BACHELOR OF INFORMATION TECHNOLOGY ENGG. SUPPLEMENTARY EXAMINATION - 2018 (2ND YR, 1ST SEM.)

MATHEMATICS-III(Modules 3 & 10)

Time: Three hours Full Marks: 100

Answer any Ten questions

 10×10

1. If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, show that $A^2 - 4A - 5I_3 = 0$, Hence obtain a matrix B such that $AB = I_3$.

2. Find the value of
$$\begin{vmatrix} 0 & a & b & c \\ -a & 0 & d & -e \\ -b & -d & 0 & f \\ -c & -e & -f & 0 \end{vmatrix}$$
, using Laplace's method.

3. (i) Expresss $A = \begin{pmatrix} 1 & 3 & 4 \\ 7 & 2 & 6 \\ 2 & 8 & 1 \end{pmatrix}$ as the sum of a symmetric matrix and a skew-symmetric matrix.

(ii)If
$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
, show that $A^2 - 2A + I_2 = 0$, Hence find A^{50} . 5+5

4. Solve by Cramer's rule
$$x + 2y - 3z = 1$$
; $2x - y + z = 4$; $x + 3y = 5$.

5. Reduce the matrix
$$A = \begin{pmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \\ 4 & -4 & 8 & 9 \end{pmatrix}$$
 to the normal form and find its

rank.
6. Investigate for what value of α and β the following equations x + y + z = 6;

x + 2y + 3z = 10; $x + 2y + \alpha z = \beta$ have (i)no solution; (ii)a unique solution and (iii)an infinite number of solutions.

7. Statement of Cayley Hamilton theorem. Verify Cayley Hamilton theorem for the matrix A. Express A^{-1} as a polynomial in A and then compute A^{-1} , where

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

8. Find the eigen values and eigen vectors of the given matrix $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. 10

9. Prove that the equation $ax^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$ represent a pair of planes, if $+2fgh - af^2 - bg^2 - ch^2 = 0$, and also prove that the angle between the planes is $\tan^{-1} \frac{2(f^2+g^2+h^2-bc-ca-ab)^{\frac{1}{2}}}{g+h+c}$.

- 10. Show that the shortest distance between any two opposite edges of the tetrahedron formed by the planes y + z = 0, z + x = 0, x + y = 0, x + y + z = -c is $\frac{2c}{\sqrt{6}}$ and the three lines of the S. D. Intersect at the point y = z = -c.
- 11. Show that the equation of the plane containing the line $\frac{y}{b} + \frac{z}{c} = 1$, x = 0 and $\frac{x}{a} \frac{z}{c} = 1$, y = 0 is $\frac{x}{a} \frac{y}{b} \frac{z}{c} + 1 = 0$ and if 2d be the shortest distance, then find the value of $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} = ?$
- 12. Prove that the set $G = \{(\cos \theta + i \sin \theta): \theta \text{ runs over rational number}\}$ forms an infinite abelian group with respect to ordinary multiplication.
- 13. Let $M = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : where a, b, c, d are real numbers and <math>ad bc \neq 0 \}$.

 Prove that Mbecomes a non-commutative group under usual matrix multiplication.