BE INFO TECH 2nd YEAR 1st SEMESTER EXAMINATION, 2019

Computer Architecture

Time: 3 Hours

Full Marks: 100

Answer Any Five

- 1.a) Write (-153) in binary using 3 major representations viz., Sign-Magnitude, One's Complement and Two's Complement number systems both in 8 bit format and 16 bit format.
- b) Convert the Decimal number (20.8125×10^{-2}) to Binary (not more than 8 bits after the binary point). Also convert the Binary fraction $(1010.0101 \times 2^{-3})$ to Decimal.
- c) Represent 0.075 as per IEEE 754 Half Precision Formats, Single Precision Formats and Double Precision Formats.
- d) Write your understanding about UNUM (Universal Number) briefly.

(6+4+6+4)

- 2. a) Using proper diagram, illustrate the concept of Memory Interleaving.
- b) Using proper diagram, illustrate the concept of 'Set-associative Mapping' in a cache.
- c) Using proper diagram, illustrate how 64Kbyte of memory can be achieved using (16K x 1) memory chips.
- 3.a) Draw the internal diagram of a CPU (having Single Bus Organization) clearly showing all the different components.
- b) With respect to the above diagram, show the sequence of micro-operations performed by CPU to do the following operation.

"To load the contents of R1 into the memory location specified by R2".

- c) Draw the detail block diagram of the control unit of a CPU and explain it.
- d) Briefly explain the following terminologies: Control Word, Control Store, Microroutine, Microinstruction.

(6+4+5+5)

- 4.a) For a CPU which supports 'Zero-Address' instruction format, write down a set of assembly language instruction which will evaluate the expression X = (A+(B*W))*(C+(D/Y)). All values are available in the memory; also the result has to be stored back in the memory.
- b) The current values of different registers are R1=2, R2=4, R3=0, R4=5 and R5=2. What will be the values of the different registers after executing the set of instructions shown below and why? Please note that the first instruction of the set is a "register immediate" instruction.

MOV 9, R3;

ADD R1, R4;

MOV R4, [R5];

- c) With proper instruction example, illustrate your understanding about "Base with Index and Offset Addressing".
- d) Typical example of an "Index Addressing" instruction is LD ADR(X). For a "32bit data and address" CPU, what will be the minimum byte length of this instruction and why? Also, explain this instruction with suitable example.

(6+4+4+(3+3))

- 5.a) With proper examples and diagram, illustrate your understanding about "Interrupt Driven I/O".
- b) There are three types of I/O transfer; Programmed Controlled I/O, Interrupt Driven I/O and DMA based on I/O. But DMA includes all three types of I/O. Explain this.
- c) Using proper diagram, illustrate how bits are stored in the CD-ROM so that reading and writing on the CD-ROM can be done.
- d) Using proper diagram, illustrate how data are stored in the Magnetic Tape. (5+5+4+6)
- 6.a) With proper diagram, illustrate how disks are organized in RAID0 and RAID5.
- b) Draw a 3-D Mesh Network of dimension 3. Also, compute their basic characteristic parameters.
- c) Explain how Cache Coherency problem gets solved in a Centralized Multiprocessor type of machine.
- d) With proper diagram, illustrate how Directory Based Protocol works for NUMA type of Multiprocessor machine.

 ((2+3)+(3+2)+5+5)

----X-----X