BACHELOR OF ENGINEERING IN F.T.B.E. EXAMINATION, 2018

(3rd Year, 1st Semester)

MECHANICAL OPERATION

Time: Three Hours Full Marks: 100

(50 marks for each part)

Use a separate Answer-Script for each part

PART - I

All notation carry their usual meaning.

Two marks are reserved for short and systematic answers.

Attempt any three questions.

- 1. a) Differentiate the term "Crushing" and "Grinding".
 - b) Clasify the Crushing and Grinding Machinery.

5

c) With the help of the following equation

$$\frac{dE}{dx} = -\frac{C}{x^n}$$

Derive the following equation

- i) Rittinger's Law
- ii) Kicks Law

iii) Bond's Law

- d) With the help of "Action of Crushing Rolls", prove the following equation $\mu > \tan \alpha 5$
- 2. a) The following table shows the size distribution of a dust sample and the fraction efficiency of removal in a gas cleaning equipment.

Calculate the overall collector efficiency.

Dust Size, ~	Weight/100 gm	Fractional	
	of the dust (g)	Efficiency	
< 5	2	1	
5 - 10	2	7	
10 - 15	4	16	
15 - 20	7	44	
20 - 25	10	67	

2

Dust Size, ~	Weight/100 gm	Fractional	
	of the dust (g)	Efficiency	
25 - 30	8	81	
30 - 35	7	88	
35 - 40	10	92	
40 - 50	15	93	
50 - 60	20	95	
60 - 70	10	98	
> 70	5	100	

b) With a neat diagram (Howard setting chamber), prove the following equation

$$d_{p_{min}} = \sqrt{\frac{18Q \mu g}{nWLg (e_e - \rho_g)}}$$

3. a) With the help of balancing the radial drag force and the centrifugal force, find the equation, as given below:

$$v_{r} = \frac{dp^{2}(\rho\rho - \rho_{g})(1-n)^{2}Q^{2}}{18\mu gW^{2}r^{2n+1}(r_{2}^{1-n} - r_{1}^{1-n})^{2}}$$

- b) A plate-type electrostatic precipitator for use in a cement plant for removing dust particles consists of 10 equal channels. The spacing between the plates is 15 cm, and the plates are 2m high and 2 m long. The unit handles $10000 \text{ m}^3/\text{n}$ of gas. What is the efficiency of collection? What should be the length of the plates for achieving 97% collection efficiency, if other condition are the same? Given $v_{pm} = 0.10 8$
- 4. Write short notes / Draw the flowsheet on the following (any four): $4\times4=16$
 - i) Advantages and disadvantages of electrostatic precipritator
 - ii) Classification of Pumps
 - iii) Flow sheet for "closed-circuit grinding"
 - iv) To avoid cavitation, what steps should be taken and why it is?
 - v) Mention the different devices for the following classification of separation :
 - a) Coarse Crushers
 - b) Intermediate Crushers
 - c) Fine Grinders

Ref. No.: Ex/FTBE/T/315/2018

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING

THIRD YEAR FIRST SEMESTER - 2018

Subject: MECHANICAL OPERATION

Time:3 hours Full Marks: 100

Part-II

Use Separate Answer scripts for each Part

Answer question No.1 and any two from the rest.

 $10+20\times2 = 50$

1. Derive the expression for terminal separation velocity under centrifugal field. Comment on the relationship between bed height and feed rate of a packed bed column reactor.

5+5=10

- 2. (a) Derive the Ruth equation. What assumptions are considered to derive this equation?
 - (b) Define centrifugal coefficient. What is its expression for tubular type centrifuge? What is S value?
 - © Yeast cells are recovered from fermentation broth by using a tubular centrifuge. Sixty percent (60%) of the cells are recovered at a flow rate of 12 l/min with a rotational speed of 4000 rpm. Recovery is inversely proportional to the flow rate.
 - (i) To increase the recovery of cells to 90% at the same flow rate, what should be the rpm of the centrifuge?
 - (ii) At a constant rpm of 4000 rpm, what should be the flow rate to result in 90% cell recovery? 7+5+8=20
- 3. (a) Green peas dried in a fluidized bed dryer. Calculate the minimum fluidization velocity of hot air under given condition:

Characteristics of pea:

Characteristics of hot air:

Diameter = 2mm:

Density = 0.9 kg/m^3

Specific gravity = 1.2

viscosity = 20.94×10^{-6} m²/s under

operating temperature

Fraction of free space in column = 0.3

Calculate the mass flow rate of air if area of the column is 0.75m²

- (b) Derive the settling velocity of separate discrete particle. And hence what is its form under laminar fluid flow condition?
- © Classify settling tanks. Derive critical settling velocity of any one type tank.

8+7+5=20

- 4. (a) Briefly describe the batch settling column test.
 - (b) A settling analysis is run on a Type 1 suspension in a laboratory column with a port

1.8m below the suspension surface. The data obtained are shown below.

Time (min)	0	3	5	10	20	40	60	
TSS (mg/L)	220	116	98	75	35	10	2	

What will be the theoretical removal efficiency in a settling basin for an overflow of 432 m²/m.day? 5+15=20

- 5. (a) Briefly describe coagulation and flocculation process.
 - (b) What is retention time and rise rate in a flocculation tank?
 - © Draw a schematic diagram of the conventional coagulation-flocculation separation system.
 - (d) What are the selection criteria of coagulant?

5+5+5+5=20