BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIO-CHEMICAL ENGG. SUPPLEMENTARY EXAMINATION - 2018 (2ND YR. 1ST SEM.)

MATHEMATICS-II

Time: Three hours Full Marks: 100

GROUP-A

Answer any five questions

 $5 \times 2 = 10$

- 1. (a) State Lagrange's Mean value theorem.
 - (b)State Euler's theorem in several variables.
 - (c) What is the Demoivre's theorem in complex number?
 - (d) If $f(x) = \frac{|x|}{x}$, the derivative exists? Justify your answer
 - (e)State Leibnitz's theorem in the n-th derivative of the product of two functions.
 - (f)State regular singular point in series solution.
 - (g) State Rolle's theorem.

GROUP-B

Answer any Nine questions

 $9 \times 10 = 90$

2. If $y = \cos(m\sin^{-1}x)$, then prove that (i) $(1-x^2)y_2 - xy_1 + m^2y = 0$; (ii) $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$

- 3. If $u = \log r$ and $r^2 = x^2 + y^2 + z^2$, then prove that $r^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = 1$ 10
- 4. If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, then prove that (i) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$ and (ii) $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 4\sin^2 u)\sin 2u$
- 5. (a) Use Demoivre's theorem to prove, $\tan 5\theta = \frac{5 \tan \theta 10 \tan^3 \theta + \tan^5 \theta}{1 10 \tan^2 \theta + 5 \tan^4 \theta}$ (b) Prove that $\cos 5\theta = 16 \cos^5 \theta - 20 \cos^3 \theta + 5 \cos \theta$
- 6. If ρ_1 and ρ_2 be the radii of curvature at the extremities of two conjugate diameters on an ellipse, then find the value of $\rho_1^{\frac{2}{3}} + \rho_2^{\frac{2}{3}}$ 10
- 7. Represent (x), where $f(x) = \cos kx$, on $-\pi \le x \le \pi$ (k not being an integer) in Fourier series. Hence deduce that (i) $\pi \cot k\pi = \frac{1}{k} + 2k \sum_{n=1}^{\infty} \frac{1}{k^2 n^2}$

(ii)
$$\frac{\pi}{\sin k\pi} = \sum_{n=0}^{\infty} (-1)^n \left\{ \frac{1}{n+k} + \frac{1}{n+1-k} \right\}$$
 10

- 8. Find the Fourier series of the function f(x) defined by $f(x) = x + x^2, -\pi \le x \le \pi$, hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{6}$
- 9. Solve $(D^2 4D + 4)y = 8x^2e^{2x}\sin 2x$
- 10. (a) Solve $(D^4 4D^3 + 8D^2 8D + 4)y = 0$, where $D \equiv \frac{d}{dx}$.
- (b) If $\frac{d^2x}{dt^2} = -n^2x$ and x = a, $\frac{dx}{dt} = u$ when t = 0, then show that the maximum value of x is $\sqrt{a^2 + \frac{u^2}{n^2}}$.
- 11. Solve the equation $2x^2 \frac{d^2y}{dx^2} x \frac{dy}{dx} + (1 x^2)y = x^2$ in series.
- 12. (a) If $f(h) = f(0) + hf'(0) + \frac{h^2}{2!} f''(0) + \frac{h^3}{3!} f'''(\theta h)$, $0 < \theta < 1$ find θ , when h = 8, $f(x) = \frac{1}{1+x}$.
 - (b) Find the maximum and minimum values of u where $u = \frac{4}{x} + \frac{36}{y}$ and x + y = 2

10