Bachelor of Instrumentation and Electronics Engineering, 2019 2nd year, 2nd semester DIGITAL ELECTRONICS

Time: Three hours

Full Marks: 100

ALL MODULES ARE COMPULSORY.

Module - I (4 Marks)

Q1. (a) Convert (408C1.D6)₁₆ to base-4 system.

(b) What are Self-Complementing BCD codes? Give an example.

(2+2)

Module – II (6 Marks)

- Q2. Perform the following arithmetic operations:
 - (a) (-39) + (-28) using 7-bit 2's complement number system.
 - (b) (9659) + (6738) using Normal BCD system.

(3+3)

Module – III (40 Marks)

(Answer Any TWO from Q3, Q4 and Q5)

Q3. (a) Draw the **p-MOS** circuit which realizes the following function:

F(A, B, C) = A'C' + ABC

- (b) What logic function is realized by the circuit shown in Figure P3(b)?
- (c) In Figure P3(c), a circuit is implemented using one 4:1 MUX. What is the function, F, available at its output in minimal form?
- (d) Realize a two input XNOR function using only two 2:1 Multiplexers.

(5+5+5+5)

- Q4. (a) Can we use the hypothetical logic Gate shown in Figure P4(a) as one Universal Logic Gate? Explain.
 - (b) In the circuit shown in Figure P4(b), if the output required is F = A'B'C + A'B'D, what type of gates are G1 and G2?
 - (c) Using a suitable decoder and necessary OR-gates realize a full-subtractor. Use proper input and output signal names.

(5 + 5 + 10)

Q5. Using **Quine-McCluskey's tabular method**, obtain the **minimized SOP** realization for the function :

$$F(A, B, C, D) = \sum m(0, 1, 2, 7, 9, 13, 15) + d(8, 10, 14)$$

- (a) ignoring combinational hazard, and
- (b) removing combinational hazard.

(15 + 5)

<u> Module – IV (50 Marks)</u>

(Answer Q6 and Any TWO from Q7, Q8 and Q9)

- Q6. (a) In the circuit shown in Figure P6(a), the flip-flops have set-up time of 5 nSec and a worst case clock-to-output delay of 10 nSec. The AND gate has a delay of 5 nSec. What is the maximum possible clock rate for the circuit to operate faithfully?
 - (b) Find out the count sequence $(Q_2Q_1Q_0)$ for the circuit shown in Figure P6(b). Assume initially all the three memory elements were in reset state.
 - (c) The circuit shown in Figure P6(c), performs a certain function. Derive an expression for the next state Q_{n+1} in terms of X and previous state Q_n .

(5 + 10 + 5)

- Q7. (a) What is the "decoding spike problem"? How can it be avoided?
 - (b) Using **SR-flip flop** as the memory element realize a sequential **binary to gray code converter**. The input binary bits are coming serially starting from the MSB.

(5 + 10)

Q8. Realize a sequence detector circuit which produces a logic 1 output whenever it detects a sequence "110". The output is zero otherwise. Use T-Flip flops as the memory elements. Is there any lock-out possibility in your design?

(14 + 1)

Q9. Design a sequence generator which generates the sequence ... 100110... repeatedly. Use minimum number of D-Flip flops.

(15)

FIGURE P3(c)

A
$$F = (\bar{A} + B)$$
B FIGURE P4(a)

FIGURE PG (C)