 

proposed by (Noble and Torczynski, 1998). The effects of heat source location (left half, 

middle half and right half on the upper wall) for solid-liquid phase change was investigated 

by (P. Xu et al., 2019). The melting phenomena in presence of internal cylindrical heat source 

in a cubic cavity have been studied by (Zhang et al., 2021). In their work, a convection 

dominated melting has been simulated using two-relaxation time (TRT) based LB method. 

The effects of the inner cylinder location and the direction of inner cylinder placement are 

investigated. 

In recent years, lot of works have been published in multiphase multi-physics problems 

where ELBM and IBLBM have been used. (Gao et al., 2017) developed an improved method 

to simulate solid-liquid phase change with natural convection in porous media under local 

thermal non-equilibrium (LTNE) conditions. (Yang and Liu, 2018) studied the Rayleigh-

Benard melting process for a low melting point metals (LMPM). IBLBM has been 

extensively applied in diverse areas e.g.: effect of protruding heater in phase change process 

(Pepona and Favier, 2016), PCM melting process in a heat pipe assisted latent heat thermal 

energy storage system (LHTES) enhance with nano-particles and metal foams (Ren et al., 

2018), electro thermos convection in complex geometries (Hu et al., 2019b), transport of rags 

in waste water pumps (Specklin et al., 2019), solid-liquid interaction in slurry fluid (Suzuki et 

al., 2020), nano-particles deposition patterns in evaporating nano fluid droplets on smooth 

heated hydrophilic substance (Wang and Cheng, 2021) - just  to mention a few. 
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From the above literature survey it is seen that enthalpy based lattice Boltzmann method has 

a wide application to simulate the solid liquid phase change problems comparatively, 

immersed moving boundary based lattice Boltzmann method newer to predict the sharp 

interface 

2.3 Objective of the Thesis 

The present survey of literature shows that while LBM is increasingly being applied to study 

solid-liquid phase change problems very limited research have been conducted to look into 

the fluid flow and thermal behaviour for liquid metals with low Prandtl numbers. The 

difficulties associated in modelling of low Prandtl number liquid metal necessitates the 

development of modified lattice Boltzmann models. It is also noted that only a few works 

discuss the non-linear dynamics and flow evolution during melting. There is ample scope to 

study non-linear flow dynamics using tools such as Fast Fourier Transform (FFT). The lack 

of a numerical stability of LB models for low Pr the researchers despite robust character of 

LBM and greater computing value to analyse alloy solidification. The objectives of the thesis 

have been given as follows: 

 Development of lattice Boltzmann method (LBM) for Solid-Liquid Phase Change 

Problems. 

 Extension of the LBM to study convection and phase change process in low Prandtl 

materials in side heated cavity. 

 Investigation of non-linear flow dynamics and instability in the growing melt zone.  

 Study of thermal and flow behaviour in a closed cavity for corner melting and 

solidification using LBM.  

 Development of LB coupled model to investigate the phase change in solidification of 

binary alloy and study of macro-segregation. 
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CHAPTER 3 

DEVELOPMENT OF LATTICE BOLTZMANN 

CODE 

 

There are several computational techniques available to study heat transfer and fluid flow 

problems. Such numerical simulations can be performed in different scales such as 

macroscopic scale, mesoscopic scale and microscopic scale. The macroscopic scale is based 

on continuum approach which follows traditional computational fluid dynamics (CFD) 

approach such as Finite Difference Method (FDM), Finite Volume Method (FVM) and Finite 

Element Method (FEM). The basic Navier –Stokes set of equations are solved using any 

conventional methods for fluid flow and heat transfer problems. In mesoscopic scale, lattice 

Boltzmann equations are solved assuming the movement of a cluster of particles from one 

space to another space with time.  

 

 

 

        

 

 

 

 

 

 

 

Figure 3.1: Schematic of macroscopic, mesoscopic and microscopic scale. 
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Figure 3.1 shows schematic of different computational scale for numerical formulation. 

Microscopic modelling is computationally difficult, since it involves molecular level studies 

which consume a lot of memory and processing time. Hence microscopic modelling is only 

used where the study demands high level of accuracy and good computational resources are 

available to the researchers (Tiwari et al., 2023). So calculation on each particle is performed 

in microscopic scale which shows huge computational cost. 

As the mesoscopic model combines the advantages of macroscopic and microscopic models, 

the lattice Boltzmann method (LBM) has emerged as a popular numerical tool with high 

computational efficiency. Lattice Boltzmann method (LBM) has been promisingly used to 

investigate heat transfer and fluid flow problems for several years which is reviewed by (He 

et al., 2019).  

3.1  Lattice Boltzmann Method for Heat Transfer and Fluid Flow 

In lattice Boltzmann method (LBM), the computational domain is divided in lattice nodes in 

which a central lattice node is connected with neighbouring lattice nodes through lattice 

linkages. Depending on the dimensions of the problem, different lattice models are 

introduced varying number of lattice speed which is represented as DnQm, in which ‘D’ 

indicates dimension of the problem and ‘Q’ represents number of lattice linkages. Figure 3.2 

shows a D2Q5 lattice model, D2Q9 lattice model and D3Q19 model. Figure 3.2 (a) and (b) 

represents the two-dimensional square lattice with a central node is connected with four 

neighbouring nodes and eight neighbouring nodes respectively. A three dimensional lattice 

model with a central node is connected with eighteen neighbouring nodes which are shown in 

Fig. 3.2 (c). Transport of momentum and energy takes place among central node and 

neighbouring nodes through streaming-collision mechanism quantised by distribution 

functions. The LB simulation for heat and fluid flow problems can be categorised in two 

ways, isothermal LB method and non-isothermal LB method.  
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Figure 3.2: LB model stencils for a) D2Q5 model and b) D2Q9 model and c) D3Q19 model. 

 

3.1.1 Isothermal Lattice Boltzmann Model 

The isothermal LB model can be expressed using a density distribution function for velocity 

and the corresponding equilibrium distribution function depends on local macroscopic 

variables velocity )( mu and density )( m . The LB modelling for velocity field can be 

expressed using ‘Bhatnagar-Gross-Krook (BGK) collision operator’. Based on collision 

operator, LB model can be termed as the BGK-LB scheme. The density distribution function 

of velocity )( kf  with a source term )( kF of lattice Bhatnagar-Gross-Krook (LBGK) model 

can be expressed as (Huang et al., 2013a), 
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where x is coordinate of lattice nodes, t is time and Δt is time step, ke  is the discrete velocity, 

k  is direction in a lattice, and f  represents the dimensionless relaxation time and kF  is the 

source term. The equilibrium density distribution function 
eq

kf  is given as (Huang et al., 

2013a), 
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where kw  is the weight co-efficient, mu is velocity, sc  is the lattice speed of sound, I is unit 

tensor. The macroscopic variables density )( m and momentum )( mu can be obtained as, 
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Here F  is body force per unit mass.  

For, D2Q9 lattice, the discrete velocities ( ke ) are given by, 
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Similarly, for D3Q19 model the discrete velocities ( ke ) are given by, 
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                     (3.6) 

where, c  indicates the lattice speed. 

The above LBGK model is also called single relaxation time (SRT) based LB method. The 

detailing of the multi relaxation based isothermal LB model has been described in many 

books (Guo and Shu, 2013; Succi, 2001; Wolf-Gladrow, 2004) and in review papers (Chen 

and Doolen, 1998; Perumal and Dass, 2015). Different force scheme as well as hydrodynamic 

boundary conditions for isothermal LB scheme is discussed in (Krüger et al., 2017). For non-

isothermal fluid flow problems, the thermal field has to be modeled using a separate 

distribution function for energy. As already mentioned, the solid liquid phase change is a 
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non-isothermal flow problem with interface dynamics. Accordingly, in the next section of the 

article, thermal LB method is presented. 

 

3.1.2 Thermal lattice Boltzmann Model 

In general, the application of LB models for non-isothermal fluid flow problems can be 

classified into three categories, the multispeed approach (Lamarti et al., 2019; Semma et al., 

2008), the double distribution function approach (Gao et al., 2021; Li et al., 2007; 

Nabavizadeh et al., 2021) and the hybrid approach (Nee, 2021; Satjaritanun et al., 2021). 

Multispeed approach has been used to solve different thermal flow problems (Klass et al., 

2021; Sharma et al., 2017) despite its numerical instability and narrow range temperature 

variations which severely restrict its applications (Liao and Jen, 2011). DDF approach is 

widely acceptable to simulate thermo-fluidic problems as it uses different relaxation time for 

fluid flow and thermal field (Karlin et al., 2013; Li et al., 2018; Wang et al., 2020). In hybrid 

approach, the flow part is simulated using isothermal LB model and the energy field is solved 

using one of the continuum based methods (Contrino et al., 2014; Lallemand and Luo, 2003). 

In the present paper, DDF approaches as well as hybrid modelling of LBM are discussed in 

the next section. According to the review work done by (He et al., 2019) the framework of 

the DDF approach can be subdivided into passive scalar approach, internal energy based 

method and total energy based method. In passive scalar approach, the energy field can be 

modelled using temperature as a scalar quantity. For the other two methods, the internal 

energy field or total energy is considered for solving the thermal part. The above DDF 

approaches can be expressed with a single relaxation time (SRT). The MRT based DDF 

approach is also used for the thermal fluid flow problems. Several works on melting-

solidification using hybrid LB model and DDF based LB scheme have been reported in 

literature (Chen et al., 2018; Chen et al., 2021; Hasan and Saha, 2021b; Huo and Rao, 2018; 

D. Li, Ren, et al., 2017; Li et al., 2018; Liu et al., 2017; Wu et al., 2017). Hybrid LB scheme 

as well as DDF based LB model for solid-liquid phase change problems have been described 

in the following section.  
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3.1.3 Double Distribution Function (DDF) Based LB Scheme with Single 

Relaxation Time (SRT) 

 

A lot of work  on melting-solidification of metals and alloys have been reported using single 

relaxation time based DDF approach (Chen et al., 2018; Z Chen et al., 2021; Hasan and Saha, 

2021b; Li, Ren, et al., 2017; Wu et al., 2017; Zhu et al., 2017). The source term in density 

distribution function in Eq. 3.1 can be written as:  

   2 4

.1
1 .

2

k m k m
k k k m m

f s s

F w
c c





  

  
   

  

e u e u
e S               (3.7) 

For the case of natural convection, the source term )( mS can be defined as 

 T T( )m T ref S g                  (3.8) 

where g  is acceleration due to gravity, 
T  is thermal expansion co-efficient and Tref is 

reference temperature. 

The energy equation in terms of temperature with a source term can be expressed as Eq. 2.1. 

The general energy distribution function )( kg in LB simulation without a source term can be 

expressed as  

        
1

, , , ,eq

k k k k k

g

g t t t g t g t g t


     x x x xe                                   (3.9) 

where, g  is relaxation time and the corresponding equilibrium energy distribution functions 

)( eq

kg  can be described for temperature, internal energy or total energy separately.  

In passive scalar approach, the energy distribution function is expressed in terms of 

temperature.  

The macroscopic temperature can be calculated as  

0
k

n
g T                   (3.10) 

The total energy based model is used widely in which the total enthalpy is calculated as a 

summation of density distribution function of energy combining the source term with 

temperature. 
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Total energy based model 

The energy equation in terms of temperature is expressed in terms of temperature in Eq. (2.10 

and conversion of the energy equation in terms of total enthalpy is illustrated in Eq. (2.1) to 

Eq. (2.9). 

The evolution equation for equilibrium distribution function )(
eq

kg can be expressed as  
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The macroscopic enthalpy can be calculated as 

H
0

k

n
g                  (3.12)  
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3.1.4 Hybrid Lattice Boltzmann (LB) Scheme 

As earlier mentioned that, in hybrid approach, the flow field is solved using isothermal LB 

model and the thermal part of the problem can be approximated using conventional 

macroscopic methods. The hybrid approach was developed by combining isothermal LB 

model for flow field with finite difference method for energy equation and incorporated on to 

study melting-solidification problems (Filippova and Hänel, 2000; Hu et al., 2019a; Noyola-

García and Rodriguez-Romo, 2021). In recent years, hybrid LBM has been used to solve 

segregation problems, and complex micro structural solid-liquid phase change problem of 

metal and metal alloy (Nee, 2021; Ohno and Sato, 2018a; Satjaritanun et al., 2021).  

3.1.5 Treatment of Source Term  

The LBGK energy distribution function of Eq. (3.9) adding a source term can be written as 

(Hasan and Saha, 2021b) 

  k
eq
kk

e

kkk tStxgtxgtxgtttxg  ),(),(
1

),(),(


e            (3.13) 

where, kS is the source term in the equation of energy distribution function. Through 

Chapmann-Enskog analysis from the BGK-LB equation it was found that, an additional term 

appears in the recovered macroscopic equation which is caused by the discrete lattice effect 

(Li et al., 2017; Shi and Guo, 2009). When the effect of this additional term is considered, the 

source term in Eq. (3.13) takes the following form: 

2
1k k

e

S w S


 
  

 
                                      (3.14) 

S is a source term in Eq. (3.14) (He et al., 2019). The corresponding temperature can be 

calculated as (He et al., 2019) 

T
20

k

n t
g S


                             (3.15) 

3.1.6 Treatment of Boundary Conditions 

The boundary conditions of LBM were discussed in many published papers (Contrino et al., 

2014; Gobin and Martinez, 1985; He et al., 1997; Li et al., 2013; Wang et al., 2020). The 

flow and thermal boundary conditions are described using the distribution functions at the 

boundaries. At the boundary nodes, the outward distribution functions from the cavity are 

known from the streaming process and the inward distribution functions to the cavity are 

unknown for the implementation of both flow and thermal boundary conditions.  
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Figure 3.3:  Schematic of direction of  streaming velocities at boundary [Solid arrows 

indicate known distribution functions from streaming, and the dotted arrows represent the 

unknown distribution functions]. 

Figure 3.3 shows schematically the distribution functions at the boundary nodes. The 

solid arrows in the figure indicate the known distribution functions deriving from streaming, 

and the dotted arrows represent the unknown distribution functions. 

Flow Boundary Condition: In LBM method, bounce back method is applied for stationary 

boundary or moving wall boundary conditions. To calculate the velocity at the boundary 

bounce back method is used in two ways; for no-slip boundary condition the velocity at the 

adjacent wall to the wall boundary is similar while for moving boundary wall the velocity is 

calculated from wall distribution functions. For no-slip boundary condition at the west wall 

implies that the incoming particle towards the solid boundary bounces back into the fluid 

domain. At the west boundary in Fig. 3.3, the following conditions are imposed, 
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Similarly, when the north boundary is moving with a velocity then the expression of the north 

boundary condition is 
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where, 
*

if  represents the distribution function after collision and streaming. ,m N is the 

density at the north boundary, ,0mu u  is the x -component velocity, ‘ 0 ’, and ‘ m ’ indicate 

the first node of x  axis and last node of the y  axis respectively. 

Thermal Boundary Condition: The thermal boundary conditions are generally categorised as 

Dirichlet boundary condition (Chen and Müller, 2020; Suzuki et al., 2018), Neumann 

boundary condition (Suzuki et al., 2018; Tao et al., 2020) and Robin boundary condition 

(Krüger et al., 2017). In case of Dirichlet type boundary conditions (BC), temperature is 

specified at the boundaries. To tackle such situations,  using lattice Boltzmann methods, 

several methods can be adopted such as bounce back (BB) method, interpolation method and 

anti-bounce back (ABB) scheme (Huang et al., 2013b; Samanta et al., 2020; Liangqi Zhang et 

al., 2018).  

The Neumann BC specifies a normal flux at the boundary (adiabatic condition or a known 

heat flux) (Huo and Rao, 2015), for which two different procedures can be used: either by 

directly imposing the flux on the boundary or through transformation of Neumann condition 

to Dirichlet BC at the wall (Dai et al., 2018). The values of the unknown distribution 

functions can be algebraically evaluated depending on the heat flux (Samanta et al., 2020). 

