10. A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{L}\right)$. If it is released from rest from this position, find the displacement $y(x, t)$.
11. Given that $\mathrm{f}(\mathrm{x})=\mathrm{x}+\mathrm{x}^{2}$ for $-\pi<\mathrm{x}<\pi$ and $\mathrm{f}(\mathrm{x})=\pi^{2}$ for $x= \pm \pi$. Expand $f(x)$ in Fourier series, and show that

$$
\begin{equation*}
x+x^{2}=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}(-1)^{n}\left\{\frac{4}{n^{2}} \cos n x-\frac{2}{n} \sin n x\right\} \tag{10}
\end{equation*}
$$

12. Obtain the half range cosine and sine series expansion for $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in the interval $0 \leq \mathrm{x} \leq \pi$. Hence show that

$$
\begin{equation*}
\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .=\frac{\pi^{2}}{8} \tag{10}
\end{equation*}
$$

BACHELOR OF (I.E.E.) ENGINEERING EXAMINATION, 2019

(1st Year, 2nd Semester, Old Syllabus)

Mathematics - III J

Time : Three hours
Full Marks : 100
Notations/Symbols have their usual meanings.
Answer any ten questions.

1. (a) Show that the series $1+r+r^{2}+r^{3}+\ldots . \alpha$
(i) converges if $|\mathrm{r}|<1$, (ii) diverges if $\mathrm{r} \geq 1$, and (iii) oscillates if $\mathrm{r} \leq-1$
(b) Test for convergence the following series :

$$
\frac{1}{1.2 .3}+\frac{3}{2.3 .4}+\frac{5}{3.4 .5}+\ldots \ldots . \alpha
$$

2. Discuss the convergence of the following series :
(a) $\sum_{n=1}^{\alpha} \frac{n!}{\left(n^{n}\right)^{2}}$
(b) $1+\frac{2!}{2^{2}}+\frac{3!}{3^{3}}+\frac{4!}{4^{4}}+\frac{5!}{5^{5}}+\ldots \ldots . \alpha$
3. (a) Solve : $\frac{d y}{d x}=(4 x+y+1)^{2}$, given that $\mathrm{y}=1$ when $\mathrm{x}=0$.
(b) Solve : $y^{\prime /}+4 y^{\prime}+4 y=3 \sin x+4 \cos x$, given that $\mathrm{y}=1$ and $\mathrm{y}^{\prime}=0$ when $\mathrm{x}=0$.
4. (a) Solve : $\left(D^{3}+D^{2}+4 D+4\right) y=0$
(b) Using the method of variation of parameters, solve the following differential equation :

$$
\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x
$$

5. (a) Show that the following equation is exact and hence solve it :

$$
\left\{y\left(1+\frac{1}{x}\right)+\cos y\right\} d x+(x+\log x-x \sin y) d y=0
$$

(b) Solve : $\left(D^{3}+1\right) y=\cos (2 x-1)$
6. (a) Solve : $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$
(b) Find the series solution of

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0
$$

7. (a) Form a PDE by eliminating the arbitrary constants from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
(b) Form a PDE by eliminating the arbitrary function from
(i) $f\left(x^{2}+y^{2}, z-x y\right)=0$
(ii) $z=f\left(\frac{x y}{z}\right)$
8. (a) Solve : $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, given that $\frac{\partial z}{\partial y}=-2 \sin y$ when $\mathrm{x}=0$, and $\mathrm{z}=0$ when y is an odd multiple of $\frac{\pi}{2}$.
(b) Solve the following PDEs :
(i) $\frac{y^{2} z}{x} p+x z q=y^{2}$
(ii) $y^{2} p-x y q=x(z-2 y)$
9. Obtain the various possible solutions of the onedimensional heat conduction equation $\frac{\partial u}{\partial t}=\left\lvert\, \alpha \frac{\partial^{2} u}{\partial x^{2}}\right.$, by the method of separation of variables. Identify the solution which is appropriate with the physical nature of the equation. Justify your answer.
