B.E. INFORMATION TECHNOLOGY THIRD YEAR SECOND SEMESTER – 2018 (3rd Year; 2nd Semester) Subject: Formal language & Automata Theory

Time: Three hours

Full Marks: 100

CO1	(a) (i) Design a DFA to accept a string of a's and b's ending with abb. (5)
[20]	(ii)Design a DFA which accepts even number of 0's and odd number of 1's. (5)
	(b) Give the Regular expressions of the following languages. $(5+5)$
	a. L = {W/W is a string of odd number of 0's followed by even number of 1's}
	b. L= {W/W is in {a,b}* and W mod 3 =0}
	$0. \mathbf{L} = \{ \mathbf{W} / \mathbf{W} \text{ is in } \{ \mathbf{a}, 0 \} \text{ and } \{ \mathbf{W} \mathbf{mod} \ 0 = 0 \}$
CO2	Answer any Two of (a), (b) and (c).
[20]	(a) Give pushdown automata (PDA) for the following language:
	$L = \{a^n b^m c^k : n + m = k\}$ Test strings: aabcccccc, aaabbbcc, aabbcccc, aabcc. (10)
	(b) Convert the following grammar to a PDA (draw the resulting PDA by hand) using the
	procedure described in class. S \rightarrow AA a, A \rightarrow aAb ab λ
	(10)
	(c) Let M be the PDA defined by
	$Q = \{q0, q1, q2\}$
	$\Sigma = \{a, b\}$
	$\Gamma = \{A\}$
	$F = \{q1, q2\}$
	$\delta(q0, a, \lambda) = [q0, A]$
	$\delta(q0, \lambda, \lambda) = [q1, \lambda]$
	$\delta(q0, b, A) = [q2, \lambda]$
	$\delta(q1, \lambda, A) = [q1, \lambda]$
	$\delta(q2, b, A) = [q2, \lambda]$
	$\delta(q2, \lambda, A) = [q2, \lambda]$ 1. Describe the language accepted by M (6)
	1. Describe the language accepted by M (6)
	2. Give the state diagram of M (2)
	3. Show that aabb, aaab $\in M$ (2)
CO3	Answer any Two of (a), (b) and (c).
[20]	(a) Design a Turing Machine to accept the language: $L_{wwr} = \{ww^R \mid w \in (0+1)^*\}$ (10)
[=~]	(b) Design a Turing Machine to replace 0's with 1's in the input string. (10)
	(c) Design a Turing Machine to calculate the 1-complement of a binary number
	(i.e. replace 0's with 1's and 1's with 0's). (10)
CO4	Answer any Two of (a), (b) and (c).
[20]	(a) Which of the following grammar is ambiguous? Justify (10)
	$(i) S \rightarrow S + S \mid S - S \mid a$
	(ii) S→iEtS iEtSeS a, E→b
,	(iii) S→SbS a
	(b) Remove useless productions, null productions, unit productions from the following grammar: (10)
	S -> ABC
	A -> aBC
	$ B->C _{\varepsilon}$
<u> </u>	C -> cd DCF

rage z	2210111102012010
	D -> dD ε E -> eFE F -> eC (c) Prove or Disprove that, the language $L = \{a^n b^n c^n\}$ is context sensitive (10)
CO5 [20]	Show that the following problem is decidable "Is a less than b?" Compute the complexity of the above problem. (15+5)
-	OR
	Find out whether the following problem is decidable or not – Is a number 'm' prime? (20)

CO1: Explain and construct Finite automata, Regular Languages and their properties. (K3, A2)

CO2: Describe and construct Context Free Languages, Push Down Automata and their properties. (K3, A2)

CO3: Explain and outline Turing Machine, its variants. (K4, A2)

CO4: Classify and analyze different types of grammar and language. (K4, A3)

CO5: Illustrate different decidable languages, unsolvable problems and complexity. (K3, A2)