B.E. PRINTING ENGINEERING (3^{RD} YEAR 2^{ND} SEMESTER) EXAMINATION 2019 ## SUBJECT: CONTROL APPLICATION IN PRINTING **FULL MARKS: 100** ## TIME: THREE HOURS | CO
1 | Answer any one question from (a) and (b) within this block | | |---------|--|--------| | [10] | a. Obtain the transfer function of the following mechanical system | [10] | | | K_1 M_1 M_2 K_2 K_2 K_2 K_2 K_2 K_2 K_3 K_4 K_2 K_4 K_5 K_6 | [10] | | | B_1 B_2 | | | : | b. Explain and derive the mathematical modeling of a field controlled DC motor | | | CO
2 | Answer any one question from (a) and (b) within this block | | | [20] | a. Derive and define the rise-time, settling time and peak overshoot of a first-order system. A second order mechanical system is represented by the transfer function | [10+10 | | | $\frac{\theta(s)}{I(s)} = \frac{1}{Js^2 + fs + k}$. A step input of 10Nm is applied to the system and the results are: 1. Maximum overshoot = 6% 2. Time at peak overshoot = 1sec 3. $k = 20$ Determine the values of J, f | | | | b. Explain with proper diagram the concept of stability. Draw the output response and discuss the stability of the system consisting of a pair of complex conjugate poles lying on the imaginary axis. Draw the pole-zero map and discuss the stability of the following transfer function 1. $G(s) = \frac{5(s+1)}{s^3 + 3s^2 + 5s + 3}$ 2. $G(s) = \frac{s-2}{(s+4)(s^2+2)}$ | [10+10 | | CO | Answer any two questions from (a), (b) and (c) within this block | | | [20] | a. Explain controlled variable and manipulated variable. Define various types of control system with proper diagram. Discuss their advantages and disadvantages. | [10] | | | b. Deduce the transfer function of the following electrical network: | [10] |