BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING EXAMINATION,

1st Year, 1st Semester

INORGANIC AND ANALYTICAL CHEMISTRY

Time: 3 hrs

Use separate Answerscript for each part

(50 marks for each part)

PARTI

Answer Question no.1 and any four from the rest

 $2 \times 5 = 10$

- 1 (a) What is Na-K ATPase?
- (b) Name an ion having multiple valences
- (c) What is ionic bond?
- (d) Write the name of one ionic compound and one covalent compound
- (e) What is the geometry of a sp³d² hybridized central atom?
- 2. Draw the structure of following compounds according to VSEPR theory:

CH₄, XeF₄, BrF₅, NH₄⁺, SO₂

2 X 5=10

Full Marks: 100

3. Define the following:-

lattice energy, dipole moment, covalent bond, nodal plane in MOT, radius ratio 2 X 5 = 10

- 4. (a) What are the similarities and differences between atomic orbitals and molecular orbitals? Why ethyne molecule is linear? Why water molecule has bent structure but CO₂ is linear?

 5+2+3
- 5. (a) What are the differences between Hemoglobin and Myoglobin?
 - (b) Write a short note on copper protein
 - (c) What is the use of halogen tablet?

3+5+2

- 6. (a) Draw the MO diagram of O_2 and compare the bond length, magnetic properties of O_2 , O_2^+ and O_2^-
- (b) What are intra and inter molecular hydrogen bonding?

6+4

Ref No-Ex/FTBE/CHEM/T/112/2018(s)

BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING EXAMINATION,

1st Year, 1st Semester

INORGANIC AND ANALYTICAL CHEMISTRY

Time: 3 hrs Full Marks: 100

Use separate Answerscript for each part

(50 marks for each part)

Part -II (50 Marks)

Answer Question no.1 and any four from the rest

- 1(a) Write down the differences between double salt and complex salt.
- (b) Give IUPAC nomenclature of the following

[Pt (en) $(NH_3)_2(NO_2)Cl$]

 $[Co(ONO)(NH_3)_5]SO_4$

- (c) Give an example of bidentate and hexadentate ligands.
- (d) Give an example of Lewis acid and Lewis base with an example.
- (e) Write down the conjugate bases of NH₃ and HNO₃

2x5 = 10

- 2. (a) What is the difference between paramagnetic and diamagnetic compounds? Calculate the magnetic moment value of $[Fe(CN)_6^{3-}]$ 2+2=4
- (b) Predict the geometry and magnetic property of [Cr(H₂O)₆]SO₄ using valence bond theory. 2+2=4
- (c) Draw all isomers of (Pt(NH₃)₂Cl₂] complexes

2

- 3(a) According to Werner theory explain with examples Primary Valency and Secondary Valency
- (b) Calculate CFSE and magnetic moment of the following complexes

i) [CoF ₆] ³⁻	
ii) [Fe(CN) ₆] ³	
(c) What is bridging ligand? Give an example.	2
4 (a) Define hard and soft acids and bases with example	4
(b) Predict with reason which acid should be stronger in aq. solution HF a	and HI. 2
(c) Calculate the crystal field stabilization energy for d^7 ion (Ni^{2+}) in octahedral and tetrahedral complexes. Use units of Δ^o in both cases and which is the most stable? 4	
5(a) What will be the number of unpaired electrons in FeCl ₆ ³ and Fe(CN)) ₆ ³⁻ ? 2
(b) Justify HCl behaves as an acid in H_2O but not in C_6H_6	2
(c) H ₂ SO ₄ is stronger than HNO ₃	2
(d) Draw the various shapes of d orbitals? Why it is split into two groups octahedral field?	t _{2g} and e _g in ar
6. (a) Justify [Ni(NH ₃) ₆] ²⁺ is octahedral and [Ni(CN ₄)] ²⁻ is square planar.	4
(b) Explain conjugate acid base theory with examples.	4
(c) How many unpaired electrons are there in Cr 3+, Mn2+, Co3+, Fe2+ in a very weak	
octahedral field.	2