7. (a) Let $\vec{F}=-3 x^{2} \hat{i}+5 x y \hat{j}$ and let C be the curve $\mathrm{y}=\mathrm{zx}^{2}$ in the xy plane. Evaluate the line integral $\int_{C} \vec{F} . d \vec{r}$ from $(0,0)$ to $(1,2)$.
(b) Let $\vec{V}=x^{2} z^{2} \hat{i}-2 y^{2} z^{2} \hat{j}+x y^{2} z \hat{k}$. Find $\operatorname{curl}(\vec{V})$ at the point ($1,-1,1$).
(c) State Green's theorem in a plane. Verify Green's theorem for $\int_{c}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
$2+8$
8. (a) Define the following :
(i) Random experiment (ii) Outcome (iii) sample space (iv) Mutually exclusive events (v) Equally likely events.
$2 \times 5=10$
(b) In a group of 20 males and 5 females, 10 males and 3 females are service holders. What is the probability that a person selected at random from the group is a service holder, given that the selected person is a male.

5
(c) Find the probability that in the throw of two unbiased dice, the sum of points will be even or less than 5.5

(1st Year, 2nd Semester, Old Syllabus)

Mathematics - IV J

Time : Three hours
Full Marks : 100
Notations/Symbols have their usual meanings.
Answer any five questions.

1. (a) Prove that a necessary and sufficient condition that $\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}(\mathrm{x}, \mathrm{y})+\mathrm{iv}(\mathrm{x}, \mathrm{y})$ tends to a limit $\ell=\mathrm{m}+\mathrm{in}$ as $\mathrm{z}=\mathrm{x}+\mathrm{iy} \rightarrow \alpha+\mathrm{i} \beta=\mathrm{a}$ is that
$\lim _{\substack{x \rightarrow \alpha \\ y \rightarrow \beta}} u(x, y)=m, \lim _{\substack{x \rightarrow \alpha \\ y \rightarrow \beta}} v(x, y)=n$
(b) When a function $\mathrm{f}(\mathrm{z})$ is said to be continuous? Test the function $f(z)=\frac{z}{|z|}$ for continuity.
(c) Prove that a continuous function $f(z)$ defined on a closed bounded rectangular region must be bounded.
2. (a) Let $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z=x+i y \neq 0$

$$
=0, z=0
$$

Prove that $f(z)$ is continuous at 0 and satisfied Cauchy-Riemann conditions but is not differentiable at 0 .

8
(b) If $f(z)$ is differentiable at $z=a$ then prove that it is also continuous at a.

4
(c) Define a harmonic function. Find analytic function $f(z)$ of which the real part is given by $u=3 x^{2}+x y-$ $3 y^{2}$.
$2+6$
3. (a) If $f(z)$ is analytic everywhere on the region bounded by two simple closed curves C_{1} and C_{2} where C_{1} is inside C_{2} then prove that

$$
\begin{equation*}
\oint_{c_{1}} f(z) d z=\oint_{c_{2}} f(z) d z \tag{6}
\end{equation*}
$$

(b) If C denotes the circle $|\mathrm{z}|=1$, consider the integral $\int_{c} \frac{d z}{Z+z}$ and hence deduce the value of $\int_{0}^{\pi} \frac{1+z \cos \theta}{5+4 \cos \theta} d \theta$. 6
(c) State and prove Cauchy's Integral Formula.
4. (a) Show that $f(z)=\sin \frac{1}{z}$ has an essential singularity at $\mathrm{z}=0$.
(b) Find the following Laplace transforms.
(i) $L(\sin \sqrt{t})$
(ii) $L\left(e^{-3 t}(\cos 4 t+3 \sin 4 t)\right)$
(iii) $L\left(e^{-t} \sin ^{2} t\right)$
5. (a) Find $L^{-1}\left(\frac{p-1}{(p+3)\left(p^{2}+2 p+2\right)}\right)$
(b) $L^{-1}\left(\frac{p}{(p+1) 5}\right)$
(c) Using Laplace transform, solve the differential equation
$\left(D^{2}-D-2\right) y=20 \sin z t, y=-1, D y=z$ at $t=0$.
$7+4+9$
6. (a) Let $\phi(x, y, z)=x^{2}+y^{2}+x z$. Find the directional derivative of ϕ at the point $\mathrm{P}(2,-1,3)$ in the direction of the vector $\hat{i}+2 \hat{j}+\hat{k}$.
(b) State Gauss's Divergence Theorem. Hence evaluate $\iint_{S} \vec{F} \cdot d \vec{s}$ where $\vec{F}=4 x z \hat{i}-y 2 \hat{j}+y z \hat{k}$ and S is the surface of the cube bounded by $x=0, x=1, y=0, y=1$, $\mathrm{z}=0, \mathrm{z}=1$.