Based on Fig. 3.3 the adiabatic boundary condition at the top wall can be expressed as  
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where, j denotes the last lattice node at y axis. Similarly, the temperature specified boundary 

condition at the left wall can be formulated as  
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k igig
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)()(                  (3.19) 

where, i  denotes the first lattice node at x  axis. 
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3.2  Lattice Boltzmann Modelling For Corner Melting and Solidification 

In this work, thermal Lattice Boltzmann method (TLBM) with double distribution functions 

is used to model the flow and the thermal field of corner melting and solidification of pure 

substances. The density distribution function of velocity ( )f  and enthalpy ( )g are used to 

solve velocity and temperature field respectively.  

The LB equation with Bhatnagar-Gross-Krook (BGK) collision form, the flow field can be 

solved using the velocity distribution function (f) according to (Hasan and Saha, 2021b; 

Huang et al., 2013b). Calculation of macroscopic velocity from the distribution functions can 

be calculated solving Eq. (3.1) to Eq. (3.4).  

In a similar manner, for the energy equation, energy distribution function in terms of total 

enthalpy is written as Eq. (3.9) and corresponding equilibrium distribution function of 

enthalpy 
eq

kg  is given as  
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Through Chapman-Enskog analysis macroscopic equations can be recovered and the total 

enthalpy can be expressed as Eq. (3.12).       

For the rest part of the thesis the value of temperature is calculated from enthalpy for melting 

and solidification of pure substance in the following manner: 
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                        (3.21) 

where lT  and sT are the liquidus and solidus temperatures of the material respectively, in the 

present work for pure metal l s mT T T  . Liquidus enthalpy and solidus enthalpy are 

expressed as lH  and sH  respectively.  

By Chapman-Enskog analysis, the physical parameters in term of the kinematic viscosity  

and thermal diffusivity   are related with the mesoscopic parameters as given by 
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                         2 0.5s fc t                   (3.22)  

                 2 0.5s gc t            (3.23) 

Therefore, the Prandtl number can be expressed using Eq. (3.22) and (3.23) as  
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
.                (3.24) 

3.3  Modified Lattice Boltzmann Model For Low Prandtl Number Liquid 

Metals 

It is reported in the literature (Coreixas et al., 2020; Sterling and Chen, 1996; Yang et al., 

2014) that, the numerical stability of LBM is strongly dependent on the dimensionless 

relaxation time which is correlated with the fluid viscosity or the diffusion coefficient in the 

available LBGK models for Navier-Stokes equations or convection-diffusion equations. The 

lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) model would be unstable if the value of 

relaxation parameter ( )f  was either too high or too low (near to 0.5), which would limit its 

applications to the study of low Pr or high Ra flow problem. The dimensionless relaxation 

time for fluid flows depends on the local viscosity, which is a function of the shear stress and 

strain rate. Therefore, as the shear stress rate approaches zero, the LBGK model may 

experience numerical instability. 

Lattice kinetic scheme (LKS) was proposed by (Inamuro, 2002) for incompressible fluid flow 

with heat transfer. In his plan, a relaxation parameter for the stress tensor is provided to make 

the dimensionless relaxation time equal to one, which increases the stability of the LBGK 

model by including a term linked to the stress tensor in the equilibrium distribution function.  

(Yang et al., 2014) proposed modified LBGK models by including correction terms in the 

evolution equations, for the incompressible Navier-Stokes equation and the convection-

diffusion equation. Through this alteration, the LBGK model's dimensionless relaxation time 

value can be maintained within acceptable bounds, enhancing the model's stability at low 

viscosity (Wang et al., 2018). The improved model was used in nano- fluid heat transfer to 

handle the instability caused by high Schmidt number (Soleimani et al., 2021) or instability 

studies at low Prandtl number fluid in differential heated cavity (Bawazeer et al., 2019). 

In this work, a correction term in the evolution equation is added for momentum and 

energy transfer equations following (Yang et al., 2014) and the modified LB scheme has been 

used to study the thermal convection behavior in the melt zone for very low Prandtl number 
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liquid metals. In order to tackle numerical instability for melting in low Pr fluids, this work 

modifies relaxation parameters terms in LBM for Navier-Stokes and convection-diffusion i.e. 

energy equation. The following sections describe the modified LB model capable of handling 

phase transition at low Pr.  

3.3.1 The Modified LBGK Model For Incompressible Navier Stokes 

Equation 

The modification of LBGK model is brought by introducing a new relaxation parameter
m  . 

The modified relaxation parameter may be expressed as  

f f A                    (3.25) 

where, A is a tunable parameter.  

The evaluation equation for modified density distribution function is written as 

          , , , ,eq

k k k f k k kf x t t t f x t f x t f x t tS        e                              (3.26) 

where ke is the discrete velocity in direction k  and kS  is the source term. f  is the reciprocal 

of new relaxation parameter which is defined as 

1
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                (3.27) 

where A is a tuning parameter. 

The equilibrium density distribution function 
eq

kf is given similar as Eq. (3.2).   

The correction term has been added with force term in the evolution equation Eq. (3.26). The 

source term can be written as   
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The first term in Eq. (3.28) is the correction term and second term is force term.

( )

2

T

m m

rS
     

u u
is the strain rate tensor in the correction term.  

The force term in Eq. (3.28) can be written similar as Eq. (3.7). The strain rate tensor 
rS can 

be computed locally as 
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Substituting Eq. (3.29) in Eq. (3.28) the source term is written as 
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Assuming  2

k k s kc Q Ie e , the correction term in Eq. (3.30) can be expressed as 
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Combining Eq. (3.7) and Eq. (3.31) the final form of the source term is illustrated as 
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It is obvious that by adjusting the parameter A , the dimensionless relaxation time for a fixed 

viscosity can be changed within a suitable range. Density is calculated following Eq. (3.3) 

and velocity can be formulated as                 
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3.3.2 The Modified LBGK Model For Advection-Diffusion Equation  

The energy equation in terms of temperature is treated as a convection-diffusion equation. 

Modified relaxation time for energy is 
g  . 

g g B                     (3.34) 

For LBM, energy equation in terms of temperature can be formulated as   
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where 1
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 
  is inverse of energy field  relaxation time and

kS  is energy source term.  
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The first term in Eq. (3.36) is energy correction term and second term corresponds to force 

term.  

( , ) eF x t tq                         (3.37) 

The gradient term ( )pc T in Eq. (3.36) can be expressed by 
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Substituting Eq. (3.38) in Eq. (3.36) the final form of the source term is given as 
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The second term in Eq. (3.39) is the energy correction term in which B is the tunable 

parameter, as already mentioned. 

By Chapman-Enskog analysis, the physical parameters in term of the kinematic viscosity  

and thermal diffusivity   are related with the mesoscopic parameters as given by 

 2 0.5s fc A t                     (3.40)  

 2 0.5s gc B t                     (3.41) 

Therefore, the Prandtl number can be expressed as  
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where, A' and B' are two tunable constants whose values are determined by numerical 

experiments as already discussed. In this work, while A' was set at 0.02 the value of B' in 

dependent on relaxation parameters on a case to case basis. The value of B՛ is dependent on 

both Pr and A՛. A՛ is fixed for a particular Pr, corresponding B՛ was calculated. The value of 

B՛ should be in a range of 0.1 to 0.2 for better numerical stability.   



39 
 

3.4  Hybrid LBM For Binary Alloy Solidification 

Lattice Boltzmann method (LBM) coupled with finite difference method (FDM) is used to 

study solidification phenomena of a binary alloy. The flow field modelled is simulated using 

LBM while the thermal and species continuity equations are solved using FDM. The flow 

field modelling of LBM is discussed earlier in section 3.1.1. The macroscopic density and 

velocity are calculated using Eq. (3.3) and Eq. (3.4) respectively. The finite difference 

modelling part is discussed in chapter 6. 
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CHAPTER 4 

MELTING OF LOW PRANDTL NUMBER 

LIQUID METAL 

 
The present chapter describes simulation of melting phenomena of low Prandtl number liquid 

metals. The effect of natural convection in the melt zone has been studied in a wide range of 

low Prandtl number. The investigation is carried out for two global parameters which are 

Prandtl number and Rayleigh number. A detailed analysis of the melting dynamics has been 

studied using time series data for observing flow instability.  

4.1  Melting of Low Prandtl Number Liquid Metal 

For a variety of applications, including cooling systems (cooling of high-density power 

electronic devices, nuclear reactors), heat exchangers, metallurgical processes and 

solidification-melting of metals (such as development of crystals from melts, metal treatment, 

casting and welding), it is crucial to comprehend the melting dynamics of low Prandtl 

number liquid metals under the influence of natural convection. Prandtl numbers of fluids 

describe the relative strength of momentum diffusivity (kinematic viscosity) to thermal 

diffusivity. For liquid metals, thermal diffusivity is relatively high and kinematic viscosity is 

low leading to low values of Pr. A low Prandtl number value indicates that heat diffusion is 

occurring in liquid metals significantly faster than momentum diffusion. The value of Prandtl 

number has significant impact on the flow field including boundary layer formation and heat 

transfer.  

4.1.1 Objective of the Work 

Investigations of melting phenomena of low Prandtl number (Pr) materials in a side heated 

cavity is performed in this work using lattice Boltzmann Modeling. In order to overcome 

numerical instabilities for simulation of low Pr fluids, modification of lattice Boltzmann 

Bhatnagar-Gross-Krook (LBGK) models for incompressible Navier-Stokes equation and the 

energy equation are proposed in this study. Evolution of flow field and the melting front with 

thermal behavior has been presented in a wide range of Prandtl number Pr ∈ [0.001,0.1] and 

Rayleigh number Ra ∈ [10
4
 ,10

6
]. 
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4.1.2 Problem Statement 

Melting in a square enclosure with a low Pr number material is subjected to differential heat 

along the vertical boundaries. The top and bottom boundaries are thermally insulated. All 

enclosure boundaries are presumptively impermeable and are subject to a no-slip condition. 

The two-dimensional square cavity filled with a solid substance is initially uniformly present 

throughout the cavity (length L=width W) at its melting point (Tm).  In contrast to the right 

wall, which is heated to a melting point temperature, the left side wall is heated to a 

temperature (Th) over the melting temperature. The schematic of the present problem has 

been shown in Fig. 4.1. Thermal gradients exist in the domain as a result of the differently 

heated side walls. Due to the interaction between heat and momentum diffusion, natural 

convection in the melt zone of low Prandtl number liquid metals—typically in the Prandtl 

number range of 0.001 to 0.1, displays distinctive properties. Low Prandtl number liquid 

metals' specific thermos-physical characteristics, such as thermal conductivity, viscosity, and 

specific heat capacity, as well as external factors like temperature and pressure, have an 

impact on the melting behaviour. In this study, the phase transition from solid to liquid is 

investigated using liquid metals such as Mercury (Hg), Sodium (Na), Lead (Pb), Potassium 

(K), Gallium (Ga), and Lithium (Li) in the range of Pr 0.001-0.1. Stefan number (Ste) is set 

as 0.01 which is typical for such low Pr melting problems (Dai et al., 2018; Gobin and 

Benard, 1992; Hasan and Saha, 2021b; Huang et al., 2013b; Zongqin and Bejan, 1989). 

 

 

 

 

 

 

Figure 4.1: Schematic of physical domain with boundary conditions. 

4.1.3 Mathematical Model Formulation 

Understanding and forecasting natural convection in low Prandtl number liquid metals 

requires research into the governing equations, like the Navier-Stokes equations and the 
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energy equation, as well as taking into account the metal's unique properties, like thermal 

conductivity, viscosity, and density variations. The flow patterns, melting rate, and 

temperature distributions within the melt zone can all be examined and described using lattice 

Boltzmann simulations. The macroscopic continuum mass, momentum, and energy 

conservation equations for thermo-fluidic transport in the presence of solid-liquid phase 

change can be characterized as follows under the assumption of a Newtonian, laminar, and 

incompressible flow. 

Continuity Equation:  

 . 0m
m m

t





 


u                   (4.1)                                                                                                                    

Momentum equation: 

   . .m
m m m m m mp

t


  


     


u u u S               (4.2) 

Energy equation in terms of temperature is rewritten same as used in section 2.2.2 

 ( )
( ) ( )

p

p

m m l

m m T

c T f
c T k T

t t

  


 
    

 
u              (4.3).  

where , , ,m m p u are the density, velocity, pressure, viscosity and respectively. mS  is the 

momentum source term in the corresponding equations. The source term in Eq. (4.2) can be 

expressed as long as the momentum equation uses the Boussinesq approximation given as 

 m T refT T S g                                      (4.4) 

where g  is acceleration due to gravity, 
T  is coefficient of thermal expansion. The energy 

equation source term  

Energy equation in terms of total enthalpy is expressed in section 2.2.2 following Eq. (2.1) 

through (2.8) to prevent non-linearity in the heat source term. The energy equation is 

rewritten as 

 
 . .[ ( )]p m pc T c T

t



  


u

H
                (4.5) 

The initial condition is fixed assuming the cavity is filled with the fluid at the melting 

temperature.  

Initial condition: 

 at 0t  , 0m mu = v  , mT T   for  0 x L   and  0 y W               (4.6) 

The boundary conditions are given at 0t  .   
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The dimensionless numbers used in the present work are 
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
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where 
*T is dimensionless temperature, 

*
x  and 

*y are the dimensionless co-ordinates at x  

and y direction respectively.   is kinematic viscosity,  is thermal diffusivity and t  is time. 

Pr , Ra , Ste , Bo and Fo correspond to Prandtl number, Rayleigh number, Stephan number 

Boussinesq number and Fourier number. The asterisk mark (*) is dropped for the rest of the 

thesis which specify the non-dimensional form of the variable.   

The average Nusselt number (Nuavg) at the left heated wall can be calculated as  

0 0

T
W

avg

x

Nu dy
x



 
   

 
                        (4.9) 

Similarly, average Nu at the interface has been calculated at the interface. 

0 int

T
s

avgNu ds
x

 
   

 
                                                                                                           (4.10) 

where, s is interface. 
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4.1.4 Results and Discussion 

Melting of low Prandtl number liquid materials in a side heated square cavity is investigated 

using lattice Boltzmann scheme in D2Q9 stencil. A modified lattice Boltzmann model as 

discussed in preceding section is used to overcome the difficulties of numerical stability 

reported for low Pr materials. In the proposed model, a tuning parameter A  is added to the 

relaxation parameter ( f  ) which is set to 0.02 as discussed in section 3.3. Another tuning 

parameter B  is also needed for energy equation which is calculated from the value of Pr as 

depicted in Eq. (3.44). A code for this has been developed in Fortran 90 and computations 

were performed in CDAC’s PARAM SHAVAK system with a 16 core Intel Xeon processor. 

The lattice grid spacing and time step are considered as x = t =1.  

The effect of natural convection in the melt zone depends on both Ra and Pr. The 

present investigation is performed in a wide range of Ra  [10
4
,10

6
] with a liquid material 

range of Pr [0.001, 0.1]. While natural convection is governed by Ra, it is pointed out 

(Bejan, 2013) that for low Pr materials the combined effect of Ra and Pr decides the 

transport processes. Accordingly, certain results are depicted in terms of Boussinesq number 

(Bo) which is the product of Ra and Pr. As the melting behavior of such range of Pr is the 

concern of the present work, the flow and thermal behavior in the melt zone has been 

examined. The dynamics of moving front and advancement of convection prone irregular 

interface describes the physics of melt zone. The average heat flux is calculated on the heated 

wall as well as on the interface.  

