Instructions: Use Separate Answer scripts for each Part.

GROUPI

Answer Question Number 1 or 2.

1. (a) State the difference between units and dimensions? 3
(b) Identify whether the equation for flow through a rectangular weir is dimensionally consistent:

$$
Q=0.415\left(L-0.2 h_{0}\right)\left(h_{0}\right)^{k .5}(2 \mathrm{~g})^{0.5}
$$

Where, $\mathrm{Q}=$ volumetric flow rate, $\mathrm{ft}^{3} / \mathrm{s}$,
$\mathrm{L}=$ Crest height, ft ,
$h_{0}=$ weir head, ft ,
$\mathrm{g}=$ acceleration due to gravity, $\mathrm{ft} / \mathrm{s}^{2}$. 7
2. Convert 7.8 (inch). $\left(\mathrm{cm}^{2}\right)$
to all SI units. 10
$(\mathrm{Xr})(\mathrm{s})\left(\mathrm{lb}_{\mathrm{m}}\right)\left(\mathrm{ft}^{2}\right)$

GROUP II

Answer question number 3 or 4 .
3. (a) in the processing of fish, after the oil is extracted, the fish cake is dried in a rotary drum dryer, finely ground and packed. In a given batch of fish cake that contains 85% water (the remainder being dry cake), 95 kg of water is removed and it is found that the fish cake is then 40% water. Calculate the weight the fish cake that was originally put into the dryer. 10
(b) In a food industry, a single effect evaporator concentrates a 4\% (by mass) food solution to 25% solids (by mass). Calculate how much water is evaporated per 100 kg of feed to the evaporator. How many independent material balance equations can be written for this problem? $8+2$
4. (a) What is recycling and how is it important for the chemical process industry? 5
(b) Dry sait is to be produced at the rate of $18,000 \mathrm{~kg} / \mathrm{hr}$ by evaporating water from a feed coniaining $20 \% \mathrm{NaCl}$. The brine $(27 \% \mathrm{NaCl})$ leaving the evaporator may either be recycled to the evaporator or may be discarded. If the brine produced is 25% of the weight of dry salt, calculate the following:
(i) the feed rate if the brine is recycled.
(Ii) the percent excess of the feed rate if the brine is discarded over that required when the brine is recycled. 15.

Group III

Answer question number 5 or 6
5. (a) How is the percent excess alr calculated for problems on material balance with chemicg L reactions? 3.
(b) Hydrogen free coke containing 85% carbon (by weight) and the rest inert materials is burnt in a furnace. It is found that during combustion 5% of the coke charged is lost unburnt. The flue gas analysis shows $14.84 \% \mathrm{CO}_{2}, 1.65 \% \mathrm{CO}, 5.16 \% \mathrm{O}_{2}$ and $78.35 \% \mathrm{~N}_{2}$. Calculate the following:
(i) The percent excess air on the basis of complete combustion of coke.
(ii) kg moles of air supplied per 100 kg of coke charged to the furnace.
(iii) kg mole of flue gas formed per 100 kg of coke charged. 17.
6. Wet solid containing 70% water is mixed with recycled dry solid to reduce the water content to 50% before being admitted to the granulator. The solid leaving the granulator is fed to a dryer where it is brought into contact with dry air initially containing 0.25% water by weight. In the dryer, the air picked up moisture and leaves with a moisture content of 5%. The solids leaving the dryer contains 20% water. A portion of this solid is recycled.

For $1000 \mathrm{~kg} / \mathrm{hr}$ of wet solid sent to the granulator as fresh feed determine the following:
(i) The amount of solid recycled.
(ii) The circulation rate of air in the dryer on dry basis:
20.

