BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING EXAMINATION,

$1^{\text {st }}$ Year, $1^{\text {st }}$ Semester
 INORGANIC AND ANALYTICAL CHEMISTRY

Time: $\mathbf{3} \mathbf{h r s}$
Full Marks: 100
Use separate Answerscript for each part
(50 marks for each part)

PART I

Answer Question no. 1 and any four from the rest $2 \times 5=10$

1 (a) What is $\mathrm{Na}-\mathrm{K}$ ATPase?
(b) Name an ion having multiple valences
(c) What is ionic bond?
(d) Write the name of one ionic compound and one covalent compound
(e) What is the geometry of $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridized central atom?
2. Draw the structure of following compounds according to VSEPR theory:
$\mathrm{CH}_{4}, \mathrm{XeF}_{4}, \mathrm{BrF}_{5}, \mathrm{NH}_{4}^{+}, \mathrm{SO}_{2}$
$2 \times 5=10$
3. Define the following:-
lattice energy, dipole moment, covalent bond, nodal plane in MOT, radius ratio $2 \times 5=10$
4. (a) What are the similarities and differences between atomic orbitals and molecular orbitals? Why ethyne molecule is linear? Why water molecule has bent structure but CO_{2} is finear?
5. (a) What are the differences between Hemoglobin and Myoglobin?
(b) Write a short note on copper protein
(c) What is the use of halogen tablet?

$$
3+5+2
$$

6. (a) Draw the MO diagram of O_{2} and compare the bond length, magnetic properties of O_{2}, $\mathrm{O}_{2}{ }^{+}$and $\mathrm{O}_{2}{ }^{-}$
(b) What are intra and inter molecular hydrogen bonding?

Ref No-Ex/ FTBE/CHEM/T/112/2018(s)
BACHELOR OF ENGINEERING IN FOOD TECHNOLOGY AND BIOCHEMICAL ENGINEERING EXAMINATION,

$1^{\text {st }}$ Year, ${ }^{\text {st }}$ Semester
INORGANIC AND ANALYTICAL CHEMISTRY

Time: $\mathbf{3} \mathbf{h r s}$
Full Marks: 100

> Use separate Answerscript for each part $$
\begin{array}{c}\text { (50 marks for each part) } \\ \text { Part -II (50 Marks) }\end{array}
$$

Answer Question no. 1 and any four from the rest
1(a) Write down the differences between double salt and complex salt.
(b) Give IUPAC nomenclature of the following
$\left[\mathrm{Pt}\right.$ (en) $\left.\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right) \mathrm{Cl}\right]$
$\left[\mathrm{Co}(\mathrm{ONO})\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{SO}_{4}$
(c) Give an example of bidentate and hexadentate ligands.
(d) Give an example of Lewis acid and Lewis base with an example.
(e)Write down the conjugate bases of NH_{3} and HNO_{3} $2 \times 5=10$
2. (a)What is the difference between paramagnetic and diamagnetic compounds? Calculate the magnetic moment value of $\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right]$
 $2+2=4$
(c) Draw all isomers of $\left(\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right.$] complexes

3(a) According to Werner theory explain with examples Primary Valency and Secondary Valency
(b) Calculate CFSE and magnetic moment of the following complexes
i) $\left[\mathrm{CoF}_{6}\right]^{3-}$
ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(c) What is bridging ligand? Give an example.

4 (a) Define hard and soft acids and bases with example
4
(b) Predict with reason which acid should be stronger in aq. solution HF and HI .2
(c) Calculate the crystal field stabilization energy for d^{7} ion $\left(\mathrm{Ni}^{2+}\right)$ in octahedral and tetrahedral complexes. Use units of Δ° in both cases and which is the most stable? 4 5(a) What will be the number of unpaired electrons in $\mathrm{FeCl}_{6}{ }^{3-}$ and $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$? $\quad 2$ (b) Justify HCl behaves as an acid in $\mathrm{H}_{2} \mathrm{O}$ but not in $\mathrm{C}_{6} \mathrm{H}_{6}$ 2
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is stronger than HNO_{3}
(d) Draw the various shapes of d orbitals? Why it is split into two groups $t_{2 g}$ and e_{g} in an octahedral field?
6. (a) Justify $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is octahedral and $\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right)\right]^{2-}$ is square planar.
(b) Explain conjugate acid base theory with examples.
(c) How many unpaired electrons are there in $\mathrm{Cr}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Co}^{3+}, \mathrm{Fe}^{2+}$ in a very weak octahedral field.