Grid Independency test and validation of code 

For Pr=0.01, a grid independence investigation on calculation of average Nu is carried out 

varying Ra=10
4
, Ra=10

5
 and Ra=10

6
 in a left heated melting square cavity with grid sizes of 

80x80, 100x100, and 120x120. Table 4.1 represents the comparison of the Nusselt number 

for three different grid sizes at corresponding Rayleigh number of 10
4
,10

5
 and 10

6
 

respectively. As illustrated in Table 4.1, there is very little variation in Nu among the 

specified grids. For the case of 100x100 grids, it is observed that the deviation in Nu is less 

than 0.5% from that in 80x80 meshes for all Ra. Further refinement of nodes to 120x120, 

does not produce any applicable differences. Accordingly, 100x100 grids are chosen for 

further calculations.  
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Table 4.1: Calculated average Nu at left heated wall at all Ra 

Grids Ra=10
4
 Deviation 

(%) 

Ra=10
5
 Deviation (%) Ra=10

6
 Deviation (%) 

80x80 3.197  0.361  4.229  

100x100 3.194 0.3 3.357 0.37 4.225 0.43 

120x120 3.195 0.05 3.358 0.09 4.226 0.12 

 

The present FORTRAN code is further validated with experimental data of (Viskanta, 1988) 

in which the location of melting front is predicted which is shown in Fig. 4.2. The simulation 

is carried out at Pr = 0.021 and Ra=2.2x10
5
 with aspect ratio 0.5. The outcomes demonstrate 

the present LB model shows a reasonable agreement with experimental data with a maximum 

deviation 5%.  

 

Figure 4.2: Validation of Melting front with (Viskanta, 1988) work. 

Flow and thermal structure at the melt zone 

The location of the melting front is illustrated in Fig. 4.3 which exhibits different pattern of 

melting fronts depending on Pr and Ra. The melting front starts off with nearly vertical 

surface before it begins to tilt to right with vertical axis. The straight melting surface is an 

outcome of conduction dominated melting. As the effect of convection sets in the surface 

become contoured.  
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(a) (b) 

 

(c) 

Figure 4.3: Interface location in which colours indicate different time (Blue: Ste*Fo=0.002, 

Red: Ste*Fo=0.059 and Black: Ste*Fo=0.181) and line pattern specifies different Ra number 

(Solid line: Ra=10
4
, Dashed line: Ra=10

5
 and Dash-dot line express Ra=10

6
) at different Pr 

a) Pr=0.001, b) Pr=0.01 and c) Pr=0.1. 

Additionally, as Ra rises, the melting front advances in a horizontal direction, suggesting that 

the convection in the cavity is indeed becoming stronger at the same dimensionless moment. 

It is seen from Fig. 4.3(a) to (c) that the initial rate of melting is more and with progress of 

time it decreases. It is observed that at the time corresponding to Ste*Fo=0.002, melting zone 

at Pr=0.001 is largest in size followed by that of Pr=0.01 and 0.1. In other words, depth of 

the melting zone at initial level reduces with increasing Pr as the thermal diffusivity is 

reduces with increasing Pr. Generation of interface between solid-liquid phases initially is in 

the form of a straight line and with progress of time the front distortion occurs due to the 

presence of convection currents.   

Fig. 4.4 through 4.6 describe the flow and thermal patterns in the melt zone for different Ra 

and Pr. As melting starts, a primary roll occupies the entire melt zone which grows with 

advancing time. With increase in Ra, the buoyancy force predominates the entire melt zone 
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leading to stronger primary vortex. Low value of Pr implies weaker viscous fluid and hence it 

is observed that bigger cell may cascade down into smaller cells which are seen at Ra=10
6
 

where multi cells are generated at Ste*Fo=0.059 for Pr=0.001. Multi cells are appeared only 

at the end of melting at Ste*Fo=0.181 for Pr=0.01 while only primary cell is present for 

Pr=0.1.  
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Figure 4.4: Evolution of Isotherms and Streamlines at Pr=0.001. 

Fig 4.4 represents the thermo-fluidic dynamics in the melt zone for Pr=0.001 with varying 

Ra. Several interesting phenomena have come out through this study: formation of complete 

concentric cells takes place when interface is flat or, the curvature of interface is positionally 

aligned with the curvature of largest cell. Otherwise, apart from the larger cell, multi-cells are 

formed to satisfy the continuity of the flow field. With the increase in Ra, at Ra=10
6
 several 

Rayleigh-Benard cells appeared in the melt zone while a single primary cell is present for 

both Ra=10
4 

and Ra=10
5
. It is seen that at high Ra with progress of time as melt zone 
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becomes larger the formation of two lobes appear at the canter of primary cell which tends to 

separate from each other.  

Fig. 4.5 shows the flow characteristics and thermal behavior at Pr=0.01 at different Ra. 

Comparing with Fig. 4.4 it is seen that, due to larger value of Pr formation of melt zone 

reduces owing to lower thermal diffusivity. Appearance of smaller cells is not seen in most of 

the cases irrespective of Ra and time, compared to previous case.  
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Figure 4.5: Evolution of isotherms and streamlines at Pr=0.01. 

Due to the interaction of heating from left wall and downward gravity force, the axis of the 

rolls is slightly inclined towards right. At high Ra (Ra=10
6
) as time increases, towards the 

end of melting, two counter rotating vortices appears in the core of the melt zone.  Further 

numerical experimentation is presented in Fig. 4.6 for Pr=0.1. At this comparatively higher 

Pr, initial melting zone is rather slender at all Ra. With increasing time melting in the top part 

of the cavity is more prominent and the flow field looks like a plume bending over the upper 
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region. Absence of smaller cells and formation of lobe in the melt zone makes an important 

difference with respect to the cases of low Pr i.e. below 0.1.   
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Figure 4.6: Evolution of isotherms and streamlines at Pr=0.1. 

Average Nusselt number at heated wall and interface 

While average Nu at the wall is typically presented in literature for such studies, it is also 

worthwhile to look at the average Nu distribution at the interface (Gobin and Benard, 1992). 

Figure 4.7 displays the computed average Nu at the heated wall and the solid-liquid interface. 

The dotted lines denote the solid-liquid interface, whereas the solid line shows the average 

Nu at the heated wall. As can be observed in Fig. 4.7, the average Nu for heated walls is 

consistently greater than at the interface, indicating a stronger heat flux close to the heated 

wall than at the contact between two phases. For Pr=0.001, average Nu continuously reduces 

with time for the heated wall as well as the interface, regardless of change in Ra, as shown in 

Fig. 4.7a. For Pr=0.01, the average heat flux again monotonically reduces with time for 

Ra=10
5
. However, at Ra=10

6
, the average Nu initially falls then increases with time (Fig. 
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4.7b). The average Nu for heated walls and interfaces has a similar tendency for Pr=0.01. For 

all values of Ra, the average Nu initially declines then increases at Pr=0.1 (Fig. 4.7c). 

Although average Nu first has a larger value and then drops to a lower value before rising 

once more, quantitatively the initial Nu is always higher than the final value. 

Pr=0.001 Pr=0.01 Pr=0.1 

   
(a) (b) (c) 

 

Figure 4.7: Average Nusselt number at different Prandtl number. Different colours indicate, 

variation of Ra: (Blue: Ra=10
4
, black: Ra=10

5
 and Red: Ra=10

6
) and solid line and dotted 

lines correspond to Average Nu at heated wall and interface respectively.  

Effect of Prandtl number and Rayleigh number 

The distribution of the liquid fraction has been described for defined Pr and Ra variations in 

Fig. 4.8. As can be observed here, a given amount of melted material can be achieved in less 

time as Ra increases. With an increase in Pr, the initial melting rate is reduced; for example, 

at very low Pr=0.001 (Fig. 4.8a), the melting rate is higher than Pr=0.1 (Fig. 4.8c). The 

driving force for melting rate is initially quite strong and gradually reduces over time for both 

Pr=0.001-0.01 materials, whereas it gradually increases for Pr=0.1 materials. Time for 

achieving 80% melting are 0.61, 3.06 and 26.33 for materials with Pr= 0.001, 0.01 and 0.1 

respectively at Ra=10
6
. As increasing the value of Pr indicates reduced thermal diffusivity an 

important consequence is the melt flow structure at a particular time at low Pr is realized at 

later time for higher Pr. For example, the flow pattern for Pr=0.01 at Ste*Fo=0.059 is similar 

to that for Pr=0.1 at Ste*Fo=0.185 which is shown in Fig. 4.9. The left wall of the square 

cavity serves as the initial contact for heating, and as time goes on, heat seeps in from the left 

heated wall. The initial contact length for heat transfer is equal to the cavity length. As 

melting begins the melt zone widens and the solid-liquid interface shifts in the direction of 

heat addition. As was previously mentioned, conduction is what causes the initial melting, 
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and as time goes on, convection starts dominating. Distortion of the interface happens as a 

consequence of dominance of convection in the melt zone. 

Pr=0.001 Pr=0.01 

  
(a) (b) 

Pr=0.1 

 
(c) 

Figure 4.8: Melt fraction at different Pr. 

 

Maximum interface length increases with increase in Ra at all Pr. The reason can be 

attributed to the effect of convection leading to departure from conduction dominated model. 

This interface length first follows the size of the cavity, expands over time, and then changes 

back to the cavity dimension after full melting. The relationship between interface length 

with Ra and Pr is seen in Figure 4.10. The plots show that the interface length grows initially 

before decreasing. With advancing time, the interface length increases to its maximum value, 

demonstrating an inversely proportional relationship with Fo. Figures 4.10 (a) through 4.10 

(c) show that when Pr increases, the maximum interface length also increases. It has been 

already observed that at low Pr, interfaces are almost flat due to high thermal diffusivity and 
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reduced effect of convection. Additionally, it can be seen that regardless of Pr, the interface 

length is maximum for high Ra=10
6
 compared to Ra=10

4
 and Ra=10

5
. 

 Pr=0.01                 Pr=0.1 
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Figure 4.9: Consequence of melt flow structure for two different Pr. 
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Maximum interface length 

Figure 4.11(a) illustrates how maximum interface length varies with time for different Pr. For 

Pr=0.001, it can be seen that the maximum interface length is almost independent of time as 

the melting occurs due to conduction. In comparison to Pr=0.01, the maximum interface 

length changes more quickly for Pr=0.1. In Fig. 4.11b, the variation in maximum interface 

length is reported against varying Bo, which is the product of Ra and Pr.  

 

Pr=0.001 Pr=0.01 

  
(a) (b) 

Pr=0.1 

 
(c) 

 

Figure 4.10: Interface length at different Pr. 

 

It can be observed from Fig. 4.11(b), the maximum interface length changes relatively little 

up to Bo=100, with a value of 1.21; however, when Bo increases from 10
2
 to 10

4
, the 

maximum interface length ranges from 1.21 to 1.6; and beyond Bo=10
4
, the maximum 
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interface length increases to 2.2. The dependence of interface size with Bo is an interesting 

result obtained in this study. This may find higher relevance in phase change problems 

involving morphological evolution in alloys. 

 

  
(a) (b) 

 

Figure 4.11: Variation of maximum interface length with a) Ste*Fo and b) Bo. 
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4.2  Flow Instability in the Melt Zone 

The first part of the ongoing study mainly concentrated on global parameters like the 

interface heat flux, melting rate and length of interface. Literature shows that several 

numerical works on melting and solidification have been done by many researchers to 

investigate the global parameters involved in solid-liquid phase change problem (Dai et al., 

2018; Hasan and Saha, 2021a; Huang et al., 2013b). Evolution of melting boundary in solid-

liquid phase change problem involves non-planer geometry due to the presence of Rayleigh- 

Benard convective cells in melted region. The presence of non-uniform heat fluxes causes the 

local distortion at the interface. The transition of flow behavior from steady to oscillatory in 

the melt zone is particularly an interesting phenomena to study. The interface dynamics and 

the thermo-fluidic behavior in a planer cavity are performed using modified lattice 

Boltzmann simulation. The parameters are taken as Prandtl number in the range of 0.005-0.05 

and Rayleigh number between 10
5
-10

6
. 

4.2.1 Objective of the Work 

Depending upon the parameters such as Ra and Pr the flow in a melting cavity transits from 

laminar to turbulent regime. While in the present range of Ra and Pr full phased transition is 

not established, it shall be interesting to study the non-linear dynamical evolution of the flow 

field. The melt zone grows with time and convective instability arises by interplay of Ra and 

Pr for low Prandtl number liquid metals. Change of melted area is directly related with the 

effective Rayleigh number which is dependent on liquid melt fraction. Different size and 

shape of the Rayleigh Benard (RB) convection rolls may occupy the melted zone which 

changes its size and shape with the growing melted area. This may be affecting the 

topography of the melting boundary. Inspired by the study of Rayleigh-Benard convection in 

a bottom heated melt boundary (Favier et al., 2019) the present investigation focus on the 

effect of natural convection on vertical melt boundary of low Prandtl number liquid metals. 

With the heat injecting through heated solid left boundary wall, the melting boundary moves. 

The presence of different flow circulation in the melt zone promotes to investigate the flow 

transition behavior from steady to oscillatory. The structure of oscillatory flow in the entire 

melt zone is investigated and a mapping is performed on oscillation frequency using Fast 

Fourier Transform (FFT) analysis.  
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4.2.2 Problem Formulation 

Flow instability is investigated in a differentially heated square cavity in which heat flux is 

injected from the left wall. The schematic of the problem has been shown in Fig. 4.1. The 

melt boundary is moving and the melt zone grows with time. The oscillation behaviour of 

flow in melt zone is observed for melting low Prandtl number liquid metals. The nature of 

velocity components in the melt zone is analysed by monitoring several points at different 

positions. Figure 4.12 shows a schematic of melt zone in which black points indicate the 

position near bottom (A, B) and red points (C, D) are used for position at the top of the melt 

region. Position of A and D is near the heated wall while point B and C indicate the position 

at the vicinity of interface.  

   

       

 

 

 

 

 

 

Figure 4.12: Schematic of different points in melt zone A, B, C and D in which red circle 

indicate the fixed points in the melt zone and black circles indicate the variable points in the 

melt zone which is changing with time. 

The study of flow instability behaviour is studied at the points A, B, C and D which 

are changing with time. The time series data for u and v velocity components are analysed to 

study non-linear dynamics of the flow field.  

4.2.3 Results and Discussion 

Modified lattice Boltzmann method is used to simulate the flow instability for low Pr liquid 

metals. The in house FORTRAN lattice Boltzmann code is developed and applied to generate 

the phase change phenomena. Fast Fourier Transform (FFT) is used to quantify the u and v 

velocity components. MATLAB code is developed to perform FFT.  
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Validation of the Code  

A FORTRAN code is developed to study the oscillation behaviour of low Prandtl number 

fluid in a differentially heated cavity without melting. Figure 4.13 represents the validation 

plot of average Nusselt number at Pr=0.01.  

 

                     Fig. 4.13: Average Nu at left heated wall at Pr=0.01. 

 

It is seen from Fig. 4.13 that up to Ra=10
4
 the flow shows a steady behaviour while from 

Ra=5*10
4
 oscillation starts.  

Table 4.2: Average Nu at a range of Prandtl number and Rayleigh number validated with 

(Kosec and Šarler, 2013)* and (Bawazeer et al., 2019)** data. 

 

Ra/Pr 0.001 0.005 0.01 

10
3
 1.060139 1.087405 1.150472 

5x10
3
 1.078906 1.102676 1.537773 

10
4
 1.082504 1.143072 1.908096 

(1.95)* 

(1.904786)**  

5x10
4
 1.174996 1.562755 2.761905 

(2.80)*  

(2.780367)** 

10
5
 1.335314 1.883092 3.165434 

(3.25)* 

(3.177619)**  
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A corresponding validation has been done with the work of (Bawazeer et al., 2019; Z. Li et 

al., 2016) which is presented in Table 4.2. It is shown from Table 4.2 that the LBM code 

shows a good agreement with the published data. A thick bar demarcates the steady regime 

with the unsteady zone, a finding consistent with prior work (Bawazeer et al., 2019). 