B.E. FOOD TECHNOLOGY AND BIO-CHEMICAL ENGINEERING FIRST YEAR SECOND SEMESTER EXAM 2018
 Chemical Engineering Fundamentals

Time: 3 hrs .
Full Marks : 100

Part-II(50 Marks)

1. Answer any two from the following (a) , (b) and (c)
(a) (i) Define the following with proper example : closed system, path function
(ii) What is 'standard heat of formation' of a compound?
(iii) What is 'standard state' of an element?
(iv) What do you mean by 'Van't Hoff Box'?
(v) Give example of a state function which is derived out of where two path functions
(vi) What is the basis of steam table?
(vii) What do you mean by BPR and Duhring chart? $2+1+1+2+1+1+2$
(b) (i) Determine the heat of reaction for the following at STP and state whether the reaction is endotiermic or exothermic: $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{CaCO}_{3}+\mathrm{NaOH}$. Data given : $\Delta \mathrm{H}_{\mathrm{f}}^{0}$ values for $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CaCO}_{3}$ and NaOH are $-288.5,-102,-270.3$ and -235.8 $\mathrm{kcal} / \mathrm{g}$ mol respectively.
(ii) When a system is taken from state a to state b along a particular path acb, 100J of heat flows into the system and the system dos 40 J of work. How much heat flows into the system along another path aeb if the work done by the system is 20 J ? The system returns from b to a along a path bda. If the work done on the system is 30 J , does the system absorb or liberate heat? How much? . $5+5$
(c) (i) Water flows over a water fall 100 m in height. Consider 1 kg of the water and assume that no energy is exchanged between the 1 kg and its surroundings. (a) What is the potential energy of the water at the top of the falls with respect to the base of the falls? (b) What is the kinetic energy of the water just before it strikes bottom (c) After 1 kg of water enters the tiver below the falls, what change has occurred in its state? Assume that $4184 \mathrm{~J} \mathrm{~kg}^{-1}$ is required for a temperature rise of $1^{\circ} \mathrm{C}$ in water.
(ii) Calculate heat of reaction of the following reaction at 1000 K and 1 atm pressure:
$\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
Data given: $\overline{\mathrm{Cp}}$ of $\mathrm{H}_{2}=29.46 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K} ; \overline{\mathrm{C}}$ p $\mathrm{Cl}_{2}=37 \mathrm{~kJ} / \mathrm{kmol}-\mathrm{K} ; \overline{\mathrm{C}}$ p of $\mathrm{HCl}=30$ $\mathrm{kJ} / \mathrm{kmol}-\mathrm{K}$ and $\Delta \mathrm{H}_{\mathrm{f}(\mathrm{HCl})}^{0}=-90,000 \mathrm{~kJ} / \mathrm{kmol}$
2. Answer any two from the following (a), (b) ,(c), (d) and (e)
(a) $15 \mathrm{~m}^{3}$ of dry CO_{2} at 200 kPa and $40^{\circ} \mathrm{C}$ is to be fed into a chamber to cool it at $20^{\circ} \mathrm{C}$. The gas is inside a copper tube with an internal diameter of 25 mm and wall thickness of 1.20 mm surrounded by another copper tube with an internal diameter of 35 mm and wall thickness of 1.65 mm . Water flows through the annular space at a velocity of $0.15 \mathrm{~m} / \mathrm{sec}$. Water enters at $15^{\circ} \mathrm{C}$ and flows counter current to the gas. Calculate the outlet temperature of water. Assume that specific heat for water is $4.19 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and heat capacity (Cp) of CO_{2} at a average temperature of $30^{\circ} \mathrm{C}$ is 0.80 kJ / kg-K.
(b) Ammonium sulphate is to be crystallized from a solution containing 48% ammonium sulphate by cooling it in a counter current crystallizer from 85 to $35^{\circ} \mathrm{C}$. During cooling the amount of water that evaporates is 5% of the feed. If the feed rate is $1500 \mathrm{~kg} / \mathrm{hr}$, calculate
