Mathematics - IV R

Time : Three hours
Full Marks : 100
Symbols/Notations have there usual meanings.
Answer any five questions.

1. (a) Obtain Fourier series for $\mathrm{f}(\mathrm{t})=1-\mathrm{t}^{2},-1<\mathrm{t}<1$.
(b) Obtain Fourier series for

$$
f(x)=\left\{\begin{array}{cc}
-x+1, & \text { for }-\pi \leq x \leq 0 \\
x+1, & \text { for } 0<x \leq \pi
\end{array}\right.
$$

Hence show that $\sum_{n=1}^{\infty} \frac{1}{2 n-1}=\frac{\pi^{2}}{8} . \quad 10+10$
2. (a)(i)Prove that a proper vector \vec{U} has a constant length is that $\vec{U} \cdot \frac{d}{d t} \vec{U}=0$.
(ii) Prove that a necessary and sufficient condition that a proper vector \vec{U} always remain parallel to a fixed line is $\vec{U} \times \frac{d}{d t} \vec{U}=0$.
(b) Evaluate $\frac{d}{d t}\left[\vec{r} \vec{r}^{\prime} \vec{r}^{\prime \prime}\right]$
(c) Calculate $\int_{c} \overrightarrow{F \cdot d r}$ where
(i) C is a triangle in x - y plane with vertices $(0,0),(2,0)$, $(2,1)$
(ii) C is a curve $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{z}=0 . \quad 4+8+2+3+3$
3. (a) Find the work done in moving a particle in a force field given by
$\vec{F}=(2 x-y+z) \hat{i}+(x+y-z) \hat{j}+(3 x-2 y-5 z) \hat{k}$ along a curve $\mathrm{x}^{2}+\mathrm{y}^{2}=9, \mathrm{z}=0$.
(b) State Green's theore m. Use Green's theorem to evaluate
(i) $\oint_{\Gamma}\left(x^{2} d x+x y d y\right)$ where Γ is a square in $\mathrm{x}-\mathrm{y}$ plane with vertices given by $(0,0,(a, 0)(a, a)$ and $(0, a)$ described in positive sense.
(ii) $\oint_{\Gamma}\{(\cos x \sin y-x y) d x+\sin x \cos y d y\}$ where Γ is a circle in $x-y$ plane given by $x^{2}+y^{2}=1$ described in positive sense.
(b) In any triangle ABC , with usual notations prove that
(i) $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
(ii) $\mathrm{c}=\mathrm{a} \cos \mathrm{B}+\mathrm{b} \cos \mathrm{A}$
(c) Find the value of the constant d such that the vectors $(2 \hat{i}-j+k),(\hat{i}+2 j-3 k)$ and $(3 \hat{i}+d \hat{j}+5 \hat{k})$ are coplanar. $6+8+6$
(b) Examine the convergence of the following series:
(i) $\frac{1+2}{2^{3}}+\frac{1+2+3}{3^{3}}+\frac{1+2+3+4}{4^{3}}+\ldots \ldots .$.
(ii) $1+\frac{1}{1!}+\frac{2^{2}}{2!}+\frac{3^{3}}{3!}+\ldots \ldots$.
(iii) $\frac{1}{3}+\left(\frac{2}{5}\right)^{2}+\left(\frac{3}{7}\right)^{3}+\left(\frac{4}{9}\right)^{4}+$
$8+4+4+4$
7. (a) Two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are defined by $x_{n+1}=\frac{1}{2}\left(x_{n}+y_{n}\right), y_{n+1}=\sqrt{x_{n} y_{n}}$ for $n \geq 1$ and $\mathrm{x}_{1}>0$, $\mathrm{y}_{1}>0$. Prove that both the sequences converges to a common limit.
(b) Test the convergence of the series $\sum_{n=1}^{\infty} u_{n}$ where $u_{n}=\sqrt[3]{n^{3}+1}-n$.
(c) Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a}, \vec{b}, \vec{c}]^{2} . \quad 8+6+6$
8. (a) If the volume of tetrahedron be 2 units and 3 of its vertices $\mathrm{A}(1,1,0), \mathrm{B}(1,0,1), \mathrm{C}(2,-1,1)$. Then find the locus of fourth vertex.
4. (a) Find directional derivative of $f=x y+y z+z x$ in the direction of vector $\hat{i}+2 \hat{j}+2 \hat{k}$ at $(1,2,0)$.
(b) Determine the constant ' a ' such that $\vec{V}=(x+3 y) \hat{i}+(y-2 z) \hat{j}+(x+a z) \hat{k}$ is solenoidal.
(c) Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that
$\vec{F}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k} \quad$ is irrotational.
(d) Prove that

$$
\begin{array}{r}
\nabla(\vec{F} \cdot \vec{G})=\vec{F} \times \operatorname{curl} \vec{G}+\vec{G} \times \operatorname{curl} \vec{F}+(\vec{F} \cdot \nabla) \vec{G}+(\vec{G} . \nabla) \vec{F} \\
5+4+5+6
\end{array}
$$

5. (a) Prove that $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{r}^{\mathrm{n}}=0$ if $|\mathrm{r}|<1$
(b) Prove that the sequence $\left\{u_{n}\right\}$ defined by $u_{1}=\sqrt{2}$ and $u_{n+1}=\sqrt{2 u_{n}}$ for all $\mathrm{n} \geq 1$ converges to 2 .
(c) Define Cauchy Sequence. Prove that the sequence $\left\{(-1)^{n}\right\}$ is not a Cauchy Sequence.

6+7+7
6. (a) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $\mathrm{p}>1$ and diverges for $\mathrm{p} \leq 1$.