Effect of Rayleigh Number 

The moving melting front for low Prandtl number liquid metals moves with time. The 

transient evolution of melting boundary has been shown in Fig. 4.14 through 4.19 for the 

Prandtl number 0.005, 0.02 and 0.05 respectively. Figure 4.14 and 4.15 represent the thermal 

and flow characteristics in the melt zone for Pr=0.005. A primary circulation is observed in 

the melt zone at Ra=10
5
 at all Fo =1.71, 2.42 and 5.97 (Fig. 4.14).  

 

  

(a) (b) 

 

(c) 

Figure 4.14: Transient evaluation of melting boundary at Pr=0.005 and Ra=10
5
 a) Fo=1.71, 

b) Fo=2.42 and c) Fo=5.97. 



59 
 

Figure 4.15 represents the isotherms and fluid flow in the melt zone at Ra=10
6 

for Pr=0.005. 

The nature of flow circulation is quite different from the earlier investigation. It is seen From 

Fig. 4.15(b) that a secondary circulation is generated in the center of the melted region at Fo 

1.97. The primary circulation covers the entire melt zone while in the centre of the melt zone 

the primary flow circulation splits off into two secondary circulations with clockwise and 

anticlockwise direction.  

  

(a) (b) 

 

(c) 

Figure 4.15: Transient evaluation of melting boundary at Pr=0.005 and Ra=10
6
 a) Fo=1.55, 

b) Fo=1.97 and c) Fo=9.71. 

Figures 4.16 represents the isotherms and streamlines at Ra=10
5
 while Fig. 4.17 illustrates the 

nature of melt zone at Ra=10
6
 for Pr=0.02. A single cell is observed in the melt zone for 

Ra=10
5
 at different Fo 2.42, 5.97 and 19.87 (Fig. 4.16). 
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(a) (b) 

 

(c) 

Figure 4.16: Transient evaluation of melting boundary at Pr=0.02 and Ra=10
5
 a) Fo=2.42, b) 

Fo=5.97 and c) Fo=19.87. 

  
(a) (b) 
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(c) 

Figure 4.17: Transient evaluation of melting boundary at Pr=0.02 and Ra=10
6
 a) Fo=3.81, b) 

Fo=4.97 and c) Fo=13.17. 

Two separate secondary cells are generated from the primary cell at Fo =13.17 for Ra=10
6
.  

  

(a) (b) 

 

(c) 

Figure 4.18: Transient evaluation of melting boundary at Pr=0.05 and Ra=10
5
 a) Fo=13.18, 

b) Fo=19.07 and c) Fo=27.26. 
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(Bawazeer et al., 2019) also noticed such paired flow circulation with slightly inclined axes 

with vertical.  

  

(a) (b) 

 

(c) 

Figure 4.19: Transient evaluation of melting boundary at Pr=0.05 and Ra=10
6
 a) Fo=7.59, b) 

Fo=14.73 and c) Fo=19.71. 

In case of Pr=0.05, there is no generation of lobes in the melt zone which is represented in 

Fig. 4.18 and Fig. 4.19.   

Convective Flow Instability in the Melt Zone  

The melting boundary dynamics is related with the convection current in the melt zone. The 

natural convection effect may show distinct behaviour at the top part and the bottom portion 

of the cavity. The present study analyses the nature of flow field at the top zone and bottom 

zone of the melted area. The convective instability in the melt is analysed at high Ra at a 

wide range of low Pr ∈ [0.005, 0.05]. 
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Heat flux from the left heated wall leads to melting of material with moving boundary. Flow 

instability appears in the melt zone due to the transition of fluid flow from conduction to 

convection regime. When convection starts, the oscillations may appear in the flow field. The 

time series plots of u and v velocity components are performed to study the inherent 

characteristics of the flow field. The onset of oscillatory flow instability has been investigated 

in the melt zone and time series of velocity fields has been observed at the vicinity of the 

heated wall and interface.  

The results show time series plots of u and v velocity components at the position of A, B, C 

and D. The study is repeated for a Pr range of 0.005 to 0.05 in which the melt area changes 

with the moving melting boundary. FFT analysis of both u and v component velocity has 

been performed. The oscillatory flow behavior is found out over a long time duration which 

is analyzed using FFT analysis and the dominant non-dimensional frequencies are calculated. 

An appropriate slice of sampling from time series data has been chosen for FFT.  

The time series plots of u and v velocity components are shown in which the oscillatory flows 

are presented corresponding to the position A, B, C and D for each Pr for varying Ra. 

Velocity oscillation of u and v components has been analyzed for Pr=0.005 which is 

illustrated in Figs. 4.20, through 4.25. Figures 4.20 through 4.22 summarize the oscillatory 

flow behavior with transient melting boundary at Ra=10
5
. Similarly, Fig. 4.23 through 4.25 

shows u and v components flow characteristics at Ra=10
6
.  

 

Figure 4.20: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
5
 for position A (0.2, 0.2) and C (0.45, 0.8). 
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Figure 4.21: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
5
 for position B (0.6, 0.2) and D (0.8, 0.8). 

The melting boundary position changes with Fo and the flow behavior is presented in the 

effective melting area. Figure 4.20(a) represents the melting boundary at Fo =1.71 and 

oscillation nature is observed at the two fixed position in the melt zone. It is seen from Fig 

4.21(b) that the pattern of flow oscillation is fractal by nature. The corresponding FFT plots 

are given in Fig. 4.21 (b') through (e'). The dimensionless peak frequencies for Ra=10
5 

and 

Pr=0.005 are 5.129 and 5.862 respectively.  
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Figure 4.22: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
5
 for position C (0.9, 0.8) and D (0.2, 0.8). 
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The time series plots of u and v velocity components are given in Fig. 4.23 through Fig. 4.25 

for Pr=0.005 at Ra=10
6
.  

 

Figure 4.23: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
6
 for position C (0.75, 0.8) and D (0.15, 0.8). 
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Figure 4.24: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
6
 for position A (0.15, 0.2) and C (0.9, 0.8). 

 

Figure 4.25: Time series plots of u and v velocity components with FFT analysis at Pr=0.005 

and Ra=10
6
 for position A (0.15, 0.8) and C (0.9, 0.8). 

The FFT values for all plots from Figs. 4.20 through 4.25 are summarized in Table 4.3. It is 

observed from Table 4.3 that a higher peak frequency is observed for u and v component 

velocities at Fo=1.71 for Ra=10
5
. As the melt area grows the primary frequency values 

decreases at fixed Ra for both u and v velocity component. At Ra=10
6 

the u and v component 

frequency decreases with increment of melt zone.  
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Table 4.3: Peak frequencies at melted zone at Pr 0.005. 

  Fo=1.71 Fo=2.42 Fo=5.97 

  u v u v u v 

 Ra=10
5
 5.129 5.862 3.663 5.739 3.053 3.053 

  5.128 5.618 3.663 5.739 3.021 4.212 

Pr=0.005  

  Fo=1.55 Fo=1.97 Fo=9.71 

 Ra=10
6
 3.907 3.908 3.908 5.374 2.991 4.151 

  3.907 5.374 3.309 3.908 2.93 2.991 

 

At Pr=0.005 the flow field is isotropic and near isotropic for Ra=10
5
 and Ra=10

6
 at Fo ~ 2. 

With advancing time the flow field is homogeneous for Ra=10
5
 at Fo=2.42 and at large 

Fo=5.97 the flow field is no longer homogeneous. At Ra =10
6
 the flow non-homogenous as 

early as Fo~2. 

The flow oscillation plots are given in Fig. 4.26 through Fig. 4.27 for Pr=0.02 at Ra=10
5
.  

 

Figure 4.26: Time series plots of u and v velocity components with FFT analysis at Pr=0.02 

and Ra=10
5
 for position A (0.2, 0.2) and C (0.75, 0.8). 
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Figure 4.27: Time series plots of u and v velocity components with FFT analysis at Pr=0.02 

and Ra=10
5
 for position B (0.8, 0.2) and D (0.2, 0.8). 

The time series plots of u and v components of velocity are given in Fig. 4.28 through Fig. 

4.29 for Pr=0.02 at Ra=10
6
.  

 

Figure 4.28: Time series plots of u and v velocity components with FFT analysis at Pr=0.02 

and Ra=10
6
 for position B (0.15, 0.2) and C (0.7, 0.8). 
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Figure 4.29: Time series plots of u and v velocity components with FFT analysis at Pr=0.02 

and Ra=10
6
 for position A (0.1, 0.2) and C (0.9, 0.8). 

Table 4.4 represents the FFT values of u and v component velocities for Pr=0.02. It is seen 

from Table 4.4 that the u and v component frequency decreases with transient evaluation of 

time for both Ra=10
5
 and Ra=10

6
. 

Table 4.4: Peak frequencies at melted zone at Pr 0.02. 

           Fo=5.97         Fo=19.87 

  u v u v 

  3.907 5.495 3.052 2.896 

 Ra=10
5
 5.983 2.808 3.021 2.869 

Pr=0.02  

            Fo=4.97          Fo=13.17 

  3.052 2.443 3.053 4.273 

 Ra=10
6
 2.564 2.564 3.052 3.052 

 

It is sown from Table 4.4 that, at Pr=0.02, the flow field is non-homogeneous at Fo~5 and 

the flow field is homogeneous and nearly homogenous for Ra=10
5
 and Ra=10

6
 at large elapse 

time Fo > 12. Initially non-uniformity of velocity and temperature appear in a shorter melt 

zone. The melted region grows with time and the velocity and temperature redistributed 

locally. The tendency to homogeneity observe as the perturbation is negligible for a large 

domain. 
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Figure 4.30: Time series plots of u and v velocity components with FFT analysis at Pr=0.05 

and Ra=10
5
 for position B (0.35, 0.2) and D (0.8, 0.8). 

The flow oscillation plots are given in Fig. 4.30 through Fig. 4.31 for Pr=0.05 at 

Ra=10
5
 while the flow oscillation plots are given in Fig. 4.32 through Fig. 4.33 for Pr=0.05 at 

Ra=10
6
.  

 



72 
 

 

Figure 4.31: Time series plots of u and v velocity components with FFT analysis at Pr=0.05 

and Ra=10
5
 for position C (0.9, 0.8) and D (0.2, 0.8). 

 

 

 

 

 

 

 



73 
 

 

Figure 4.32: Time series plots of u and v velocity components with FFT analysis at Pr=0.05 

and Ra=10
6
 for position C (0.9, 0.8) and D (0.2, 0.8). 
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Figure 4.33: Time series plots of u and v velocity components with FFT analysis at Pr=0.05 

and Ra=10
6
 for position C (0.95, 0.8) and D (0.2, 0.8). 

Similarly, Table 4.5 represents the FFT values of u and v component velocities for Pr=0.05. 

It is seen from Table 4.4 that the u and v component frequency decreases with transient 

evaluation of time for both Ra=10
5
 and Ra=10

6
. The u and v values are similar for Ra 10

5
 and 

Ra =10
6
. For Pr=0.02, dominant frequency is about 3.2 at all time. However the frequency 

corresponding to v component changes in time. A peak frequency value u~v indicates an 

isotropic field.  
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Table 4.5: Peak frequencies at melted zone at Pr 0.05. 

       Fo=19.07       Fo=27.16 

  u v u v 

  3.785 3.724 3.175 3.175 

 Ra=10
5
 2.808 2.808 3.175 3.175 

Pr=0.02  

       Fo=14.73      Fo=19.71 

  2.869 2.869 2.991 2.869 

 Ra=10
6
 2.869 2.869 2.869 2.869 

 

It is observed from Table 4.5 that, unlike the cases of relatively low Pr (0.005 and 0.02) at 

Pr=0.05 the flow field is homogeneous till Fo about 20 and isotropic at Fo~25 at Ra=10
5
. At 

Ra =10
6
 the flow is isotropic at Fo>10. Thus it is observed that reducing Pr leads to higher 

level of flow instability.  

Kinetic Energy Density (KED) 

The kinetic energy density of the fluid domain is defined by  

21

m

ED

m V

K dV
V

  u                  (4.9) 

where, mV  is volume of melt zone. The kinetic energy density is calculated in the melted 

regime using Eq. 4.9. For the square cavity formulation, the length of the cavity is related 

with the cavity area as, 

0.5L A                 (4.10) 

The melted area is thus related to liquid fraction as  

  melt lA f A                 (4.11) 

While the melted zone may have irregular boundaries, the effective length of the melted area 

can be related with the liquid fraction as  

1/2

eff melt

l

l

L A

f A

f L







                (4.12) 

From the definition of Rayleigh number,  
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3Ra L                 (4.13) 

An effective Rayleigh number is introduced now which is related with the length of the 

cavity as  

3/2 3

eff lRa f L                            (4.14) 

 

                                    
(a) 

 
(b) 

 

Figure 4.34: Kinetic energy density of low Prandtl number liquid metals a) Ra=10
5
 and b) 

Ra=10
6
. 

The effective Rayleigh number is now expressed as a function of domain Rayleigh number 

(Ra) and liquid fraction as, 
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3/2

eff lRa f Ra                (4.15) 

In Fig. 4.34, evolution of kinetic energy density along time is shown at different Pr. It is 

observed that the kinetic energy density (KED) increases with decreasing Pr. A low Pr 

indicates lower viscosity of fluid which leads to stronger fluid movement and hence higher 

kinetic energy density. At Ra=10
5 

and 10
6
, KED initially reduces and then goes on increasing 

for all Pr. It is seen from Fig. 4.34 (a) and (b) that kinetic energy density initially decreases 

then increases because initially local energy absorption occurs for phase transition of solid to 

liquid and as the melted zone grows the phase transition is well underway in the liquid state 

increase the kinetic energy density increases. It is to be noted that the kinetic energy density 

data is quite similar in a range of magnitude 10
-4

 -10
-8

 with prior work (Favier et al., 2019). 

The effective Rayleigh number (Raeff) is tabulated in Table 4.6 for two situations. The first 

one is when the kinetic energy density is minimum in the domain. The second one related to 

when KED attains the maximum value. In all cases the kinetic energy density remains constant 

after attaining the peak except for the case of Ra=10
6
 and Pr=0.005. The attainment of peak 

KED corresponds to Raeff~ 9x10
4
 and Raeff ~ 9x10

5
 for Ra of 10

5
 and 10

6
 respectively.  

Table 4.6: Effective Rayleigh number corresponding to minimum and maximum kinetic 

energy density at Ra=10
5 

and 10
6 

for different Pr.  

Prandtl Number 

(Pr) 

Effective Raleigh Number (Raeff) 

Ra=10
5
 Ra=10

6
 

Minimum KED Maximum KED Minimum KED Maximum KED 

0.005 40789.07 

 

 

92956.62 

 

472112.43 

 

952930.96 

 

0.02 23158.19 

 

92051.17 

 

122383.74 

 

942195.08 

 

0.05 27909.86 

 

84925.74 

 

94318.7 

 

932676.645 

 

 

Table 4.6 shows that the near stable kinetic energy density has been observed at an order of 

magnitude of Raeff~ 10
5
 for both Ra=10

5
 and 10

6
.irrespective of Pr. However, the effective 

Ra for the minimum kinetic energy density varies with Pr and the variation with Pr for 

Ra=10
5 

shows a large difference compared to the Ra=10
6
. 
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Root-Mean-Square velocity (
RMSU ) at Melt Zone 

An interesting observation has been found considering the root-mean-square velocity (
RMSU ) 

in the growing melt zone. Calculation of 
RMSU  is a statistical measurement which provides an 

insight about melt flow. 
RMSU is calculated as  

 2 21

m

RMS

m V

U u v dV
V

                 (4.16) 

where 
mV denotes the volume of melt zone. 

 

Figure 4.35: RMS velocity in the melt zone for different Pr liquid metal. Solid line represents 

root-mean-square velocity at Ra=10
5
 while dashed line indicates at Ra=10

6
. 

Fig. 4.35 depicts distribution of 
RMSU  over time in the melt zone for different Pr. 

