M.E. POWER ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2019

SUBJECT: Computational Heat Transfer & Fluid Flow

Time: Three Hours Full Marks 100

Attempt Any FOUR questions.

No. of Questions		Marks
1.a)	Discuss how equations $a_i T_i = b_i T_{i+1} + c_i T_{i-1} + d_i$ $(N \ge i \ge 1)$ can be solved by Thomas Algorithm, where T_i and T_i are known. (a, b, c) and d are constants).	13
b)	Briefly discuss the Gauss-Siedel method for solving a set of liner equations, with conditions of convergence. Why it is not popular among reasearches? What is its difference with direct method?	12
2.	Discuss various steps in solving a 2-D unsteady purely conduction problem with source term (partly a function of temperature) using finite volume method.	25
3.a)	Explain how staggered grids are used to overcome the difficulties in solving a 2D pressure-velocity coupled steady flow problem?	10
b)	With an example, explain 'false diffusion'. A 2-D purely convection equation is discretised following upwind scheme. Show mathematically that 'false diffusion' decreases with grid refinement.	15
4.	Show that for 1D convection diffusion equation $\frac{d}{dx}(\rho u\phi) = \frac{d}{dx}(\Gamma\frac{d\phi}{dx})$, the exponential scheme yields the following discretised equation. $a_P\phi_P = a_E\phi_E + a_W\phi_W$, $a_E = \frac{F_e}{Exp(F_e/D_e)-1} , \qquad a_W = \frac{F_w Exp(F_w/D_w)}{Exp(F_w/D_w)-1} \text{and} a_P = a_E + a_W + (F_e - F_w).$ Hence briefly discuss the hybrid scheme as a simplification of exponential scheme. How the difficulties of central difference scheme and the upwind scheme can be eliminated using this scheme?	25

M.E. POWER ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2019

SUBJECT: Computational Heat Transfer & Fluid Flow

Time: Three Hours Full Marks 100

The figure shows a 2-D cavity of height h and length l filled with air. A constant temperature heat source of length s is placed at the center of the LHS wall. There is a barrier at RHS which covers 50% of the RHS side. Remaining 50% is open. All the walls are insulated. (hatched lines in the Figure 1). Considering steady laminar natural convection, develop the transport equations with boundary conditions. Also show the non-dimensional form of equations and boundary conditions using suitable scale. (Incorporate the density variation in the body force term using Boussinesq approximation.)

 Starting from generalized discretised equation show how a 2-D fluid flow problem can be solved using SIMPLER algorithm.

25

25