B. E. FTBE Second Year Second Semester Examination 2018 THERMAL ENGINEERING

Time: Three hours

Full Marks: 100

[4]

[10]

Answer any *five* questions.

All parts of the same question must be answered at the same place.

<u>Q.1</u>

- (a) Write the first law of thermodynamics for a closed system undergoing a thermodynamic cycle. Hence, derive the first law for a closed system undergoing a change of state. [12]
- (b) A steam tank, built in the form of a cube with 1.5 m length of each side contains superheated steam at 100 kPa and 130 °C. Calculate the mass of the steam present in the vessel and the enthalpy and entropy of the steam. [8]

<u>Q.2</u>

- (a) State the similarities between 'heat' and 'work'.
- (b) Find an expression for the work done by a piston-cylinder arrangement containing a gas during a polytropic process given by PV^n = constant in terms of n, P_1, V_1 and V_2 . [6]
- (c) The following data are obtained from a throttling calorimeter:

Pressure in the steam main = 0.8 MPa

- Pressure after throttling = 0.1 MPa
- Temperature after throttling = $120 \, {}^{\circ}C$

Determine the dryness fraction of the steam in the main pipeline.

<u>Q.3</u>

- (a) Derive an expression for the thermal efficiency of an air standard dual cycle in terms of compression ratio, pressure ratio, cut-off ratio and index of isentropic compression. [12]
- (b) With the help of *T-s* plot, compare the efficiencies of the air standard Otto, Dual and Diesel cycles for the same compression ratio and equal heat input. [8]

<u>Q.4</u>

(a) Plot the following processes for steam, identifying the saturation zone in each case. The initial state is superheated and the final state is wet steam. On each plot, draw a pair of graphs, indicating their relative magnitudes. [6]

(i) a constant volume process on *T-s* plane

(ii) an isothermal process on *P*-*v* plane

- (b) Show how the slopes of an isobar will appear on the *h*-s plane in the wet and superheated steam zones. Mathematically establish your answer. [8]
- (c) How do you find the power developed by a steam turbine and the rate of heat added in a steam boiler, using the first law for a control volume? [6]

[Turn over

Ex/FTB/ME/T/227/2018

<u>Q.5</u>

- (a) Discuss the difficulties associated with running a steam power plant on Carnot cycle. [6]
- (b) Draw the schematic diagram of a simple steam power plant working on simple ideal Rankine cycle and draw the corresponding cycle on *T-s* diagram. How do you compute the turbine power output, the rate of heat extracted in the condenser and the pump power input for this plant? [14]

<u>Q.6</u>

- (a) What are the benefits of running a steam power plant with regenerative feed heating? Draw the schematic diagram of a steam power plant running with regenerative open feed water heater. Plot the cycle on T-s diagram. [10]
- (b) Draw the schematic diagram of a steam power plant with reheating. What is the primary objective of reheating of steam? Draw the corresponding cycle on *T-s* diagram. [10]

<u>Q.7</u>

- (a) Compare the pressure rating of a fire tube with that of a water tube boiler. Draw a neat sketch of a fire tube or a water tube boiler and label its different parts. [12]
- (b) What are the functions of boiler mountings and accessories? Name one boiler mounting and one accessory, stating their functions and locations. [8]

			•				
T _{sat}	Psat	Vf	Vg	hf	. h _g	Sf	S_g
(⁰ C)	(kPa)	(m³/kg)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kgK)	(kJ/kgK)
95	84.609	0.0010401	1.9808	398.09	2667.6	1.2504	7.4151
120.21	200	0.001061	0.88578	504.71	2706.3	1.5302	7.1270
170.44	800	0.0011149	0.2441	721.13	2769.1	2.0462	6.6628

Table 1: Properties of saturated steam

Table 2: Properties of superheated steam

	P=1	00 kPa		P=800 kPa				
T.sup	V	h	u	T _{sup}	v	h	u	
(^{0}C)	(m ³ /kg)	·(kJ/kg)	(kJ/kg)	(^{0}C)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	
100	1.6959	2675.8	2506.2	200	0.2609	2839.8	2631.1	
150	1.9367	2776.6	2582.9	250	0.2932	2950.4	2715.9	