Investigation of 
RMSU for different Ra has been performed in which solid and dashed lines are 

used for Ra=10
5
 and Ra=10

6
 respectively. It is seen from Fig. 4.35 that reducing the Pr value 

RMSU increases which ensure the flow instability at low Pr.  

Rate of Entropy Generation  

The rate of entropy generation has been investigated for melt flow in which the total 

volumetric entropy generation ( Totals ) is summation of viscous and thermal dissipation. The 

total volumetric entropy generation is written as  
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Total f thS S S                                   (4.17) 

where Sf is entropy generation for fluid flow and Sth is entropy generation for thermal 

dissipation. The entropy generation for fluid flow (Sf) can be expressed as (Herpe et al., 2009) 

2 22

2f

u v u v
S

T x y y x

           
         

            

             (4.18) 

Similarly, second term in Eq. 4.17 is the rate of entropy generation due to heat transfer is 

given as (Herpe et al., 2009) 

22

2th

K T T
S

T x y

    
    

     

               (4.19) 

The rate of local total entropy generation in the effective melt volume can be calculated 

integrating all the local distributions which can be stated as 

 

f

Total Total

V

S S dV                  (4.20) 

Figure 4.36 represents the total rate of entropy generation with evolution of time at different     

Ra. It is seen from form both figures that the total rate of entropy generation initially 

increases and then stabilizes.      

  

(a) (b) 

Figure 4.36: Total entropy generation TotalS  in the growing melt zone a) Ra=10
5
 and b) 

Ra=10
6
. 
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The prior investigation confirms the slow rate of change of melt volume at the end of 

melting, which enables the stabilization of entropy generation even while the rate of entropy 

development varies. Figure 4.36 (a) through (b) depict with the decrease of Pr total entropy 

generation is higher which also support the flow instability phenomena for very low Pr liquid 

metals. It is also seen that, STotal is higher for high Ra (Ra=10
6
) for Pr=0.005 while the 

change of total entropy generation is not much different for a range of Pr =0.02 to 0.05.   

Investigation reveals that, heat transfer predominates in the overall total rate of entropy 

formation, with viscous dissipation contributing very little. The ratio of thermal entropy 

generation ( )thS and maximum thermal entropy generation ( ,maxthS ) has been plotted in Fig. 

4.37. Highly efficient heat transfer with a minimum dissipation has been found in the melt 

zone and it varies with Pr. Thermal perturbation in the flow field ensures the irreversibility 

effect in the growing melt zone which is shown in Fig. 4.37 (a) through (b) for different Ra.    

  

(a) (b) 

Figure 4.37: Evolution of the ratio of thermal entropy generation and maximum thermal 

entropy generation  
,max

th

th

S
S in the melt zone over time a) Ra=10

5
 and b) Ra=10

6
. 
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4.3  Closure 

The present work reports development of a lattice Boltzmann model to overcome the 

numerical instability associated in handling convection in ow Pr fluids. The stability of 

relaxation parameter is improved using a tunable parameter A  in the modified relaxation 

parameter f  . Prandtl number is related with the relaxation parameters for flow and energy. 

The model is used successfully to study melting dynamics in a square cavity for Pr ∈  [0.001, 

0.1] and Ra ∈  [10
4
,10

6
].  Important finding observed are summarized below: 

As increasing the value of Pr indicates reduced thermal diffusivity an important consequence 

is the melt flow patterns at a particular instance at low Pr is realized at later time for higher 

Pr. For Pr ∈ (0.001, 0.01) at high Ra, with progress of time as melt zone becomes larger the 

formation of two lobes appear at the canter of primary cell which tends to separate from each 

other.  The interface length is found to reduce with increasing Fo and Ra. 

The maximum interface length during the entire melting process is found to be nearly 

independent of Fo and Ra at low Pr of 0.001. However, at Pr of 0.01 and 0.1, the maximum 

interface length reduces with Fo and Ra. The mapping of maximum interface size with Bo is 

also performed in this work. 

The velocity components show several oscillation patterns which is quantifies using FFT 

analysis. The flow instability in the melt zone shows a capacitive nature with the growth of 

melt zone. The v component oscillation frequency is more compared to u component 

oscillating frequency up to Pr=0.02 and both frequencies are nearly similar for Pr=0.05. The 

kinetic energy density in the melt zone initially decreases and then increases for Ra=10
5 

and 

10
6
 irrespective of Pr. The kinetic energy density increases with decreasing Prandtl number 

for Rayleigh number 10
5
 and 10

6
. The effective Rayleigh number for minimum kinetic 

energy density decreases with increasing of Prandtl number for Ra=10
6
. The value of root-

mean-square velocity ensures the flow instability for low Pr liquid metals (Pr=0.005) is 

higher compared to a range of Pr =0.02 to 0.05. Viscous dissipation makes up very little of 

the total rate of entropy generation while heat transfer dominates. The total rate of entropy 

generation confirms the irreversibility in the melt flow for low Pr liquid metals.  
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CHAPTER 5 

CORNER MELTING AND SOLIDIFICATION 

 
The present chapter comprises of the thermo-fluidic effect in corner melting followed by 

thermal effect in corner solidification process. Total enthalpy based lattice Boltzmann method 

is used to simulate corner melting and solidification problems. In the last part of the chapter 

the work is extended by the study of corner melting of very low Pr liquid metals using 

modified lattice Boltzmann method.   

5.1 Corner Melting in Closed Cavity 

5.1.1 Objective of the Work 

Numerical investigation of melting phenomena of low Prandtl number materials in a square 

cavity with two adjacent heated walls has been carried out using total enthalpy based lattice 

Boltzmann method (ELBM). The influence of natural convection in the melt zone has been 

observed for two different cases: i) heating from the left and the bottom walls and ii) heating 

from the top and the right walls. The effect of Rayleigh number in the range of Ra=10
2
 -10

7
 

on the convective flow field is evaluated for a typical parametric values of Stefan number of 

0.01 and Prandtl number of 0.025.  

5.1.2 Problem Statement 

In this work, a two dimensional square cavity filled with pure substance undergoing corner 

melting is investigated. The cavity (length L= width W) initially contains a solid material 

uniformly at its melting temperature (Tm). The heated side temperatures (Th) are maintained 

higher than melting temperature (Tm). Two different situations of corner melting have been 

studied. Figure 5.1(a) and (b) represent corner melting from two opposite corners of two 

cases. Figure 5.1(a) and (b) displays the side walls temperature as boundary conditions in 

which heated sides are set at Th=1 and melting temperature is set at Tm=0.   
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Figure 5.1: Square cavity with walls boundary conditions in which interface separates solid-

liquid phases. Red color indicates hot wall boundaries. Velocity and temperature boundary 

conditions are shown at all wall boundaries. um and vm are the x and y component velocities 

while Th and Tm are hot and cold wall temperatures respectively. Blue arrow indicates the 

direction of gravitational force in the melt zone. Melt zone is covered with blue streamline in 

which black arrow indicates the flow direction. (a) corner melting heated from bottom            

( 0m g    between side walls, 0m g   between top-bottom walls in which m  is 

opposite to g ) (b) corner melting heated from top ( 0m g    between side walls, 

0m g    between top-bottom walls in which m  is parallel to g ). 

Due to the differentially side heated wall temperatures; thermal gradients are same for 

both cases. The top-bottom walls temperature gradient and the direction of gravity are 

parallel but opposite to each other for case 1 while the temperature gradient and the direction 

of gravity are parallel with same direction. Thus case 1 and case 2 refer to ‘corner melting 

heated from bottom’ and ‘corner melting heated from top’ respectively. Arrow in Fig. 5.1 

indicates the direction of gravitational acceleration in melted zone and all walls are at no-slip 

condition. It may be mentioned here that there exists no fundamental physical difference 

between top right and top-left heated cases as well as for bottom-left or bottom-right heated 

walls. In this study, the value of Pr is taken as 0.025. Several studies on melting in the range 

of Pr between 0.02-0.025  albeit not on corner solidification (Dai et al., 2018; Hasan and 

Saha, 2021b; Rui et al., 2020b).  The value of Pr is applicable to material such as mercury, 

lead and lithium. The value of Stefan number Ste is fixed at 0.01 which has been widely used 



84 
 

in prior works (Dai et al., 2018; Hasan and Saha, 2021b; Huang et al., 2013b; Q. Liu et al., 

2022; Rui et al., 2020b).  

 The main concern of the present work is to investigate the effect of natural convection in the 

melt zone of a low Prandtl number (Pr) fluid and analyse the hot wall average heat flux 

which pronounces melting. 

5.1.3 Mathematical Model Formulation 

The simulation has been performed assuming the flow inside the cavity is incompressible in 

nature, thermo-physical properties of the material are constant, viscous dissipation is 

neglected and Boussinesq approximation has been considered in the melt zone. The 

governing equations of continuity equation, momentum equation and energy equation are 

already covered in section 4.1.3.  

The initial condition is fixed assuming the cavity is filled with the solid at the melting 

temperature.  

Initial condition: 

 at 0t  ,   
m mu v 0  , T mT   for  0 x L   and  0 y W              (5.1) 

Boundary conditions are different for two cases of heating. The boundary conditions are 

applicable at 0t  .  It may be noted that while for the first case the bottom and left walls are 

at higher temperature, for the second case, high temperature is imposed on the right and the 

top walls.    

for case 1 

m mu v 0  , T hT   for  0x   and  0 y W   

m mu v 0  , T hT   for  0y   and  0 x L              (5.2a) 

m mu v 0  , T mT   for  x L  and 0 y W   

m mu v 0  , T mT   for  y W  and 0 x L   

For case 2 

m mu v 0  , T hT   for  x L  and  0 y W   

m mu v 0  , T hT   for  y W  and 0 x L               (5.2b) 

m mu v 0  , T mT   for  0x   and  0 y W   

m mu v 0  , T mT   for  0y   and  0 x L             

The dimensionless numbers are used in the present work are 
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where 
*T is dimensionless temperature, 

*
x  and *y are the dimensionless coordinates at x  and 

y direction respectively.   is kinematic viscosity,  is thermal diffusivity and t  is time. Pr , 

Ra , Ste  and Fo correspond to Prandtl number, Rayleigh number, Stephan number and 

Fourier number. The asterisk mark (*) is dropped for the rest part and unsubscripted variables 

are assumed to be dimensionless.  

The average Nusselt number (Nuavg) at the left heated wall can be calculated as  

0 0

T
W

avg

x

Nu dy
x



 
   

 
                        (5.4) 

Similarly, average Nusselt number for horizontal walls can be calculated from the vertical 

temperature gradients.   

  



86 
 

5.1.4 Results and Discussion 

Study of two dimensional corners melting in square cavity has been investigated in the 

present work using D2Q9 LB stencil. Low Prandtl number material has been considered in 

cavity melting process in which the nuance of natural convection is studied. Under the 

thermal effect of heated corner walls, melting starts and subsequently the melt zone grows. 

Initially the energy transfer is dominated by conduction and as the melt zone grows effect of 

natural convection is discernible.  

Interesting flow phenomena are observed in growing melt region in which temperature 

gradient in gravitational field induces circulation of fluid. Several flow patterns are generated 

in the melt zone within a distinct two-phase interface. The shape and location of interface 

movement change with time due to the presence of buoyancy effect in melt zone. The shape 

of the interface changes from a convex shape to concave shape toward the melting direction 

due to fixed temperature boundary conditions. The effect of natural convection in the melt 

zone for two cases has been studied for different Ra which has profound impact on melting. 

Both corner melting with bottom heated wall (case 1) and corner melting with top heated wall 

(case 2) show buoyancy effect in the presence of dual temperature gradient in the 

gravitational field. The isotherms in the cavity have been presented and the influence of 

velocity in melt zone is represented by streamlines.   

Grid Independence and Validation of the Code 

The present simulation has been performed by developing a FORTRAN based lattice 

Boltzmann code to study solid-liquid phase change problems. Grid independency study has 

been carried out using 75x75, 101x101, 151x151 and 201x201 lattice nodes. For this, average 

Nu at the heated walls is calculated using different grids resolution. Table 5.1 represents the 

average Nu with different grids at a specific time.  

Table 5.1: Average Nusselt number on heating walls using different grids resolution  

 Average Nusselt number 

Grids Resolution Bottom Heated wall Side heated wall 

75x75 4.850 4.726 

101x101 4.729 4.538 

151x151 4.623 4.435 

201x201 4.623 4.435 
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It is seen from Table 5.1 that the average Nu in bottom and side heated walls are nearly same 

for 151x151 and 201x201 grids. To optimize the computational cost vis-a-vis the accuracy, 

151x151 grids are finally chosen for the present simulation. Using 151x151 grids the code is 

validated with a published research work by Lin and Chen (Lin and Chen, 1997), in which 

corner solidification in a semi-infinite corner was investigated assuming conduction heat 

transfer (Fig. 5.2a). Figure 5.2a shows a near-perfect match of the present results with the 

published study. The present FORTRAN code is further validated using 151 x151 grid 

resolution with benchmark data of (Mencinger, 2004) in which left heated melting in a square 

enclosure was carried out at Pr = 0.02 and Ra=2.5x10
4
. In a left-heated square cavity melting, 

average Nu varies over time as seen in Fig. 5.2b.  

 
 

(a) (b) 

Figure 5.2 : Code validation with the results of a) interface position (Lin and Chen, 1997) and 

b) average Nu vs Fo with (Mencinger, 2004) work. 

Additional validation has been performed for natural convection dominated square cavity 

problem (Basak et al., 2006; Du et al., 2021). Table 5.2 shows the calculated average Nu for 

different Ra which agree favourably with data from literature. 

Table 5.2: Average Nusselt number on heating wall of the square cavity 

 Ra=10
3
 Ra=10

4
 Ra=10

5
 

(Basak et al., 2006) 4.1563 6.2476 9.391 

(Du et al., 2021) 4.1655 6.2676 9.3518 

Present 4.1584 6.2362 9.3571 
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LBM Parameters  

In this work, the computational domain is divided in lattice space with  1x   and simulation 

is advanced in time with 1t  . The simulation has been performed assuming relaxation 

parameter for flow field as 
m =0.5187. The numerical accuracy of the problem depends on 

the relaxation parameter value as the sensitivity of the relaxation parameter is related with 

other LB parameters as well as the dimensionless parameters which are set at Ra=10
4
 and 

10
5
, Ste=0.01 and Pr=0.025. The incompressibility limit in the melt zone has been assumed 

using the relationship: ( )g T T W
ref

    ≤ 0.1 for the present simulation. The relaxation 

parameters are so chosen that the numerical stability of the problem is well maintained. 

Relaxation parameter for flow and energy can be calculated using dimensionless number Ra 

and Pr respectively.  

Corner Melting: Heated From Bottom and Left Side Wall 

When the cavity is heated from left-bottom walls of the square cavity, melting occurs which 

can be termed as corner melting from bottom (case 1). A comparison has been made for 

different Ra when corner melting occurs with heated bottom surface. The isotherms and 

streamlines in the melt zone have been presented in Figures 5.3-5.6 for two levels of Ra. 

 

Figure 5.3: Evolution of isotherms with time at Ra=10
6
 for case 1. 
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In Figure 5.3, it is observed that as the melting proceeds, isotherms are dominated by 

convection effect. At a non-dimensional time, Fo =0.05, the isotherms are diagonal-

symmetric which indicates the melting process is still dominated by conduction. With further 

advance in time, the role of convection becomes evident which breaks the symmetry hitherto 

present and the interface shape changes the shape under the influence of natural convection. 

At Fo beyond 2, the temperature profiles do not change much as the rate of thermal flux from 

boundary to interface gradually approaches a fixed value with time in the molten zone of the 

cavity. 

 

Figure 5.4: Transient evolution of streamlines at Ra=10
6
 for case 1. 

