JADAVPUR UNIVERSITY

B.E. INFORMATION TECHNOLOGY

4th Year, 2nd Semester Examination - 2018

DIGITAL SIGNAL PROCESSING Time: 3 hours Full Marks: 100

General instructions (read carefully)

- 1. Special credit will be given to answers which are brief and to the point.
- 2. Answer to every question should start on a new page.
- Do not write answers to various parts of a question at different locations of your answer-script.
- 4. Do not write on the front back cover of your answer booklet.

Marks for each sub-part of a question is mentioned at the right margin of a part question or set of part questions.

Part 1 (any one question to be answered)

- 1. i) What are the advantages of Digital Signal Processing over Analog (any 6 points)? (3) ii) The output y(n) and the input x(n) of a discrete time system are related by the equation $y(n) = e^{x(n)}$. Determine whether the system is linear, time invariant and stable. (7)
- 2. i) What are causal and non-causal signals. Illustrate with examples. (3)
 - ii) Define LTI system with an example. (3)
 - iii) The impulse response of an LTI system is $h(n) = \{1, 2, 1, -1\}$. Determine the response of the system to the input signal $\{1, 2, 3, 1\}$. (4)

Part 2 (any one question to be answered)

3. i) Find the Fourier Transform (FT) of the signal

$$x(n) = 2^{n} u(-n) - 2^{-n} u(n)$$
 (5)

ii) Find out the Discrete Fourier Transform (DFT) of the sequence, using matrix representation

$$x(n) = \{2, 1, 2, 1\}$$
 (5)

iii) Find the Inverse DFT (IDFT) of

$$X(k) = \{6, -2 + 2j, -2, -2 - 2j\}$$
 (5)

iv) For calculating the DFT of a sequence x(n) of length N, compare the number of computations when done directly vis-à-vis when done using FFT algorithm.

If N = 1024, and if the computation of DFT directly takes 10 seconds, how much time will it take using FFT algorithm? (5)

4. i) Determine the Z transform of the following sequence and find the ROC.

$$x(n) = (n + 2) (1/2)^n u(n).$$
 (6)

ii) Find the Inverse Z transform of

$$X(z) = z(z^2 - 4z + 5) / (z - 3)(z - 2)(z - 1), 2 < z < 3.$$
 (6)

iii) Verify the stability of the system having impulse response

$$h(n) = (1/2)^n u(n)$$
 (3)

iv) What is Parseval's relation for the energy of a sequence, using Fourier Transform, and Discrete Fourier Transform. (2 x 2.5)

Part 3 (any one question to be answered)

- **5.** i) What is the main characteristic of a Linear Phase Filter? Name an application where such a filter finds practical use. Such linear phase filters can be realized by which one of the following: FIR digital filters, IIR digital filters, Analog filters. (1+1+1)
- ii) Derive the frequency response $H(e^{j\omega})$, Phase (ϕ) , Group Delay (τ_g) , and Transfer function H(z) of <u>any one</u> of Types 1, 2, 3, or 4 Linear Phase Filters. (12)
- iii) What are the restrictions, if any, of the type chosen in ii) only, for realization of LPF, HPF, BPF and BSF? Justify your answer. (3)
- iv) Which type of Linear Phase filters can be used to implement a Differentiator ? Justify your answer. (2)
- **6**. i) What is a Delay Complementary filter? (2)

ii) Suppose we want to construct a Delay Complementary filter for a Type 1 Linear Phase LPF having Frequency Response $H_0(e^{j\omega})$ and of odd length 2K + 1 (hence order 2K), having a tolerance band of 1 +/- δ_P in the passband and δ_s in the stopband.

What kind of filter will the Delay Complementary filter be? What would be the tolerance band of such a filter? Explain with the help of the filter pseudo magnitude vs frequency characteristics diagram. (8)

- iii) What are Doubly Complementary filters? Explain using two all-pass complementary transfer functions $H_0(z) = \frac{1}{2} \left[A_0(z) + A_1(z)\right]$ and $H_1(z) = \frac{1}{2} \left[A_0(z) A_1(z)\right]$. (6)
- iv) Explain the terms Cross-over frequency and Cross-over Networks. In what application such networks find widespread use ? (4)

Part 4 (any one question to be answered)

7. i) Explain Aliasing distortion with a concrete example.	
	(4)
ii) What is Sampling Theorem?	(2)
iii) Explain the terms Nyquist Frequency and Baseband.	(4)
8. i) What is the difference between Type 1 and Type 2 Chebyshev filters ?	(0)
	(2)
ii) For a Type 1 Chebyshev LPF, draw and explain the frequency response charac $H_a(j\Omega)$ vs Ω , for values of the order of the filter, $N=1,2,3,4$.	teristics, (8)
Part 5 (any two questions to be answered)	
9. i) For a Band-Pass IIR digital filter, write and explain	
a. Transfer function, H(z)	
b. Frequency response characteristics, H(e ^{jω}) vs ω c. Central frequency ω _ο ,	
d. Bandwidth	
e. Q of the filter.	(12)
ii) Determine the location of the zeros and poles (in the Z plane) for the Band - Pass II filter, with $\omega_0 = \pi / 2$ and Bandwidth = $\pi / 4$.	(5)
iii) Where would the zeros and poles be for a Band - Stop IIR digital filter, with the parameters as in ii). Deduce after writing the Transfer function.	ie same (3)
10.	
i) What is Delay Equalization? Illustrate using Phase-Frequency characteristic curve.	(3)
ii) Write about three important properties of an All Pass digital filter.	(9)
iii) Explain the functioning of a Comb filter, taking a LPF Transfer function, $H(z^L)$, with L of delays. Draw the frequency response characteristics of such a comb filter taking L =	aumhar
iv) Write about one common application of such a filter, mentioned in iii).	(2)
11. i) Derive mathematically the expression for the Asymptotic slope in cas	e of a
/ octave, what order of the filter do we required 2	of 24 dB (3 + 1)
ii) Derive the Transfer function, Ha(s), with calculated values of bk, of a Butterworth Fil	ter for
a. $N = 4$, $\Omega_c \neq 1$	
b. $N = 5$, $\Omega_c = 1$	(3 ± 2)

(3 + 3)

iii) Given the 3 dB frequency, Ω_c = 1000 π , Ω_s = 2000 π , and attenuation in the stop-band $\delta_s \ge 40$ dB, find for a Butterworth Filter

- a. The <u>exact</u> value of the order N.
- b. The <u>chosen</u> value of the order, N and the corresponding value of the stop-band edge frequency Ω_{s}
- c. The Transfer function, $H_a(s)$, with calculated values of b_k , for the designed filter. (10)

----- X -----