Ref. No.: EX/IT/PHY/T/112/2018

## B. INFORMATION 1ST. YEAR 1ST. SEM. EXAM. - 2018

PHYSICS - IA

Time: 3 hours

Full Marks: 100

## Answer any five questions.

- 1. a) Write down the Schrodinger equation. When the probability density of the state is not function of time? Show this starting from the Schrodinger equation.
  - b) Find the wave function of the particle confined under the potential V(x) = 0 for 0 < x < a, and elsewhere  $V(x) = \infty$ .
  - c) Plot i) wave function, and ii) probability density as a function of x.
- 2. a) Calculate the de Broglie wavelengths of an electron having kinetic energy 13.6 eV and an iron ball having mass 50 gm and velocity 50 m/s.
  - b) Prove that  $[\hat{x}, \hat{p}] = i\hbar$ .
  - c) Estimate the size of an atom using uncertainty principle assuming a bench mark value of the kinetic energy of the electron.
  - d) Write down the postulates of quantum mechanics.
- 3. a) Write down the differential equation for a wave motion.
  - b) What do you mean by temporal coherence?
  - c) Distinguish different classes of diffraction.
  - d) Find the intensity distribution for a single slit diffraction experiment. Then, find the position of the maximum intensities.
  - e) Derive the radius of n-th dark ring in Newton ring experiment.
- 4. a) Show that the small fluctuation of a system from the stable minimum of a potential generates a simple harmonic motion.
  - b) Write down the equation of motion of a simple harmonic oscillator with and without damping force.
  - c) Solve it and draw x vs. t diagram for all cases.
- 5. a) Derive an expression for current when a.c. voltage is applied to a series LCR circuit with the help of the phasor-diagram.
  - b) What do you mean by resonance in series LCR circuit? Find an expression for the Q factor for the above circuit.
  - c) Derive an expression for capacitance of a cylindrical capacitor with inner radius a and outer radius b and having surface charge density  $\sigma$ .
  - d) What is the electrostatic energy stored in a parallel plate capacitor

Ref. No.: EX/IT/PHY/T/112/2018

- 6. a) Show how a vector undergoes transformation under rotation of coordinate system. b) What do you mean by gradient of a scalar function? Evaluate the gradient on the surface  $yz 4xyz^2 = -6$  at (1,2,1).
  - c) Prove  $\vec{\nabla} \cdot (f\vec{A}) = (\vec{\nabla}f) \cdot \vec{A} + f\vec{\nabla} \cdot \vec{A}$
  - d) Calculate  $\vec{V}\left(\frac{1}{r}\right)$ .
- 7. a) State and explain briefly the first law of thermodynamics.
  - b) Show that the total internal energy of the universe is constant.
  - c) Why internal energy remains constant during isothermal expansion of an ideal gas?
  - d) What do you mean by state function of a system? Write and explain all the statements of the second law of thermodynamics.
  - e) Show diagrammatically the different steps of a Carnot engine and Carnot refrigerator. Then define efficiency of a Carnot engine in terms heat energy from the carnot cycle.