Ref: Ex/PRN/IEE/T/126/2019(Old)

B.E. PRINTING ENGINEERING, 1^{ST} YEAR, 2^{nd} SEMESTER (OLD) – 2019

Subject : ELECTRONICS Time : Three Hours Full Marks : 100

instructions:

- 1) This paper contains eight questions and an APPENDIX. Answer any five questions
- 2) Answers of sub-questions of any question to be written in one place. Do not be haphazard.
- 3) Write 'Answer' beside the final answer of numerical problem.
- 4) Justified marks will be given for neat presentation.
- Q1. a) Draw Circuit diagram of a Bridge rectifier (4 diodes) and explain its' action with a sinusoidal AC 1/P voltage. (4+4)
 - b) Draw circuit diagram of Regulated DC power supply consisting a bridge rectifier, a capacitor filter, a Zener diode and a load resistance. Also graphically show its' O/P at various points with a sinusoidal I/P voltage.

 (5+4)
 - c) An amplifier has O/P power of 1.5W with I/P power 10 mW at 2 kHz and O/P power of 0.3W with same I/P power at 20Hz. Calculate the rise or fall in dB power gain. (3)
- Q2. a) What is the advantage of RC coupled amplifier over Transformer coupled amplifier? What is the advantage of Transformer coupled over RC coupled? (1+1)
 - b) Define f_T frequency of transistor. State gain-bandwidth principle of transistor amplifier. (2+2)
 - c) What is Q-point? Where do you locate Q-point on load line for best operation of a properly designed amplifier and why?

 (5+5)
 - d) Determine db Power gain of an amplifier with 59% amplification. (4)
- Q3. a) Why common emitter (CE) configuration more useful than common base (CB) configuration of transistor? Draw I/P and O/P characteristic curves of a transistor for (1) CE configuration and (2) CB configuration. Also define I/P and O/P resistances of transistor from these curves for both CE and CB.

 (2+2x2+2x2+2x2)
 - b) Define α and β parameters of transistor. Hence deduce the relation: $\frac{i_E}{1} = \frac{i_B}{1-\alpha} = \frac{i_C}{\alpha}$. Calculate the value of β for $\alpha = 0.96$.
- Q4. a) A Si-diode (r_f =10 Ω , V_b =0.7V) is operated by an AC source of 50Hz, V_{rms} =14.14V in series with a load resistance 500 Ω . Draw the circuit, Calculate peak current and peak O/P voltage. What will be these values if the diode be an ideal one? (2+2x2+2x2)
 - b) Define rectification efficiency of a rectifier. Deduce an expression for the same of a half wave rectifier in terms of circuit parameters. What is its' maximum possible value? (2+6+2)

- Q5. a) Define dB Power gain and dB Voltage gain. Why do we prefer to express gain in dB-scale rather than by its' absolute value? (1+1+3)
 - b) Draw frequency response curve of an audio frequency amplifier showing lower cut-off frequency (f_1) and upper cut-off frequency (f_2) . Hence define f_1 and f_2 . What are the approximate values of f_1 and f_2 for an audio amplifier?

 (2+1x2+2)
 - c) Show that the difference in dB-scale between maximum gain and gain at f_1 and f_2 is 3dB (3)
 - d) Explain briefly why frequency response curve, as referred in Q(b), bends downward at lower frequency as well as at higher frequency range.
- Q6. a) Draw a Positive Clipper circuit using a real Si-diode. Explain its' action for an I/P voltage signal:
 V=V_msinωt. Draw the O/P wave form.
 - b) Draw the Circuit diagram of a Combination Clipper showing sketches of I/P and O/P of wave forms (No descriptions). (3+1)
 - c) How do you use a Clipper Circuit to estimate 'turn on voltage' (barrier potential)of a real diode ?

 describe briefly. You may be provided with a CRO.
- Q7.
 a) Draw a simple voltage stabilizer circuit using an ideal Zener-diode, a series resistance and a load. Describe the variation of Iz when (i) I/P voltage varies but load is constant, and (ii) I/P voltage is constant but load varies. (Consider Zener to be ON during the process)

 (3+4+4)
 - b) Draw RB-Characteristic curves of Zener diode and Avalanche Photo-diode on separate axes. State (in tabular form) four distinct features of Zener diode and Avalanche diode. (2x1+4x1)
 - c) Check the status of Zener in Fig-I of APPENDIX (ON or OFF) and find the current through 3kΩ resistor. (1+2)
- Q8. a) Define % Regulation (R) and Stabilization factor (S). A voltage Stabilizer Circuit consists of a series resistor R_S , a Zener diode of resistance r_Z and a load R_L . Draw the circuit. Establish a relation of 'S' with these resistances. Hence express 'S' in its' simplest form. What is your final conclusion? (2+2+5+2)
 - b) If for a Voltage Stabilizer, $R_s = 1k\Omega$, $r_z = 5\Omega$ and I/P varies by $\pm 0.5V$ about a mean value, what is the variation of O/P voltage?
 - c) Copy the Zener Circuit of fig-II of APPENDIX. Determine the range of R_L that will result a constant voltage of 10V across R_L . Consider Zener as ideal with maximum Power rating of 320mW. (6)

APPENDIX

Fig-I

Fig- II