(i) the rate of formation of crystal (ii) the rate of supply of cooling water if heated from 18 to $30^{\circ} \mathrm{C}$ (iii) required cooling surface required.
Data given: Overall heat transfer coefficient of the cooling surface is $115 \mathrm{w} / \mathrm{m}^{2}-\mathrm{K}$;
Solubility of ammonium sulphate at $35^{\circ} \mathrm{C}$ is $75 \mathrm{~kg} / 100 \mathrm{~kg}$ of water; Specific heat of 48% ammonium sulphate is $2.97 \mathrm{~kJ} / \mathrm{kg}$; Heat of crystallization of ammonium sulphate is $75.2 \mathrm{~kJ} / \mathrm{kg}$;
Latent heat of evaporation of water at $35^{\circ} \mathrm{C}$ is $2414 \mathrm{~kJ} / \mathrm{kg}$
15
(c) A 500 gallon continuous stirred tank reactor (CSTR) is fed $2,780 \mathrm{lb}_{\mathrm{m}} / \mathrm{hr}$ of feed at $70^{\circ} \mathrm{Fwith}$ a concentration of 0.5 lb -mole of reactant A per ft^{3}. Some of the reactant a is consumed in the reactor, producing product b . The concentration of the reactant in the stream leaving the reactor is 0.245 lb -mole of A per ft^{3} and the temperature of this stream is $140^{\circ} \mathrm{F}$. the heat capacity of the reactant and the product are both $0.75 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{0} \mathrm{~F}$ and their densities are both $50 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$. The reaction is exothermic, giving of $30,000 \mathrm{Btu} / \mathrm{lb}$-mole of a reacted. How much heat must be removed from the reactor? if cooling water at $70^{\circ} \mathrm{F}$ is fed into the cooling jacket surrounding the reactor and leaves the jacket at $118^{\circ} \mathrm{F}$, how much cooling water must be used? Assume 1 gallon of water to be $8.33 \mathrm{lb}_{\mathrm{m}}$ of water.
(d) An evaporator is used to concentrate orange juice from 12 weight percent solids to 48 weight percent solids with no boiling point rise. Liquid enthalpies may be assumed to be those of pure water. The evaporator operates at $40^{\circ} \mathrm{C}$, with feed entering at $30^{\circ} \mathrm{C}$. Saturated steam is used at $60^{\circ} \mathrm{C}$. The overall heat transfer coefficient is $350 \mathrm{BTU} / \mathrm{hr}$. $\mathrm{ft}^{2} .{ }^{\circ} \mathrm{F}$. Calculate the heat transfer area and the steam requirement flow rate to produce $3,000 \mathrm{lb} / \mathrm{hr}$ of orange juice concentrate. Steam table data: enthalpy of water at $30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ are $54 \mathrm{BTU} / \mathrm{lb}, 72 \mathrm{BTU} / \mathrm{lb}$ \& $108 \mathrm{BTU} / \mathrm{lb}$, respectively ; enthalpy of water vapour at $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ are $1106 \mathrm{BTU} / \mathrm{lb}$ \& 1122BTU/lb, respectively.
(e) A saline solution is evaporated in a short-tube'vertical evaporator. The feed concentration is 10 weight percent solids and the feed temperature is $80^{\circ} \mathrm{F}$. The concentrated liquid product from the evaporator is 35 weight percent solids. The pressure inside the evaporator is 5 psia. Saturated stem at 30 psig is used as the energy source. The saline solution has a heat capacity that is $0.95 \mathrm{BTU} / \mathrm{lb} .{ }^{\circ} \mathrm{F}$ at 10 weight percent and $0.85 \mathrm{BTU} / \mathrm{lb} .{ }^{\circ} \mathrm{F}$ at 35 weight percent. The overall heat transfer coefficient is $400 \mathrm{BTU} / \mathrm{hr} . \mathrm{ft}^{2}{ }^{2}{ }^{\circ} \mathrm{F}$. Determine the heat transfer area required to produce $2500 \mathrm{lb} / \mathrm{hr}$ of concentrated product assuming BPR.
Boiling point of pure water at 5psia is $162^{\circ} \mathrm{F}$. From Duhring chart BPR for this case is found to be $32^{\circ} \mathrm{F}$. enthalpy of water vapour at $194^{\circ} \mathrm{F}$ is $1146 \mathrm{BTU} / \mathrm{lb}$. The temperature of saturated condensing steam at 30 psig is $274^{\circ} \mathrm{F}$.