 

The flow field at Ra=10
6
 is depicted in Figure 5.4 by presenting a family of 

streamlines at different dimensionless time. In the early stage of melting, clock-wise 

circulation of stream line in the vicinity of left wall is observed in a narrow molten region. As 

the time proceeds, the primary vortex in the melt zone grows with appearance of a dead zone 

at the left-bottom corner at Fo=0.5. The secondary and tertiary vortices appear due to very 

low velocity near the wall. With the progress of time, the center of the primary vortex shifts 

towards the center of the cavity. The secondary and tertiary vortices adjacent to the solid 
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boundary walls grow in strength.  Figure 5.5 and 5.6 show the temperature profiles and 

streamlines respectively at a higher value of Ra=10
7
. 

 

Figure 5.5: Temporal evolution of isotherms at Ra=10
7
 for case 1. 

At a higher Ra, the rate of melting naturally increases and the melt zone grows faster. 

Compared to the case of lower Ra (Figure 5.3) at Fo=0.5, it is clearly seen that the convection 

current in the melt zone is more which affects the flow pattern in the melt zone. Compared to 

the case at lower Ra (Figure 5.3), the isotherms in Figure 5.5 show distinct dominance of 

natural convection with presence of undulated temperature profiles, observed from Fo=0.5 

onwards. Figure 5.6 shows the evolution of flow patterns in the melt zone at higher Ra of 10
7
. 

Unlike the case of lower Ra, here Bénard convection cells are found to be present along both 

the vertical and horizontal melt pools at Fo =0.05.  The configuration at low Fo, as such 

resembles that of a Rayleigh- Bénard system with a thin liquid pool under an imposed 

temperature gradient.  Such cells are also observed by Dhar et al. (Mrinmoy Dhar et al., 

2015) at a similar level of Ra. It is interesting to see that the number of cells is more on the 

vertical wall as a complex interaction between gravity acting downwards and thermal 

gradient in horizontal direction. As melting zone grows, these cells merge leading to three 

primary convective rolls (Fo= 0.8). Eventually, one primary vortex fills the entire zone with 

presence of secondary vortices in the corners. 
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Figure 5.6: Transient evolution of streamlines at Ra=10
7 

for case 1. 

Corner melting heated from top and side wall 

In this section, we discuss melting process as the top and the right walls of cavity are heated. 

Corner melting from top has been studied at two different Ra.  
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Figure 5.7: Evolution of isotherms with time at Ra=10
6
 for Case 2. 

Figures 5.7-5.8 shows the isotherms and flow field at Ra=10
6
 while Figures 5.9-5.10 presents 

the temperature profiles and corresponding fluid patterns at Ra=10
7
. Corner melting from top 

induces density gradient parallel to gravity field between the top-bottom walls. As the lighter 

liquid lies at the top of the cavity, the fluid layers adjacent is stratified. However. In the 

presence of hot side wall, warmer fluid moves upward along the right wall. Figure 5.7 shows 

the diagonal-symmetric isotherms till Fo =2.0, indiating the dominance of conduction.   

 

Figure 5.8: Transient evolution of streamlines at Ra=10
6
 for case 2. 

Thus, unlike the case of the bottom-side corner heating, in this case, effect of convection is 

realize at much later stage. The isotherms near the top wall are parallel, and become wavy in 

the presence of convection far from the top wall. A counter clockwise circulation is observed 

in Figure 5.8 which depicts the upward movement of  warmer fluid along the right wall. The 

fluid stream then flows parallel to the top wall and finally moves downward to complete the 

loop. A secondary vortex is generated at the top-right corner of the cavity which grows with 

time. Figure 5.9 describes a family of isotherms at Ra=10
7
. Due to higher Ra, now the 

conduction doimnance is observed till Fo = 0.2 (which was 0.5 at lower Ra of 10
6
). The 

effcet of natural convection is thus found to destabilize the stratified layer.   
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Figure 5.9: Temporal evolution of isotherms at Ra=10
7
 for case 2. 

Figure 5.10 shows the streamline patterns in the melt zone at different time instances. 

 

Figure 5.10: Transient evolution of streamlines at Ra=10
7 

for case 2. 
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While comparing with the case of low Ra (Figure 5.8), it is seen that in Figure 5.10, the effect 

of natural convection is more pronounced. Several vortices are generated in the melt zone and 

at the centre of the cavity, a primary vortex is formed in a clockwise direction. Two counter-

clockwise circulation has been developed around the centre of the primary circulation from 

Fo =0.5. A complex flow circulation is seen at the centre of the melt zone and the complex 

flow patterns so developed follow the vortex interactions and path of minimum resistance.  

  

(a) (b) 

Figure 5.11: Interface position at different time for two Rayleigh numbers. Solid lines 

indicate interface position at Rayleigh number 10
6
 while dotted lines denote at Ra=10

7
 a) left-

bottom corner melting b) top-right corner melting. 

The location of interface with time has been plotted  for both cases in Figure 5.11. 

The solid line and dotted lines indicate Ra=10
6
 and 10

7
 respectively.   

It is seen from Figure 5.11 (a) that initially the position of melting front for both Ra is nearly 

same for Fo=0.05 to 0.1. For case 1, at Fo=0.2 melting front for Ra=10
7
 is different from 

Ra=10
6
. A drastic change has been observed from Fo=0.5 to 0.8 in which the position of 

melting fronts are different for two Ra. At Fo=10, the melting front moves faster at Ra=10
7
 

compare to Ra=10
6
. Figure 5.11(b) describes the interface location with time for case 2. For 

case 2 it is seen that, the movement of melting front is faster at Ra=10
5
 rather than Ra=10

6
. It 

is observed from the two cases that the shape of interface front has been changed from 

convex to concave shape as melting proceeds. The shape of cavity necessiates the transition 

from convex to concave so that the melting covers the entire domain. This transition of 
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interface shape is found to occur at about Fo=0.5. It is worth noting that the diagonal between 

two hot walls divides the domain in two halves with an area of 0.5L
2
. The melt interface 

changes shape about when material in one half of the cavity is melted. So a value of Fo =0.5 

basically indicates the dimensionless time related to this area and thermal diffusivity.    

Average Nusselt number 

Figure 5.12 is a representation of average Nusselt number at the heated walls for both the 

cases at Ra=10
6
, Ra=5x10

6 
and Ra=10

7 
respectively. It is observed from these figures that 

heat transfer from bottom wall is higher than side wall for case 1 and heat penetration from 

side wall is more compared to the top wall for case 2. The average Nu for case 2 shows an 

increasing trend up to Fo=1 compared to case 1 at Ra=10
6
 and beyond Fo=1 average Nu for 

case 1 increases.  

  

(a) (b) 

 

(c) 

Figure 5.12: Average Nusselt number for a) Ra=10
6
, b) Ra=5x10

6 
and c) Ra=10

7 
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It is seen from here that the general trend of average Nu is that it reduces with Fo and then 

stabilizes as the starting of melting, average Nu is more due to conduction melting and as 

time increases melting occurs in the presence of convection heat transfer. With the increase 

of time, as melt zone grows and resistance of convection heat transfer increases. The 

temperature driving force reduces over time and average Nu stabilizes.  However, when Ra is 

5x10
6
 or more, there is a gain in Nuavg at around Fo= 0.62. The reason can be attributed to 

appearance of convective rolls at higher Ra leading to high heat transfer. As Fo increases 

beyond the above values, the average Nu for case 1 is higher over case 2 for both Ra=5x10
6
 

and Ra=10
7
. Average Nu values reported at Ra of  2.5x10

6
 are 3.75 and 2.65 for side heated 

and bottom heated cavity by Dai el al. (Dai et al., 2018). In the present work the average Nu 

values for right-top and left-bottom corner melting are in the range of 3.65-3.88 for Ra = 10
6
 

and 4.36-5.62 for Ra=10
7 

at Fo=5. The quantitative measurement of the average Nu has been 

presented in Table 5.3. 

 

Table 5.3: Average Nusselt number for both left-bottom corner melting (case 1) and top-right 

corner melting (case 2)  

 

  Ra=10
6
 Ra=5x10

6
 Ra=10

7
 

Fo Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

0.05 7.17 7.91 7.26 7.92 7.92 7.93 

0.5 3.62 3.87 3.88 4.03 4.60 4.56 

1 3.39 3.51 4.37 3.93 5.17 4.37 

 

Melt Fraction  

Figure 5.13 represents the average melt fraction with time for both left-bottom and right-top 

corner melting for three values of Ra. It is seen from Figure 5.13 (a) that the average melt 

fraction is more for case 1 upto Fo=0.5 due to the average heat flux from left and bottom 

walls suppling more energy compared to top-right walls. The difference of melt fraction for 

left-bottom corner melting (case 1) compared to the top-right corner melting (case 2) upto 

Fo=0.5 is 10.5% while beyond Fo=0.5 case 2 shows a higher melt fraction by 2.5% over that 

of case 1. With increasing time beyond Fo=0.5,  average melt fraction is more for the case of 

right-top side corner melting. Figure 5.13 (b) and (c) depict the average melt fraction at 

Ra=5x10
6 

and Ra=10
7 

respectively. The average melt fraction due to top-right corner melting 
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is increasing upto Fo=0.2 and beyond which the increase of melt fraction is slower while the 

melt fraction due to left-bottom melting is growing upto Fo=0.5. The difference of melt 

fraction for case 1 over case 2 beyond Fo=1.2 is just 0.2%. The overall change of melt 

fraction is nearly similar for both the cases in the long run (Fo>1) though the heat transfer 

rate is varied differently as shown in the transient average Nu curves (Figure 5.12). It is 

observed that 90% of melting is complete within Fo 1. This assumption is consistent with 

the work by (Rui et al., 2020a). 

  

(a) (b) 

 

(c) 

Figure 5.13: Melt fraction (a) Ra=10
6
 (b) Ra=5x10

6 
and c) Ra=10

7
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Average heat flux 

The non-dimensional heat flux in such situations is given by the product of Nu and Ra 

(Krishnamurti, 1970). Average heat flux is shown at different walls against Ra in in Figure 

5.14 when 90% melting is completed.  

 

Figure 5.14: Average dimensionless heat flux (Nuavg x Ra) with Ra. 

Figure shows average heat flux increases with Ra as expected. However, average heat flux at 

the bottom surface shows higher value compared to the heat flux obtained at the other walls. 

It is also found that heat flux at the top wall is minimum of all. The plots in log-log planes are 

having constant slopes and thus it is interesting to note that heat flux on all boundaries scale 

with  Ra
n 

where n is a constant. The value of n is 1.11 and 1.02 for bottom wall  and the 

adjacent wall. The value changs to 0.98 and 1.08 for top wall and adjacent side wall. 
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5.2  Corner Solidification in Closed Cavity 

Investigation of solidification phenomena of pure metal has been studied in a square cavity 

where the left and bottom walls are at lower temperature than that of the initial temperature of 

the melt. The situation leads to solidification from both the left and bottom walls which is 

termed as corner solidification. Lattice Boltzmann method (LBM) is used to perform the 

numerical simulation of the physical problem. 

5.2.1 Objective of the Work 

Looking at the literatures on solidification, it is found that relatively fewer investigations on 

solidification have been performed using LBM. Corner solidification is important in 

industrial application such as material processing, additive manufacturing, continuous casting 

etc. in which the better understanding of the basic metal behavior is important during 

solidification. Regarding the influence of natural convection in liquid metal, the location of 

solid-liquid interface has been traced using enthalpy method. The investigation is performed 

considering two different Rayleigh number (Ra) 10
4
 and 10

5
 to observe the natural 

convection effect on solidification. 

5.2.2 Problem Statement and Mathematical Modeling 

Pure substance at its melting temperature (Tm) is initially filled within a square cavity in 

which left side-wall and bottom wall are kept at a temperature lower than the melting 

temperature i.e. Tc<Tm. The upper and right boundaries of the cavity are adiabatic in nature. 

In this condition, a two dimensional solidification phenomenon has been investigated. The 

configuration of the model with boundary conditions is presented in Fig. 5.15. Heat is 

rejected from both left and bottom walls and the location of solidification front have been 

tracked with time. Assuming that, laminar and incompressible cavity fluid with constant 

thermal properties has been considered while the density change occurs with temperature. In 

the present solidification study, Boussinesq approximation has been used to describe the 

effect natural convection. The governing set of equations mass, momentum and energy with 

source terms can be formulated as section 4.1.3. 
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Fig. 5.15: Schematic of a cavity with aspect ratio of one in which heat removal occurs from 

left and bottom walls, while other two boundaries are kept insulated.  

The initial as well as boundary conditions are given as,   

at 0t  ,   
m mu v 0  , T mT   for  0 x L   and  0 y W               (5.5) 

Boundary conditions are given at 0t   as  

m mu v 0  , T cT   for  0x   and  0 y W   

m mu v 0  , T cT   for  0y   and  0 x L              (5.6) 

m mu v 0  , 0
T

x





  for  x L  and 0 y W   

m mu v 0  , 0
T

y





  for  y W  and 0 x L   

5.2.3 Results and Discussion 

Solidification of pure substance has been investigated in a square cavity from left-bottom 

corner. Lattice Boltzmann method (LBM) with 101x101 lattice grids in D2Q9 model is used 

to investigate pure metal solidification in presence of convection. The time step (Δt) is taken 

1 for the simulation. The study is performed at two different Rayleigh numbers (Ra) 10
4 

and 

10
5 

keeping constant Prandtl number (Pr) as 0.02. The investigation has been performed to 

predict the location of the moving solidification front with variation of time. The 

investigation of corner solidification phenomena reveals that the energy is rejected from both 

left and bottom walls of the cavity. The effect of natural convection on the solidification front 

have been studied using two different Ra numbers. 

g    Tm=1 

𝑢𝑚 = 𝑣𝑚 = 0, 𝜕𝑇/𝜕𝑦 = 0 

𝑢𝑚 = 𝑣𝑚 = 0, 𝑇𝑐 = 0 

𝑢
𝑚

=
𝑣 𝑚

=
0

,𝑇
𝑐

=
0

 

𝑢
𝑚

=
𝑣 𝑚

=
0

,𝜕
𝑇

/𝜕
𝑥

=
0
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(a) (b) 

 

(c) 

 

Fig. 5.16: Isotherms at Ra=10
4
 a) Ste*Fo=0.01, b) Ste*Fo=0.02, and c) Ste*Fo=0.03. 

  

The effect of natural convection on the solidification front have been studied using two 

different Ra numbers. Figures 5.16(a), 5.16(b) and 5.16(c) illustrates the isotherms at Ra=10
4
. 

It is seen from Fig. 5.16(a) to 5.16(c) that the latent heat energy loss from both left and 

bottom walls are increases with time. 
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(a) (b) 

 

(c) 

Fig. 5.17: Isotherms at Ra=10
5
 a) Ste*Fo=0.01, b) Ste*Fo=0.02, and c) Ste*Fo=0.03.  

Similarly, Fig. 5.17(a) to 5.17(c) shows the temperature contours at a relatively high 

Ra=10
5
. 

 
It is seen from the isotherm profiles that the initially the domain is conduction 

dominated and with increasing of time the convection domination starts.  

With the increasing of Ra number and the presence of buoyancy, the interface becomes 

distorted and the latent heat loss from the two sides increases with time. Figure 5.18(a) and 

5.18(b) represents the solidification front at two different Ra number. 
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(a) (b) 

Figure 5.18: The movement of solidification front at different Ra, a) Ra=10
4
 b) b) Ra=10

5
 

It is seen from these two figures that, the position of solidification front is almost vertical 

near the cold walls and gradually inclined slope appears away from both cold walls as the 

heat transfer regimes shifts from conduction to convection.  For same dimensionless time, the 

solidification front moves forward to the cavity indicating that strong influence of convection 

dominates at higher Ra of 10
5
.        
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5.3  Corner Melting of Low Prandtl Number Liquid Metals 

In this work, the lattice Boltzmann method (LBM) has been used to conduct a numerical 

analysis of the melting phenomena of low Prandtl number materials in a square enclosure 

with two adjacent heated walls. The energy equation and the incompressible Navier-Stokes 

equation's lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models are modified to 

address numerical instabilities for the simulation of low Pr fluids. Using a total enthalpy-

based lattice Boltzmann approach, the flow field and the thermal behaviour in the melt zone 

are numerically modelled for corner melting problem. The investigation has been performed 

in a wide range of Prandtl number Pr ∈ [0.001, 0.01] and high Rayleigh number Ra ∈ 

[10
5
,10

6
]. The evolution of the melting front with thermo-fluidic behaviour in the melt zone 

for low Pr materials is reported. For parametric values of Stepahn number Ste=0.01, the 

impact of Rayleigh number on the convective flow field with the variation of Pr is assessed. 

