B.E INFORMATION TECHNOLOGY 1ST YR, 1ST SEM. SUPPLE. EXAM.- 2018 Subject: ELECTRICAL CIRCUITS Time: Three Hours Full Marks: 100

Answer any FIVE questions

No. of Questions		Marks
1.a)	Derive short transmission network parameters from transmission line equations. Define transmission line regulation and efficiency.	8+2+2
b)	The capacitance per Km. of a 3 phase cable are 0.75 µF in between the three cores bunched & the sheath, 0.45 µF in between one core and other two connected to sheath. Calculate the charging current per phase taken by 6 Km of this cable when connected to a 3 ph, 50 Hz, 6600V supply.	8
	[Assume C_s =capacitance between conductor and sheath, C_c = capacitance between conductors, C_n =capacitance between each conductor and neutral, C_n =3 C_c + C_s , charging current per phase, I_c = ω . C_n . V_p , where ω = angular frequency in rad/sec=2 π f, f=frequency in Hz, V_p =per phase voltage,]	
2.a)	State the difference between linear and non-linear network with example. Solve the following network using mesh analysis method.	2+8
b)	Define: Norton's theorem. Solve following network using Norton's theorem.	2+8
	Tiv 3302 1A	
3.a)	State Superposition theorem in any network. Solve the following network	2+8
	using superposition theorem. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
b)	Derive the condition of Maximum power transfer theorem in any d.c network.	5
c)	How can you convert any star network into an equivalent delta network?	5
4.a)	Determine Fourier series for the following wave shown in figure. $f(wt)$ $-wt - \pi = 0 \text{ ft} 2\pi 3\pi . 4\pi \rightarrow wt$	10

B.E INFORMATION TECHNOLOGY 1ST YR, 1ST SEM. SUPPLE. EXAM.- 2018 Subject: ELECTRICAL CIRCUITS. Time: Three Hours. Full Marks: 100

Answer any FIVE questions

-		<u> </u>
b)	Obtain the Fourier transform of the following function shown in figure.	10
	<u> </u>	
5.a)	Define Lenlage transforms of our formation (A) 8:	2.2
J.a)	Define Laplace transform of any function f(t) & inverse Laplace transform.	2+2
b)	The circuit in following figure is initially under steady state condition. The switch is moved from position-1 to position-2 at t=0. Find the current after switching.	8
	$V=10V$ $R_1=5L$ $C(t)=?$ $R_2=5L$ $R_1=3H$	
c)	Determine the Laplace transform of any unit step function & ramp function.	4+4
6.a)	Derive the condition of resonance in series R-L-C circuit & define significance of series resonance condition. Show the frequency response of current, impedance and power factor in series resonance.	6+2+2+2
b)	A coil of resistance 10Ω & inductance $100\mu H$ is in series with a variable capacitor C. The voltage of supply is 300Volt at a frequency $10^6 Hz$. Calculate value of C to give resonance, Q-factor of the coil, the current in the circuit at resonance.	8
7.a)	Classify and define a.c filters.	2+2
b)	Briefly explain different types of passive filters.	. 16