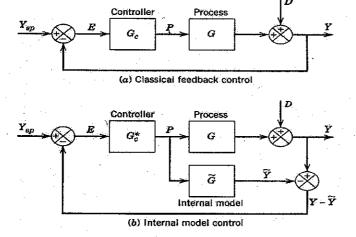
BIEE 3rd Year 2nd Semester Examination, 2019 SUBJECT: Process Control – I


Time: Three hours

Full Marks 100

Answer any I	FOUR o	nuestions
--------------	--------	-----------

Q. No.		Marks
1.	a) Derive the velocity form of the digital PID controller and point out its advantages and disadvantages over the positional form.	5
	b) Provide a comparative study about the merits and demerits of feedback control and feedforward control systems.	4
v.	c) Write down the different forms (Type-A, Type-B, and Type-C) of a parallel PID controller.	2
	d) In the context of feedback control, what are meant by proportional band, reset time, and derivative time?	4
	e) Why an ideal PD controller is physically unrealizable? How a real PD controller is designed? What is derivative kick and how it is eliminated?	6
	f) What is integral or reset windup and how this problem is resolved?	4

2. The block diagrams for conventional feedback control and internal model control (IMC) are shown below:

- a) Find the relation between G_c and G_c^{*} so that the two block diagrams become identical. From the block diagram of IMC derive the closed-loop relation among Y, Y_{sp}, and D. Describe the design steps of IMC.
 b) How PID parameters are tuned by Ziegler and Nichols continuous cycling method? What are 5+3
- b) How PID parameters are tuned by Ziegler and Nichols continuous cycling method? What are the major disadvantages of this technique?
- c) Describe the relay auto-tuning method for on-line PID tuning. Point out its important advantages 5+2 compared to the continuous cycling method.

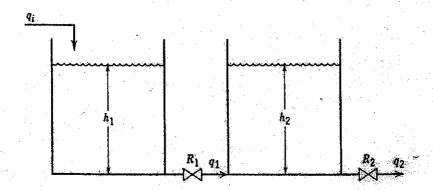
a) Derive an approximate first-order-plus-time-delay model for the system with transfer function, 3.

2

 $G(s) = \frac{K(1 - 0.2s)}{(6s + 1)(2s + 1)(0.8s + 1)}$ using Taylor series expansion. b) State the Skogestad's 'half-rule' approximation method for higher-order models that contain

multiple time constants. Use this method to derive two approximate models:

3+3+3


- i) A first-order-plus-time-delay model,
- ii) A second-order-plus-time-delay model in the form: $\widetilde{G}(s) = \frac{Ke^{-\theta s}}{(\tau_1 s + 1)(\tau_2 s + 1)}$,

for the system with transfer function, $G(s) = \frac{K(1-0.5s)e^{-s}}{(10s+1)(3s+1)(0.4s+1)(0.06s+1)}$.

c) For the two-tank interacting system shown below the transfer function between h_2 and q_i in terms of deviation variables can be expressed as, $\frac{H_2(s)}{Q_i(s)} = \frac{R_2}{\tau^2 s^2 + 2\zeta \tau s + 1}$. Find the expressions

14

for τ and ζ . Assume that the two tanks have different cross-sectional areas A_1 and A_2 and that the valve resistances are fixed at R_1 and R_2 .

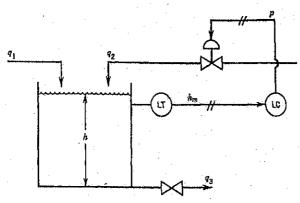
Write short notes on (any five):

5×5=25

- a) On-off control
- b) Time-delay compensation
- Control valve characteristics
- Controller tuning by step test method
- Process modeling through process reaction curve
- Ratio control f)

5.

6.


a) Feedback control makes process performance less sensitive to changes in the process – Justify this statement through robustness analysis in terms of sensitivity function (S) and complementary sensitivity function (T).

5

b) Why cascade control is used? With the help of a practical process, explain the operation of a cascade control system.

2+7

c) Consider the liquid-level control system shown below. The liquid level is measured and the level transmitter (LT) output is sent to a feedback controller (LC) that controls liquid level by adjusting volumetric flow rate q_2 . A second inlet flow rate q_1 is the disturbance variable. Assume: The liquid density ρ and the cross-sectional area of the tank A are constant. The flow-head relation is linear, $q_3 = h/R$. The level transmitter, I/P transducer, and control valve have negligible dynamics.

Draw the block diagram of the level control system. For a unit step change in disturbance, find the expression of steady-state error or offset under proportional control.

4+7

a) What is the function of a final control element in a close-loop system? What is the role of an actuator in a final control element? Mention various methods of operation of pneumatic actuators.

1+2+2

b) What is C_v of a control valve? What is meant by control valve sizing? What considerations are taken into account while selecting the valve size for a particular process under control?

1+2+4

c) Why spring actuator often requires a positioner? Providing a neat sketch of such a positioner describe its operation.

1+5

d) How the operation of control valves suffers due to *stiction* and *deadband*. What are meant by cavitation and flashing?

3±4