5.3.1 Objective of the Work 

The aim of the current research is to enhance the ability of lattice Boltzmann model to 

simulate melting in low Pr materials applied in the case of corner melting problems. Special 

modification has been employed to analyze very low Pr number liquid metals Pr ∈ [0.001, 

0.01].The main focus of the work includes the tracing of transient interface movement, 

calculation of average heat flux at the interface, determine the effect of natural convection in 

melt zone, distribution of isotherms in the cavity and average melt fraction with time of low 

Pr materials.   

5.3.2 Problem Statement and Mathematical Modelling 

The corner melting of a two-dimensional square enclosure filled with pure material is 

explored. A solid substance is initially uniformly present throughout the cavity (length 

L=width W) and is at its melting point (Tm). The temperatures on the heated sides (Th) are 

kept above the melting point (Tm). Figure 5.19 represents the schematic of corner melting 

from two adjacent walls (left-bottom) with boundary conditions. The direction of 

gravitational acceleration in the melted zone is indicated by an arrow in Figure 5.19, and all 

of the walls are in a no-slip condition. Investigating the impact of natural convection in the 

melt zone varying Prandtl number (Pr) and examining the average heat flow at the interface 

are the main goals of the current investigation. 
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Figure 5.19: Schematic of square cavity corner melting. 

The simulation was run under the assumptions that the flow inside the cavity is 

incompressible, that the material's thermos-physical characteristics remain constant, that 

viscous dissipation is neglected, and that the melt zone is modelled using the Boussinesq 

approximation. The governing equations are used to perform the numerical simulation 

mentioned in section 4.1.3. The initial and boundary conditions for the problem given as 

Initial condition: 

at 0t  ,   
m mu v 0  , T 0   for  0 1x   and  0 1y               (5.7) 

Boundary conditions are given at 0t   given as 

m mu v 0  , T 1   for  0x   and  0 1y   

m mu v 0  , T 1   for  0y   and  0 1x                 (5.8) 

m mu v 0  , T 0   for  1x   and 0 1y   

m mu v 0  , T 0   for  1y   and 0 1x   

5.3.3 Results and Discussion 

Using the lattice Boltzmann technique in the D2Q9 stencil, melting of low Prandtl number 

liquid materials in a side heated square cavity is explored. A modified lattice Boltzmann 

model is used to overcome the difficulties of numerical stability reported for low Pr 

materials. In the proposed model, a tuning parameter A  is added to the relaxation parameter 

(
f  ) which is set to 0.02. Another tuning parameter B  is also needed for energy equation 

which is calculated from the value of Pr as depicted in Eq. (3.71). A code for this has been 

developed in Fortran 90 and computations were performed in CDAC’s PARAM SHAVAK 
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system with a 16 core Intel Xeon processor. The lattice grid spacing and time step are 

considered as x = t =1.  

Effect of Rayleigh Number 

A comparison has been made for different Pr with the variation of Ra when corner melting 

occurs with heated left-bottom surface. The isotherms in the cavity and the streamlines at the 

melt zone have been presented in Figs. 5.20-5.22 for different Pr.  

 

(a) 
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(b) 

Figure 5.20: Evolution of isotherms with streamlines at Pr=0.001 a) Ra=10
5 

and b) Ra=10
6
. 

 

Figure 5.20 represents the flow and thermal behaviour in melt zone for Pr=0.001. At Fo 

=0.02, the temperature isotherms are symmetrical in nature which signifies the conduction 

governs the melting process. After that with increase of time, the convection plays an 

important role in the cavity which dominates conduction melting and interface geometry 

changes its pattern due to flow circulation under natural convection. At Fo beyond 0.96, the 

temperature profiles do not change much as the rate of thermal flux from boundary to 

interface gradually approaches a fixed value with time in the molten zone of the cavity. It is 

seen from Fig. 5.20(a) and 5.20(b) that the shape of interface turns into convex to concave 
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after Fo=0.19. The flow characteristics at Ra=10
5
 is depicted in Fig. 5.20a in which a family 

of streamlines are presented with dimensionless time. In the early stage of melting, clock-

wise circulation of stream line in the vicinity of left wall is observed in a narrow molten 

region. As the time increases the primary vortex in the melt zone grows as well as stagnation 

zone appears at the solid wall at Fo=0.08. The secondary and tertiary vortex appears due to 

very low velocity near the wall. Figure 5.20b shows the temperature profiles and streamlines 

at Ra=10
6
. At a higher Ra the rate of melting increases and the melt zone grows faster and it 

is clearly seen that the convection current in the melt zone is more which affects the flow 

pattern in the melt zone.  

 

(a) 
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(b) 

Figure 5.21: Evolution of isotherms with streamlines at Pr=0.005 a) Ra=10
5
 and b) Ra=10

6
. 

 

Figure 5.21 represents the isotherms and streamlines plots in melt zone for Pr=0.005. As Ra 

increases more convective rolls appear in the melt zone for Fo=0.38. The interface front is 

distorted at high Ra as convection is more pronounced. The interface front turns into convex 

to concave at Fo=0.96.   

Figure 5.22 represents a family of isotherms and streamlines at Pr=0.01. As can be seen from 

Fig. 5.22a, the primary cell initially fills the vertical melt zone because buoyancy is more 

apparent as a result of the hot fluid moving upward from the bottom as well as the left side 

walls. A secondary cell appears at the right bottom corner of the melt zone and it grows with 

time. At Fo=0.96 two cells are merged and rotate clockwise in the entire melt zone as a single 
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cell. Figure 5.22b demonstrates comparative faster melting at high Ra=10
6
. At Fo=0.04 multi 

Rayleigh –Benard cells apper in the melt zone and number of cells increases in the melt zone 

compared to the earlier observation. As Ra increases the flow field is getting more complex 

in nature. The inversion of the convex to concave melting front occurs at Fo=1.92.  

 

      (a) 
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(b) 

Figure 5.22: Evolution of isotherms with streamlines at Pr=0.01 a) Ra=10
5
 and b) Ra=10

6
. 

 

Figure 5.23 depicts the average Nu at the interface for different Pr. The average heat flux at 

interface increases with increasing of Pr. Figure 5.23a shows the variation of average Nu 

over time and it is more as Ra increases beyond Fo=0.02. The average heat flux increases 

beyond Fo=2 for Pr=0.005 and Ra=10
6
 which is represent in Fig. 5.23b. The average Nu for 

both Ra shows a similar nature for Pr=0.01 as depicted in Fig. 5.23c.   
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Figure 5.23: Average Nusselt number at interface 
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5.4  Closure 

In this work, corner melting and solidification of low Prandtl number material in a square 

cavity has been simulated using total enthalpy based lattice Boltzmann method. Comparison 

has been made between corner melting heated from bottom and corner melting heated from 

top boundaries. For the bottom-side heated case, initially Benard type convective cells appear 

in the side wall as well as in the bottom wall at Ra =10
7
. With evolution of time melt region 

grows and occupying the cavity, finally there is one primary roll covering the entire domain. 

In case of the top-side corner melting, Benard cells are seen on the side walls which are 

limited in numbers i.e. maximum of two only.  Here again one primary cell fills up the cavity 

as melting zone grows occupying the cavity. The study reveals that for both the cases initially 

convex melt front is formed which turns into concave shape after about Fo=0.5. For both the 

cases, the melting rate is high till Fo=0.8 which reduces afterwards. The heat flux in the 

bottom-side heated cavity is higher than the top-side heated cavity. The present study 

encourages in depth investigation within three dimensional cavity as the scope for future 

work.  

Similarly, corner solidification has been studied under the influence of convection using 

enthalpy based LBM. The effect of natural convection on the solidification front varying time 

has been presented using two different Ra numbers. It is observed from the study that, 

initially the solidification occurs due to conduction and then convection comes into the 

attention as time increases. With the increasing Ra number, the solidification front moves 

faster under the effect of convection. 

Corner melting in a square cavity has been observed with a range of Pr ∈ [0.001, 0.01] 

and Ra ∈ [10
5
,10

6
] using modified lattice Boltzmann method. While the melting processes 

the flow is dominated by natural convection, complex convective rolls are observed in the 

flow field at higher Ra. The study reveals that in corner melting initially convex melt front is 

formed which turns into concave shape after about Fo=0.19, 0.96 and 1.92 for Pr=0.001, 

0.005 and 0.01 respectively. The heat flux at interface increases with increasing Pr.   
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CHAPTER 6 

MACROSEGREGATION OF BINARY ALLOY  

 
During solidification of binary alloy three distinct zones are encountered which are solid 

zone, liquid zone and mushy region in which solid-liquid co-exist. Solidification of alloy 

comprises of complex flow dynamics in the liquid zone, distribution of solute and solid 

fraction in mushy region. For a binary isomorphous alloy, as an example, Ni-Cu system, a 

component can dissolve at a certain proportion in the other component for both liquid and 

solid phases. Their equilibrium phase diagram representing the relation between temperature 

and percentage of the component is shown in Fig. 6.1(a) and morphological changes with 

decrease in temperature are pictorially shown in Fig. 6.1(b) as during solidification the 

system passes from liquid to solid phase through to phase mushy region. The nomenclature of 

lever rule is expressed in Fig. 6.1 (c).The mushy region is enveloped between two lines 

known as liquidus and solidus lines. The distribution of solid fraction ( )sf varies from zero to 

one in the mushy zone where the solid fraction in liquid zone and solid zone is designated as 

zero and one respectively.Along these two lines composition varies with temperature. Above 

liquidus line alloy is in molten state and below solidus line alloy is in solid state. 

Composition atany point in the two-phase zone is found out from the tie line which is formed 

by intersection of a horizontal line with the liquidus and the solidus line as shown in Fig. 6.1 

(c).  

 
(a) 

 
(b) 
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(c) 

 

Figure 6.1 a) Phase diagram of binary alloy Ni-Cu system, b) Schematic of microstructure 

development during equilibrium cooling of Ni-Cu binary alloy and c) Nomenclature for use 

in lever rule reproduced from (Callister and Rethwisch, 2007).  

From the ratio of the two segments of the tie line divided at a nodal point B as given in Fig. 

6.1 (c) in the mushy region composition can be calculated using lever rule. Liquid fraction is 

given by as 

                                                        L

S
W

R S



                (6.1) 

and, solid fraction is given by, 

                                                         
R

W
R S

 


               (6.2) 

where R and S are the distances of solidus line and liquidus line from the point of interest. 

6.1 Objective of the Work 

Macro segregation during solidification of alloy is a complex process. Extent of macro 

segregation in the mushy region is a matter of concern because it causes casting defect. As 

the mushy region is highly non-homogeneous and changes its morphology with time, 

complex models and different numerical methods have been employed to study its dynamics. 

As solidification of molten alloy starts due to heat loss from domain boundary, boundary 

temperature has got very important effect on quality of casting process. The objective of the 

present study is to investigate effect of heat loss boundary temperature on macro-segregation 

of mushy region of alloy solidification. 
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6.2 Problem Identification 

Investigation on macro segregation problems relating to thermo-physical dynamics of mushy 

region during solidification of binary alloy has been a point of attraction to many researchers 

(Flemings, 2000; Lesoult, 2005; Voller et al., 1989) which involve mathematical modelling 

and numerical simulation using different algorithms. There are a few works are available to 

study the mushy zone dynamics and macro-segregation in the mushy zone using hybrid LBM 

(Ohno and Sato, 2018b)  In the present work, 2D simulation of Ni-Cu (50-50%) alloy has 

been taken up to understand the effect of boundary conditions on the morphology of mushy 

region dynamics. As solidification process has numerous applications in metallurgy, geology 

and other disciplines where environment may not be always predictable and complex 

boundary conditions which vary with time and space, it is an important area to investigate 

mushy region dynamics and segregation within it for study of the concerned physical 

processes. The schematic of the problem is presented in Fig. 6.2  

 

 

 

 

 

 

 

 

 

Figure 6.2: Schematic of solidification in alloys. 

Figure 6.2 shows schematically a domain for study of solidification of an alloy where 

a mushy zone is formed in between the solid and liquid zones. The composition of the alloy 

during solidification shall be changing in these zones mainly governed by the phase diagram 

and the cooling dynamics. 

The relative thickness of solid layer and mushy layer depends on the boundary conditions 

through which energy is lost, and thermo-physical properties of the melt phase. Due to 

density difference in the liquid in the mushy layer generates convection current. Density 

difference may take place due to combined thermal gradient and concentration gradient and 

results in thermo-solutal convection. The interfacial compositions, ( )lC T , for the liquid and 
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( )sC T  for the solid at any instant of time are connected via local tie-line in the phase 

diagram’s liquidus and solidus line. Using lever rule relative composition and weight fraction 

in the two-phase zone can be calculated. A representative phase diagram of Ni-Cu alloy and 

compositional change along the two phase zone are reproduced from (Callister and 

Rethwisch, 2007) 

6.3 Mathematical Model 

The problem under consideration involves a square cavity filled with Ni-Cu alloy which is 

undergoing cooling and solidification. The following set of equations governs the transport 

processes. 

Continuity equation in liquid and mushy zone  

0m mu v

x y

 
 

 
                  (6.3) 

Non-conservative form of x and y-momentum equations are 

2 2

2 2

1m m m m m m
m x

m x

u u u u u up
u v g

t x y x x y F






     
        

      
                            (6.4) 

2 2

2 2

1m m m m m m
m m y

m y

v v v v v vP
u v g

t x y y x y F






     
        

      
                            (6.5) 

where, xF  and yF  are resistance terms in mushy region.  

The gravitational term in the Eq. (6.4) is  

0xg                        (6.6) 

The gravitational term in Eq. (6.5) associated with combination of thermal and solutal 

buoyancy effect (Lesoult, 2005) which is written as  

   0 0y T Cg T T C C                                                                                  (6.7)  

Energy equation in terms of temperature is written as  

2 2

2 2

s
m m

P

fT T T T T
u v

t x y x y c t



      

      
      

                                                    (6.8) 

where, solid fraction ( )sf is written as  

L
s

L S

T T
f

T T





                                                                                                           (6.9) 

Species continuity equation for secondary phase   



118 
 

2 2

2 2

k k k k k
k

C C C C C
u v D

t x y x y

     
     

     
                                                     (6.10) 

where,  kC  is the secondary phase (Ni) in mushy region and kD is mass diffusivity of 

component Ni.  

