
B.E. INFORMATION TECHNOLOGY THIRD YEAR SECOND SEMESTER - 2019

(3rd Year; 2nd Semester)

Subject: Formal language & Automata Theory

Time: Three hours

Full Marks: 100

	CO4	EX/IT/T/325/2019
	CO4	Auchipt any four directions
	[20]	 A. Let G=(V, Σ, P, S), where V={a, b, S}, Σ={a, b}, and P={S→ aSb aSa bSa bSb ε}. Show that L(G) is regular. B. Show that the grammar G=(V, Σ, P, S), where V={a, b, S, A}, Σ={a, b}, and P: S→AA
	CO5	A. Show that diagonalization (or non-self-accepting) language is not recursively enumerable. 5
	[20]	B. Prove that universal language (L _u) is undecidable.
		Attempt any one form rest.
		C. State the complete sub graph problem (CSP) and then prove that CSP is NP complete.
		D. State the set cover problem and then prove that it is NP complete.

CO1: Explain and construct Finite automata, Regular Languages and their properties. (K3)

CO2: Describe and construct Context Free Languages, Push Down Automata and their properties. (K3) CO3: Explain and outline Turing Machine, its variants. (K4) CO4: Classify and analyze different types of grammar and language. (K4) CO5: Illustrate different decidable languages, unsolvable problems and complexity. (K3)