## BACHELOR OF ENGINEERING IN INFORMATION TECHNOLOGY $2^{ND}$ YEAR $2^{ND}$ SEMESTER, EXAMINATION, 2019

## NUMERICAL METHODS AND OPTIMIZATION TECHNIQUES

## TIME=3 HOURS

**FULL MARKS=100** 

| CO1        | Q1.                                                                                        | •,•               | 3                          | 0.1.0    | . 1 %   | т . 4     | D       | المستمدة | 1 - 41 - A         |                                       |
|------------|--------------------------------------------------------------------------------------------|-------------------|----------------------------|----------|---------|-----------|---------|----------|--------------------|---------------------------------------|
| [20]       | (a) Compute the                                                                            |                   | root of x' - x             | - 0.1=0  | , by r  | Newto     | п-кар   | nson P   | vietnoa,           | corre                                 |
|            | to six significant (b) Given the fo                                                        | _                 | oblo.                      | X        | 0       | 5         | 10      | 15       | 20                 | ]                                     |
|            | (b) Given me ic                                                                            | mownig t          | aoie.                      | f(x)     | 1.0     | 1.6       | 3.8     | 8.2      | 15.4               | 1                                     |
|            |                                                                                            |                   |                            |          |         |           |         | L        |                    | ]                                     |
|            | Construct the di                                                                           | fference t        | able and con               | ipute f  | (21) b  | y Nev     | vton's  | Back     | ward Fo<br>[(10+1) |                                       |
| CO2        | (Answer any or                                                                             | e either          | Q2 or Q3)                  |          |         |           | ,       |          | ,                  | · · · · · · · · · · · · · · · · · · · |
| 20]        | Q2.                                                                                        | •                 |                            |          |         |           |         |          |                    |                                       |
| •          | (a) Evaluate $\int_0^1$ equispace).                                                        | $x^3$ dx by '     | Trapezoidal I              | Rule wi  | th n=   | 5(Whe     | ere n i | s the n  | umber              | of                                    |
|            | (b) Compute y(0.6) by Runge-Kutta method correct to five decimal places, from th           |                   |                            |          |         |           |         |          |                    |                                       |
|            | equation giv                                                                               | en here           | $\frac{dy}{dx} = xy, y(t)$ | 0)=2,    | takii   | ng h =    | = 0.2   |          | [(10+1             | 0)=20]                                |
|            | Q3.                                                                                        |                   | ux<br>·                    |          | ·       |           |         |          | *                  |                                       |
|            | (a) Evaluate $\int_0^1 \cos x  dx$ by Simpson's One Third Rule, taking six equal interval. |                   |                            |          |         |           |         |          |                    |                                       |
|            | (b)Solve by Euler's Method, the following differential equation for x=0.8 by taking        |                   |                            |          |         |           |         |          |                    |                                       |
|            | h=0.2                                                                                      |                   | $\frac{dy}{dx} = xy, y(0)$ |          | 111010. | intidii O | quatro  | 11 101 . | [(10+10            |                                       |
| 702        |                                                                                            |                   | $\frac{dx}{dx} = xy, y(0)$ |          |         |           | <u></u> |          | [(10.1)            | . 20 <sub>1</sub>                     |
| CO3<br>20] | Q4. (a)Solve by Gau                                                                        | ss –Seide         | el iteration m             | ethod, 1 | the sy  | stem c    | of equ  | ation i  | s given            | below                                 |
|            | $X_1 + X_2 + 4X_3$                                                                         | ζ <sub>3</sub> =9 |                            |          |         |           |         |          |                    |                                       |
|            | $8X_1 - 3X_2 + 2$                                                                          | $2X_3 = 20$       | 7                          |          |         | •         |         |          |                    |                                       |
| •          | $4X_1 + 11X_2 - X_3 = 33$                                                                  |                   |                            |          |         |           |         |          |                    |                                       |
|            | (b)Write down t                                                                            |                   |                            | en direc | t met   | hod an    | id iter | ative 1  | nethod             | to solv                               |
|            | the system of lin                                                                          | ear equa          | tion.                      |          |         |           |         |          | [(15+5)]           | )=20]                                 |
| 004        | Q5.                                                                                        |                   |                            | <u> </u> |         |           |         |          |                    |                                       |
| [20]       | (a) Write the.du                                                                           | ual of the        | following pr               | imal L   | P prol  | olem.     |         |          |                    |                                       |
|            | $\max Z = X_1 + 2$                                                                         | ~ ~               |                            |          |         |           |         |          |                    |                                       |
| -          | Subject to, 2                                                                              |                   | =                          | · ·      |         |           |         |          |                    |                                       |
|            |                                                                                            | $2X_1 + X_2 - 3$  |                            |          |         |           |         |          | ,                  | •                                     |
|            |                                                                                            | $X_1+X_2+X_3$     |                            |          |         |           |         |          |                    |                                       |
|            | 7                                                                                          | $X_1, X_2, X_3$   | ; <b>≥</b> 0               |          |         |           |         |          |                    |                                       |
|            |                                                                                            |                   |                            |          |         |           |         |          |                    |                                       |

| (b) Using simplex |                        |             |
|-------------------|------------------------|-------------|
| $Max Z=3X_1+2X_2$ |                        |             |
| Subject to,       | $X_1 + X_2 \le 4$      | •           |
|                   | $X_1$ - $X_2$ $\leq$ 2 |             |
|                   | $X_1, X_2 \ge 0$       | [(5+15)=20] |

CO<sub>5</sub>

(Answer any one either Q6 or Q7)

[20]

(a) Find the initial basic feasible solution for the following Transportation problem by VAM. The matrix is given here.

| Origin | Destinations |     |     |     |        |  |  |  |
|--------|--------------|-----|-----|-----|--------|--|--|--|
|        | D1           | D2  | D3  | D4  | Supply |  |  |  |
| O1     | 11           | 13  | 17  | 14  | 250    |  |  |  |
| O2     | 16           | 18  | 14  | 10  | 300    |  |  |  |
| O3     | 21           | 24  | 13  | 10  | 400    |  |  |  |
| Demand | 200          | 225 | 275 | 250 | 950    |  |  |  |

(b) Write down the differences between transportation problem and Assignment problem. [(15+5)=20]

Q7.

A project schedule has the following characteristics

| Activity        | 1-2 | 1-3 | 2-4 | 3-4 | 3-5 | 4-9 | 5-6 | 5-7 | 6-8 | 7-8 | 8-10 | 9-10 |
|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| Duration (Days) | 4   | 1   | 1   | 1   | 6   | 5   | 4   | 8   | 1   | 2   | 5    | 7    |

- (a) Draw the Network diagram representing the project.
- (b) Find the total float and Free Float for each activity.
- (c) Find the critical path and total project duration.

[(5+10+5)=20]

CO1: Estimate the roots of polynomials, and Compute the Interpolation of polynomials. (K3, A2)

CO2: Compute derivatives and integration and solve differential equations. (K3, A2)

CO3: Solve and analyze simultaneous linear equations (K3, A2)

CO4: Construct Linear Programming and solve them using graphical methods and simplex methods and dual problem (K3,A2)

CO5: Solve transportation, assignments and Networks problem (K2, A2)