The initial and boundary conditions are given as  

Initial condition 

at t=0, 

 um=vm=0  for 0 ;0 ;x L y H                                                                    

             T=Ti          for 0 ;0 ;x L y H                                                                      (6.11) 

            Ck=Ci     for0 ;0 ;x L y H                                                                    

  

Temperature Boundary conditions 

t > 0 

 at x=0 , x=L, um=vm=0                                                                                      

 at y=0 , y=H, um=vm=0                                                                                        

at x=0 , T=T(0,y)                                                                                                    (6.12) 

at x=L , 0
dT

dx
                                                                                                 

 at y=0 , y=H, 0
dT

dy
                                                           

Concentration boundary conditions  

at x=0 ,             C=C(1,y)                                                                                                     

at x=L ,            C=C(1,y)                                                                                                                                                                                                   

at y=0 , y=H,    C=C(1,x)                                                                                                                                                                                                                                                                                       

                           

6.4 Numerical Scheme and Solution Methodology 

The present simulation has been performed using hybrid lattice Boltzmann method (LBM) in 

which finite difference method (FDM) is coupled with (LBM). The flow field is simulated 

using LBM which is discussed in chapter 3. The thermal field and the species continuity 

equation are solved using FDM. The details of FDM implementation are now discussed.  
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Grid Generation 

The solution domain is considered as 2-D square on which 100x100 grid is generated which 

is shown in Fig. (6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Schematic of grid generation on a square solution domain 

A general node (i,j) and its associated nodes forming a template is marked on Fig.6.3. where 

the top, bottom and right boundaries are insulated. The left boundary is subjected to a 

temperature below melting point for heat removal. Different spatial temperature distributions 

are applied at left boundary to study its effect on rate of growth of solid region and mushy 

zone, and predicting corresponding macro segregation in terms of weight fraction. The 

central difference scheme is applied to solve energy equation and species continuity equation. 

x and y component momentum equations have been solved applying LBM method which has 

been already described in chapter 3.to get the velocity field. Combining FDM with LBM 

formulations leads to a hybrid LBM for obtaining solutions of the governing equations. 

Implementation of boundary condition in Hybrid LBM has been performed on the boundary 

nodes. The bounce back boundary condition has been used for solid and moving boundary in 

LB method while temperature and concentration boundary conditions are imposed on the 

boundary nodes using conventional FDM.  
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Finite Difference Numerical Formulation 

Semi-implicit finite difference scheme at a general node (i,j) is given below where velocity 

terms are considered future level (n+1 level). 

Energy equation 

1

, , 1, 1, , 1 , 11 1

, ,

1

1, , 1, , 1 , , 1 , ,

, 2

2 2

2 2

n n n n n n

i j i j i j i j i j i jn n

i j i j

n n n n n n n n

i j i j i j i j i j i j f si j si jn

i j

P

T T T T T T
u v

t x y

T T T T T T H f f

x y C t




    



   

  
 

  

     
   

    

                         (6.13) 

which may be rearranged as, 

   1, 1, , 1 , 11 1 1

, , ,

1

1, , 1, , 1 , , 1 , ,

, ,2

2 2

2 2

n n n n

i j i j i j i jn n n

i j i j i j

n n n n n n n n

i j i j i j i j i j i j f si j si jn n

i j i j

P

T T T T
T u t v t

x y

T T T T T T tH f f
t T

x y C t


     



   

 
    

 

      
     

    

           (6.14) 

Similarly, the final form of species continuity equation may be written as 

   1, 1, , 1 , 11 1 1

, , ,

1, , 1, , 1 , , 1

,2 2

2 2

2 2

n n n n

k i j k i j k i j k i jn n n

k i j i j i j

n n n n n n

k i j k i j k i j k i j k i j k i j nk
k i j

C C C C
C u t v t

x y

C C C C C CD
t C

x y

     

   

 
    

 

    
    

   

                          (6.15) 

The density at a node is linked to the temperature as (Tesfaye and Taskinen, 2010) 

1 1

, ,9040 0.00021n n

i j i jT                                                                                                      (6.16) 

Solution Algorithm 

In this hybrid solution method, computational algorithm comprises of following steps.  

1) The time step t  is so calculated that the CFL value is kept lower than 10
-3

 to ensure 

stable solution. To achieve this automatic t control algorithm is used at each time 

step, which actually yields a range of t from 0.01 to 0.001s. 

2) To start the calculations, energy equation is solved to get temperature field. 

3) Based on the temperature field, density distribution is calculated at nodal points using 

Eq. (6.16). 

4) Depending on density distribution and using LBM method velocity field is calculated. 

5) Once velocity field is obtained energy equation, and species continuity equation are 

solved to obtain new temperature field, concentration field, and density distribution. 

6) Solid fraction is calculated using Eq.(6.9) 
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7) From temperature distribution solid zone, mushy zone, and liquid zone are identified. 

8) Within the mushy zone segregation profile is calculated using lever rule. 

9) Steps 2 to 8 are repeated till the prescribed length of time is complied.  

 

6.5 Results and discussion 

Solidification of Ni-Cu (50%-50%) alloy in a square cavity has been studied for different 

boundary conditions. A hybrid LB model is developed and the dynamics of mushy region is 

investigated in Ni-Cu binary alloy.   

The present hybrid LB code is validated for a pure fluid system in which the u velocity was 

calculated along the y direction.  Figure 6.4 shows the present hybrid LB code validation with 

well-known analytical solution of Poiseuille flow and numerical model developed by (Ohno 

and Sato, 2018b). The results show a good agreement with the analytical and numerical 

solution for Poiseuille flow.  

 

Figure 6.4: Validation of hybrid LBM with analytical Poiseuille flow and numerical model by 

(Ohno and Sato, 2018a)  

Left boundary is subjected to heat loss and other boundaries are insulated. For numerical 

calculations, thermo-physical properties of Ni-Cu alloy are given in the following table in 

terms of order of magnitude which is presented in Table 6.1.  
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Table 6.1: Physical and thermo-physical data for Ni- Cu alloy solidification (Porter et al., 

2009) 

Initial Temperature (Ti) 1460 
0
C 

Liquidus Temperature (Tl) 1310 
0
C 

Solidus Temperature (Ts) 1265 
0
C 

Melting Point of Pure Cu 1085 
0
C 

Melting Point of Pure Ni 1455 
0
C 

Density (ρm) 9040-0.00021*T (
0
C) 

Average Viscosity (μ) 4.0 Pa. Sec 

Thermal Conductivity (k) 90.7 W/(m·K). 

Specific Heat (cp) 0.1 KJ/kg K.  

Thermal Diffusivity (α) 10
-5

 m
2
/sec 

Kinematic Viscosity (ν) 10
-6

 m
2
/sec 

Mass Diffusivity (D) 10
-8

 m
2
/sec 

Volume expansion coefficient (βT,βc) 10
-5

 1/K, m
3
/kg 

Tref 1460 
0
C 

 

In present investigation LBM and semi-implicit finite difference numerical scheme has been 

employed. Analysis has been carried out in square cavity and up to 5x10
5
 time steps in each 

case.  

It is found that boundary conditions have got prominent effect on the solidification process 

and phasic profiles are consistent mostly with the boundary conditions. In the present work 

the effect of different boundary conditions on the mushy region has been studied. The 

segregation ratio (SR) is defined by the ratio of local volume averaged molar composition of 

Ni and the averaged composition of the Ni-Cu alloy. The effect of three different boundary 

conditions on the segregation ratio at the mushy region also studied. The segregation ratio is 

calculated for all three different types of boundary conditions. The temperature distribution at 

the left boundary wall can be presented in three ways. The different boundary conditions are 

shown in Fig. 6.5 (a) through (c).  
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(a) 

 
(b) 

 
(c) 

 

Figure 6.5: Thermal boundary on left wall for a) boundary condition 1, b) boundary condition 

2 and c) boundary condition 3. 

Figure 6.6 (a) to (c) show the domain of mushy region by plotting isotherms using boundary 

condition-1. Due to non-uniform boundary condition temperature driving force are different 

along y-axis. Hence rate of heat loss varies accordingly. The shape of mushy region becomes 

irregular depending on the local rate of heat removal. 
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(a) (b) 

 

(c) 

Figure 6.6: Thermal dynamics of mushy region for boundary condition 1 after time steps a) 

10
5
 b) 3x10

5
 and c) 5x10

5
. 

The temperature distribution in mushy region is presented in Fig. 6.6 (a) to (c) for 

boundary condition 1.  It is found that not much temperature variation is observed in that 

zone.  
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(a) (b) 

 

(c) 

Figure 6.7: Solid weight fraction distribution at mushy region using boundary condition 1 

after time steps a) 10
5
 b) 3x10

5
 and c) 5x10

5
. 

Figure 6.7 (a) to (c) represent the weight fraction distribution in mushy region at 

different time levels. As time step was taken as 0.0001 to meet the required CFL limit, in 

such a short time scale solidification processes is conduction dominated and that is reflected 

in weight fraction distribution in mushy region.  
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(a) (b) 

 

(c) 

 

Figure 6.8: Segregation ratio in mushy region for boundary condition 1 after time steps a) 10
5
 

b) 3x10
5
 and c) 5x10

5
. 

Mixing in the concentration field is therefore quite feeble. The segregation for boundary 

condition 1 is shown in Fig. 6.8. 
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(a) (b) 

 

(c) 

Figure 6.9: Solid weight fraction distribution in mushy region for boundary condition 2 after 

time steps a) 10
5
 b) 3x10

5
 and c) 5x10

5
. 

Figure 6.8 shows growth of mushy region with time and corresponding segregation 

ratio of solute (Ni ).  
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(a) (b) 

 

(c) 

Figure 6.10: Segregation ratio in mushy region for boundary condition 2 after time steps a) 

10
5
 b) 3x10

5
 and c) 5x10

5
. 

It is clear from the figures that concentration of solute near the solid interface may be more 

than 1.0 as per definition of segregation ratio given in (Ohno and Sato, 2018b) local volume 

averaged molar composition of solute divided by the average composition of the alloy.  
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(a) (b) 

 

(c) 

Figure 6.11: Solid weight fraction distribution in mushy region for boundary condition 3 after 

time steps a) 10
5
 b) 3x10

5
 and c) 5x10

5
. 

The change of solid weight fraction in the mushy region for boundary condition 2 has 

been presented in Fig. 6.9. For boundary condition 2 which is wavier in nature, leads to wavy 

macro-segregation profiles.  
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(a) (b) 

 

(c) 

Figure 6.12: Segregation ratio in mushy region for boundary condition 3 after time steps a) 

10
5
 b) 3x10

5
 and c) 5x10

5
. 

The dynamic evolution of mushy region at different time step is shown in Fig. 6.9(a) 

through (c). It is seen from Fig. 6.9 that the mushy region grows and the distribution of solid 

fraction in the mushy region changes with time. Though heat loss is only from one side, 

irregular nature of boundary condition causes non uniform heat flux at the boundary, which 

not only generates irregular phase boundary , but also criss-cross transfer of momentum, heat 

and mass transfer become apparent in the vicinity of the boundary. This generates rather a 

complex local mixing which is not seen with regular boundary conditions.  

The segregation ratio for boundary condition 2 is presented in Fig. 6.10. 

The nature of temperature distribution for boundary condition 3 is quite different from the 

earlier two cases. It is seen from Fig. 6.5 (c) that at the bottom of the left wall possesses 
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higher temperature and the temperature decreases at the left wall from bottom to top 

direction. 

 

 
 

 

 

 

 

 

 

 

 
  

 

Figure 6.13: Temperature distribution in mushy region with velocity field in liquid zone for 

boundary condition 3 after time steps a)5x10
4
, b) 10

5
 c) 3x10

5
 and d) 5x10

5
. 

The solid weight fraction distribution at the mushy region has been presented in Fig. 6.11 for 

boundary condition 3. The growth dynamics of the mushy region with time increment is 

predicted in Fig 6.11. The segregation ratio for boundary condition 3 is shown in Fig. 6.12 (a) 

to (c). The upper value of the segregation ratio is 1.2 and it decreases to the direction of 

solidus line. The temperature distribution in the mushy zone and the fluid flow distribution in 

liquid zone are presented in Fig. 6.13. Results show that, the boundary condition has slight 

curvature and due to density difference causes mild circulatory flow in the molten region. 

The progress of the solid phase increases with time which is common in nature.  

  

(a) (b) 

(c) (d) 
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6.5 Conclusions 

In these chapter results of solidification study of Ni-Cu (50%-50%) binary alloy in a square 

cavity is presented. Main objective of study is to observe the effect of different cooling 

boundary conditions on solidification rate, dynamics of mushy region, and shapes of different 

phasic boundaries. The investigation has been carried out for three different boundary 

conditions and following conclusions may be drawn. 

 Heat loss to surrounding through left boundary causes start of the solidification. 

 Front of the solidified domain moves inward approximately parallel to the heat loss 

boundary.  

 The moving front approximately takes the shape of the temperature profile of the 

thermal boundary conditions. 

 Thickness of the solidified domain and mushy region grows with time. 

 During time scale of the dynamics study heat loss near convective boundary is 

conduction dominated. 

 In the liquid zone velocity circulation is observed as shown for one case. 

 Weight fraction distribution of Ni in the mushy region changes from high to low value 

from solid interface to liquid interface. 

 Circulation in the mushy region is feeble hence heat, mass and momentum transfer in 

that region are mostly diffusion dominated. 
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CHAPTER 7 

CONCLUSON AND FUTURE SCOPE OF 

WORK 

 
The present thesis concerns solid –liquid phase change studies for metals and alloys. A brief 

summary of the work carried out and the future scope is now reported below. 

7.1 Summary and Conclusions 

The study reported in the work can be categorized as  

 Development of lattice Boltzmann code to study melting and solidification of low 

Prandtl number liquid metals. A modification of existing lattice Boltzmann method 

(LBM) has been proposed for low Pr materials. 

 Investigation of the convective flow instability in the melt regime for low Prandtl 

number liquid metals  

 Investigation of the natural convection effect in corner melting and solidification 

problem in a wide range of Prandtl number 

 Development a hybrid lattice Boltzmann model to simulate the mushy region for Ni-

Cu binary alloy solidification. 

The present work reports development of a lattice Boltzmann model to overcome the 

numerical instability associated in handling convection in low Pr fluids. The model is used 

successfully to study melting dynamics in a square cavity for Pr ∈ [0.001, 0.1] and Ra ∈  

[10
4
,10

6
]. After the global findings of the melting of low Prandtl number liquid metal, the 

flow instability in the melt zone is analyzed by studying the flow transients. The peak 

frequencies that appear as the flow enters the transition regime are quantified using Fast 

Fourier Transform (FFT).  

Corner melting and solidification of low Prandtl number material in a square cavity has been 

simulated using total enthalpy based lattice Boltzmann method. Comparison has been made 

between corner melting heated from bottom and corner melting heated from top boundaries. 

The study reveals that for both the cases initially convex melt front is formed which turns into 

concave shape with time. Then the corner melting study is extended for low Prandtl number 

liquid metals with a range of Pr ∈ [0.001, 0.01]. The study reveals that in corner melting 
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initially convex melt front is formed which turns into concave shape at increasing time 

interval for Pr=0.001, 0.005 and 0.01 respectively.  

A hybrid lattice Boltzmann model is developed to investigate the mushy zone dynamics and 

macro-segregation in Ni-Cu binary alloy solidification. The flow field is modelled using 

standard LBM and thermal and species continuity equations are solved using finite difference 

method (FDM). Effects of cooling boundary conditions on solidification rate, dynamics of 

mushy region, and shapes of different segregation profiles are studied in this work.  

 

7.2 Future Scope of Work 

The present work involves studies on melting and solidification in two dimensional domains. 

Extension to three-dimensional problems shall be challenging which shall require 

optimization of computational resources. It is expected that additional nuances of the flow 

and thermal field shall be observed. This shall also call for programming for accelerated 

convergence with scope of improvement in the numerical schemes. 

It is to be noted that for handling the change of morphology and segregation in alloys, LBM 

is to be coupled with a suitable interface tracking model to simulate the growth of 

microstructure during solidification. While there has been a lot of developments in the area of 

LBM, quest for improvement in capability of these methods which can predict realistic 

microstructure with optimum computing resources are still on. Improved algorithms along 

with deployment of high performance computing are special requirements for moving to 

simulation of real life problems. Thus development of an effective full LBM method to study 

binary alloy solidification is again a futuristic problem.  

Finally, the present work is limited to regular geometry with orthogonal sides. As natural 

processes and industrial jobs both can have irregular geometries, schemes for handling 

arbitrary curved boundaries using LBM is the need of the hour. 
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