
Ex/IEBE/MATH/T/123/2019(OLD)

BACHELOR OF  (I.E.E.) ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)

Mathematics - III J

Time : Three hours                                               Full Marks : 100

Notations/Symbols have their usual meanings.

Answer any ten questions.

1. (a) Show that the series 1+ r + r2 + r3+....

(i) converges if | r | < 1,  (ii) diverges if r 1, and
(iii) oscillates if r  –1

(b) Test for convergence the following series :
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2. Discuss the convergence of the following series :
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10. A tightly stretched string with fixed end points x = 0 and

x = L is initially in a position given by 
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If it is released from rest from this position, find the
displacement y(x,t). 10

11. Given that f(x) = x + x2 for –< x <  and f(x) = 2 for
x = . Expand f(x) in Fourier series, and show that

 
2

2
2

4 2
1 cos sin

3 1

nx x nx nx
nnn

  
 
 


    


10

12. Obtain the half range cosine and sine series expansion
for f (x) = x in the interval 0  x . Hence show that
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3. (a) Solve :  24 1
dy

x y
dx

   , given that y = 1 when

x = 0.

(b) Solve : y// + 4y/ + 4y = 3 sin x + 4 cos x, given that

y = 1 and y/ = 0 when x = 0. 4+6

4. (a) Solve : (D3 + D2 + 4D + 4)y = 0

(b) Using the method of variation of parameters, solve
the following differential equation :
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5. (a) Show that the following equation is exact and hence
solve it :
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(b) Solve : (D3+1)y = cos (2x–1) 5+5

6. (a) Solve :  
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(b) Find the series solution of
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7. (a) Form a PDE by eliminating the arbitrary constants
from z = (x2 +a) (y2+b).

(b) Form a PDE by eliminating the arbitrary function from

(i) f (x2 + y2, z – xy) = 0
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8. (a) Solve : 
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when x = 0,  and  z = 0 when y is an odd multiple of

2
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(b) Solve the following PDEs :
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9. Obtain the various possible solutions of the one-

dimensional heat conduction equation 
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the method of separation of variables. Identify the solution
which is appropriate with the physical nature of the
equation. Justify your answer. 10


